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Electrophysiologic disturbances due to neurodegenerative disorders such as Alzheimer’s disease and Lewy Body disease are detectable 
by scalp EEG and can serve as a functional measure of disease severity. Traditional quantitative methods of EEG analysis often require 
an a-priori selection of clinically meaningful EEG features and are susceptible to bias, limiting the clinical utility of routine EEGs in the 
diagnosis and management of neurodegenerative disorders. We present a data-driven tensor decomposition approach to extract the 
top 6 spectral and spatial features representing commonly known sources of EEG activity during eyes-closed wakefulness. As part of 
their neurologic evaluation at Mayo Clinic, 11 001 patients underwent 12 176 routine, standard 10–20 scalp EEG studies. From these 
raw EEGs, we developed an algorithm based on posterior alpha activity and eye movement to automatically select awake-eyes-closed 
epochs and estimated average spectral power density (SPD) between 1 and 45 Hz for each channel. We then created a three-dimen
sional (3D) tensor (record × channel × frequency) and applied a canonical polyadic decomposition to extract the top six factors. We 
further identified an independent cohort of patients meeting consensus criteria for mild cognitive impairment (30) or dementia (39) 
due to Alzheimer’s disease and dementia with Lewy Bodies (31) and similarly aged cognitively normal controls (36). We evaluated the 
ability of the six factors in differentiating these subgroups using a Naïve Bayes classification approach and assessed for linear associa
tions between factor loadings and Kokmen short test of mental status scores, fluorodeoxyglucose (FDG) PET uptake ratios and CSF 
Alzheimer’s Disease biomarker measures. Factors represented biologically meaningful brain activities including posterior alpha 
rhythm, anterior delta/theta rhythms and centroparietal beta, which correlated with patient age and EEG dysrhythmia grade. 
These factors were also able to distinguish patients from controls with a moderate to high degree of accuracy (Area Under the 
Curve (AUC) 0.59–0.91) and Alzheimer’s disease dementia from dementia with Lewy Bodies (AUC 0.61). Furthermore, relevant 
EEG features correlated with cognitive test performance, PET metabolism and CSF AB42 measures in the Alzheimer’s subgroup. 
This study demonstrates that data-driven approaches can extract biologically meaningful features from population-level clinical 
EEGs without artefact rejection or a-priori selection of channels or frequency bands. With continued development, such data-driven 
methods may improve the clinical utility of EEG in memory care by assisting in early identification of mild cognitive impairment and 
differentiating between different neurodegenerative causes of cognitive impairment.
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Graphical Abstract

Introduction
In neurodegenerative disorders such as Alzheimer’s disease 
(AD) and dementia with Lewy Bodies (DLB), the pathophysi
ology involves an interaction between cellular pathways and 
large-scale network physiology related to coordinated 

function in ensembles of neurons that support mental 
functioning.1-4 This large-scale disturbance in activity in 
neuronal ensembles is accompanied by changes in electro
physiology detectable by scalp EEG before changes on struc
tural brain imaging such as CT or MRI are detectable.5,6 This 
is strikingly apparent in DLB, in that this condition is not 
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characterized by significant changes in measures of brain 
structure but has marked disturbance in measures of electro
physiology. This contrast is reflected in the most recent diag
nostic criteria for DLB.7 Neurodegeneration-associated EEG 
changes during the mild cognitive impairment (MCI) and de
mentia stages have also been shown to correspond with cog
nitive performance and disease severity based on functional 
imaging and fluid biomarkers.8,9

Compared to other clinically available tests for neurode
generative cognitive impairment, such as CSF analysis, neu
ropsychologic evaluations, or fluorodeoxyglucose (FDG) 
and molecular PET, scalp EEGs are noninvasive and relative
ly inexpensive tests available at most neurology practices 
worldwide.

Quantitative analysis of EEG has been extensively ex
plored in the context of characterizing and diagnosing 
neurodegenerative diseases. This includes differences be
tween AD Dementia (ADem), AD-MCI and healthy controls 
using resting-state EEG-derived features.10,11 Furthermore, 
EEG has been shown to be useful in the differential diagno
sis between AD, cerebrovascular diseases,12,13 DLB7,9,14,15

and Frontotemporal Lobar Degeneration spectrum of 
disorders.16 In all these studies, EEG signal power analysis 
has been the most common approach using the five major fre
quency bands, namely, delta (δ) 0.1–4 Hz, theta (θ) 4–8 Hz, 
alpha (α) 8–12 Hz, beta (β) 12–30 Hz and gamma (γ) > 30 Hz. 
Some studies have analyzed EEG synchrony measures with
in the above frequency bands and shown that disruptions 
in EEG-based measures of synchrony can differentiate 
between subjects with neurodegenerative symptoms and 
healthy individuals.17 Other EEG features including 
entropy,18 fractal dimension19 and the Lyapunov exponent20

have also been explored, but are not widely used.
Brain rhythms categorized by the five major frequency 

bands convey different information about brain function 
and connectivity.21 However, analyses using those bands 
provide only isolated views of brain activity within the corre
sponding frequency ranges and limit the ability to identify 
EEG patterns that may span several spectral bands. 
Furthermore, clinical EEG data may contain artefacts, which 
may confound EEG power or synchrony measures.

In this study, we investigate a data-driven approach based 
on tensor decomposition to automatically discover different 
constituents that contribute to EEG measured on the scalp 
without limiting the discovery to predefined frequency ranges 
or EEG channels.22,23 We applied this approach on the raw 
power spectral densities of a large sample of 12 176 routine 
scalp EEG recordings obtained in routine clinical setting 
within a broad frequency range (1 Hz—45 Hz) across all 
EEG channels (19 channels according to the 10–20 system). 
This approach allowed us to quantify multiple EEG features 
related to normal aging, neurodegenerative pathology and 
artefacts. Using the relevant features, we then characterized 
a subset of patients meeting clinical consensus criteria for 
AD-MCI (N = 30),24 ADem (N = 39),25 or DLB(N = 31),7

along with 36 age-matched cognitively normal subjects. 
Finally, we correlated the automatically extracted EEG 

features with their clinical diagnoses, cognitive test scores, 
CSF AD biomarker measures and fluorodeoxyglucose- 
positron emission tomography (FDG-PET) standardized up
take value ratios (SUVR).

Our model demonstrates that data-driven tensor decom
position of routine clinical EEGs can extract biologically 
meaningful effects without a-priori selection of frequency 
bands or channel sites. Moreover, these factors show good 
differentiation between patients with cognitive impairment 
due to AD and LBD and normal controls at the group level. 
Future iterations will aim at improving the diagnostic accur
acy at the single subject level, particularly in the MCI and 
mild dementia stages of these diseases. Standardized quanti
tative analysis of EEG features has great potential to enhance 
the clinical utility of routine EEGs in cognitive neurology and 
to provide a widely available and inexpensive tool that can as
sist in the diagnosis and management of diseases such as AD 
and LBD.

Materials and methods
Dataset
We analyzed 12 176 clinical EEG recordings of 11 001 adult 
patients (≥18 years old) who underwent routine clinical EEG 
study at the Mayo Clinic, Rochester, between the years 2011 
and 2021. The EEGs were recorded using the XLTEK 
EMU40EX headbox (Natus Medical Inc., Oakville, 
Ontario, Canada) according to the standard 10–20 localiza
tion system26 at a sampling rate of 256 Hz. This dataset is 
representative of the patient population that is referred for 
routine EEG at Mayo Clinic in Rochester, MN, which in
cludes a wide range of neurologic and non-neurologic condi
tions including epilepsy, cognitive impairment, episodic 
migraines, cardiogenic syncope and functional spells.

EEG visual review
The EEG records were visually reviewed by board-certified 
epileptologists and graded based on the Mayo Clinic EEG 
classification system: normal (no visible abnormalities), 
Dysrhythmia 1 (mild slowing), Dysrhythmia 2 (moderate 
to severe slowing) or Dysrhythmia 3 (epileptiform abnormal
ities).27 These grades along with full EEG reports were 
retrieved from the clinical EEG reporting database. We 
then assigned the above grades to binary labels as follows: 
(i) we combined normal and Dysrhythmia 1 grades to form 
‘normal’ label; and (ii) we combined Dysrhythmia 2 and 
Dysrhythmia 3 grades to form ‘abnormal’ label.

