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ABSTRACT

Invasive species with native ranges spanning strong environmental gradients are well suited for examining the roles of selection
and population history in rapid adaptation to new habitats, providing insight into potential evolutionary responses to climate
change. The Atlantic oyster drill (Urosalpinx cinerea) is a marine snail whose native range spans the strongest coastal latitudinal
temperature gradient in the world, with invasive populations established on the US Pacific coast. Here, we leverage this system
using genome-wide SNPs and environmental data to examine invasion history and identify genotype-environment associations
indicative of local adaptation across the native range, and then assess evidence for allelic frequency shifts that would signal rapid
adaptation within invasive populations. We demonstrate strong genetic structuring among native regions which aligns with
life history expectations, identifying southern New England as the source of invasive populations. Then, we identify putatively
thermally adaptive loci across the native range but find no evidence of allele frequency shifts in invasive populations that suggest
rapid adaptation to new environments. Our results indicate that while these loci may underpin local thermal adaptation in their
native range, selection is relaxed in invasive populations, perhaps due to complex polygenic architecture underlying thermal
traits and/or standing capacity for phenotypic plasticity. Given the prolific invasion of Urosalpinx, our study suggests population
success in new environments is influenced by factors other than selection on standing genetic variation that underlies local adap-
tation in the native range and highlights the importance of considering population history and environmental selection pressures
when evaluating adaptive capacity.

1 | Introduction threats to native taxa by reducing ecosystem function, driv-

ing biodiversity loss and altering ecosystem dynamics (Anton
Biological introductions are increasing at unprecedented rates et al. 2019; Bax et al. 2003; Grosholz 2002; Molnar et al. 2008).
across the globe (Seebens et al. 2017), and pose significant Despite the global rise, only a small fraction of all biological
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introductions are able to successfully establish invasive popu-
lations (Mack et al. 2000; Williamson and Fitter 1996). We cur-
rently lack a complete understanding of the mechanisms that
underpin how and why certain species can establish and pro-
liferate after being introduced to new environments (Flanagan
et al. 2021; Seebens et al. 2017), including the ways in which
genetic, ecological and demographic factors interact to influence
invasion success (Jaspers et al. 2021). Understanding the mech-
anisms that shape organismal capacity to invade and proliferate
in new environments also has great importance in the context of
climate change, as species will need to adapt to rapidly changing
environmental conditions in their current habitats or shift into
new geographical areas (McGuire et al. 2023).

Invasions pose a paradox because high genetic diversity in
founding populations is a presumed requirement for success-
ful establishment (Bock et al. 2015; Le Cam et al. 2020), yet
many invasive populations are established by a small number
of individuals possessing low genetic diversity and leading
to elevated rates of inbreeding (Blackburn, Lockwood, and
Cassey 2009), suggesting that other factors beyond diversity
play pivotal roles in success (Allendorf and Lundquist 2003;
Gaither, Toonen, and Bowen 2012; Gutekunst et al. 2018; Jaspers
et al. 2021). For example, invasion success may be more likely
if organisms have the standing capacity for phenotypic plas-
ticity that allows them to tolerate conditions in the new envi-
ronment (Blakeslee et al. 2020; Riis et al. 2010), or if founders
originate from an environment similar to the introduced hab-
itat and thus show some pre-adaption to those conditions (Sax
and Brown 2000). Alternatively, following introduction, selec-
tion may lead to rapid adaptation to the new environment in
the founding population, even when genome-wide diversity is
low (Reznick and Ghalambor 2001; Schoener 2011; Willoughby
et al. 2018), as long as alleles advantageous in the new environ-
ment are present within the founding population for selection
to occur (Tepolt et al. 2022). While rapid adaptation has been
attributed to the success of many invasive species (e.g., Colautti
and Barrett 2013), the conditions under which it is favoured or
constrained remain unclear. For example, genetic isolation of
invasive populations was found to enhance rapid adaptation
because limited gene flow precludes the dilution of adaptive
alleles (Sexton, Hangartner, and Hoffmann 2014). In contrast,
such isolation may instead result in maladaptive consequences
due to genetic drift that causes precipitous population declines
(Frankham 2005). Additionally, although there are many ex-
amples of rapid phenotypic adaptation following invasion, in-
cluding morphology (Brandenburger et al. 2019; Garcia Castillo
et al. 2023; Lescak et al. 2015), life history traits and behaviour
(Ruland and Jeschke 2020), there is still limited genomic evi-
dence for rapid adaptation to new environments (Matheson
and McGaughran 2022; Tepolt et al. 2022). Theory predicts that
moving to a new environment may reveal trade-offs, for exam-
ple, due to antagonistic pleiotropy or conditional neutrality, that
would result in selection and allele frequency shifts to optimise
performance and increase fitness (Kawecki and Ebert 2004);
however, the rates and directions of change are likely influenced
by multiple factors (e.g., the relative costs and benefits to fitness
and the genomic architecture of underlying traits). Similarly,
when plasticity is present in the source population and the in-
troduction is into a more ‘benign’ environment (e.g., fewer ex-
tremes or less seasonal variation), plasticity may carry costs and

therefore be selected against (Murren et al. 2015). Disentangling
the roles of phenotypic plasticity, pre-adaptation, trade-offs and
rapid genetic adaptation in the establishment success and evolu-
tionary trajectories of invasive populations requires an under-
standing of source population environments and demographic
histories, which is challenging for many species, especially
where historical records are sparse. Combining population ge-
nomics with environmental and phenotypic data is emerging
as a powerful integrative approach to reconstruct invasion his-
tories, enabling deeper understanding of the influence and in-
teractions of these processes in successful biological invasions
(Flanagan et al. 2021; Tepolt and Palumbi 2020).

Beyond invasions, understanding the evolutionary processes
that promote or inhibit species’ persistence in new environments
has profound importance in forecasting biological responses to
climatic change. Experimental evolution studies have demon-
strated that both phenotypic plasticity and rapid adaptation can
play important roles in population resilience to changing envi-
ronments (e.g., Brennan, deMayo, Dam, Finiguerra, Baumann,
Pespeni et al. 2022; Brennan, deMayo, Dam, Finiguerra,
Baumann, Buffalo et al. 2022). However, experimental evolu-
tion approaches are typically constrained to species with short
generation times that can be reared in laboratory settings,
creating uncertainty in how representative these studies are
to longer-lived species in natural environments. In contrast,
studies in situ have shown that local adaptation (i.e., the fine-
tuning of traits to local conditions) can be instrumental in spe-
cies' persistence across heterogeneous environments in their
biogeographic ranges (Derycke, Backeljau, and Moens 2013;
Liu et al. 2016; Miller et al. 2020), and are often critical to in-
clude in assessments of species’ climate risk (Cacciapaglia and
van Woesik 2018). Studies in this realm frequently identify pu-
tative loci underlying adaptive divergence across land- or sea-
scapes, and then estimate how allele frequencies at those loci
would need to change to keep pace with forecasted future envi-
ronmental conditions (i.e., genomic vulnerability or offset; Bay
et al. 2018; Forester et al. 2023), although the ability of these
methods to accurately predict climate risk and resilience re-
mains unclear (Lotterhos 2024). While these approaches can
be applied to species with a greater breadth of life history traits
to understand how microevolutionary processes contribute to
current population success in natural environments, it is still
largely unknown if such rapid adaptation will continue to occur
in future populations and/or if this correlates with persistence.

