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Abstract

Linear time-invariant systems are very popular models in system theory and applications. A fundamental problem in system
identification that remains rather unaddressed in extant literature is to leverage commonalities amongst related systems to
estimate their transition matrices more accurately. To address this problem, we investigate methods for jointly estimating
the transition matrices of multiple systems. It is assumed that the transition matrices are unknown linear functions of some
unknown shared basis matrices. We establish finite-time estimation error rates that fully reflect the roles of trajectory lengths,
dimension, and number of systems under consideration. The presented results are fairly general and show the significant gains
that can be achieved by pooling data across systems, in comparison to learning each system individually. Further, they are
shown to be robust against moderate model misspecifications. To obtain the results, we develop novel techniques that are of
independent interest and are applicable to similar problems. They include tightly bounding estimation errors in terms of the
eigen-structures of transition matrices, establishing sharp high probability bounds for singular values of dependent random
matrices, and capturing effects of misspecified transition matrices as the systems evolve over time.
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1 Introduction applications is remarkably extensive, including dynam-
ics of economic indicators in US states [35,40,42], flight
dynamics of airplanes at different altitudes [6], drivers
of gene expressions across related species [5,19], time se-
ries data of multiple subjects that suffer from the same
disease [38,41], and commonalities among multiple sub-
systems in control engineering [43].

The problem of identifying the transition matrices in lin-
ear time-invariant (LTI) systems has been extensively
studied in the literature [8,26,29]. Recent papers estab-
lish finite-time rates for accurately learning the dynam-
ics in various online and offline settings [16,36,39]. No-
tably, existing results are established when the goal is to
identify the transition matrix of a single system. In all these settings, there are strong similarities in the

dynamics of the systems, which are unknown and need

However, in many application areas of LTI systems, one to be learned from the data. Hence, it becomes of inter-

observes state trajectories of multiple dynamical sys- est to develop a Joint learning strategy for the.system
tems. So, in order to be able to efficiently use the full parameters, by pooling the data of the underlying sys-
data of all state trajectories and utilize the possible com- tems t({gether and .learn the'unlmown S{mllarltles m their
monalities the systems share, we need to estimate the dynamlcs. In. partlcularz this strategy 1s of extra Impor-
transition matrices of all systems jointly. The range of tance in settings wherein the available data is limited,

for example when the state trajectories are short or the
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ation mechanisms. Joint learning methods are studied
in supervised learning and online settings [10,4,32,33,3].
Their theoretical analyses are obtained rely on a num-
ber of technical assumptions regarding the data, includ-
ing independence, identical distributions, boundedness,
richness, and isotropy.

However, for the problem of joint learning of dynami-
cal systems, additional technical challenges are present.
First, the observations are temporally dependent. Sec-
ond, the number of unknown parameters is the square of
the dimension of the system, which impacts the learning
accuracy. Third, since in many applications the dynam-
ics matrices of the underlying LTT systems might possess
eigenvalues of (almost) unit magnitude, conventional ap-
proaches for dependent data (e.g., mixing) inapplicable
[16,36,39]. Fourth, the spectral properties of the transi-
tion matrices play a critical role on the magnitude of the
estimation errors. Technically, the state vectors of the
systems can scale exponentially with the multiplicities
of the eigenvalues of the transition matrices (which can
be as large as the dimension). Accordingly, novel tech-
niques are required for considering all important factors
and new analytical tools are needed for establishing use-
ful rates for estimation error. Further details and tech-
nical discussions are provided in Section 3.

We focus on a commonly used setting for joint learning
that involves two layers of uncertainties. It lets all sys-
tems share a common basis, while coefficients of the lin-
ear combinations are idiosyncratic for each system. Such
settings are adopted in multitask regression, linear ban-
dits, and Markov decision processes [14,22,31,44]. From
another point of view, this assumption that the system
transition matrices are unknown linear combinations of
unknown basis matrices can be considered as a first-
order approximation for unknown non-linear dynamical
systems [27,30]. Further, these compound layers of un-
certainties subsume a recently studied case for mixtures
of LTT systems where under additional assumptions such
as exponential stability and distinguishable transition
matrices, joint learning from unlabeled state trajectories
outperforms individual system identification [11].

The main contributions of this work can be summarized
as follows. We provide novel finite-time estimation error
bounds for jointly learning multiple systems, and estab-
lish that pooling the data of state trajectories can dras-
tically decrease the estimation error. Our analysis also
presents effects of different parameters on estimation ac-
curacy, including dimension, spectral radius, eigenval-
ues multiplicity, tail properties of the noise processes,
and heterogeneity among the systems. Further, we study
learning accuracy in the presence of model misspecifica-
tions and show that the developed joint estimator can
robustly handle moderate violations of the shared struc-
ture in the dynamics matrices.

In order to obtain the results, we employ advanced tech-

niques from random matrix theory and prove sharp con-
centration results for sums of multiple dependent ran-
dom matrices. Then, we establish tight and simultaneous
high-probability confidence bounds for the sample co-
variance matrices of the systems under study. The anal-
yses precisely characterize the dependence of the pre-
sented bounds on the spectral properties of the transi-
tion matrices, condition numbers, and block-sizes in the
Jordan decomposition. Further, to address the issue of
temporal dependence, we extend self-normalized mar-
tingale bounds to multiple matrix-valued martingales,
subject to shared structures across the systems. We also
present a robustness result by showing that the error due
to misspecifications can be effectively controlled.

The remainder of the paper is organized as follows. The
problem is formulated in Section 2. In Section 3, we de-
scribe the joint-learning procedure, study the per-system
estimation error, and provide the roles of various key
quantities. Then, investigation of robustness to model
misspecification and the impact of violating the shared
structure are discussed in Section 4. We provide numeri-
cal illustrations for joint learning in Section 5 and present
the proofs of our results in the subsequent sections. Fi-
nally, the paper is concluded in Section 10.

Notation. For a matrix A, A’ denotes the transpose of
A. For square matrices, we use the following order of
eigenvalues in terms of their magnitudes: [Apax(A)| =
A(A)] = [A2(A)] = -+ = [Aa(A)] = [Amin(A)]. For
singular values, we employ omin(A) and omax(A4). For
any vector v € C?, let [v], denote its £, norm. We use
Il g to denote the matrix operator-norm for 3,7 €

[1,00] and A € Ch*%: A, = sup 1Al /llv]].,-

When v = 3, we simply write |HA|H5 For functions
frg: X = R, we write f < g, if f(z) < cg(z) for a
universal constant ¢ > 0. Similarly, we use f = O(g)
and f = Q(h), if 0 < f(n) < ¢19(n) for all n > ny,
and 0 < coh(n) < f(n) for all n > ng, respectively,
where ¢, ca,n1,ny are large enough constants. For any
two matrices of the same dimensions, we define the inner
product (A, B) = tr (A’B). Then, the Frobenius norm
becomes | Al = \/(4, A). The sigma-field generated by
X1, Xo,...,X, is denoted by o(X1, Xs,...X,,). We de-
note the i-th component of the vector z € R? by z[i]. Fi-
nally, for n € N, the shorthand [n] is the set {1,2,...,n}.