EEG preprocessing
EEG records were first converted to the Multiscale 
Electrophysiology Format (MEF).28 Using the Python 
programming language, the raw EEG timeseries, channel 
names and EEG sampling rate were extracted from the MEF 
records and subsequently processed using the MNE library.29
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The EEGs were bandpass-filtered within 0.5–45 Hz and mul
tiple 10s-long eyes closed awake (EC) epochs (between 4 and 
6 epochs per participant) were selected using an automated 
algorithm. The automated algorithm consisted of the follow
ing steps: (i) divide the preprocessed EEG recording into 
epochs of 10 seconds; (ii) automatically score sleep stages 
using a previously published algorithm30; (iii) select epochs 
that do not contain eye blinks from the epochs scored 
as ‘awake’ by the sleep staging algorithm29; (iv) rank those 
eyes-closed epochs in order of spectral power in the alpha 
frequency range (8–12 Hz) in posterior channels (O1 and 
O2); and (v) select the top six epochs (fewer if six epochs 
were not available) with the highest posterior alpha power.31

In subsequent analyses, we kept only the 19 standard EEG 
channels according to the 10–20 system (i.e. Fp1, F3, F7, 
C3, T7, P3, P7, O1, Fp2, F4, F8, C4, T8, P4, P8, O2, Fpz, 
Fz, Cz and Pz) and excluded the sub-temporal EEG channels 
(Tp11 and Tp12) and channels corresponding to EKG activ
ity, SpO2 and stimulation, as they were not recorded in all 
EEG studies.

Power spectral measures
For each epoch, we then estimated the power spectral density 
(PSD, in decibels) at frequencies between 1 and 45 Hz (45 in
teger frequencies) using the Welch fast Fourier transform 
approach32 for all 19 EEG channels. We then averaged the 
PSD measures of each EEG record among all the identified 
epochs to obtain a single PSD vector for each channel. The 
PSD measures of each EEG record can now be represented as 
a matrix with shape 19 × 45 (19 channels and 45 frequencies).

Tensor formation
The PSD matrices of all EEG records were stacked to form a 
3D tensor (EEG records, channels, frequencies). Then all va
lues in this tensor were normed to be within the 0–1 range by 
subtracting the minimum value and then dividing by the 

range of values. The dimensions of our final tensor were 
12 176 × 19 × 45.

Canonical polyadic (CP) 
decomposition
The canonical polyadic decomposition or the PARAFAC 
decomposition33 approximates a tensor with a sum of R 
rank-one tensors, where R is the rank and the resulting num
ber of factors. Mathematically, a CP decomposition of a 3D 
tensor T with rank R can be written as follows:

T ≈
􏽘R

r=1

Ar ⊗ Br ⊗ Cr 

Here ⊗ denotes an outer product and Ar, Br and Cr are 
rank-1 tensors with shapes matching each of the three di
mensions of T. The combination of Ar, Br and Cr is called 
a factor. The optimal Ar, Br and Cr are found using an opti
mization procedure known as the alternating least squares 
approach.34 Variations of the standard CP decomposition 
including nonnegativity constraints can be utilized with non
negative input data.35 Our analysis utilized the tensortools 
Python library for performing tensor decomposition.36

Tensor decomposition
We performed a nonnegative canonical polyadic decompos
ition on the above-formed tensor to yield six factors repre
senting electrophysiological features that best approximated 
the original tensor (Fig. 1A). We determined six to be a ration
al choice for the number of factors based on visual inspection 
of the identified factors, which demonstrated meaningful 
independent electrophysiological features. Fewer factors 
tended to combine some of these independent features, 
whereas additional factors tended to divide them into less 
meaningful features. Each factor consisted of 3 rank-1 

Figure 1 Tensor decomposition of EEG power spectral densities. We formed a 3D tensor by stacking the PSD matrices of all the EEG 
records (channels × frequencies × EEG records). (A) We then performed a nonnegative canonical polyadic decomposition on the above-formed 
tensor to identify six factors that approximated the original tensor. (B) Each factor consists of three rank-1 tensors corresponding to the channel, 
frequency and EEG record dimensions.
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tensors corresponding to the EEG record, channel and fre
quency dimensions (Fig. 1B). While the rank-1 tensors cor
responding to the channel and frequency dimensions 
characterize the spatial and frequency patterns of brain ac
tivity, the rank-1 tensor corresponding to the EEG record 
dimension allows us to characterize group differences be
tween patients/EEG records. Hence, we treat the tensor of 
the EEG record dimension as the weights/factor loadings 
of individual EEG records on the brain activity patterns 
characterized by the tensors corresponding to the channel 
and frequency dimensions. In subsequent analyses, we use 
the factor loading values to represent each EEG record in 
a lower dimensional space (i.e. loadings corresponding to 
six factors).

Headplots
We visualized the rank-1 tensor corresponding to the chan
nel dimension using the topographical headplots for visual 
interpretation of the spatial distribution of brain activity 
characterized by each factor.

Controlling for age
Our subsequent analyses utilized the weights (rank-1 tensor 
corresponding to the EEG record dimension) for each factor 
to characterize group differences. Using linear regression, for 
each factor, we regressed the weights on age at the time of 
EEG and took the residuals as updated weights to control 
for the effect of age.

Identification of patients with 
cognitive pathology and controls
A text string search of the EEG reports for ‘cognitive impair
ment’, ‘MCI’, ‘dementia’, ‘Alzheimer’, ‘AD’, ‘DLB’, ‘LBD’ 
and ‘Lewy’ was used to identify possible patients with cogni
tive impairment due to AD or LBD pathology. These cases 
were reviewed by a behavioural neurologist blinded to the 
EEG reports and extracted features, and who independently 
verified the patient’s diagnosis of either AD-MCI (n = 30), 
ADem (n = 39) or DLB (n = 31) based on documented history 
and clinical exam and established consensus criteria (i.e. the 
2011 National Institute on Aging-Alzheimer’s Association 
(NIA-AA) diagnostic guidelines for Alzheimer’s disease25 and 
MCI,24 and the 2017 Fourth consensus report of the DLB 
Consortium7).

A score of <30 on the Kokmen Short Test of Mental Status 
(STMS), which is a measure of cognitive performance used 
routinely in the clinical evaluation of cognitively impaired 
patients,37 was used as the cutoff between ADem and 
AD-MCI.38 Because these diagnoses based on consensus cri
teria were made based on clinical history and exam and 
lacked confirmatory biomarker support (e.g. CSF biomar
kers, amyloid PET, dopamine transporter imaging), sub
group analyses were considered exploratory for the 
purposes of this study. Moreover, using the consensus 

criteria creates an artificial dichotomy of clinical AD-MCI/ 
Dementia versus DLB, whereas in reality comorbid AD 
and LBD pathology occurs in 30–75% of pathologically con
firmed cases at autopsy.39 In cases of clinical ADem and 
AD-MCI patients who received CSF AD biomarker testing, 
an abnormal amyloid beta-42 (AB42) (≤ 1026 pg/ml) and/or 
abnormal phosphorylated-tau (pTau)/AB42 ratio (>0.023) 
were considered supportive of underlying Alzheimer’s disease 
pathology (n = 23).40

For the control group, 342 additional subjects between the 
ages of 50 and 90 were randomly selected from the overall 
EEG cohort and their charts were reviewed by a behavioural 
neurologist who was blinded to their EEG reports and fea
tures. As these were patients who had clinical reasons for ob
taining an EEG and as most did not have recorded cognitive 
exam scores, a stringent list of exclusion criteria for potential 
CNS abnormalities was used as a surrogate for approximat
ing a cognitively normal (CN), age-matched cohort.

Exclusion criteria included objective or subjective cogni
tive concerns (even with normal imaging and mental status 
exam scores) or functional neurologic disorders, presence 
of brain lesions such as stroke, malignancy (or brain/whole 
body radiation), or traumatic brain injury, diagnosis or 
strong clinical suspicion of epilepsy (regardless of EEG find
ings), recurrent, unresolved spells including transient ische
mic attacks, transient global amnesia, cardiogenic syncope, 
polypharmacy or use of CNS-affecting medications other 
than selective serotonin reuptake inhibitors, and/or persist
ent sleep disturbances such as insomnia, hypersomnia, 
REM behaviour disorder, or moderate to severe obstructive 
sleep apnea. Ultimately 36 subjects with no clinical history or 
concern for cognitive impairment and meeting the above ex
clusion criteria were selected from the same-age cohort and 
were excluded from the 110 001 adult patients used to create 
the 12 176 × 19 × 45 tensor. See Table 1 for patient demo
graphic information.