Invasive species that are locally adapted to environmental
gradients in their native range that are established in envi-
ronments differing from their origin provide opportunities
where predictions of rapid adaptation, akin to genomic vul-
nerability, can be made and then tested (Kim et al. 2023). In
essence, invasive species provide large-scale in situ acciden-
tal anthropogenic experiments where we can detect rapid
adaptation by examining whether allele frequency shifts in
invaded locations are in accordance with estimates gener-
ated from the native range based on genetic-environmental
correlations (Balanya et al. 2003; Battlay et al. 2023; Sparks
et al. 2023). If evidence for adaptation is not supported despite
the successful establishment of invasive populations, other
factors and processes may drive persistence in new environ-
ments. For example, the traits involved in adaptation could
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be polygenic and genetically redundant and therefore unique
genetic variation could be involved in adaptation in the in-
vaded habitat. Alternatively, selection may be relaxed at the
predicted adaptive loci if there is sufficient plasticity to toler-
ate the new environment, and if the cost of maintaining plas-
ticity under relaxed selection is minimal. Finally, there may
be costs of moving towards new optima that are greater than
the benefits in the new environment. Combined with genomic
approaches to reconstruct invasion history and identify source
populations as described above, invasive species provide ideal
opportunities to examine the roles of selection, plasticity and
population history in establishment and persistence in new
environments relevant to biological invasions and potential
responses to climate change.

Here, we use Atlantic oyster drills (Urosalpinx cinerea; here-
after referred to as Urosalpinx) as a system for understand-
ing invasion success and the roles played by rapid adaptation
and population history following introductions to thermal
environments that differ from their origin. Urosalpinx are
predatory marine gastropods native to the US Atlantic coast
that have successfully established multiple invasive pop-
ulations globally, including several populations on the US
Pacific coast through incidental introductions from the delib-
erate translocation of Eastern oysters (Crassostrea virginica)
following the completion of the transcontinental railroad
in 1869 (Carlton 1979, 1992; Miller 2000). Native popula-
tions of Urosalpinx have been well-documented historically
along the North American Atlantic coastline from northern
Florida to Massachusetts (Carriker 1955), with additional
northern contemporary populations also observed in New
Hampshire, Maine and Canada that may represent remnants
of a wider postglacial warm period distribution (Bousfield and
Thomas 1975). Estimates suggest that at least 1.7 million kg
of Eastern oysters and associated hitchhiker species were out-
planted to the Pacific coast from 1870 to 1900 for human culti-
vation and consumption, followed by small-scale outplants in
multiple estuaries and possible further ‘clandestine’ transloca-
tions throughout the 19th and 20th centuries (Carlton 1979).
Historical reports are incomplete but indicate that oysters
were harvested from the Chesapeake Bay area and possibly
transported to other mid-Atlantic and New England locations
to replenish local fisheries before transcontinental transpor-
tation (Hoos et al. 2010; Miller 2000). As such, the source
populations for the invasive Pacific coast populations remain
unclear, yet is an important consideration when examining
potential adaptations across the invasive range.

The Atlantic coastline of the continental United States is char-
acterised by the strongest cline in coastal latitudinal tempera-
ture gradients in the world (Baumann and Doherty 2013). Local
adaptation of numerous species distributed across the Atlantic
coastline has been directly attributed to this thermal variation
(Stanley et al. 2018; Wilder et al. 2020). Urosalpinx exhibits a
direct development form of reproduction, laying egg capsules on
coastal substrate that produce ‘crawl away’ hatchlings instead of
pelagic larval dispersal, a life history strategy that is thought to
facilitate rapid colonisation and promote local adaptation across
heterogeneous environmentslike those inits native range (Chang
et al. 2011; Johannesson 1988; Miller et al. 2007). Recent work
in this species has demonstrated that Urosalpinx exhibits local

adaptation for key thermal phenotypic traits such as thermal tol-
erance and growth performance (Villeneuve, Komoroske, and
Cheng 2021a, 2021b), making it an especially well-suited system
to examine the genomic underpinnings of invasion success and
test predictions of rapid adaptation in new habitats. Locations
along the US Pacific coast where Urosalpinx has established in-
vasive populations exhibit environmental profiles distinct from
the native range, differing from potential source populations in
key thermal parameters that can exert strong selection pressures
(Sanford and Kelly 2011). Here, we combine population genom-
ics and environmental data to reconstruct the invasion history of
Urosalpinx, quantify genomic signatures of local adaptation in
its native range, FI and then leverage this knowledge to examine
evidence for rapid adaptation in new environments. Specifically,
we use genotype-environment associations (GEAs) to identify
putatively thermally adapted loci in native populations and then
use these to predict shifts in allelic frequencies (AF) across the
invasive range. We then compare our predictions against ob-
served frequencies to determine whether selection is acting to
drive evolutionary change in an expected direction at the same
loci in invasive populations. For example, if an invasive popula-
tion is established in an environment with a lower temperature
from its origin, we might expect trade-offs to result in selection
for alleles most fit at low temperatures. Conversely, if existing
plasticity capacity is sufficient to tolerate the new temperature
regime, and the costs to move towards the new optimal allele are
greater than the benefits, we would expect that no adaptation
would be observed. By combining invasion and local adaptation
genomics approaches to conduct explicit tests of these hypothe-
ses, our study demonstrates how invasive species can be lever-
aged to advance our understanding of how populations establish
and persist in new environments.

2 | Methods
2.1 | Sample Collections and Processing

We collected adult Urosalpinx samples at locations spanning the
native and invasive ranges along the Atlantic and Pacific coasts
of the continental United States, respectively (see Table S1 for
locations and abbreviations; Figure 1A,B), following meth-
ods described in Villeneuve, Komoroske, and Cheng (2021b).
Across the native range, samples were collected from regions
defined as Northern New England (DB and GB; see Figure 1),
Southern New England (CT and WH), the mid-Atlantic (OY and
DB) and the south-Atlantic (BF, HP, FB and SK). Prior to tissue
sampling, we sexed the snails as per (Hargis 1957) and placed
individuals in an ice-water slurry to slow metabolism, before
measuring shell height and removing soft tissue from the shell
using a C-clamp. We subsequently dissected the foot below the
mantle tissue, removed the operculum with a razor blade and
stored tissue in 96% ethanol before freezing it at —80°C until
DNA extraction.