2 Problem Formulation

Our main goal is to study the rates of jointly learning
dynamics of multiple LTI systems. Data consists of state
trajectories of length T" from M different systems. Specif-
ically, for m € [M] and t = 0,1,...,T, let z,,(t) € R?
denote the state of the m-th system, that evolves accord-
ing to the Vector Auto-Regressive (VAR) process

T (t+1) = A () + nn (t + 1). (1)
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Fig. 1. Logarithm of the magnitude of the state vectors vs.
time, for different block-sizes in the Jordan forms of the tran-
sition matrices, which is denoted by [ in (4). The exponential
scaling of the state vectors with [ can be seen in both plots.

Above, A4,, € R*? denotes the true unknown transition
matrix of the m-th system and 7,,(t + 1) is a mean zero
noise. For succinctness, we use ©* to denote the set of
all M transition matrices {A,, }»_,. The transition ma-
trices are related as will be specified in Assumption 3.

Note that the above setting includes systems with longer
memories. Indeed, if the states Z,,(t) € R? obey

Tm(t) = By 1Zm(t — 1) 4+ -+ + By oTm(t — @) + 0 (1),

then, by concatenating Z,,(t — 1), - --
larger vector x,,(t —

, T (t — q) in one

1), the new state dynamics is (1),
5 Bm e Bm — Bm

for d = qd and A,,, = ! -t 4
I(Lrl)cz 0

We assume that the system states do not explode in the
sense that the spectral radius of the transition matrix
A,, can be slightly larger than one. This is required for
the systems to be able to operate for a reasonable time
length [25,15]. Note that this assumption still lets the
state vectors grow with time, as shown in Figure 1.

Assumption 1 For all m € [M], we have |A1(Ap)| <
1+ p/T, where p > 0 is a fized constant.

In addition to the magnitudes of the eigenvalues, further
properties of the transition matrices heavily determine
the temporal evolution of the systems. A very impor-
tant one is the size of the largest block in the Jordan
decomposition of A,,, which will be rigorously defined
shortly. This quantity is denoted by ! in (4). The impact
of [ on the state trajectories is illustrated in Figure 1,
wherein we plot the logarithm of the magnitude of state
vectors for linear systems of dimension d = 32. The up-
per plot depicts state magnitude for stable systems and
for blocks of the size [ = 2,4, 8,16 in the Jordan decom-
position of the transition matrices. It illustrates that the
state vector scales exponentially with [. Note that [ can
be as large as the system dimension d.

Moreover, the case of transition matrices with eigenval-
ues close to (or exactly on) the unit circle is provided in

the lower panel in Figure 1. It illustrates that the state
vectors grow polynomially with time, whereas the scal-
ing with the block-size [ is exponential. Therefore, in de-
sign and analysis of joint learning methods, one needs
to carefully consider the effects of I and |\ (4y,)].

Next, we express the probabilistic properties of the
stochastic processes driving the dynamical systems. Let
Fi = o(x1.(0),m1.0s (1), ..., 1.0 (¢)) denote the filtra-
tion generated by the the initial state and the sequence
of noise vectors. Based on this, we adopt the following
ubiquitous setting that lets the noise process {7, ()},
be a sub-Gaussian martingale difference sequence. Note
that by definition, n,,(t) is Fz-measurable.

Assumption 2 For all systems m € [M], we have
E [0m (#)[Fi-1] = 0 and E [1,(t)0m (t)'[Fi-1] = C. Fur-
ther, i (t) is sub-Gaussian; for all A € R%:

E [exp (A, 7 (£)) [ Fe-1] < exp (NP0 /2).

Henceforth, we denote ¢? = max (02, Apax(C)).

The above assumption is widely-used in the finite-sample
analysis of statistical learning methods [1,17]. It includes
normally distributed martingale difference sequences,
for which Assumption 2 is satisfied with 02 = A\yax(C).
Moreover, if the coordinates of n,,(t) are (conditionally)

independent and have sub-Gaussian distributions with

constant o, it suffices to let 02 = Y7, 2. We let a com-

mon noise covariance matrix for the ease of expression.
However, the results simply generalize to covariance ma-
trices that vary with time and across the systems, by
appropriately replacing upper- and lower-bounds of the
matrices [16,36,39].

For a single system m € [M], its underlying transition
matrices A,, can be individually learned from its own
state trajectory data by using the least squares estima-
tor [16,36]. We are interested in jointly learning the tran-
sition matrices of all M systems under the assumption
that they share the following common structure.

Assumption 3 (Shared Basis) Fach transition ma-
trix A,, can be expressed as

k

where {W}¥_, are commond x d matrices and 3}, € R*
contains the idiosyncratic coefficients for system m.

This assumption is commonly-used in the literature of
jointly learning multiple parameters [14,44]. Intuitively,
it states that each system evolves by combining the ef-
fects of k systems. These k unknown systems behind the



scene are shared by all systems m € [M], the weight
of each of which is reflected by the idiosyncratic coeffi-
cients that are collected in S}, for system m. Thereby,
the model allows for a rich heterogeneity across systems.

The main goal is to estimate ©* = {A4,,}M_, by observ-
ing &, (t) for 1 <m < M and 0 < ¢t < T. To that end,
we need a reliable joint estimator that can leverage the
unknown shared structure to learn from the state trajec-
tories more accurately than individual estimations of the
dynamics. Importantly, to theoretically analyze effects
of all quantities on the estimation error, we encounter
some challenges for joint learning of multiple systems
that do not appear in single-system identification.

Technically, the least-squares estimate of the transition
matrix of a single system admits a closed form that lets
the main challenge of the analysis be concentration of the
sample covariance matrix of the state vectors. However,
since closed forms are not achievable for joint-estimators,
learning accuracy cannot be directly analyzed. To ad-
dress this, we first bound the prediction error and then
use that for bounding the estimation error. To establish
the former, after appropriately decomposing the joint
prediction error, we study its scaling with the trajectory-
length and dimension, as well as the trade-offs between
the number of systems, number of basis matrices, and
magnitudes of the state vectors. Then, we deconvolve the
prediction error to the estimation error and the sample
covariance matrices, and show useful bounds that can
tightly relate the largest and smallest eigenvalues of the
sample covariance matrices across all systems. Notably,
this step that is not required in single-system identifica-
tion is based on novel probabilistic analysis for depen-
dent random matrices.

In the sequel, we introduce a joint estimator for utilizing
the structure in Assumption 3 and analyze its accuracy.
Then, in Section 4 we consider violations of the structure
in (2) and establish robustness guarantees.

3 Joint Learning of LTI Systems

In this section, we propose an estimator for jointly learn-
ing the M transition matrices. Then, we establish that
the estimation error decays at a significantly faster rate
than competing procedures that learn each transition
matrix A,, separately by using only the data trajectory
of system m.