Projecting new data onto the space of 
discovered factors
To estimate the factor weights of the above cohort of EEGs 
on each of the discovered set of factors in an unbiased 
way, we utilized a two-dimensional (2D) approximated pro
jection approach.33 First, we created a rank-1 matrix for 
each factor by taking the outer product of the channel and 
spectral factors, resulting in a matrix of size 19 × 45 (19 
channels and 45 frequencies). Next, we unrolled this matrix 
(corresponding to a factor) into a vector of size 1 × 855. 
Then, we stacked these vectors to form a matrix of all un
rolled factors and solved a linear inverse problem to find 
the weights for the new data (of size 1 × 19 × 45) on the un
rolled set of factors from the original population tensor. If we 
use U to denote this matrix of unrolled factors from the ori
ginal population tensor (of size 6 × 855 using 6 factors of 
interest) and x to denote the unrolled new data (of shape 
1 × 855), then the projected weights are found as xU−1.
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Classification framework
We then employed a Naïve Bayes (NB) classification ap
proach to evaluate the potential of classifying the different 
cognitive etiologies from normal controls (i.e. AD-MCI ver
sus CN, ADem versus CN and DLB versus CN). We chose to 
utilize the NB classifier for this task because of the relatively 
small sample size in each of those classifications. We identi
fied exactly one EEG per patient (the first EEG in chrono
logical order if multiple EEGs were available for a single 
patient). We utilized the weights of each factor obtained 
via tensor decomposition corresponding to the identified 
EEGs as features in the classification approach. We assigned 
labels of ‘1’ and ‘0’ to disease and control groups, respective
ly, and evaluated them using a leave-one-patient-out cross- 
validation strategy. We utilized the area under receiver 
operating characteristics curve as the primary measure of 
classification potential for comparisons.

Clinical correlations
Next, focusing on the automatically extracted factors that 
best differentiated cognitively impaired from cognitively nor
mal controls in the NB classifier, we compared Factors 2, 3, 4 
and 6 to established clinical markers of disease severity and 
cognitive performance. Three pair-wise comparisons were 
carried out for each factor (CN versus AD-MCI, AD-MCI 

versus ADem and ADem versus DLB), utilizing a 
Mann-Whitney-Wilcoxon two-sided test with Bonferroni 
correction (α = 0.05/3). Analysis of Factors 1 and 5 are in
cluded in the supplement. As was done in our classification 
analysis, we accounted for the role of age in EEG findings 
by regressing the factors against the subject’s age at time of 
EEG recording. Univariate linear regressions were used in 
the following comparisons as our goal was simply to deter
mine if the automatically extracted EEG features were bio
logically meaningful (i.e. showed some correlation with 
established clinical tests); quantifying the degree to which 
the extracted features explained variations in clinical exam 
scores or disease biomarkers through additional statistical 
modelling was beyond the scope of this proof-of-concept 
exercise.

The following main analyses were performed at the cohort 
level, combining ADem, AD-MCI and DLB subjects. As ex
ploratory analyses to evaluate the effect of clinical diagnoses 
on the association between EEG features and established 
biomarkers, we repeated the tests within the ADem/ 
AD-MCI and DLB groups separately.

Kokmen short test of mental Status
We assessed correlations between the automatically ex
tracted EEG features and cognitive exam scores based on 
the Kokmen STMS. Ninety-seven subjects had recorded 
Kokmen STMS scores within 12 months of their EEG. 
First, we performed univariate linear regressions between 
age-adjusted EEG factors and Kokmen STMS scores for all 
92 subjects, P-values were adjusted by Bonferroni correction 
(α = 0.05/4). As exploratory analysis, we performed the same 
regressions within the clinical DLB group (n = 27) and in a 
subset of the clinical ADem and AD-MCI group that had 
CSF biomarker measures supportive of AD pathology (ab
normal AB42 and/or p-Tau/AB42 ratio) (n = 20).

FDG-PET regional SUVR
Next, we assessed correlations between the automatically ex
tracted EEG features and FDG-PET standardized uptake value 
ratios (SUVR) at the voxel level. Sixty-two subjects had clinical 
18F-FDG-PET scans within 12 months of their EEG, which 
were acquired using a PET/CT scanner (GE Healthcare). 
Participants were injected with 18F-FDG in a dimly lit room 
and, after a 30-minute uptake period, four 2-min dynamic 
frames were acquired. PET images were normalized to MNI 
space and masked using a grey matter template. We then inten
sity normalized the images to the pons and smoothed with a 
5 mm full-width half-maximum Gaussian kernel. Finally, 
SUVR were standardized to a sample of age- and sex-matched 
cognitively normal controls (n = 492).

Voxel-wise regression analyses of the age-adjusted factor 
residuals and SUVR were performed for the total sample 
and, as exploratory analysis, within each subgroup (clinical 
DLB, n = 18 and CSF biomarker supported ADem/ 
AD-MCI, n = 16). We additionally assessed the extent to 

Table 1 Characteristics of the EEG dataset and the 
patient population

Attribute Statistics

EEG recordings Unique records: 12.176
Unique participants: 11 001

Age Range: 18–101
Mean = 49.92
Age groups:
18–30: 2473
30–50: 3555
50–70: 3987
>70: 2161

Gender Female = 5966 (54%)
EEG grade Normal: 6058

Dysrhythmia 1: 3020
Dysrhythmia 2: 1369
Dysrhythmia 3: 1729

Cognitive impairment 
subgroups

Cognitively Normal (CN)
N = 36
Age: range = (50–86) mean = 69
Gender: Female = 17 (47%)

AD-Mild Cognitive Impairment (AD-MCI)
N = 30
Age: range = (52–89) mean = 68
Gender: Female = 14 (47%)

Alzheimer’s Disease Dementia (ADem)
N = 39
Age: range = (52–88) mean = 68
Gender: Female = 25 (64%)

Dementia with Lewy Bodies (DLB)
N = 31
Age: range = (54–84) mean = 70
Gender: Female = 4 (13%)
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which the association between FDG-SUVR and EEG factor 
loadings differed between the subgroups by exploring inter
action terms of each factor × subgroup as a predictor for the 
regression analyses. For these analyses, the main terms of the 
interaction were entered as covariates. Effects are shown un
thresholded and thresholded with a false discovery rate cor
rected alpha level of 0.05. Analyses of FDG-PET and EEG 
features were carried out using the Nilearn library (version 
0.9.0) in python.41

CSF Alzheimer’s disease biomarkers
Finally, we assessed correlations between extracted factors 
and CSF AD Biomarker measures. Forty-six subjects under
went Roche Elecsys AD CSF Biomarker testing within 
12 months of their EEG. We adjusted for the effect of age 
on CSF biomarker values using the same linear regression 
method against the subject’s age at the time of CSF testing. 
Univariate linear regressions were performed between the 
age-adjusted EEG factor residuals and age-adjusted AD bio
marker residuals (AB42, total Tau (tTau) and pTau and the 
pTau/AB42 ratio). P-values were adjusted for repeat com
parisons via a Bonferroni correction (α = 0.05/12).

As an exploratory analysis, we repeated the regressions in 
the clinical ADem/AD-MCI group regardless of CSF bio
marker results (n = 33) and the DLB group (n = 13). We 
did not further segregate the ADem/AD-MCI subjects based 
on biomarker normal/abnormal status as biomarker values 
were the variable of interest.

Statistical analyses for the STMS and AD Biomarker sec
tions were carried out using R version 4.1.1.

Results
Data characteristics
Table 1 shows the characteristics of the EEG dataset and the 
patient population. The EEG dataset included 12 176 unique 
routine EEG studies from 11 001 unique participants. Most 
repeat studies were performed on seizure patients evaluating 
for epileptic foci and antiepileptic drug efficacy, some with 
upwards of six studies for a single participant. The partici
pants were from a wide age range between 18 and 101 
with a mean age of ∼50, with a majority between the ages 
30 and 70. In addition, most of the EEG studies (49.8%) 
were normal based on expert visual review. We further iden
tified an age-matched subset of patients who met the criteria 
for neurodegenerative etiologies and cognitively normal con
trols. Specifically, we identified EEG studies of 36 CN, 30 
AD-MCI, 39 ADem and 31 DLB patients for further analyses. 
All individuals in this subset were within the age range of 50– 
89. One control subject had two EEGs performed 2 years 
apart; we used the first EEG which was performed within 
12 months of clinical documentation of normal cognition.