2.2 | DNA Extraction, Library Preparation
and Sequencing

We used Qiagen DNeasy blood and tissue kits (Qiagen,
Valencia, California) to perform genomic DNA (gDNA)
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FIGURE1 | Locations and population structure of the 15 sampling sites across the continental United States for Atlantic oyster drills (U. cinerea)

used in this study. (A) Invasive Pacific coast collection locations; and (B) native Atlantic coast collection locations [see Table S1 for detailed sampling

locations]. (C) Mean sea surface temperatures for each day of the year for each sampling site averaged over 2005-2021 (but see Table S1), with colours
corresponding to those in (A) and (B). (D) Outputs from Admixture analysis with k=3, 4, 5 and 6. (E) Output from the discriminant analysis of
principal components (DAPC) with k=6, and ellipses represent the identified clusters [see Figure 2 for fine-scale structuring results for the mid-

Atlantic and Pacific coast locations]. Photo credit: A. Rugila.

extractions, modified with an additional ethanol clean-up
step and double elution to prevent residual reagent contami-
nation in the final product. After extraction, we employed a
1:1 Ampure bead cleanup step to reduce the amount of muco-
polysaccharides coprecipitating out with the DNA that com-
monly occurs in gastropods (Sokolov 2000). We assessed DNA
integrity using a Fragment Analyser (Agilent, Santa Clara,
California) and quantified it using a Qubit 4.0 Fluorometer
(Invitrogen, Waltham, Massachusetts) following the recom-
mended protocols provided by the manufacturers. We nor-
malised DNA concentrations for each sample (150-200ng
total input) and prepared RAD-Seq libraries following the
BestRAD protocol described in Ali et al. (2016) using SbfI-HF
and NEBNext Ultra DNA Library Prep Kits for Illumina (New
England Biolabs, Ipswich MA). Finally, we evaluated library
sizes and concentrations using a Fragment Analyser followed
by Illumina 150 bp paired-end sequencing at Novogene Corp.
(Sacramento, California).

2.3 | Data Filtering, SNP Identification
and Genotyping

All scripts associated with data processing and analyses are
provided on GitHub (https://github.com/bpbentley/project_
uro_RADSeq). Following sequencing, we demultiplexed li-
braries using the process_rad-tags function in STACKS v2.62
(Catchen et al. 2013), with the first two bases of each read
trimmed using ATROPOS (Didion, Martin, and Collins 2017).
Following recommendations by Paris and Stevens (2017), we
employed parameter optimisation steps to identify the most
appropriate parameters governing de novo locus formation.
Due to the strong divergence between the populations across
regions, we optimised parameters M (mismatches allowed
between alleles within an individual to collapse into a locus)
and n (mismatches allowed between loci across individuals to
label as homologues) independently, rather than maintaining
them as equal through the parameter optimisation steps (Paris
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and Stevens 2017). In all cases, we kept the minimum number
of raw reads required to collapse into a putative locus con-
stant (m = 3). Outcomes from parameter optimisation resulted
in downstream data processing using parameters of M =1 and
n=6 (see Figure S1) to retain the optimal number of SNPs,
while also ensuring representation from all populations (see
associated GitHub repository for full details of parameter op-
timisation). To ensure representation from each population
but reduce computational complexity, we used between 4 and
10 individuals from each population (using individuals with
a mean coverage >20X) to construct the SNP catalogue, and
then called SNPs for all individuals using the Bayesian geno-
type caller implemented in STACKS 2 (Rochette, Rivera-Colon,
and Catchen 2019). We then ran the ‘populations’ module of
STACKS 2 with the minor allele count (--mac 3) and maximum
heterozygosity (--max-obs-het 0.7) parameters to filter across
all populations and retained one SNP per RAD tag, retaining
the highest-quality SNP per tag.

Following genotyping with STACKS 2, we used VCFTOOLS
(Danecek et al. 2011) to remove loci that were missing in
more than 50% of the individuals, as well as loci with a mean
depth of less than 10X or more than 1000x. We conducted fur-
ther SNP filtering following recommendations from O'Leary
etal. (2018)with all subsequentanalyses conductedin R (R Core
Team 2023). We identified paralogues using the proportion of
heterozygotes (H) and deviations in read ratios (D) following
the methods described by McKinney et al. (2017), with the H
and D thresholds set to 0.45 and 4.0, respectively (Figure S2).
We then visualised the genotype frequencies and heterozy-
gous miscall rate using the WHOA package (Anderson 2021),
and set upper and lower mean read depth thresholds per locus
for all individuals to 25X and 175X, respectively. We regarded
any locus that had six or fewer reads in any one individual as
‘missing’ to ensure that only loci with sufficient reads were re-
tained for downstream filtering thresholds. We subsequently
ran an iterative loop varying the combinations of individuals
and loci to retain in our dataset. To obtain our final dataset,
we removed any individual missing 85% (Ipass) or more loci
in the catalogue, then removed any individuals missing >40%
of the remaining loci, and any locus that was missing in at
least 20% of individuals using an iterative loop that filtered
in a stepwise manner. We further filtered loci for linkage dis-
equilibrium (LD) using PLINK (Purcell et al. 2007), with a
sliding window of 50bp, a 5bp step between windows and an
R? threshold of 0.2 (--indep-pairwise 50 5 0.2). A summary of
all filtering steps and parameters is listed in Table S2. These
filtering steps resulted in the retention of 183 individuals and
7671 SNPs for downstream analyses.

2.4 | Population Genetic Structure and Diversity

We examined individual-based population structure using
principal component analysis (PCA) and a discriminant anal-
ysis of principal components (DAPC). We ran PCAs through
the ‘glPca’ function in ADEGENET (Jombart and Ahmed 2011)
following conversion of the final vcf to a genlight object with
VCFR (Knaus and Griinwald 2017). For DAPC analyses, we used
ADEGENET, with the optimal number of clusters identified using
K-mean selection and BIC through the ‘find.clusters’ function of

ADEGENET. We also used ADEGENET for DAPC using the ‘dapc’
function. Our initial DAPC analysis was run with no prior in-
formation before a second DAPC was run using the outputs of
the initial run as priors and with the optimal number of PCs
identified using a-score optimisation through the ‘optim.a.score’
function. DAPC and ADMIXTURE analyses were also run on in-
dividual clusters to resolve fine-scale structuring that may have
been swamped by wide-scale genetic differentiation between
clusters. To infer population structure among sampled loca-
tions, we applied a Bayesian clustering method implemented
through ADMIXTURE (Alexander, Novembre, and Lange 2009).
To obtain the number of clusters that best explained the data in
ADMIXTURE, we iterated over values of K ranging from two to
14 (i.e., ngppg — 1) and selected the most applicable value using
the in-built cross-validation method (--cv). We visualised out-
puts using the POPHELPER package for R (Francis 2017).