Based on the parameterization in (2), we solve for W =
{Wi}fﬂ and B = [Bl\gﬂ . BM:| € RF>*M 45 follows:

W, B :=argmin £(0*, W, B), (3)
W,B

where £(©*, W, B) is the averaged squared loss across
all M systems:

2

m=1 t=0

k
xm(t + 1) - (Z ﬂm[Z]Wz> ij(t)

i=1

2

In the analysis, we assume that one can approximately
find the minimizer in (3). Although the loss function in
(3) is non-convex, thanks to its structure, computation-
ally fast methods for accurately finding the minimizer
are applicable. Specifically, the loss function in (3) is
quadratic and the non-convexity is the bilinear depen-
dence on (W, B). The optimization in (3) is of the form
of explicit rank-constrained representations [9]. For such
problems, it has been shown under mild conditions that
gradient descent converges to a low-rank minimizer at
a linear rate [46]. Moreover, it is known that methods
such as stochastic gradient descent have global conver-
gence, and these bilinear non-convexities do not lead to
any spurious local minima [20]. In addition, since the loss
function is biconvex in W and B, alternating minimiza-
tion techniques converge to global optima, under stan-
dard assumptions [23]. Nonetheless, note that a near-
optimal minimum for the objective function is sufficient,
and we only need to estimate the product W B accu-
rately instead of recovering both W and B. More specif-
ically, the error of the joint estimator in (3) degrades
gracefully in the presence of moderate optimization er-
rors. For instance, suppose that the optimization prob-
lem is solved up to an error of € from a global optimum.
It can be shown that an additional term of magnitude
O (€/Amin(C)) arises in the estimation error, due to this
optimization error. Numerical experiments in Section 5
illustrate the implementation of (3).

In the sequel, we provide key results for the joint estima-
tor in (3) and establish the high probability decay rates

—~ 2
A~

The analysis leverages high probability bounds on the
sample covariance matrices of all systems, denoted by

T-1
Em = Z $m(t)$m(t)/.
t=0

For that purpose, we utilize the Jordan forms of matri-
ces, as follows. For matrix A,,, its Jordan decomposition
is Ay, = P, A, Py, where A,, is a block diagonal ma-
trix; Ay, = diag(Am,1,... Amq,.), and for ¢ = 1,...qpm,
each block A, ; € Clm.iXlm.i ig a Jordan matrix of the



eigenvalue A, ;. A Jordan matrix of size [ for A € C is

A10...00
0A10 ...0

e, (4)
000... 0 A

Henceforth, we denote the size of each Jordan block by
I, fori =1, -+, qn, and the size of the largest Jordan
block for system m by [,. Note that for diagonalizable
matrices A,,, since A,, is diagonal, we have [}, = 1. Now,
using this notation, we define

1P oo 1Pl £ (Ar)
) = {7

Pt log 1Pl e
where A1 = A1 (4) and

Amail<1-%

()

by —1 (Ix, —1)!
(710g |>\m,1|)l:n

ALY = !/ Amal [
f( ) 7log‘)\m71|

The quantities in the definition of a (A,,) can be in—
terpreted as follows. The term || Py(| ., 1Pl
similar to the condition number of the similarity ma-
trix P,, in the Jordan decomposition that is used to
block-diagonalize the matrix. Moreover, f (A,,) for sta-
ble matrices, and e?*! for transition matrices with (al-
most) unit eigenvalues, capture the long term influences
of the eigenvalues. In other words, f (A,,) indicates the
amount that 7, (t) contributes to the growth of |z,,(s)||,
for s > ¢t and |Ap 1| <1 —p/T. When || = 1, ||z (s)]
scales polynomially with the trajectory length T, since
influences of the noise vectors 7,,(t) do not decay as s —t
grows, because of the accumulations caused by the unit
eigenvalues. The exact expressions are in Theorem 1 be-
low. Note that while f(A,,) is used to obtain an analyt-
ical upper bound for the whole range |\, 1| <1 —p/T,
it is not tight for small values of A, 1 and tighter expres-
sions can be obtained using the analysis in the proof of
Theorem 1.

To introduce the following result, we define b,, next.
First, for some éc > 0 that will be determined later,
for system m, define b,, = br(0¢/3) + ||€m (0)| ., where
br(8) = /202 log (2dMT5~1). Then, we establish high
probability bounds on the sample covariance matrices
Y.m with the detailed proof provided in Section 6.

Theorem 1 (Covariance matrices) Under Assump-
tions 1 and 2, for each system m, let ¥, = Apnl and
S = Anl, where Ay, =4~ 1)\mm(C)T and

b {SlRPRT

Zf |>\m 1| <1-— T
= 272 21 +1
(Am) me m

if [[Amal =1 < %

Amal =1 < 7

Then, there is Ty, such that form € [M] and T > Tp:

P[0< X, =

The above two expressions for \,,, show that for [Am.1| <
1— p/T, the largest eigenvalue of the covariance matrix
grows linearly in T, whereas for ||\, 1| — 1| < p/T, the
bounds scale exponentially with the multiplicities of the
eigenvalues. Note that the bounds in Theorem 1 and
the estimation error results stated hereafter require the
trajectories for each system to be longer than T,. The
precise definition for Tj can be found in the statement
of Lemma 2 in Section 6.

For establishing the above, we extend existing tools
for learning linear systems [1,16,36,45]. Specifically, we
leverage truncation-based arguments and introduce the
quantity a(A,,) that captures the effect of the spectral
properties of the transition matrices on the magnitudes
of the state trajectories. Further, we develop strate-
gies for finding high probability bounds for largest and
smallest singular values of random matrices and for
studying self-normalized matrix-valued martingales.

Importantly, Theorem 1 provides a tight characteriza-
tion of the sample covariance matrix for each system, in
terms of the magnitudes of eigenvalues of A,,, as well
as the largest block-size in the Jordan decomposition
of A,,. The upper bounds show that \,, grows expo-
nentially with the dimension d, whenever ¥, = Q(d).
Further, if A,, has eigenvalues with magnitudes close
to 1, then scaling with time T can be as large as
T2+l The bounds in Theorem 1 are more general

than tr (Ztho Aan’mt) that appears in some analyses

[36,39], and can be used to calculate the latter term.
Finally, Theorem 1 indicates that the classical frame-
work of persistent excitation [7,21,24] is not applicable,
since the lower and upper bounds of eigenvalues grow
at drastically different rates.

Next, we express the joint estimation error rates.

Definition 1 Denote Ec = {0 <Y, =X, =< im}
and let A\ = max,, A\, A = Ming, An, Km = A /A,
K = MaX,, Km, and Ko = A\/A. Note that keo > K.