Tensor decomposition produces 
meaningful factors
Figure 2 illustrates six factors derived using a nonnegative ca
nonical polyadic decomposition of the average power spec
tral densities extracted from 12.176 EEG during 
eyes-closed wakefulness. Each factor consists of three 
rank-1 tensors corresponding to the EEG record, channel 

Figure 2 Factors derived using a nonnegative canonical polyadic decomposition. A large population-level routine EEG database was 
used to identify common spectral patterns during eyes-closed wakefulness. Using a nonnegative canonical polyadic decomposition, we 
decomposed the 19-channel power spectra of eyes-closed epochs extracted from 12 176 routine EEG records into six factors. Each factor 
consists of three components representing the EEG record, channel and frequency dimensions related to a common brain activity pattern. While 
the EEG record factor represents the weights of EEGs with respect to the spatial and spectral profiles, we illustrate it using a histogram for clarity. 
We postulate that factors 1–6 represent eye movement, posterior alpha rhythm, Rolandic beta activity, frontal slowing, bitemporal muscle activity 
and slower alpha activity, respectively.
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and frequency dimensions. Factor 1 indicates beta and gam
ma (13–45 Hz) activity focused on the prefrontal regions, 
which might represent eye-movement-related muscle activ
ity. Factor 2 indicates alpha activity (8–13 Hz) in the poster
ior region, which might represent the posterior dominant 
alpha rhythm. Factor 3 indicates beta activity (13–25 Hz) 
in the centroparietal regions, which may be associated with 
a host of different biological generators,42 including 
Rolandic beta activity from the sensorimotor area.43 Factor 
4 indicates delta and theta (1–6 Hz) activity in the frontotem
poral regions, which could represent frontal slowing asso
ciated with cognitive decline.44 Factor 5 indicates beta and 
gamma (13–45 Hz) activity focused on the bitemporal re
gions, which could represent temporal muscle artefacts. 
Finally, factor 6 indicates theta to slower alpha band (6–9 Hz) 
activity focused on the posterior regions, which could re
present slowing of the posterior dominant rhythm.

Factor correlations with age and EEG 
grade
Figure 3 illustrates the relationship of the identified factors 
with participant age and EEG grade. Here we analyzed the 
factor loadings with respect to the six factors defined by the 

channel and frequency dimensions. We performed an ordin
ary least squares analysis and a logistic regression analysis, re
spectively, to quantify the relationships of the factors with 
age and binarized EEG grade (i.e. normal versus abnormal). 
Figure 3A shows the linear model coefficients for age and 
boxplots of highly weighted factors in different age groups. 
Utilizing a Mann-Whitney-Wilcoxon two-sided test with 
Bonferroni correction (α = 0.05/3) to compare age groups 
(18–30 versus 30–50, 30–50 versus 50–70, 50–70 versus 
>70), we found that Factors 2 and 4 were weighted higher 
compared to other factors in explaining age and that both fac
tors were negatively correlated with increasing age (Fig. 3B 
and C). Figure 3B shows the linear model coefficients for bi
narized EEG grade and boxplots of highly weighted factors 
for different EEG grade categories. We find that Factor 4 
was weighted the highest in explaining EEG abnormality 
grade while Factor 2 showed a moderate correlation 
(Fig. 3E and F).

Factors exhibit potential in classifying 
neurodegenerative etiologies
We then analyzed the relationship of the above factors 
with neurodegenerative etiologies after controlling for age, 

Figure 3 Factor correlations with age and EEG grade. (A): Linear model coefficients of the factor loadings in explaining patient ages. (B and 
C): violin plots showing the distributions of factor 2 and 4 loadings in different age groups. (D): Logistic model coefficients of the factor loadings in 
explaining binarized EEG abnormality grades (normal versus abnormal). (E and F): violin plots showing the distributions of factor 4 and 6 loadings 
in normal and abnormal EEG records. In figures A and D, the redline indicates a zero coefficient and the red asterisk indicates non-significant 
results (P > 0.05). In figures B, C, E and F, a non-parametric Mann-Whitney-Wilcoxon test with Bonferroni correction was used for pair-wise 
comparisons. * indicates a significant difference with P < 0.05 and **** indicates a significant difference with P < 1e-4. Full cohort of unique EEG 
recordings (n = 12 176). Age group 18–30 (n = 2629), 30–50 (n = 3742), 50–70 (n = 4309),  > 70 (n = 2370). EEG grade: Normal (n = 6476), 
Abnormal (Dysrhythmia Grade 1–3) (n = 6754).
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the results of which are shown in Fig. 4A–D. Factor 2 (Fig. 4A) 
and Factor 4 (Fig. 4C) loadings show decreasing and increas
ing relationships, respectively, with disease severity (cogni
tively normal controls, MCI, dementia). Factors 2 was able 
to differentiate the AD-MCI group from cognitively normal 
controls, and both Factors 2 and 4 were able to differentiate 
AD-MCI from ADem. Factor 3 (Fig. 4B) demonstrated a 
similar trend to Factor 2 with lower factor loadings in demen
tia groups (DLB and ADem) compared to AD-MCI and cog
nitively normal controls, whereas Factor 6 (Fig. 4D) 
demonstrated a similar trend to Factor 4, with higher factor 
loadings in dementia and MCI groups.

We also performed experiments to quantify the classifica
tion potential as illustrated in 4D-F. We found that factors 2 
and 4 were able to classify ADem and DLB from CN with 
good AUC metrics (Fig. 4E) and that the addition of factors 
3 and 6 (Fig. 4F), or using all the factors did not provide any 
significant gains in the classification potential (Fig. 4G). 
Factors 2 and 4 demonstrated moderate AUC metrics in clas
sifying AD-MCI from CN; again, the addition of factors 3 
and 6, or all factors did not significantly improve classifying 
potential. Finally, we found that factors 3 and 6 could clas
sify DLB patients and ADem patients while factors 2 and 4 
did not perform better than chance level (Fig. 4H). (For 
AUC confidence intervals and P-values see Supplementary 
Table 1).

Clinical correlations
Kokmen short test of mental Status
Across the full cohort of subjects with a documented 
STMS within 12 months of their EEG (n = 92), Factor 4 
demonstrated a negative correlation with STMS scores 
(β = −5.06, R2 = 0.33, p.adj < 0.001) and Factor 2 demon
strated a positive correlation with STMS scores (β = 4.07, 
R2 = 0.19, p.adj < 0.001). Factors 3 and 6 showed no correla
tions with cognitive exam scores. (Figure 5A) No significant 
correlations were found between Kokmen STMS scores and 
Factors 1 and 5 at the cohort level. (Supplementary Fig. 1).

Exploratory analysis demonstrated that the correlation 
between Factors 2, 4 and STMS score remained robust in 
both the DLB subgroup and the biomarker-supported 
ADem/AD-MCI subgroup. Factors 3 and 6 failed to show 
any correlations with STMS scores in either subgroup. 
(Figure 6B and C)

FDG-PET regional SUVR
Voxel-wise regression analyses with FDG-PET SUVR 
showed positive correlations in lateral frontal, parietal tem
poral, occipital regions for Factor 2 across the whole sample 
with available FDG-PET, whereas Factor 4 demonstrated 

Figure 4 Differentiation between neurodegenerative diseases and machine learning classification. (A–D): Violin-swarm plots 
illustrating the differences between cognitively normal (CN) (n = 36), Alzheimer’s Disease associated mild cognitive impairment (AD-MCI) 
(n = 30), Alzheimer’s disease dementia (ADem) (n = 39), and dementia with Lewy bodies (DLB) (n = 31) based on loadings of factors 2, 3, 4 
and 6 respectively. (E–G): classification of AD-MCI, ADem and DLB patients against CN individuals using leave-one-patient-out cross-validation 
strategy, using (E) factors 2 and 4 only, (F) factors 2, 3, 4, and 6, and (G) all six factors. (H) classification of ADem patients against DLB patients 
using factors 2, 3, 4 and 6 separately. In figures A-D, a non-parametric Mann-Whitney-Wilcoxon test with Bonferroni correction (α = 0.05/3) was 
used for pair-wise comparisons. ns indicates no significant difference, * indicates a significant difference with P < 0.05 and ** indicates a significant 
difference with P < 0.01.
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negative correlations in the same regions (n = 62). For Factor 
3 we observed similar, albeit weaker, associations to Factor 2 
and Factor 6 demonstrated similar, but weaker correlations 
to Factor 4. (Figure 6. See Supplementary Fig. 2 for effects thre
sholded with FDR-corrected P = 0.05). Regressing voxel-wise 
effects for Factor 4 on Factor 2 effects showed that effects were 
an inverse of each other (Supplementary Fig. 3).