We also estimated population-level estimates of genetic distance
(Fgy) using the ‘genet.dist’ function of the HIERFSTAT pack-
age in R (Goudet 2005) with the “‘WC84’ parameter to leverage
equations described in Weir and Cockerham (1984). To examine
evidence for isolation by distance (IBD) in the native range, we
subset data to only include sites from the Atlantic coast and cor-
related the pairwise F, metrics with geographical distance be-
tween sites. We then tested for IBD with the ‘gl.ibd’ function of
the DARTR package for R (Gruber et al. 2018) using 999 permuta-
tions, with geographic distance calculated through the conver-
sion of latitude and longitude to Mercator projections.

We calculated observed heterozygosity (H ) at the 7671 loci for
each population using the ‘populations’ function of STACKS 2.
We compared H ), between populations in the putative source
locations (see below) and the invasive Pacific locations using an
analysis of variance (ANOVA) with pairwise comparisons tested
with Tukey post hoc tests using R (R Core Team 2023).

2.5 | Identification of Invasion Source

We applied a linear discriminant analysis (LDA) to refine the
source of the invasive populations using the MASS package
for R (Venables and Ripley 2002), with the LDA trained using
the first four principal components of a PCA derived from only
populations across the native range. Following model training
with all the native populations, we used the model to assign
the invasive Pacific coast populations to a source location fol-
lowing methods described in Flanagan et al. (2021). For each
Pacific population, we summed probabilities across individuals
and visualised the outputs using the CIRCLIZE package for R
(Gu et al. 2014). In addition to the LDA for assigning the source
of the invasive populations, we ran further PCA, DAPC and
admixture analyses on subsets of populations, including those
with and without any highly divergent invasive populations to
provide further evidence for the source locations.

2.6 | Genotype-Environmental Association (GEA)
Analyses

We obtained in situ sea surface temperatures (SSTs) through
the National Oceanic and Atmospheric Administration's
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FIGURE 2 | Identification of source location for invasive Pacific populations of Urosalpinx. (A) Outputs from a DAPC with k=3; (B) Circle plot
showing the likely ancestral source of the invasive Pacific coast populations predicted by an LDA trained with all Atlantic populations where the
arrow-head points in the direction of the predicted translocation; and (C) results from an admixture analysis with k=2, 3 and 4.

(NOAA) National Data Buoy Center (https://www.ndbc.
noaa.gov/), the NOAA National Estuarine Research Reserve
System (NERRS) database (https://coast.noaa.gov/nerrs/) and
through data made available by the Wiyot Tribe (https://www.
wiyot.us/Archive.aspx?AMID=40); (but see Figure 1C and
Table S1 for site-specific details). We summarised these data
for each site to generate 13 temperature metrics: mean, mini-
mum and maximum SSTs for annual, winter and summer pe-
riods, as well as the estimated length of reproductive season
(number of days with mean SST >10°C, as per Carriker 1955;
Villeneuve, Komoroske, and Cheng 2021b). Subsequently, we
reduced this matrix to four variables (annual mean, annual
minimum, annual range and annual maximum) by remov-
ing one variable in a pairwise correlation with a value >0.7
(Figure S3; Dormann et al. 2013).

To determine correlations between genotypes and environ-
mental variables in the native range that may contribute to
local thermal adaptation, we first ran redundancy analy-
ses (RDA) between the AF of the Atlantic populations and
temperature variables described above using a multivariate

ordination approach following methods in Forester (2018) and
Capblancq and Forester (2021). As RDA does not allow miss-
ing data, we initially imputed missing values as the most com-
mon genotype at each locus across all individuals (Forester
et al. 2018), which accounted for imputation of approximately
12% of the total dataset. Following this, we filtered out rare
alleles by removing any locus with a mean minor allele fre-
quency (MAF) of less than 0.05 within each population. This
subsequently resulted in a dataset of 4567 SNPs being re-
tained for RDA analyses from the 10 populations across the
native range.

We generated a full RDA model of the AF of the Atlantic coast
populations against the four temperature variables following
the procedures outlined by Capblancq and Forester (2021),
which we then compared to a null model to identify which cli-
matic variables significantly explained the data. To partition
the variance of the model, we used partial RDAs (pRDAs), with
four pRDAs applied to the data using combinations of climate,
geospatial and genetic structure variables. To account for geo-
spatial autocorrelation in the data, we decomposed locations
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into multivariate spatial vectors. To do this, we converted lati-
tude and longitude to Cartesian coordinates using the ‘geoXY’
function of the SODA package for R (Chambers 2008) and then
calculated Euclidean distances between sites which were used
as inputs for the ‘dbmen’ function of the ADESPATIAL package
(Dray et al. 2020) to generate distance-based Morans' eigen-
vector maps (db-MEMs). To determine which db-MEMs were
significantly associated with genotypes, we ran an RDA of AF
against the 14 identified db-MEMs with the ‘ordistep’ function
of VEGAN used in the forward selection process of model selec-
tion (Blanchet, Legendre, and Borcard 2008). To account for ge-
netic structure, we additionally included the first two principal
components of the PCA described above, where we only used
individuals from the native range as inputs.

After variance partitioning, we used the climate-driven pRDA
(clim) to scan for potential outlier loci that are linked with cli-
matic variables following the methods described in Forester
et al. (2018). This method searched for outliers based on their
loadings along each retained RDA axis, with outliers identified
as those with loadings 3 standard deviations (SD) from the mean
on each axis (i.e., two-tailed p<0.0027). Loci that were identi-
fied as outliers through this method were then associated with
a specific SST variable by selecting the variable that showed the
highest correlation with AF.

As RDA are known to have high Type-I error rates (Booker
et al. 2024; Lotterhos 2023), we also ran a latent factor mixed
model (LFMM,; Frichot et al. (2013)) on the same set of four en-
vironmental variables used in the RDA as described above with
missing genotypes imputed using the ‘pmm’ method in MICE
(van Buuren and Groothuis-Oudshoorn 2011) and five iterations.
LFMM is another GEA approach that accounts for population
genetic structure in the data. We, therefore, used the outputs
from the population genomic analyses on the native popula-
tions to run the LFMM assuming six latent factors through the
LEA package in R following methods described in Frichot and
Francois (2015). We ran the model five times to increase the like-
lihood of detecting true associations between the environmental
variables and genotypes. From each of these five runs, z-scores
were extracted, with a median taken for each locus. We then re-
calibrated these, by initially calculating the genomic inflation
factor (1), and adjusting the p values by dividing the median z-
score by this value (see Frichot and Francois (2015) for full calcu-
lation). Finally, p values were adjusted for multiple comparisons
using the Benjamini-Hochberg algorithm with a q value of 0.001
to avoid false-positive detection. Only loci that were associated
with the same environmental variable in both the RDA and
LFMM analyses were retained for subsequent analyses.