Theorem 2 Under Assumptions 1, 2, and 3, and for

T > Ty, the estimator in (3) returns A, for each system
m € [M], such that with probability at least 1 — ¢, the
following holds:

M
1 -~ 02 a2k rdT
- Am—AmH < (klog K ] .
Mmz_:lH A(Og”Jnga)




The proof is provided in Section 7. By putting Theorems
1 and 2 together, the estimation error per-systen] ' |is

0 <c2klog Koo n

(7)

Amirl(O)T

c2d%klog %
MAin (C)T

The above expression demonstrates the effects of learn-
ing the systems in a joint manner. The first term in (7)
can be interpreted as the error in estimating the idiosyn-
cratic components (3, for each system. The convergence
rateis O (k/T), as each B, is a k-dimensional parameter
and for each system, we have a trajectory of length T
More importantly, the second term in (7) indicates that
the joint estimator in (3) effectively increases the sample
size for the shared components {W;}%¥_, by pooling the
data of all systems. So, the error decays as O(d?k/MT),
showing that the effective sample size for {W; }5_, is M T.

In contrast, for individual learning of LTI systems, the
rate is known [16,18,36,39] to be

2 Ad?

p a(An)T
F ™ Amin(C)T ’

J

H A\m - Am IOg

Thus, the estimation error rate in (7) recovers the rate
for a single system (k = 1), and it significantly improves
for joint learning, especially when

k< d? and k<M. (8)
Note that the above conditions are as expected. First,
when k =~ d?, the structure in Assumption 3 does not
provide any commonality among the systems. That is,
for k = d?, the LTI systems can be totally arbitrary
and Assumption 3 is automatically satisfied. This pre-
vents reductions in the effective dimension of the un-
known transition matrices, and also prevents joint learn-
ing from being any different than individual learning.
Similarly, k &= M precludes all commonalities and indi-
cates that {A,,}M_, are too heterogeneous to allow for
any improved learning via joint estimation.

Importantly, when the largest block-size [}, varies signif-
icantly across the M systems, a higher degree of shared
structure is needed to improve the joint estimation error
for all systems. Since k and K, depend exponentially on
I%, (as shown in Figure 1 and Theorem 1) and [, can be
as large as d, we can have log ko, = log k = Q(d). Hence,
in this situation we incur an additional dimension de-
pendence in the error of the joint estimator. Note that
such effects of [, are unavoidable (regardless of the em-
ployed estimator). Moreover, in this case, joint learning

! In order to obtain a guarantee for the maximum error over
all systems, additional assumptions on the matrix [87 ... Bi/]
are required. This problem falls beyond the scope of this
paper and we leave it to a future work.

rates improve if k < d and kd < M. Therefore, our anal-
ysis highlights the important effects of the large blocks
in the Jordan form of the transition matrices.

The above is an inherent difference between estimating
dynamics of LTI systems and learning from indepen-
dent observations. In fact, the analysis established in
this work includes stochastic matrix regressions that the
data of system m consists of

Ym(t) = Am@m (t) + nim (), 9)

wherein the regressors x,,(t) are drawn from some dis-
tribution D,,, and y,,(t) is the response. Assume that
(m(t), ym(t)) are independent as m,t vary. Now, the
sample covariance matrix X, for each system does not
depend on A,,. Hence, the error for the joint estimator
is not affected by the block-sizes in the Jordan decom-
position of A,,. Therefore, in this setting, joint learning
always leads to improved per-system error rates, as long
as the necessary conditions k < d? and k < M hold.

4 Robustness to Misspecifications

In Theorem 2, we showed that Assumption 3 can be
utilized for obtaining an improved estimation error, by
jointly learning the M systems. Next, we consider the
impacts of misspecified models on the estimation error
and study robustness of the proposed joint estimator
against violations of the structure in Assumption 3.

Let us first consider the deviation of the dynamics of each
system m € [M] from the shared structure. Specifically,
by employing the matrix D,, to denote the deviation of
system m from Assumption 3, suppose that

k
A, = (Z ﬁ;[i]Wi) + Dy (10)

Then, denote the total misspecification by (?> =
En]\f{:l ||DmH§; We study the consequences of the above
deviations, assuming that the same joint learning
method as before is used for estimating the transition
matrices.

Theorem 3 Under Assumptions 1, 2, (10), and forT >

To, the estimator in (3) returns A, for each systemm €
[M], such that with probability at least 1 — &, we have:

1 &~ 2

ES

M mz:; H F~

c? d*k . wkdT (Koo + 1) C?

By (klogkzoo—i—Mlog 5 ) % . (1)



The proof of Theorem 3 is provided in Section 8. In (11),
we observe that the total misspecification (? imposes
an additional error of (ko + 1)¢? for jointly learning
all M system. Hence, to obtain accurate estimates, we
need the total misspecification (2 to be smaller than the
number of systems M, as one can expect. The discussion
following Theorem 2 is still applicable in the misspeci-
fied setting and indicates that in order to have accurate
estimates, the number of the shared bases k& must be
smaller than M as well. In addition, compared to indi-
vidual learning, the joint estimation error improves de-
spite the unknown model misspecifications, as long as

Koo? _ d*
M ~T

This shows that when the total misspecification is pro-
portional to the number of systems; (* = Q(M), we pay
a constant factor proportional to k., on the per-system
estimation error. Note that in case all systems are sta-
ble, according to Theorem 1, the maximum condition
number K, does not grow with 7', but it scales exponen-
tially with [7,. The latter again indicates an important
consequence of the largest block-sizes in Jordan decom-
position that this work introduces.

Moreover, when a transition matrix A,, has eigenvalues
close to or on the unit circle in the complex plane, by
Theorem 1, the factor ko, grows polynomially with 7'
Thus, for systems with infinite memories or accumula-
tive behaviors, misspecifications can significantly dete-
riorate the benefits of joint learning. Intuitively, the rea-
son is that effects of notably small misspecifications can
accumulate over time and contaminate the whole data
of state trajectories, because of the unit eigenvalues of
the transition matrices A,,. Therefore, the above strong
sensitivity to deviations from the shared model for sys-
tems with unit eigenvalues seems to be unavoidable.
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Fig. 2. Per-system estimation errors vs. the number of sys-
tems M, for the proposed joint learning method and individ-
ual least-squares estimates of the linear dynamical systems.

For example, if for the total misspecification we have
2 = O(M*~%), for some a > 0, joint estimation im-
proves over the individual estimators, as long as Tkeo <
M¢4d?. Hence, when all systems are stable, the joint esti-
mation error rate improves when the number of systems

satisfies T%/% < M. Otherwise, idiosyncrasies in sys-
tem dynamics dominate the commonalities. Note that
larger values of a correspond to smaller misspecifica-
tions. On the other hand, Theorem 3 implies that in sys-
tems with (almost) unit eigenvalues, the impact of (? is
amplified. Indeed, by Theorem 1, for unit-root systems,
joint learning improves over individual estimators when
d?M® > T?'»+2, That is, for benefiting from the shared
structure and utilizing pooled data, the number of sys-
tems M needs to be as large as T(tm+2)/a /q?/a

In contrast, if (2 = O(M*~%) for some a > 0, the joint
estimation error for the regression problem in (9) in-
curs only an additive factor of O(1/M?), regardless of
the largest block-sizes in the Jordan decompositions and
unit-root eigenvalues. Thus, Theorem 3 further high-
lights the stark difference between joint learning from
independent, bounded, and stationary observations, and
from state trajectories of LTI systems.