Repeating the analyses in each subgroup and using inter
action analyses demonstrated that effects for Factor 2 were 
mostly driven by the DLB subgroup. Factor 4 effects were 
not significantly different between the ADem/AD-MCI and 
DLB subgroups. For Factors 1 and 5 we only observed 
weak effects (Supplementary Fig. 4).

CSF Alzheimer’s disease biomarkers
Across the full cohort of subjects with AD CSF biomarker re
sults (n = 46), univariate linear regression analysis demon
strated a positive trend between Factor 2 and CSF AB42 
measures (β = 195, R2 = 0.11, p.adj = 0.3) and a negative 

trend between Factor 4 and CSF AB42 measures (β = −154, 
R2 = 0.09, p.adj = 0.49). Both correlations failed to survive 
correction for multiple comparisons. (Figure 7A) No sig
nificant correlations were found between CSF biomarker 
measures and Factors 1, 3, 5 and 6 at the cohort level. 
(Figure 7A and Supplementary Fig. 6).

Exploratory analyses of the ADem/AD-MCI subgroup re
vealed a more robust negative correlation between Factor 4 
to CSF AB42 correlation (β = −289, R2 = 0.25, P = 0.003) 
and a positive correlation between AB42 and Factor 2 
(β = 298, R2 = 0.28, P = 0.001). We found no significant asso
ciations between the factors and p-tau levels in this subgroup, 
suggesting that associations between the p-Tau/AB42 ratio 
and Factor 2 was driven by the AB42 associations (Fig. 8A 
and D).

In the DLB subgroup, p-Tau residuals showed a robust 
positive correlation with Factor 2 (β = 6.49, R2 = 0.4, 
P = 0.02) and Factor 3 (β = 4.23, R2 = 0.5, P = 0.007). Factor 
4 and 6 showed an opposite, negative trend with p-Tau but 
failed to reach significance. Total-Tau showed a similar 

Figure 5 Univariate linear regression between Kokmen STMS and Factors 2, 3 and 4. (A) For the full cohort (n = 92), Factor 2 
showed a positive correlation whereas Factor 4 showed a negative correlation with cognitive performance. P-values by Bonferroni correction. 
(α = 0.05/4). (B) Exploratory subgroup analysis of biomarker-supported Alzheimer’s Dementia and AD-MCI subjects (n = 20), Factor 2 also 
shows a positive correlation whereas Factor 4 a negative correlation. (C) Subgroup analysis of clinical DLB subjects (n = 27), Factor 2 again shows a 
positive correlation whereas Factor 4 shows a negative correlation. * = Statistically Significant Correlation.
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positive trend with Factors 2 and 3 (with only Factor 3 reach
ing statistical significance), and a negative trend with Factor 
4, as did the p-Tau/AB42 ratio, which was driven by the as
sociation with p-Tau. No correlations were noted with AB42 
measures (Fig. 7I–L).

Discussion
In this study, we performed a large-scale tensor decomposition 
of population-level routine EEG data set containing 12 176 
EEG records and identified meaningful features representing 
known brain activity patterns in EEG recordings during 
eyes-closed wakefulness. The automatically extracted features 
demonstrated high classification accuracies between cognitive
ly normal and MCI and especially dementia subjects and to a 

lesser extent between ADem and DLB. Features which approxi
mated posterior alpha, anterior theta-delta and centroparietal 
beta activity correlated with established markers of disease se
verity including STMS, FDG-PET SUVR and CSF AB42 con
centration. These studies demonstrate that coupling routine 
clinical EEGs with automated, data-driven analysis methods 
could lead to a quick, noninvasive and relatively inexpensive 
test to differentiate between different neurodegenerative causes 
of cognitive impairment.

Modular and explainable features 
derived using tensor decomposition
Several previous studies have investigated the use of tensor 
decomposition on multichannel EEG data.22 Unlike the 

Figure 6 Z-maps of voxelwise regression analyses between FDG-PET SUVR and Factors 2, 3 and 4. For the whole sample, AD and 
DLB subgroups, and interaction effects of the factors × subgroups. For the interaction effects, warmer colours (red) indicate greater effects for 
the AD, colder colours (blue) greater effects for the DLB subgroup. Z-maps thresholded with a false discovery rate corrected P = 0.05 can be 
found in the Supplementary Material (Supplementary Fig. 2). Total sample (n = 62), CSF biomarker supported ADem/AD-MCI (n = 16), clinical 
DLB (n = 18).
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traditional approaches that focus on predetermined fre
quency bands such as the delta, theta, alpha, beta and gam
ma bands, the tensor decomposition approach can derive 
frequency and spatial profiles in a data-driven manner. 
Some groups have utilized tensor decomposition on ictal 
EEG data to accurately localize seizure onset zones in focal 
epilepsy patients.45,46 Others have utilized tensor decompos
ition on event-related potentials (ERP) to characterize dis
ease states47 and differences between stimuli.48 In the latter 

ERP studies, tensors were generally formed using time, fre
quency, space and group dimensions. In the area of neurode
generative diseases, EEG tensor decomposition has been 
explored previously, including comparisons between CN, 
MCI and ADem.23,49

In relation to these AD EEG studies, our work presents 
the first analysis using a large-scale population-level EEG 
database characterizing the main brain activity patterns 
during eyes-closed wakefulness. Notably, the modular 

Figure 7 Univariate linear regression between age-adjusted Factors 2, 3, 4, 6 and Alzheimer’s Disease Cerebrospinal Fluid 
Biomarkers. (A–D) Full Cohort (n = 46). For the full cohort, Factor 2 demonstrated a positive correlation and 4 demonstrated a negative 
correlation with Amyloid Beta 42 measures but failed to survive correction for multiple comparisons (A).
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decomposition successfully extracted well-known biologic
ally meaningful brain activities (e.g. posterior alpha rhythm, 
anterior slowing, centroparietal beta) without having to first 
reject segments associated with eye blink or temporalis mus
cle artefact contamination. As such, our study presents an 
unbiased approach to the identification of EEG spectral 
and spatial profiles and has the potential to find additional 
patterns by analyzing EEG segments associated with other 
physiological and pathological states.

Early identification of cognitive 
impairment
Our results indicate that our tensor decomposition approach 
of resting state EEG has substantial classification potential to 
distinguish cognitively normal subjects and those with cogni
tive impairment due to underlying Alzheimer’s or Lewy Body 
pathology. The classification potential of using Factors 2 and 
4 also appears to extend to patients with mild cognitive 

impairment due to Alzheimer’s disease (AD-MCI) (AUC 
0.59), defined here as having a Kokmen cognitive test score 
greater than 30 (out of 38) and meeting the NIA-AA diagnos
tic guidelines for AD.25

Early identification of cognitive impairment, particularly 
in the preclinical or MCI stages is crucial for clinical prog
nostication and risk stratification, which in turn inform 
counselling and selection of potential treatments. While sev
eral previous studies already demonstrated this potential 
using resting state EEG,10,11 the clinical applicability of these 
methods is ultimately dependent on incorporating these tech
niques into a routine clinical workflow. The tensor decom
position methods explored here can be used to automate 
the extraction of EEG features that correlate with biological
ly meaningful electrophysiologic attributes, and may ultim
ately lead to a more economical option for early 
identification of individuals with MCI or dementia com
pared to current methods of CSF biomarker testing, 
FDG-PET and neuropsychologic exams.50