We also tested for associations between environmental variables
and genotypes across the invasive range to assess if local adap-
tation has occurred between the established populations since
introduction. To achieve this, we ran the same GEA analyses
on the Pacific coast populations using the methods described
above, which resulted in 3744 loci being used as input across the
five invasive populations. The RDA was run as described above.
As the RDA for the invasive populations failed to detect any loci,
we compared the loci detected in the LFMM with the loci that
intersected in both analyses in the native range.

2.7 | Predicting AF in Invasive Populations

To determine if AF in putatively adaptive loci varied between
each of the invasive populations and the source locations, we
conducted pairwise T-tests for the loci sets associated with
the three climate variables where multiple loci were jointly
detected in the RDA and LFMM analyses. To evaluate if
observed differences were likely due to signals of rapid ad-
aptation or simply due to chance (i.e., genetic drift), we boot-
strapped these comparisons by randomly selecting the same
number of loci used in each comparison from the full locus
dataset and compared the AF in these between source and
invasion populations 1000 times. We then compared the re-
sults of the initial T-tests of the putatively adaptive loci with
the distributions of T-values from the randomly selected com-
parisons to assess whether each population had significantly
diverged from the source population at the putatively adap-
tive loci.

We then examined if AF at these temperature-associated loci
were shifting within the invasive populations as would be pre-
dicted by their new environmental conditions and the geno-
type—environmental relationships established in the native
range. For each locus, we ran a linear regression model of AF
against the SST variable observed from all the native popula-
tions (e.g., AF~annual mean SST). We then used this regres-
sion to predict the AF at the invasive locations based on the
observed SST values at these sites. If selection is acting on these
loci, then the differences between AF predicted by the regres-
sion and the values observed at these locations should approach
zero (see Figure 6A,C). For each of the three SST variables, we
then calculated the median difference between predicted and
observed AF for each of the five populations. Similar to above
with the T-tests, we assessed the likelihood of obtaining our re-
sults due to chance; we randomly selected the same number of
loci from the full dataset, bootstrapped this analysis 1000 times
and then compared the distribution of median differences be-
tween predicted and observed values against the results of the
sets of putatively adaptive loci. Taken together, we concluded
that any invasive population that had significantly diverged
from the source populations, and also had a lower median dif-
ference in AF of putatively adaptive loci than 95% of the ran-
dom comparisons was likely reflective of rapid adaptation due
to selection.

3 | Results

3.1 | Sequencing, Catalogue Assembly
and Genotyping

Sequencing produced a total of 1.9 billion raw reads across a total
of 299 individuals. From the 262 individuals that passed read
number thresholds (>10,000 reads) for ustacks, we retained a
mean of 1.32 million filtered reads per individual (median=1.30
million) with a mean depth coverage of 30.9X (SD: 18.9X). Using
asubset of 136 individuals representing all 15 collection sites, we
identified a catalogue of 264,989 SNPs (see Table S3). Following
SNP filtering pipelines, we retained a final dataset of 183 indi-
viduals and 7671 loci for downstream analyses.
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3.2 | Population Genetic Structure and Genetic
Diversity

Admixture analyses indicated that the genetic variation in the
dataset was best explained by five or six clusters (Figure 1D),
with individuals from the two northern New England sites
(DM and GB) represented in one distinct cluster, and individ-
uals from the south Atlantic region (BF, HP, FB and SK) in an-
other. The southern New England (CT and WH), mid-Atlantic
(OY and DB) and Pacific locations (WP, TO, RB, CP and HM)
showed evidence of mixed ancestry from three clusters, but
with HM and RB assigned to their own unique clusters and
the remaining populations exhibiting contributions of varying
percentages from each (Figure 1D). Unlike the southern New
England populations, individuals from OY and DB also showed
substantial contributions from the south Atlantic cluster. The
DAPC analysis also suggested six clusters best explained the
data (k=6; Figure 1E), and results were largely concordant with
the Admixture findings, with the largest genetic separations be-
tween clusters containing the northern New England, southern
New England and Pacific, mid-Atlantic and south Atlantic re-
gions. All Pacific populations except RB overlapped with south-
ern New England populations in the DAPC of the full dataset;
however, HM formed its own distinct group within this larger
cluster (Figure 1E). Further exclusive analysis of the southern
New England and Pacific invasive populations to clarify fine-
scale structure that could be obscured given the strong diver-
gence in the full dataset confirmed the presence of three clusters
(k=3; Figure 2A,C) when all locations in these regions were in-
cluded (invasive populations at WP, CP and TO grouped with
southern New England, while HM and RB represented exclusive

clusters), although analyses of locations only within the mul-
tisite cluster also revealed evidence of finer-scale differentiation
(Figure S4).

The average Fy, across all 7761 SNPs and 15 populations was
0.23, with pairwise F, between populations ranging from 0.02
(BF-HP) to 0.49 (SK-DM). Generally, pairwise Fg, between
regions were relatively high (Figure 3A and Table S4), indi-
cating high genetic differentiation between regions. This was
particularly true for pairwise comparisons between the north-
ern New England region (DM and GB) and all other regions.
Genetic differentiation was generally low within regions, in-
cluding the south Atlantic cluster (mean pairwise Fg.=~0.06)
and the southern New England/Pacific cluster (Fgy.=~0.12),
but not within the northern New England cluster (DM and
GB; pairwise F,,=0.30) which showed pairwise values that
were more similar to the between region values (Figure 2A,B).
Concordant with admixture and DAPC analyses, pairwise Fy,
values were slightly higher between HM and the other south-
ern New England and Pacific sites (mean pairwise Fg,=0.18;
see Figure 2A) than other within region comparisons. Pairwise
F4; values were strongly correlated with pairwise geographic
distance between sites across the native Atlantic range (mantel
R=0.67, p<0.001; Figure 3B), concordant with a pattern of IBD.

Genetic diversity varied between populations; observed hetero-
zygosity (H,p,) ranged from 0.063 to 0.181 (Table S5), with the
highest genetic diversity in the south Atlantic populations (BF,
HP, FB and SK) and lowest in the two northern New England
locations (DM and GB; Figure 4A). However, we note that
the strong genetic divergence between regions in our dataset
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FIGURE 3 | Genetic differentiation between populations. (A) Pairwise F; values between all sampling locations (also see Table S4); (B)
correlations between geographic distance and genetic distance in sites from the native Atlantic coast showing evidence of isolation by distance (IBD),
with colours representing comparisons between and within genetic clusters. North: DM and GB; Mid: WH, CT, OY and DB; South: BF, HP, FB and SK.
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can affect estimates of heterozygosity and allele fixing using
the STACKS 2 workflow (Figure S5B-E), so the lower diver-
sity in northern New England may be partially due to tech-
nical bias. Diversity in two of the invasive locations (HM and
RB; H,p =0.13 and 0.14, respectively) was lower when com-
pared to the other invasive populations and the native sites
(Figure 4). The HM and RB populations also contained higher
levels of allele fixation than the other invasive populations
(Table S6).