5 Numerical Illustrations

We complement our theoretical analyses with a set of
numerical experiments which demonstrate the benefit of
jointly learning the systems. We investigate two main as-
pects of our theoretical results: (i) benefits of joint learn-
ing when the M systems share a common linear basis, for
different values of M, and (ii) interplay of the spectral
radii of the system matrices with the joint-estimation er-
ror. To that end, we compare the estimation error for the
joint estimator in (3) against the ordinary least-squares
(OLS) estimates of the transition matrices for each sys-
tem individually. For solving (3), we use a minibatch
gradient-descent-based implementation with Adam as
the optimization algorithm [28]. Due to the bilinear form
of the optimization objective, gradient descent methods
can lead to convergence and computational issues for
W and B. Although prior studies utilize regularization
penalties to address this issue in some cases [44], we do
not use any such regularization in our objective function
in (3). Notably, our unregularized minimization exposes
no convergence issue in the simulations we performed.
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Fig. 3. Per-system estimation errors are reported vs. the
number of systems M, for varying proportions of misspecified
systems; M~ ¢, for a € {0,0.25,0.5}.



For generating the systems, we consider settings with
the number of bases &k = 10, dimension d = 25, tra-
jectory length T' = 200, and the number of systems
M € {1,10,20,50,100,200}. We simulate two cases:

(i) the spectral radii are in the range [0.7,0.9], and

(ii) all systems have an eigenvalue of magnitude 1.

The matrices {W; }19, are generated randomly, such that
each entry of W; is sampled independently from the
standard normal distribution N(0,1). Using these ma-
trices, we generate M systems by randomly generating
the idiosyncratic components f3,, from a standard nor-
mal distribution. For generating the state trajectories,
noise vectors are isotropic Gaussian with variance 4. Ad-
ditional numerical simulations using Bernoulli random
matrices are provided in the full version of the paper [34].

We simulate the joint learning problem both with and
without model misspecifications. For the latter, devia-
tions from the shared structure are simulated by the
components D,,, which are added randomly with prob-
ability 1/M° for a € {0,0.25,0.5}. The matrices D,, are
generated with independent Gaussian entries of variance
0.01, leading to | D% ~ 6.25 and ¢ ~ 6.25 M9,
according to the dimension d = 25.

To report the results, for each value of M in Figure 2
(resp. Figure 3), we average the errors from 10 (resp.
20) random replicates and plot the standard deviation
as the error bar. Figure 2 depicts the estimation errors
for both stable and unit-root transition matrices, versus
M. It can be seen that the joint estimator exhibits the
expected improvement against the individual one.

More interestingly, in Figure 3(a), we observe that for
stable systems, the joint estimator performs worse than
the individual one, when significant violations from the
shared structure occurs in all systems (i.e., a = 0). Note
that it corroborates Theorem 3, since in this case the to-
tal misspecification (2 scales linearly with M. However,
if the proportion of systems which violate the shared
structure in Assumption 3 decreases, the joint estima-
tion error improves as expected (a = 0.25,0.5).

Figure 3(b) depicts the estimation error for the joint
estimator under misspecification for systems that have
an eigenvalue on the unit circle in the complex plane. Our
theoretical results suggest that the number of systems
needs to be significantly larger in this case to circumvent
the cost of misspecification in joint learning. The figure
corroborates this result, wherein we observe that the
joint estimation error is larger than the individual one, if
all systems are misspecified (i.e., a = 0). Decreases in the
total misspecification (i.e., a = 0.25,0.5) improves the
error rate for joint learning, but requires larger number
of systems than the stable case.

Finally, we discuss the choice of the number of bases k for
applying the joint estimator to real data. It can be han-
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Fig. 4. Estimation and validation prediction errors versus
the hyperparameter k', for the true value k = 10.

dled by model selection methods such as elbow criterion
and information criteria [2,37], as well as robust estima-
tion methods in panel data and factor models [12,13]. In
fact, for all &’ > k, the structural assumption is satis-
fied and leads to similar learning rates, while k¥’ < k can
lead to larger estimation errors. In Figure 4, we provide
a simulation (with T' = 250, M = 50) and report the
per-system estimation error, as well as the prediction er-
ror on a validation data (which is a subset of size 50).
Across all 10 runs in the experiment, we observed that if
the hyperparameter &’ is chosen according to the elbow
criteria, the resulting number of basis models is either
equal to the true value k = 10, or slightly larger. For
misspecified models, the optimal choice of k' can vary,
in the sense that large misspecifications can be added to
the shared basis (i.e., & > k).

6 Proof of Theorem 1

In this and the following sections, we provide the de-
tailed proofs for our results. We start by analysing the
sample covariance matrix for each system which is then
used to derive the estimation error rates in Theorem 2
and Theorem 3. Due to space constraints, some details
of the proofs are delegated to the full version of this
paper which is available online [34]. In Section 9, we
provide the general probabilistic inequalities that are
used throughout the proofs. Now, we prove high prob-
ability bounds for covariance matrices ¥, = %,,(T) =

ZtT:o T (£) T ()’ in Theorem 1.

6.1 Upper Bounds on Covariance Matrices

To prove an upper bound on each system covariance
matrix, we use an approach for LTI systems that relies
on bounding norms of exponents of matrices [16]. Using
I¥, and a(A,,) in (5) and &, = |”PT;1 H!OO_)Q Pl the
first step is to bound the sizes of all state vectors under
the event E,qq(d) in Proposition 7.

Proposition 1 (Bounding |z,,(t)||) For all t €



[T],m € [M], under the event Epaa(0), we have:

Zf |)\m,1| <1-— %,
if Amai—1<4%

where b, (8) = (br(8) + |2 (0

Mioo)-

Proof As before, each transition matrix A,, admits a
Jordan normal form as follows: A,, = P,'A,, Py, where
A, is ablock-diagonal matrix A,,, = diag (Ap, g, - - -,
Each Jordan block A,,; is of size [, ;. Note that for
each system, the state vector satisfies:

t

Z A m (8) + AL (0)

s=1

Tm(t) =

t
= Z PN P (s) + Pt AL P, (0).

s=1

Now, letting by (0) be the same as in Proposition 7, we
can bound the /5-norm of the state vector as follows:

lzm @O < (1Pl o ZAH IPnllo bz (N)
+|17 1|||M|HA Il 1P, oo llm (0)]]
<ém (ZHW Il ) 8) + 1zm (0 )-

For any matrix, the ¢, norm is equal to the maximum
row sum. Since the powers of a Jordan matrix will follow
the same block structure as the original one, we can
bound the operator norm || A% || by the norm of each
block. The max1mum row sum for the s-th power of a
Jordan block is: ZJ 0 ( )A*7J. Using this, we will bound

the size of each state vector for the case when

(I) thespectral radius of A,, satisﬁes A1 (A

m)| <1-%&,
(IT) or, when [Ay(Ay,) —1] < &

, for a constant p > 0.