Figure 8 Univariate linear regression between age-adjusted Factors 2, 3, 4, 6 and Alzheimer’s Disease Cerebrospinal Fluid 
Biomarkers. (A–D) Clinical Alzheimer’s Dementia and Mild Cognitive Impairment (ADem & AD-MCI). (E–H) Dementia with Lewy Bodies 
(DLB). In the ADem & AD-MCI subgroup, Amyloid Beta 42 demonstrated a positive correlation with Factor 2 and a negative correlation with 
Factor 4 (A), driving the association between the p-Tau/AB42 ratio and Factor 2 (D). In the DLB subgroup, Total-Tau (F), phosphorylated-tau (G) 
and the p-Tau/AB42 Ratio (H) demonstrated a positive trend with Factors 2 & 3, and a negative trend with Factors 4 & 6. Only the Factor 3 
association with Total-Tau (F) and Factors 2 & 3 associations with phosphorylated-Tau (G) reached statistical significance. (* = Statistically 
Significant Correlation).
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Associations with established clinical 
markers
Our results demonstrate strong associations between data- 
driven EEG features and dementia physiology, and further 
support the purported biological meaning behind the auto
matically extracted factors. Higher Factor 4 and lower 
Factor 2 loadings were associated with worse pathologic dis
ease states (i.e. lower Kokmen STMS and FDG-PET metab
olism), consistent with established literature demonstrating 
that an increase in slow wave (delta-theta) activity44 and a re
duction in posterior alpha activity,51 respectively, are asso
ciated with increasing dementia severity and cognitive 
decline. Factor 6, which corresponds to slower theta-alpha 
band activity in the same posterior region as Factor 4, de
monstrates similar higher loading with lower cognitive test 
performance and FDG-PET hypometabolism.

Factor 3 is also positively associated with FDG-PET metab
olism, which appears to be driven by the DLB subgroup but 
fails to reach statistical significance. Previous work in 
Parkinson’s disease (PD) patients have shown that motor cor
tex beta oscillations can be normalized with dopaminergic 
medication or basal ganglia deep brain stimulation.52 Given 
the shared alpha-synuclein pathology and basal ganglia/dopa
mine deficits between PD and DLB, this may explain why the 
Rolandic beta activity represented by Factor 3 is associated 
with disease severity in DLB but not ADem/AD-MCI and 
why Factor 3 may uniquely differentiate AD from DLB on ma
chine learning classifiers (AUC = 0.61). Notably, the brain re
gions associated with EEG factor loadings on FDG-PET are 
similar to a pattern of lateral frontal-parietal-temporal metab
olism representative of global brain functioning in multiple 
neurodegenerative conditions including ADem, DLB and fron
totemporal dementias based on prior work by our group in 
FDG-PET eigenbrain decompositions.4 This suggests that ex
tracted EEG features may offer a non-regional approach to 
measuring brain function and can complement existing 
localization-based approaches such as MRI and FDG-PET.

Subgroup analysis also revealed that AD subjects had strong 
associations between Factors 2 and 4 and CSF AB42 measures 
whereas the DLB subjects did not, suggesting that beta-amyloid 
burden is associated with electrophysiologic pathology in 
‘pure’ AD cases,1 whereas in clinical DLB subjects, the electro
physiologic profile may be driven by α-synuclein regardless of 
amyloid pathology burden.9 The DLB population also demon
strated stronger associations with Factor 2 loadings on 
FDG-PET, consistent with multiple studies demonstrating dis
ruptions in posterior alpha activity were more associated with 
Lewy body compared to AD pathology.9,53 Combined with 
DLB’s (but not AD’s) strong association with Factor 3, this sug
gests that automatically extracted EEG features may be differ
entially affected by underlying disease pathology and supports 
its potential role in distinguishing between AD and DLB.

Finally, to our knowledge, no study has evaluated the as
sociation between CSF-tau and EEG findings in DLB. In our 
DLB group, higher Factors 2 and 3 and lower Factors 4 and 

6, associated with lower disease severity on all other clinical 
measures, were associated with increasing t-Tau, p-Tau and 
p-Tau/AB42 ratio. One possible explanation is that high CSF 
p-Tau and t-Tau in the DLB subgroup do not necessarily re
present a more advanced disease state, but rather a higher 
contribution of AD pathology to the overall disease burden. 
DLB subjects with low CSF tau who derive their disease pri
marily from α-synuclein therefore have worse electrophysio
logic disturbances compared to patients whose disease may 
be attributed to higher co-morbid AD pathology (high CSF 
Tau). This would be internally consistent with the lack of as
sociation between Factor loadings and CSF p-Tau and t-Tau 
in the ADem/AD-MCI group, and the stronger association 
between clinical DLB and electrophysiologic disturbances.7

Limitations/future directions
Limitations to the current study methodology are best cate
gorized between EEG processing and subject and biomarker 
selection.

Since tensor decomposition is a type of blind source separ
ation approach, it may be useful to think of the factors de
rived from EEG data as distinct physiological origins of 
EEG activity. Estimates from automated approaches to deter
mine the optimal number of factors often do not conform to 
the physiological properties of EEG data.22 Using a manual 
trial-and-error visual review approach, we were able to iden
tify the six features representing commonly known sources of 
EEG activity during eyes-closed wakefulness.54,55 We note 
that this approach may not be feasible in settings with limited 
existing knowledge of underlying EEG characteristics, and 
automated approaches, such as difference of fit (DIFFIT)56

and automatic relevance determination57 could ensure repro
ducibility and wider adoptability in future studies. Future 
studies directly comparing data-driven approaches against 
traditional EEG analysis methods will help determine 
whether automated approaches are truly robust enough to 
identify meaningful effects without manual artefact rejection.

Furthermore, we demonstrated the classification potential 
of the identified features using a simple Naïve Bayes classi
fier. Naïve Bayes classification is well suited for small sample 
sizes and independent input features. Although the factors 
identified by CP decomposition are not necessarily orthogon
al by their construct, from visual inspection, we can confirm 
that the factors represent independent physiological features. 
Hence, we believe Naïve Bayes is a sensible choice for our 
classification studies with limited sample sizes. In the future, 
with larger sample sizes, we may explore additional classifi
cation approaches that enable learning of more sophisticated 
relationships between the factors to further inform our un
derstanding of the underlying physiological processes and 
their relation to cognitive diseases.

Subject grouping based on clinical presentation and STMS 
scores rather than biomarker positivity can produce discrep
ancies between the consensus diagnoses and the underlying 
pathophysiology. However, the clinical classification scheme 

14 | BRAIN COMMUNICATIONS 2024, fcae227                                                                                                                         W. Li et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/6/4/fcae227/7721405 by U

niversity of M
innesota - Tw

in C
ities user on 26 D

ecem
ber 2024



does capture the natural heterogeneity of disease pathology 
seen in neurology clinics. For example, in the clinical DLB 
subgroup, 5 of 13 subjects (40%) had an abnormal p-Tau/ 
AB42 ratio supportive of AD co-pathology, similar to the re
ported frequency of AD co-pathology in DLB patients,39

whereas 7 of 33 subjects (22%) in the clinical AD-MCI/ 
ADem group had all normal CSF biomarkers and ratios, like
ly representing some early/mild amnestic cases or tau- 
negative dementias such as hippocampal sclerosis causing 
amnestic MCI.58 Moreover, establishing correlations be
tween EEG features, underlying neurophysiological pro
cesses, and widely used clinical metrics (e.g. clinical 
consensus criteria and brief cognitive tests) goes toward 
our goal of making EEG interpretation in neurodegenerative 
cases more accessible to the community neurologist.

Future studies will utilize true control subjects and better 
characterized clinical cohorts with pathology confirmation 
and neuropsychiatric measures, explore different sleep 
stages, spectral and temporal EEG features and tensor de
composition methods.59-61 Longitudinal studies will help 
evaluate the ability of EEGs to monitor cognitive improve
ment or response following pharmacologic interven
tions62,63 and in identifying individuals at risk of 
developing cognitive impairment. Finally, feasibility studies 
will evaluate how best to integrate these approaches into 
clinical practice and assess for advantages over existing diag
nostic methods in real-world clinic settings.

Conclusion
This study has demonstrated the ability to reliably differentiate 
between cognitively normal individuals and individuals with 
AD and LBD-related cognitive impairment using tensor decom
position of routine clinical 10–20 scalp EEG studies. Our meth
od of automated processing and tensor decomposition of 
routine clinical scalp EEGs can extract recognized biologically 
meaningful electrophysiologic features associated with estab
lished markers of disease severity and can incorporate these fea
tures into group-level clinical classification. This study 
demonstrates that using clinical EEGs in the diagnosis and 
management of cognitive impairment is feasible and may sig
nificantly improve patient access to timely diagnosis and qual
ity of memory care in community clinical settings.