3.3 | Identification of Invasion Source(s)
and Post-invasion Diversity

Congruent with population structure analyses, LDA strongly
supported that all invasive populations on the Pacific coast
originated from the southern New England region (Figure 2B)
and indicated that most originated from the CT area, with the
exception of HM which had a higher likely origin from WH.
Heterozygosity was significantly different overall between
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locations when considering the invasive and source populations
(F=36.68, df=6, p<0.001). Tukey post hoc tests showed that
the significant differences were due to comparisons between
HM and RB and all other locations, with lower heterozygosity in
these two populations (Figure 4B).

3.4 | Genotype-Environment Associations

Annual mean and maximum SSTs were significantly associated
(p<0.01) with AF in Atlantic populations in the complete RDA
when using stepwise ordination. For all downstream pRDA, all
four of the SST variables (annual mean SST, annual minimum
SST, annual maximum SST and annual range of SSTs) were
retained. The full pRDA (pRDA_full) containing the four SST
variables, population structure (as principal components) and
geographic distance (as db-MEMs) explained approximately
90% of the genetic variation across the Atlantic populations
(Figure 5 and Table S7). Despite the overall model explaining
such a high proportion of the variation in genotypes, 64% of this

total variation was unable to be partitioned into the explana-
tory variables, suggesting that the variables were confounded.
Outputs from the pRDA_ full showed that from the variation
that could be partitioned, the southern New England and mid-
Atlantic populations separated out based on genetic structure
(PC2), while the south Atlantic populations were defined by
their association with minimum and mean SSTs, as well as geo-
graphic distance (MEM1 and MEM2; Figure 5). Genetic struc-
ture (PC1 and PC2) was also the major driver of difference in the
northern New England populations.

When we accounted for genetic structure and geographic dis-
tance in a pRDA (pRDA_clim), the four climate variables ex-
plained approximately 17% of the remaining variation, but this
association was not significant (p =0.299). Neither of the models
that examined the genetic structure (pRDA_struc) or geographic
distance (pRDA_geo) showed significant associations with the
variance in genetic variation either. These results suggest that
while the RDA was effective at explaining most of the vari-
ance in data, it is unable to disentangle SST correlations from
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genetic structure and geographic distance, as expected given
that both variables correlate with temperature across the lati-
tudinal cline of the Atlantic coast. However, when considering
the SST-driven pRDA (pRDA_clim), we identified 189 loci as
outliers when using individual RDA axis loadings (greater than
3 SD from the mean). Of these outlier loci, 51 were associated
with annual maximum SST, 37 with annual mean SST, 42 with
annual minimum SST and 53 with the annual range of SSTs
(Figure 5B,C). Additionally, the LFMM analyses identified a
total of 1187 loci associated with the four climate variables (FDR
adjusted p <0.001), with 56, 267, 515 and 349 identified for min-
imum, mean, maximum and range of annual SSTs, respectively.
A total of 82 loci overlapped between the RDA and LFMM anal-
yses across the native range (Figure S6), and these were used for
downstream analyses for predicting allelic shifts in the invasive
populations.

Ordination analyses determined that there was no significant
association between AF and geographic distance within the
invasive range, with no db-MEMSs incorporated into the RDA.
The full RDA for the invasive range was overall not signifi-
cant, and the adjusted R? was estimated at 0.2. In contrast to
the RDA in the native range, the RDA analysis for only the in-
vasive populations yielded no significant associations between
the loci and any of the SST metrics (Figure S8). In compari-
son, the LFMM analysis identified 3008 loci associated with
at least one of the four SST metrics, of which 13 overlapped
with the 82 loci identified in the native range (Table S10 and
Figure S7).

3.5 | Detecting Evidence of Rapid Adaptation in
New Environmental Conditions

Thermal environments for the parameters included in the RDA
and LFMM analyses were substantially different in the inva-
sive populations to those at the source locations (Figure 6B).
However, we did not observe significant differences in AF be-
tween source and invasive populations for the 82 loci identified
by both RDA and LFMM analyses as putatively adaptive across
the native range, with the exception of loci associated with the
annual range of SSTs between CP and CT (Table S9).

Furthermore, when considering differences between observed
AF in the invasive populations and those predicted through re-
gressions for loci associated with mean SSTs, median residuals in
the outlier loci were generally within the distributions generated
through bootstrapping random loci (Figure 6C). For loci associ-
ated with maximum SSTs, observed median residuals were typi-
cally at the upper end of the distributions, with values higher than
those generated by the random loci for WP, TO and RB. This obser-
vation was further exaggerated in the range of annual SSTSs, likely
due to the SST range in the invasive populations falling outside of
the range of values used to inform the regression (Figure 6A). As
only one locus was identified to be associated with the minimum
SST through the LFMM and RDA analyses, we were unable to
conduct these tests on this variable. These results suggest that AF
for these loci in the introduced populations have not shifted pre-
dictably towards values expected based on regressions generated
across the thermal conditions in the native range.

4 | Discussion

Understanding the mechanisms that shape organismal capac-
ity to proliferate in new environments is key to predicting bi-
ological invasions and species’ responses to climate change.
While rapid adaptation is one possible avenue for resilience
to changing environments, whether it occurs in newly estab-
lished populations may depend on factors such as selection
pressures, the amount of standing genetic variation, exist-
ing phenotypic plasticity and the demographic history of the
founding individuals. Coupling population genomics with
environmental data informed by prior knowledge of phe-
notypic adaptive divergence (Villeneuve, Komoroske, and
Cheng 2021a, 2021b), we demonstrate that invasive popula-
tions of Urosalpinx on the US Pacific coast were founded by
individuals from southern New England, and evidence that
this species exhibits local thermal adaptation across their
native range. Although some invasive populations have un-
dergone evolutionary divergence from their source since es-
tablishment, we did not detect evidence that selection on
temperature-associated loci drove rapid adaptation to their
new thermal environments. Alternatively, the widespread in-
vasion success of Urosalpinx, despite originating from a strik-
ingly divergent native environment, may be driven by other
processes, including relaxed selection on putatively adaptive
loci in invasive habitats and/or capacity for phenotypic plas-
ticity (Villeneuve, Komoroske, and Cheng 2021a). Thus, while
rapid genetic adaptation may contribute to species' resilience
to new and changing environments in some contexts, our work
indicates that other factors likely play key roles in population
establishment and persistence in real-world environments.