Ag)-

Case I When the Jordan block for a system matrix
has eigenvalues strictly less than 1, we have:

i t lmq'—l
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< !/Pmal Z Amoa|® s
s=0
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—1 (I, —1)!
(—log [ Am,1[)im

< o1/l [
~ —log | Am 1]

Thus, for this case, each state vector can be upper
bounded as ||z, (t)| < a(Ap)(br(8)+|zm(0)] ., ). When
the matrix A,, is diagonalizable, each Jordan block is of
size 1, which leads to the upper-bound 3"t _ [|A%*] . <
(1 — A1)7%, for all t > 0. Therefore for diagonalizable
Ay, we can let a(A,,) = (1—X;) 7! H‘P,;l ||| 1P | oo

co—2

Case IT When [A,, 1 — 1] < £, we get Amal < e,
for all ¢ < T'. Therefore, since [, is the largest Jordan
block, we have:

l

IA

(=35 ()

s=0 j=0

t -
s=0 j=0
-1

t =
pZZsJ/j'<e”Zsm Zl/j!

s=0 j:O §=0
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Therefore, the magnitude of each state vector grows
polynomially with ¢, the exponent being at most [}, . For
example, when A,, is diagonalizable, the Jordan block

for the unit root is of size 1, givin Y\ _, [[AL %], < e”t.

So, for systems with unit roots, the bound on each state
vector is as expressed in the proposition. |

Using the high probability upper bound on the size of
each state vector, we can upper bound the covariance
matrix for each system as follows:

Lemma 1 (Upper bound on ¥,,) For all m € [M],
the sample covariance matrix 3, of system m can be
upper bounded under the event Epqq(9), as follows:



(I) When all eigenvalues of the matriz A, are strictly
less than 1 in magnitude (|\y,:| <1— %), we have

A (Zm) < @(A)? (07(8) + |21 (0)] )" T-

(II) When some eigenvalues of the matriz A, are close
tol,i.e [A(Am) — 1] < £, we have:

Amax (Em) < @(Am)? (07(8) + |2m (0)]|)° T2m+1,

Proof First note that we have:

T
)\max(zm) = Zx wm /
t=0

< lexm )z-

2 t=0

Therefore, by Proposition 7, when all eigenvalues of A,,
are strictly less than 1, we have:

Amax(Em) < To(Ap)? (b7(8) + 2m (0)])° -
For the case when 1 — £ < A\ (A4,,) <1+ &, we get:
T
)\max(zm) < a(Am)2 Ztmm'l
t=0

< a(A)? (b (6) + [|2m (0)] o )> THmatt,

6.2 Lower Bound for Covariance Matrices

A lower bound result for the idiosyncratic covariance ma-
trices can be derived using the probabilistic inequalities
in the last section. We provide a detailed proof below.

Lemma 2 (Covariance lower bound.) Define »x =
D(C)2 For all m € [M)], if the per-system sample size
T is greater than Ty defined as

s - max (¢, log 2,16 (log (a(A)zgm(d)Q +1) +2log 3)),

if [Am1| <1—=%, and

% - max (cn log %, 16 (log (a(A)26m(5)2T2l:” + 1) + 2log g))

if 1 = & < |Api| < 1+ &, then with probability at least
1 — 36, the sample covariance matrix 3, for system m
can be bounded from below: ¥, (T) = T’\%"(C)L

Proof We bound the covariance matrix under the events
Ebaa(9), £,(6) in Propositions 7, 8, as well as the one in

Proposition 10. As we consider a bound for all systems,
we drop the system subscript m here. Using (1), we have:

—1) A’+Z77

£ 3 (Aaln(t+ 1) +nt+ Dat) &)
t=0

S(T) = AX(T

cy do?log 18

Since T' > xcy, log%8 = )\_7(0)2‘5, under the event

&,(9) it holds that

S(T) = AS(T — 1)A’ + 3Am11(C)T
+ i (Az(t)n(t + 1)+t + 1)z(t) A").
t=0

Thus, for any unit vector u (i.e., on the unit sphere
S91), we have

WS(T)u > v AS(T — 1) A'u + M
T-1
+ > (Ax(t)n(t+ 1)+t + Da(t) A u.

t=0

Now, by Proposition 10 with V' = T'- I, we get the follow-
ing result for the martingale tT;Ol A X ()0, (t + 1)

and V;, () == Y7o AmXon (£) Xon (t)/ AL, +V, with prob-
ability at least 1 — 4:
n(t+1)
< \/u’AZ —1DAu+T

ot (7 _ 1/2d e —1/2d
\/8d02 log (5d t (Vo (T 1)21/d det(TI) )

Thus, we get:

u'S(T)u
=W AS(T — 1)A'u — Ju'AS(T — 1)A'u + T
% min T
\/ 16d0? log (2==(GT=1) ) 4+ 39d02 l0g § + PO 4(0)
Hence, we have:
,2(T) JAS(T — l)A’u 3Amin(C)
T T 4
AZ T — Al min
—\/u (T ) u—l—l/\ 2(0)
. )\min(c),
- 4



whenever T is larger than

16do>
Amin (C)?

Using the upper bound analysis in Lemma 1, we show
that it suffices for T to be lower bounded as

2
T 16do

Z T (O <log ((A)%b,n(6)% + 1) + 21og 2) 7

when A is strictly stable, and as

16d0'2 27 220" 5
> 0% ©

when |A;(A)| < 1+ £&. Since, both quantities on the
RHS grow at most logarithmically with 7', there exists
Ty such that it holds for all T' > Tj. Combining the fail-
ure probability for all events, we get the desired result. ®

7 Proof of Theorem 2

In this section, we use the result in Theorem 1 to an-
alyze the estimation error for the estimator in (3), un-
der Assumption 3. For ease of presentation, we rewrite
the problem by transforming the vector output space
to scalar values. For that purpose, we introduce some
notation to express transition matrices in vector form
and rewrite (3). First, for each state vector z,,(t) € RY,
we create d different covariates of size R So, for j =
1,-- ,d, the vector Zp, ;(t) € R% contains x,, (t) in the
j-th block of size d and 0's elsewhere.