Supplementary material
Supplementary material is available at Brain Communications 
online.

Funding
This project was supported by the Edson Family Fund. BHB 
is supported by the Epilepsy Foundation of America and the 
National Institutes of Health (UG3 NS123066). DTJ is 

supported by the National Institutes of Health. WL was sup
ported by the Benjamin A. Miller Family Fellowship in Aging 
and Related Diseases. YV was supported by the Mayo Clinic 
Neurology Artificial Intelligence Program and the National 
Science Foundation (Award No. IIS-2105233).

Competing interests
BHB declares licensed IP to Cadence Neuroscience and Seer 
Medical Pty.

Data availability
Summary data can be made available by the corresponding 
author upon reasonable request.

References
1. Li W, Kutas M, Gray JA, Hagerman RH, Olichney JM. The role of 

glutamate in language and language disorders—Evidence from ERP 
and pharmacologic studies. Neurosci Biobehav Rev. 2020;119: 
217-241.

2. Schulz-Schaeffer WJ. The synaptic pathology of alpha-synuclein ag
gregation in dementia with Lewy bodies, Parkinson’s disease and 
Parkinson’s disease dementia. Acta Neuropathol. 2010;120(2): 
131-143.

3. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002; 
298(5594):789-791.

4. Jones D, Lowe V, Graff-Radford J, et al. A computational model of 
neurodegeneration in Alzheimer’s disease. Nat Commun. 2022; 
13(1):1643.

5. Olichney JM, Yang J-C, Taylor J, Kutas M. Cognitive event-related 
potentials: Biomarkers of synaptic dysfunction across the stages of 
Alzheimer’s disease. J Alzheimers Dis. 2011;26(Suppl 3):215-228.

6. Vecchio F, Babiloni C, Lizio R, et al. Resting state cortical EEG 
rhythms in Alzheimer’s disease: Toward EEG markers for clinical 
applications: A review. Suppl Clin Neurophysiol. 2013;62:223-236.

7. McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and manage
ment of dementia with Lewy bodies: Fourth consensus report of the 
DLB consortium. Neurology. 2017;89(1):88-100.

8. Maestu F, Cuesta P, Hasan O, Fernandez A, Funke M, Schulz PE. 
The importance of the validation of M/EEG with current biomar
kers in Alzheimer’s disease. Front Hum Neurosci. 2019;13:17.

9. van der Zande JJ, Gouw AA, van Steenoven I, Scheltens P, Stam CJ, 
Lemstra AW. EEG characteristics of dementia with Lewy bodies, 
Alzheimer’s disease and mixed pathology. Front Aging Neurosci. 
2018;10:190.

10. Meghdadi AH, Stevanovic Karic M, McConnell M, et al. Resting 
state EEG biomarkers of cognitive decline associated with 
Alzheimer’s disease and mild cognitive impairment. PLoS One. 
2021;16(2):e0244180.

11. Musaeus CS, Engedal K, Hogh P, et al. EEG theta power is an early 
marker of cognitive decline in dementia due to Alzheimer’s disease. 
J Alzheimers Dis. 2018;64(4):1359-1371.

12. Neto E, Allen EA, Aurlien H, Nordby H, Eichele T. EEG spectral 
features discriminate between Alzheimer’s and vascular dementia. 
Front Neurol. 2015;6:25.

13. Neto E, Biessmann F, Aurlien H, Nordby H, Eichele T. Regularized 
linear discriminant analysis of EEG features in dementia patients. 
Front Aging Neurosci. 2016;8:273.

Data-driven EEG in neurodegenerative diseases                                                                    BRAIN COMMUNICATIONS 2024, fcae227 | 15

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/6/4/fcae227/7721405 by U

niversity of M
innesota - Tw

in C
ities user on 26 D

ecem
ber 2024

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcae227#supplementary-data


14. Colloby SJ, Cromarty RA, Peraza LR, et al. Multimodal EEG-MRI 
in the differential diagnosis of Alzheimer’s disease and dementia 
with Lewy bodies. J Psychiatr Res. 2016;78:48-55.

15. Garn H, Coronel C, Waser M, Caravias G, Ransmayr G. 
Differential diagnosis between patients with probable Alzheimer’s 
disease, Parkinson’s disease dementia, or dementia with Lewy bod
ies and frontotemporal dementia, behavioral variant, using quanti
tative electroencephalographic features. J Neural Transm (Vienna). 
2017;124(5):569-581.

16. Utianski RL, Botha H, Caviness JN, et al. A preliminary report of 
network electroencephalographic measures in primary progressive 
apraxia of speech and aphasia. Brain Sci. 2022;12(3):378.

17. Babiloni C, Blinowska K, Bonanni L, et al. What electrophysiology 
tells US about Alzheimer’s disease: A window into the synchroniza
tion and connectivity of brain neurons. Neurobiol Aging. 2020;85: 
58-73.

18. Seker M, Ozbek Y, Yener G, Ozerdem MS. Complexity of EEG dy
namics for early diagnosis of Alzheimer’s disease using permutation 
entropy neuromarker. Comput Methods Programs Biomed. 2021; 
206:106116.

19. Amezquita-Sanchez JP, Mammone N, Morabito FC, Marino S, 
Adeli H. A novel methodology for automated differential diagnosis 
of mild cognitive impairment and the Alzheimer’s disease using EEG 
signals. J Neurosci Methods. 2019;322:88-95.

20. Tylová L, Kukal J, Hubata-Vacek V, Vyšata O. Unbiased estimation 
of permutation entropy in EEG analysis for Alzheimer’s disease clas
sification. Biomed Signal Process Control. 2018;39:424-430.

21. Nunez PL, Srinivasan R. Electric fields of the brain: The neurophysics 
of EEG. 2nd ed. Oxford University Press; 2006:xvi, 611.

22. Cong F, Lin Q-H, Kuang L-D, Gong X-F, Astikainen P, Ristaniemi T. 
Tensor decomposition of EEG signals: A brief review. J Neurosci 
Methods. 2015;248:59-69.

23. Kim Y, Jiang X, Chen L, Li X, Cui L. Discriminative sleep patterns 
of Alzheimer’s disease via tensor factorization. AMIA Annu Symp 
Proc. 2019;2019:542-551.

24. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cog
nitive impairment due to Alzheimer’s disease: Recommendations 
from the national institute on aging-Alzheimer’s association work
groups on diagnostic guidelines for Alzheimer’s disease. 
Alzheimers Dement. 2011;7(3):270-279.

25. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of 
dementia due to Alzheimer’s disease: Recommendations from the 
national institute on aging-Alzheimer’s association workgroups on 
diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 
2011;7(3):263-269.

26. Klem GH, Luders HO, Jasper HH, Elger C. The ten-twenty elec
trode system of the international federation. The international fed
eration of clinical neurophysiology. Electroencephalogr Clin 
Neurophysiol Suppl. 1999;52:3-6.

27. Mayo Clinic. Department of Neurology. Mayo clinic examinations 
in neurology. 7th ed. Mosby; 1998:xxiii, 528.

28. Brinkmann BH, Bower MR, Stengel KA, Worrell GA, Stead M. 
Multiscale electrophysiology format: An open-source electrophysi
ology format using data compression, encryption, and cyclic redun
dancy check. In: Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society. Minneapolis, MN, 
USA: IEEE; 2009:7083-7086. doi:10.1109/IEMBS.2009.5332915

29. Gramfort A, Luessi M, Larson E, et al. MEG and EEG data analysis 
with MNE-python. Front Neurosci. 2013;7:267.

30. Vallat R, Walker MP. An open-source, high-performance tool for 
automated sleep staging. Elife. 2021;10:e70092.

31. Varatharajah Y, Joseph B, Brinkmann B, et al. Quantitative analysis 
of visually reviewed normal scalp EEG predicts seizure freedom fol
lowing anterior temporal lobectomy. Epilepsia. 2022;63: 
1630–11642.

32. mne.time_frequency.psd_welch. Accessed 23 June 2024. https:// 
mne.tools/1.0/generated/mne.time_frequency.psd_welch.html.

33. Kolda TG, Bader BW. Tensor decompositions and applications. 
Siam Review. 2009;51(3):455-500.

34. Comon P, Luciani X, de Almeida ALF. Tensor decompositions, al
ternating least squares and other tales. J Chemom. 2009;23(7–8): 
393-405.