4.1 | Strong Biogeographic Genetic Breaks Across
Native Range

The patterns of genetic divergence we observed across the
native range of Urosalpinx are concordant with expectations
based on their life history (i.e., direct development limiting
dispersal ranges) and oceanographic drivers, with a high cor-
relation between genetic and geographic distances and strong
breaks between regions around Cape Cod and Cape Hatteras
(Figure 1B). Such strong IBD and genetic breaks across these
two biogeographical features align with studies of other ma-
rine taxa, including those with high dispersal capabilities
(Bert et al. 2011; Orth et al. 2020; Ropp et al. 2023; Wilbur
et al. 2005; Wilder et al. 2020). This reinforces the premise
that local adaptation can occur in marine environments, in
contrast with historic assumptions that these are open, homo-
genised systems (Palumbi 1992). Our results of strong genetic
structuring in a species with crawl-away larvae contrast with
prior studies in the region which found low genetic differen-
tiation between populations, including marine snails (Nucella
lapillus: Colson and Hughes 2007; Littorina obtusata: Schmidt
et al. 2007), although it is unclear if coarse marker resolution
influenced these results. A more recent study with genome-
wide SNPs in N. lapillus found evidence for clade splits around
the major biogeographic breaks and differentiation in puta-
tively functional loci, but little neutral structure within re-
gions (Chu et al. 2014) as we found for Urosalpinx. Unlike N.
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lapillus, which inhabit open coastal environments and may be
successful at dispersing through rafting within geographical
regions (Colson and Hughes 2004, 2007), Urosalpinx inhab-
its patchy estuarine habitats that may constrain rafting or
other dispersal mechanisms. This is also supported by the ev-
idence for fine-scale genetic differentiation between locations
within regions (Figure S4F-I), including some sites with close
geographic proximity to one another (e.g., Connecticut and
Massachusetts), suggesting very limited genetic connectivity
between populations even at small geographic scales.

We also observed very strong genetic divergence between
the northern New England sites (DM and GB) and the other
regions, including those in southern New England that are
close geographically. Two potential hypotheses have been
previously proposed for the origin of northern New England
populations: (1) they represent remnant populations of a con-
tinuous distribution following Pleistocene glaciation events,
or (2) they were recently founded via artificial introduction
with oyster farming activities that have since diverged from
their source. Our data strongly support the first hypothe-
sis because the strikingly strong genetic divergence of these
populations between other regions and each other (Figures 1
and S4A) is aligned with genetic isolation for a much greater
extended period due to biogeographical constraints and gla-
ciation. Additionally, the divergence between northern New
England locations and candidate source populations to the
south is much greater than those between Pacific invasive
populations and their source populations in southern New
England, which would have occurred on roughly the same
timescale as those theoretically established under the second
hypothesis. However, it is also possible that the pronounced
genetic signature in the northern New England populations
is a consequence of an older nonhuman-mediated expansion
of Urosalpinx back into the area following glaciation events.

4.2 | Reconstructing the Invasion History
of Pacific Coast Populations

Our analyses clearly identified southern New England (i.e.,
CT and WH) as the region of origin of the invasive Urosalpinx
populations across the US Pacific coast. This finding broadly
aligns with historical records indicating that following the
completion of the transcontinental railway in 1869, large vol-
umes of eastern oysters and associated ‘hitchhiker’ species
(Carlton 1979) were transported to the New England region
from the Chesapeake Bay area for augmentation, before being
further translocated to the Pacific coast (Hoos et al. 2010;
Miller 2000). The augmentation of New England populations
from Chesapeake Bay and subsequent Pacific translocations
were reported to continue over the 19th and 20th centuries.
Interestingly, although Urosalpinx from the Chesapeake
Bay outer coastal lagoons (OY) and Delaware Bay (DB) were
more similar to southern New England populations than
other Atlantic coast populations, they still formed a distinc-
tive mid-Atlantic genetic cluster and were not identified as
the origin for any of the invasive populations examined in
our assignment analyses (with the exception of one sample
from RB). If historical records are accurate and southern New
England oyster populations were repeatedly augmented from

the mid-Atlantic region, the observed contemporary genetic
divergence between these two regions may be explained by
recent divergences following the cessation of augmentations,
or by the maintenance of unique historical haplotypes (Hoos
et al. 2010). Furthermore, the observed genetic divergence be-
tween the southern New England populations and the mid-
Atlantic region despite historic augmentations may also be
due to population perturbations and reductions in this area.
For example, a 1969 oil spill in Wild Harbour, Massachusetts,
decimated populations around the Cape Cod region, followed
by recolonisation of these sites (Cole 1978), although our anal-
yses did not detect any reductions in heterozygosity that may
indicate genetic bottlenecks in these populations. While we
cannot discount the possibility that invasive Pacific popu-
lations originated from some other specific location that we
failed to sample in this study, our results provide strong evi-
dence that southern New England represents their most likely
source region.

Despite our results suggesting that the invasive populations
of Urosalpinx on the US Pacific coast originated from the
same source region, they also suggest that key differences
in introduction histories have likely influenced evolution-
ary and demographic trajectories. Functional sustained gene
flow between the US Atlantic and Pacific coasts purportedly
ceased almost 100years ago, yet we only detected evidence for
strong genetic differentiation from source populations in the
Humboldt and Richardson Bay (RB) populations. In contrast,
although we did observe genetic differentiation between all
other invasive and source populations (Figure S4C-E), pair-
wise Fg; were much lower and similar to each other, sug-
gesting larger population sizes and/or more recent isolation
between these locations. Humboldt and Richardson Bay were
also the only invasive populations that displayed signals of
genetic drift and reduced heterozygosity which are charac-
teristic of genetic bottlenecks and founding effects (Dlugosch
and Parker 2008). Although biological invasions are often
presumed to be founded by small numbers of individuals
that drive increased rates of genetic drift and reduced genetic
diversity (Estoup et al. 2016), scenarios of high levels of per-
sistent propagule pressure over time can also occur, reducing
these effects, as can incidents of high levels of sperm stor-
age, which may result in increased genetic diversity within
founding populations (Rafajlovi¢ et al. 2013). Although we
cannot demonstrate conclusively, our data support historic
information that continued introductions over many decades
may have resulted in overall large founding populations
at locations that were the primary recipients of transloca-
tions (Willapa, Tomales Bay and Coyote Point), while others
were the consequence of more isolated introduction events
and small founding populations (Humboldt and Richardson
Bays). Interestingly, anecdotal observations indicated that the
Humboldt Bay population ‘no longer persisted’ in the early
2000s, yet individuals were subsequently collected in 2002
(Fofonoff et al. 2023) and again for this study in 2019. While
we lack sufficient data to draw clear conclusions, it is possi-
ble that the size of this population has remained low enough
to evade consistent detection of individuals over time, poten-
tially influenced by the lower genetic diversity and inbreeding
effects on fitness that can contribute to population declines
(Keller and Waller 2002).
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4.3 | Adaptive Divergence and Invasion Success