Then, we express the system matrix A,, € R?x¢
vector A,, € R Similarly, the concatenation of all vec-
tors flm can be coalesced into the matrix © € RE* XM
Analogously, 7,,(t) will denote the concatenated dt di-
mensional vector of noise vectors for system m. Thus,
the structural assumption in (2) can be written as:

as a

Am =W" B, (12)

where W* € R? %k and B, € R Similarly, the overall
parameter set can be factorized as ©* = W*B* where
the matrix B* = [B7]8;| - B1,] € R¥*M contains the
true weight vectors ;. Thus, expressing the system ma-
trices A,, in this manner leads to a low rank structure
in (12), so that the matrix ©* is of rank k. Using the
vectorized parameters, the evolution for the components
j € [d] of all state vectors x,,(t) can be written as:

T (t+ D] = AT, (8) + 0 (t + 1)[5]. (13)

Amax (ST 1 AX(£) X (£) A
(1o (== XON) L) g

11

For each system m € [M], we therefore have a total of
dT samples, where the statistical dependence now fol-
lows a block structure: d covariates of z,,(1) are all con-
structed using ., (0), next d using x,,,(1) and so forth.
To estimate the parameters, we solve the following op-
timization problem:

W’ {/Bm}nj\gzl
d

= argmin ZZ (xm(t+1)[5] — <Wﬁm7fm,j(t)>)2

WABm -1 m,t j=1

L(W,B)
M

= argmin Z

- 2
Hym_XmW/BmH )
W7{’87”}7J\r/{:1 m=1 2

(14)

where 1,, € RT? contains all T state vectors stacked
vertically and X, € RT4xd” contains the correspond-
ing matrix input. We denote the covariance matrices
for the vectorized form by %, = ;1“:—01 T ()T (2)".
Recall, that the sample covariance matrices for all sys-
tems are denoted by X, = tT:_Ol T (£) 2, (t)'. We fur-
ther use the following notation: for any parameter set
© = WB € R™M we define X(©) € RIT*M a5
X(0) = [X1(0)|X2(0) - - - |Xar(©)], where each column
X, (©) € R4 is the prediction of states x,, (¢t 4+ 1) with
O, That is,

X (0) = (21(0), 2,,,(0)' O

mo

(T —1)60).

Thus, X(0*) € RT*M denotes the ground truth map-
ping for the training data of the M systems and X (©* —

©) € RT4xM g the prediction error across all coordi-
nates of the MT state vectors, each of dimension d.

By Assumption 3, we have A .= ©* — © = UR, where
U € O *2k is an orthonormal matrix and R € R2kXM,
We start by the fact that the estimates W and ,, min-
imize (3), and therefore, have a smaller squared predic-
tion error than (W*, B*). Hence, we get the following
inequality:

1Y 2
LS s - W

1 2

Ve
<> (s Xon (WBn = W83,) ) -

m=1

(15)

We can rewrite W3, — W*g%, = Ur,,, for all m € [M],
where r,,, € R?* is an idiosyncratic projection vector for
system m. Since our joint estimator is a least squares ob-
jective with bilinear terms, we first decompose the pre-
diction error for the estimator, similar to the linear re-
gression setting [14,44]. In subsequent analyses, we use



different matrix concentration results and LTI estima-
tion theory in order to account for the temporal depen-
dence and spectral properties of the systems. Our first
step is to bound the prediction error for all systems.

Lemma 3 For any fixed orthonormal matric U €
RT*2k the total squared prediction error in (3) for
(W, B) can be decomposed as follows:

The proof of Lemma 3 can be found in the extended
version of this paper [34]. Our next step is to bound each
term on the RHS of (16). To that end, let N be an e-
cover of the set of orthonormal matrices in R4 *2k. In
(16), we select the matrix U to be an element of AV, such
that HU — U||F < €. Note that since N, is an e-cover,
such matrix U exists. We can bound the size of such a

i)\ 24F
cover using Lemma 5, and obtain [NV;| < (6—6‘1)

We now bound each term in the following propositions
using the auxiliary results in Section 9 and covariance
matrix bounds in the previous section. The detailed
proofs for the following results are available in the ex-
tended version [34]. Using Proposition 9, we bound the
expression in the second term of (16), as follows.

Proposition 2 Under Assumption 3, for the noise pro-
cess {nm () }52, defined for each system, with probability
at least 1 — 67, we have:

M
3* -
m=1

Based on the bound in Proposition 2, we can bound the
third term in (16) as follows:

Proposition 3 Under Assumption 2 and Assumption 3,

2
U)rmH < ke? (MTtr(C)JrJ log ;Z)

12

with probability at least 1 — 6z, we have:

i <77m7 m( U)

m=1

rm> < Vke (MTtr (C) + o*log é) .
(17)

Next, we show a multitask concentration of martingales
projected on a low-rank subspace.

Proposition 4 For an arbitrary orthonormal matrix
— 2

U € R *%k i the e-cover N, defined in Lemma 5, let
Y € REXE pe g positive definite matriz, and define

S () = i (7) T Xon (T)U, Vi (1) = U’ (im(T) + Z) U,

and Vo = U'SU. Then, letting £, (dy) be the event
M 1de(tj( (mV(T)“))
m= et
§ ||S ||v—1(T) < 20”log TO )

we have

2d°k
IP’[&(éU)Dl(Giﬁ) bu. (18)

7.1 Proof of Estimation Error in Theorem 2

Proof We now use the bounds we have shown for each
term before and give the final steps by using the error
decomposition in Lemma 3. Let |V | be the cardinality of
the e-cover of the set of orthonormal matrices in R X2k
that we defined in Lemma 3. Let V denote the expression

oM 1% So, substituting the termwise bounds

from Proposition 2, Proposition 3, and Proposition 4 in
Lemma 3, with probability at least 1 — |N¢|dy — 8z, it
holds that:

2
HX (W*B* — WB)H

< Jo? log HX W*B* — WB)H
1
+ /o2 log Kke2 | MTtr (C) + 02 log —
5U 5Z

+VKe <MTtr(C)+0 log 51 >
z

(19)

For the matrix Vj, we now substitute ¥ = Al;2, which
implies that det(Vp)™" = det(1/Alax) = (1/A)%*. Simi-
larly, for V,,(T), we get det(V,,(T)) < 2 Thus, sub-
stituting dy = 6/3|NV|, and d¢ = 6/3 in Theorem 1,



with probability at least 1 — 2/3, the upper-bound in
Proposition 4 becomes:

pol e

Substituting this in (19) with dz = /3, ¢ =
max(o2, A\ (C)), with probability at least 1 —§, we have:

k
< 02 Mklog ko + 02d*klog 5o
€

1 2
- ‘X(W*B* - WB)H

2 ‘ F

\/C2Mklognoc + 2d?klog — (Hx W*B* — WB)HF

1
+ \/1%2 (chMT + 2 log 5))

1
+ ke <c2dMT + 2 log 5) )

Noting that log + 55 d?klog £ 5= fore =
ability at least 1 — J, we get:

\/EIERT , with prob-

s,

< <\/02Mk log Koo + 2d2k log %) HX(W*B* . WE)HF

2
+ \/CQM.IC log Koo + c2d?k log %\/CQ (’33]‘; d2T2 log “dT)

+02(%+ lgndT)

As k < d?, we can rewrite the above inequality as:

1 — 2
| X(W*B* —WB

< \/02 (Mklognoo + 2k log %) HX(W*B* - WE)H
F

2
+c2 (Mklognoo + %1 K;ZT> .

The above quadratic inequality for the prediction er-
T

X(W*B* — WB)HF implies the following bound,

which holds with probability at least 1 — §:

ror ‘

—~ 2 dT
HX(W*B* - WB)HF < (Mk log Koo + d?k log & ) .

]

Since the smallest eigenvalue of the matrix ¥, =
Zf:o X (t) X (t) is at least A (Theorem 1), we can

convert the above prediction error bound to an estima-
tion error bound and get

? (Mklog koo + d?klog £4T)
2\ )

2

|wep - WB| <
P
which implies the desired bound for the solution of (3).