35. Lee H, Kim Y-D, Cichocki A, Choi S. Nonnegative tensor factoriza
tion for continuous EEG classification. Int J Neural Syst. 2007; 
17(4):305-317.

36. Williams AH, Kim TH, Wang F, et al. Unsupervised discovery of de
mixed, low-dimensional neural dynamics across multiple timescales 
through tensor component analysis. Neuron. 2018;98(6): 
1099-1115.e8.

37. Kokmen E, Naessens JM, Offord KP. A short test of mental Status: 
Description and preliminary results. Mayo Clin Proc. 1987;62(4): 
281-288.

38. Townley RA, Syrjanen JA, Botha H, et al. Comparison of the short 
test of mental Status and the Montreal cognitive assessment across 
the cognitive Spectrum. Mayo Clin Proc. 2019;94(8):1516-1523.

39. Malek-Ahmadi M, Beach TG, Zamrini E, et al. Faster cognitive de
cline in dementia due to Alzheimer disease with clinically undiag
nosed Lewy body disease. PLoS One. 2019;14(6):e0217566.

40. van Harten AC, Wiste HJ, Weigand SD, et al. Detection of 
Alzheimer’s disease amyloid beta 1–42, p-tau, and t-tau assays. 
Alzheimers Dement. 2022;18(4):635-644.

41. Abraham A, Pedregosa F, Eickenberg M, et al. Machine learning for 
neuroimaging with scikit-learn. Front Neuroinform. 2014;8:14.

42. Capilla A, Arana L, Garcia-Huescar M, Melcon M, Gross J, Campo 
P. The natural frequencies of the resting human brain: An 
MEG-based atlas. Neuroimage. 2022;258:119373.

43. Ritter P, Moosmann M, Villringer A. Rolandic alpha and beta EEG 
rhythms’ strengths are inversely related to fMRI-BOLD signal in 
primary somatosensory and motor cortex. Hum Brain Mapp. 
2009;30(4):1168-1187.

44. Malek N, Baker MR, Mann C, Greene J. Electroencephalographic 
markers in dementia. Acta Neurol Scand. 2017;135(4):388-393.

45. Acar E, Aykut-Bingol C, Bingol H, Bro R, Yener B. Multiway ana
lysis of epilepsy tensors. Bioinformatics. 2007;23(13):i10-i18.

46. De Vos M, Vergult A, De Lathauwer L, et al. Canonical decompos
ition of ictal scalp EEG reliably detects the seizure onset zone. 
Neuroimage. 2007;37(3):844-854.

47. Wang J, Li X, Lu C, Voss LJ, Barnard JPM, Sleigh JW. 
Characteristics of evoked potential multiple EEG recordings in pa
tients with chronic pain by means of parallel factor analysis. 
Comput Math Methods Med. 2012;2012:279560.

48. Vanderperren K, Mijovic B, Novitskiy N, et al. Single trial ERP 
Reading based on parallel factor analysis. Psychophysiology. 
2013;50(1):97-110.

49. Latchoumane C-FV, Vialatte F-B, Jeong J, Cichocki A. EEG 
Classification of mild and severe Alzheimer’s disease using parallel 
factor analysis method, eds. Advances in electrical engineering 
and computational science. Springer; 2009:705-715.

50. Varatharajah Y, Ramanan VK, Iyer R, Vemuri P. Alzheimer’s dis
ease neuroimaging I. Predicting short-term MCI-to-AD progression 
using imaging, CSF, genetic factors, cognitive resilience, and demo
graphics. Sci Rep. 2019;9(1):2235.

51. Klimesch W. EEG alpha and theta oscillations reflect cognitive and 
memory performance: A review and analysis. Brain Res Brain Res 
Rev. 1999;29(2–3):169-195.

52. Cole S, Voytek B. Cycle-by-cycle analysis of neural oscillations. 
J Neurophysiol. 2019;122(2):849-861.

53. Bonanni L, Thomas A, Tiraboschi P, Perfetti B, Varanese S, Onofrj 
M. EEG comparisons in early Alzheimer’s disease, dementia with 
Lewy bodies and Parkinson’s disease with dementia patients with 
a 2-year follow-up. Brain. 2008;131(Pt 3):690-705.

54. Kropotov JD. Quantitative EEG, event-related potentials and 
neurotherapy. In: Quantitative eeg, event-related potentials and 
neurotherapy. Academic Press; 2009:1-542.

16 | BRAIN COMMUNICATIONS 2024, fcae227                                                                                                                         W. Li et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/6/4/fcae227/7721405 by U

niversity of M
innesota - Tw

in C
ities user on 26 D

ecem
ber 2024

https://doi.org/10.1109/IEMBS.2009.5332915
https://mne.tools/1.0/generated/mne.time_frequency.psd_welch.html
https://mne.tools/1.0/generated/mne.time_frequency.psd_welch.html


55. Varatharajah Y, Berry B, Joseph B, et al. Characterizing the electro
physiological abnormalities in visually reviewed normal EEGs of 
drug-resistant focal epilepsy patients. Brain Commun. 2021;3(2): 
fcab102.

56. Timmerman ME, Kiers HAL. Three-mode principal components 
analysis: Choosing the numbers of components and sensitivity to lo
cal optima. Br J Math Stat Psychol. 2000;53(Pt 1):1-16.

57. Morup M, Hansen LK. Automatic relevance determination for 
multi-way models. J Chemom. 2009;23(7–8):352-363.

58. Botha H, Mantyh WG, Murray ME, et al. FDG-PET in tau-negative 
amnestic dementia resembles that of autopsy-proven hippocampal 
sclerosis. Brain. 2018;141(4):1201-1217.

59. Cong F, Phan A, Zhao Q, et al. Benefits of multi-domain feature of 
mismatch negativity extracted by non-negative tensor factorization 
from EEG collected by low-density array. Int J Neural Syst. 2012; 
22(6):1250025.

60. Cong F, Phan A-H, Astikainen P, et al. Multi-domain feature extrac
tion for small event-related potentials through nonnegative multi- 
way array decomposition from low dense array EEG. Int J Neural 
Syst. 2013;23(2):1350006.

61. Mahyari AG, Zoltowski DM, Bernat EM, Aviyente S. A 
tensor decomposition-based approach for detecting dynamic net
work states from EEG. IEEE Trans Biomed Eng. 2017;64(1): 
225-237.

62. Katada E, Sato K, Sawaki A, Dohi Y, Ueda R, Ojika K. Long-term 
effects of donepezil on P300 auditory event-related potentials in pa
tients with Alzheimer’s disease. J Geriatr Psychiatry Neurol. 2003; 
16(1):39-43.

63. Babiloni C, Arakaki X, Azami H, et al. Measures of resting 
state EEG rhythms for clinical trials in Alzheimer’s disease: 
Recommendations of an expert panel. Alzheimers Dement. 2021; 
17(9):1528-1553.

Data-driven EEG in neurodegenerative diseases                                                                    BRAIN COMMUNICATIONS 2024, fcae227 | 17

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/6/4/fcae227/7721405 by U

niversity of M
innesota - Tw

in C
ities user on 26 D

ecem
ber 2024


	Data-driven retrieval of population-level EEG features and their role in neurodegenerative diseases
	Introduction
	Materials and methods
	Dataset
	EEG visual review
	EEG preprocessing
	Power spectral measures
	Tensor formation
	Canonical polyadic (CP) decomposition
	Tensor decomposition
	Headplots
	Controlling for age
	Identification of patients with cognitive pathology and controls
	Projecting new data onto the space of discovered factors
	Classification framework
	Clinical correlations
	Kokmen short test of mental Status
	FDG-PET regional SUVR
	CSF Alzheimer’s disease biomarkers

	Results
	Data characteristics
	Tensor decomposition produces meaningful factors
	Factor correlations with age and EEG grade
	Factors exhibit potential in classifying neurodegenerative etiologies

	Clinical correlations
	Kokmen short test of mental Status
	FDG-PET regional SUVR
	CSF Alzheimer’s disease biomarkers

	Discussion
	Modular and explainable features derived using tensor decomposition
	Early identification of cognitive impairment
	Associations with established clinical markers
	Limitations/future directions

	Conclusion
	Supplementary material
	Funding
	Competing interests
	Data availability
	References