Combined with prior knowledge of local adaptation in phe-
notypic traits in Urosalpinx (Villeneuve, Komoroske, and
Cheng 2021b), coupling invasion and seascape genomics pro-
vided an ideal opportunity to examine the genomic under-
pinnings of adaptive divergence across their native range and
detect rapid adaptation to new environments within the inva-
sive populations. We found a total of 82 loci associated with
key temperature variables in the native range, suggesting that
thermal adaptation is likely playing a critical role in shaping
the genetic composition of native populations of Urosalpinx.
Across this range, over 60% of the putatively adaptive loci were
associated with annual maximum SSTs and the range between
the minimum and maximum annual SSTs, indicating that
upper thermal limits and the ability to tolerate temperature
fluctuations are likely under the strongest selection pressures.
These results align with observations that maximum habi-
tat temperature best explains variation in thermal tolerance
in Urosalpinx (Villeneuve, Komoroske, and Cheng 2021a),
however, the trade-offs for evolving and maintaining such ca-
pacity are not well understood. Season length has also been
found to be a key environmental driver of countergradient
variation in growth performance in Urosalpinx (Villeneuve,
Komoroske, and Cheng 2021b), but was not included in our
final models because of high correlations with other environ-
mental variables (Figure S3). Thus, it is possible that some
of our putatively adaptive loci actually reflect selection pres-
sures from season length or other correlated environmental
parameters, but further studies are needed to determine if the
loci identified here are involved in local adaptation in growth
performance. Similar patterns of countergradient variation in
growth have been observed in a variety of other taxa (Conover
and Schultz 1995; Conover, Duffy, and Hice 2009), and re-
cent work has identified heritable genomic variation under-
lying evolutionary responses in growth rates in other species
(Therkildsen et al. 2019). Given these findings, and that cli-
mate change is forecasted to strongly alter seasonality and re-
lated selection pressures for many organisms, future research
examining the underlying genomics of countergradient vari-
ation in growth performance in Urosalpinx and other species
would be a valuable next step to advance our understanding of
parallel evolution and biological responses to climate change.

The role of rapid adaptation in population persistence in new
environments has long been a topic of interest in evolutionary
biology, with more recent relevance for understanding and mit-
igating the impacts of anthropogenic global change. Given the
presence of putative environmentally adaptive loci across the
native range of Urosalpinx and no loss of genetic diversity in
most of the established invasive populations, we hypothesised
that we would observe allele frequency shifts at these loci as
would be predicted by the thermal conditions in their new en-
vironments. If observed, this would align with expectations of
genomic vulnerability studies (i.e., where adaptive divergence
identified across landscapes is used to estimate the evolution-
ary rates required to keep pace with projected environmental
change and the likelihood of future population persistence; Bay
et al. 2018). Instead, we found no evidence of rapid adaptation at
the putatively thermally adapted loci in the Pacific coast popu-
lations of Urosalpinx, yet this species has clearly persisted and

thrived as invasive species in this region. Importantly, our re-
sults do not imply that rapid adaptation cannot facilitate success
in new environments or contradict predictions of population
persistence based on genomic vulnerability, but rather empha-
sise that other mechanisms and cofactors may be important to
consider (Lotterhos 2024).

We hypothesise that we did not detect evidence of rapid adap-
tation in the invasive populations due to: (1) relaxed selection
following introduction with no costs to maintain plasticity and/
or high costs for adaptation, and/or (2) unique responses to en-
vironmental selection due to genetic redundancy. First, the ap-
parent lack of adaptive response may be due to a relaxation of
selection on thermally linked loci in the new environment with
no or limited costs to maintain plasticity. Most studies on ge-
nomic vulnerability focus on predictions in a warmer climate
that would involve directional selection to a higher thermal op-
timum. In contrast, while Pacific coast locations have higher
mean SST and substantially different overall thermal environ-
ments relative to source locations (Figure 6B), other thermal
conditions are less extreme (i.e., SST maximum, minimum and
range) and most of the putatively adaptive loci we identified
were associated with these environmental parameters. For ex-
ample, in southern New England, SSTs fall to just above freezing
during the winter months (~1°C-3°C) and rise to greater than
22°C during the summer. Given the seasonal reproduction of
Urosalpinx, individuals must cope with these fluctuating con-
ditions to successfully reach maturity and reproduce, likely
favouring the evolution of standing capacity for high thermal
phenotypic plasticity in source populations. Our predictions that
allele frequencies would shift towards those that are optimal in
the new environments were grounded in the assumptions that
there are physiological or ecological costs to maintaining plas-
ticity to tolerate more extreme conditions than are required and
that the benefits of adapting to the new optimum outweigh the
costs of doing so. However, if these trade-offs do not occur and/
or do not translate to fitness differences, then selection would
not result in adaptation in the invaded range. Furthermore, if
there are little fitness costs associated with maintaining capacity
for high phenotypic plasticity even when it is not needed, it may
prime them for establishing in new environments, facilitating
invasion without the need for genetic adaptation (Hendry 2016).
Finally, given that thermal traits can be polygenic and loci may
have complex interactions (Lotterhos 2023), it is possible that
population persistence was not associated with predicted allele
frequency shifts in putatively adaptive loci due to genetic redun-
dancies or other processes (e.g., antagonistic pleiotropy or con-
ditional neutrality that may impose different selection pressures
in new environments). The interactions of phenotypic plasticity
and genetic redundancies with genetic adaptation in both bi-
ological invasions and population persistence under climate
change are active areas of study, for which future work delving
further into these relationships in Urosalpinx could be highly
informative.

Finally, we acknowledge limitations of our approach. First,
while we did not detect evidence of adaptation in invasive
populations at thermal-associated loci identified in the native
range, genetic adaptation may have occurred in invasive pop-
ulations at other loci (e.g., those associated with environmental
variables other than temperature). Additionally, it is possible
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that our results were influenced by the reduced representation
methods we employed, which can miss important functional
regions under selection. Given that we identified a number of
loci significantly associated with temperature, future research
utilising an exome capture or whole-genome approach (Wilder
et al. 2020) that explicitly includes functional genomic regions
would provide additional insight into the presence and mecha-
nisms of rapid adaptation in invasive populations.

5 | Conclusion

The mechanisms driving population establishment and per-
sistence in new environments are complex, and the relative
contributions of key processes like phenotypic plasticity, pre-
adaptation and rapid evolution are dependent on important
contextual factors such as life history, demographic history
and environmental selection pressures. Combining invasion
and seascape genomics approaches to reconstruct the invasion
history and test predictions of rapid adaptation in new environ-
ments, we demonstrate that Urosalpinx has likely successfully
proliferated on the Pacific coast without evidence of rapid ther-
mal adaptation. We suggest that relaxed selection and/or the
maintenance of standing genetic variation for phenotypic plas-
ticity in thermal traits may play important roles in their success
and identify several key areas for future study. Our work high-
lights the utility of invasive species for understanding evolution-
ary responses to changing environments, and the importance
of considering population history and environmental selection
pressures when evaluating adaptive capacity.
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