8 Proof of Theorem 3

Here, we provide the key steps for bounding the average
estimation error across the M systems for the estimator
in (3) in presence of misspecifications D,, € R4*:

Ap = (Zﬂ >+Dm,

where we use (,,, to denote the bound on misspecification
in task m and set ¢ = Z%Zl (2. In the presence of
misspecifications, we have A := 0*-0 = V R+ D, where
V € O %2k ig an orthonormal matrix, R € R?**M and
D € RTXM ig the misspecification error. As the analysis
here shares its template with the proof of Theorem 2,
we provide a sketch with the complete details delegated
to the extended version [34]. Same as in Section 7, we
start with the fact that (W, B) minimize the squared
loss in (3). However, in this case, we get an additional
term caused by on the misspecifications D,

o~ 2
Wﬂm) 9

1M
LS s

=1

<3 (i o (V5 =975

—

2 <XmD

M:

T m (WBw = W83,)). (0)

=1

3

We follow a similar proof strategy as in Section 7 and
account for the additional terms arising due to the mis-

specifications D,,,. The error in the shared part, W g,, —

W*Bz,, can still be rewritten as Ur,, where U € R4 2k
is a matrix containing an orthonormal basis of size 2k in

R and rm € R?¥ is the system specific vector. We now
show a decomposition similar to Lemma 3:

Lemma 4 Under the misspecified shared linear basis
structure in (10), for any fixed orthonormal matrix

U e Rd2X2k, the low rank part of the total squared error



can be decomposed as follows:

% |05, ~ W80

ﬁM:

J st 235

77rn7 Xm(U -

ﬁM: HME

U)rm>

2

) HW ..

m

M
2 Z HXW(U - U)Tm
m=1

M N 2
+2V2¢, | S me (Wﬁm - W*ﬁ;;) H2 (21)
m=1

We bound each term on the RHS of (21) individually.
Similar to Section 7, we choose the orthonormal R x2k
matrix U € AN,. Then, we use the following results, for
which the proofs are provided in the longer version [34].

o 2
Proposition 5 (Bounding " _, HXm(U — U)TmH )

For the model in (10), with probability at least 1 — 0, it
holds that

i HXWL(U - U)TMHZ S K€’ (MTtr (C) + o® log %"'_5‘52) )
m=1

(22)

Proposition 6 (Bounding an\le <f]m, X (U =U)ry,

Under Assumption 2 and (10
1 — 67 we have:

), with probability at least

1=

<ﬁm,)~(m(U - l_])rm>
< Vke (MTtr (C) 4 o?log ;)
z

+V KX\/MTtr(C) +o?log %EC_
z

(23)

Finally, we are ready to put the above intermediate re-
sults together. Using the decomposition in Lemma 4 and
the term-wise upper bounds above, one can derive the
desired estimation error rate. Below, we show the final
steps with appropriate substitution for constants. The
full details are available online in [34].

2
(W5, — Wﬁm)H2

h)
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As before, we substitute the termwise bounds from
Propositions 5, 6 and 4 in Lemma 4 with values
du = 6/3|N|,, d¢ = /3 (in Theorem 1), 6y = /3.
Noting that k < d? and log % < d?*klog £, by set-

ting € = we finally get the following quadratic

k
VKd?T
inequality in the error term E := HX(W*B* - WB) H

F

T —_
<\/c2 (Mklogmoo + d2klog rd )+\5§> =
d?k rdT
2 Mkl —~log
+c ( klog Koo + T 5 )

72 2
+c \/ :ﬁ <Mklognoo+d kl ngT)

T )
The quadratic inequality for the prediction error
2
HX(W*B* — WB)H implies the following bound with
F
probability at least 1 — :

152 <
2 ~Y

ar\ -
=2 < 2 (Mk 10g Koo + d2k log "”“5) +AC

Since A = min,, A, an estimation error bound for the
solution of (3):

Mo 2
3 A - s
~ F
2 (Mklog koo + d*klog £4T)

A

< + (Koo +1)C°.

9 Auxiliary Probabilistic Inequalities

In this section, we state the general probabilistic inequal-
ities which we used in proving the main results in the
previous sections. The proofs for these results can be
found in the full preprint [34].

Proposition 7 (Bounding the noise sequence)
ForT=0,1,..., and 0 < 6 < 1, let Epqq be the event

_ < g ML
Ehaa(0) = {,_ o (0] < /20 0g

(24)

Then, we have P[Eyaq] > 1— 0. For simplicity, we denote
the above upper-bound by br(9).

Proposition 8 (Noise covariance concentration)
ForT and 0 < <1, let &, be the event

W

£q(0) ) E’A"“Z"(C)I} :



2
cpdo

Then, if T > T,(6) = Xmin (C)2

PlEbaa(6) N E,(8)] > 1 — 26.

log 18/6, we have

Define Z € R4T*M 35 the pooled noise matrix as follows:

Z = [ (T)|n(T) - - -

780 (T}, (25)
with each column vector 7,,(T) € R4 as the concate-
nated noise vector (0, (1), 7m (2), ..., nm(T)) for the m-
th system.

Proposition 9 (Bounding total magnitude of noise)

For the joint noise matriz Z € R¥T>*M defined in (25),
with probability at least 1 — &, we have:

2
2] < MT 4 (C) +log .

We denote the above event by Ez(0).

The following result shows a self-normalized martingale
bound for vector valued noise processes.

Proposition 10 For the system in (1), for any0 < § <
1 and systemm € [M], with prob. at least 1 — 0, we have:

T—-1
Vi (T = 1) o (8 (t + 1)
t=0 2
5det (Vo (T — 1))/ det (V) 71/

< o,|8dlog 51/ ,

where Vi (s) = Y7 _o Tm (O)zm (1) +V and V is a deter-
ministic positive definite matrix.

Lemma 5 (Covering low-rank matrices [14]) For
the set of orthonormal matrices O (with d > d'),

there exists N, € O that forms an e-net of O™ in
Frobenius norm such that |N¢| < (%ﬁ)dd'7 i.e., for ev-

eryV € 094 there exists V' € N. and IV=V'|r <e.

10 Concluding Remarks

We studied the problem of jointly learning multiple
linear time-invariant dynamical systems, under the
assumption that their transition matrices can be ex-
pressed based on an unknown shared basis. Our finite-
time analysis for the proposed joint estimator shows
that pooling data across systems can provably improve
over individual estimators, even in presence of moderate
misspecifications. The results highlight the critical roles
of the spectral properties of the system matrices and the
number of the basis matrices, in the efficiency of joint
estimation. Further, we characterize fundamental differ-
ences between joint estimation of system dynamics using
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dependent state trajectories and learning from inde-
pendent stationary observations. Considering different
shared structures, extensions of the presented results to
explosive systems, or those with high-dimensional tran-
sition matrices, as well as joint learning of multiple non-
linear dynamical systems, all are interesting avenues for
future work that this paper paves the road towards.
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