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Electrophysiologic disturbances due to neurodegenerative disorders such as Alzheimer’s disease and Lewy Body disease are detectable
by scalp EEG and can serve as a functional measure of disease severity. Traditional quantitative methods of EEG analysis often require
an a-priori selection of clinically meaningful EEG features and are susceptible to bias, limiting the clinical utility of routine EEGs in the
diagnosis and management of neurodegenerative disorders. We present a data-driven tensor decomposition approach to extract the
top 6 spectral and spatial features representing commonly known sources of EEG activity during eyes-closed wakefulness. As part of
their neurologic evaluation at Mayo Clinic, 11 001 patients underwent 12 176 routine, standard 10-20 scalp EEG studies. From these
raw EEGs, we developed an algorithm based on posterior alpha activity and eye movement to automatically select awake-eyes-closed
epochs and estimated average spectral power density (SPD) between 1 and 45 Hz for each channel. We then created a three-dimen-
sional (3D) tensor (record x channel X frequency) and applied a canonical polyadic decomposition to extract the top six factors. We
further identified an independent cohort of patients meeting consensus criteria for mild cognitive impairment (30) or dementia (39)
due to Alzheimer’s disease and dementia with Lewy Bodies (31) and similarly aged cognitively normal controls (36). We evaluated the
ability of the six factors in differentiating these subgroups using a Naive Bayes classification approach and assessed for linear associa-
tions between factor loadings and Kokmen short test of mental status scores, fluorodeoxyglucose (FDG) PET uptake ratios and CSF
Alzheimer’s Disease biomarker measures. Factors represented biologically meaningful brain activities including posterior alpha
rhythm, anterior delta/theta rhythms and centroparietal beta, which correlated with patient age and EEG dysrhythmia grade.
These factors were also able to distinguish patients from controls with a moderate to high degree of accuracy (Area Under the
Curve (AUC) 0.59-0.91) and Alzheimer’s disease dementia from dementia with Lewy Bodies (AUC 0.61). Furthermore, relevant
EEG features correlated with cognitive test performance, PET metabolism and CSF AB42 measures in the Alzheimer’s subgroup.
This study demonstrates that data-driven approaches can extract biologically meaningful features from population-level clinical
EEGs without artefact rejection or a-priori selection of channels or frequency bands. With continued development, such data-driven
methods may improve the clinical utility of EEG in memory care by assisting in early identification of mild cognitive impairment and
differentiating between different neurodegenerative causes of cognitive impairment.
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FDG - fluorodeoxyglucose, AUC — area under the curve, CN — cognitively normal, DLB -
dementia with Lewy bodies, ADem — Alzheimer’s dementia, AD-MCI — Alzheimer’s

disease-mild cognitive impairment

Introduction

In neurodegenerative disorders such as Alzheimer’s disease
(AD) and dementia with Lewy Bodies (DLB), the pathophysi-
ology involves an interaction between cellular pathways and
large-scale network physiology related to coordinated

function in ensembles of neurons that support mental
functioning."™ This large-scale disturbance in activity in
neuronal ensembles is accompanied by changes in electro-
physiology detectable by scalp EEG before changes on struc-
tural brain imaging such as CT or MRI are detectable.”*® This
is strikingly apparent in DLB, in that this condition is not
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Data-driven EEG in neurodegenerative diseases

characterized by significant changes in measures of brain
structure but has marked disturbance in measures of electro-
physiology. This contrast is reflected in the most recent diag-
nostic criteria for DLB.” Neurodegeneration-associated EEG
changes during the mild cognitive impairment (MCI) and de-
mentia stages have also been shown to correspond with cog-
nitive performance and disease severity based on functional
imaging and fluid biomarkers.®*’

Compared to other clinically available tests for neurode-
generative cognitive impairment, such as CSF analysis, neu-
ropsychologic evaluations, or fluorodeoxyglucose (FDG)
and molecular PET, scalp EEGs are noninvasive and relative-
ly inexpensive tests available at most neurology practices
worldwide.

Quantitative analysis of EEG has been extensively ex-
plored in the context of characterizing and diagnosing
neurodegenerative diseases. This includes differences be-
tween AD Dementia (ADem), AD-MCI and healthy controls
using resting-state EEG-derived features.'®'! Furthermore,
EEG has been shown to be useful in the differential diagno-
sis between AD, cerebrovascular diseases,'>'3 DLB”>%>!%1°
and Frontotemporal Lobar Degeneration spectrum of
disorders.'® In all these studies, EEG signal power analysis
has been the most common approach using the five major fre-
quency bands, namely, delta (8) 0.1-4 Hz, theta (0) 4-8 Hz,
alpha (a) 8-12 Hz, beta (B) 12-30 Hz and gamma (y) > 30 Hz.
Some studies have analyzed EEG synchrony measures with-
in the above frequency bands and shown that disruptions
in EEG-based measures of synchrony can differentiate
between subjects with neurodegenerative symptoms and
healthy individuals.'” Other EEG features including
entropy,'® fractal dimension'” and the Lyapunov exponent®°
have also been explored, but are not widely used.

Brain rhythms categorized by the five major frequency
bands convey different information about brain function
and connectivity.”! However, analyses using those bands
provide only isolated views of brain activity within the corre-
sponding frequency ranges and limit the ability to identify
EEG patterns that may span several spectral bands.
Furthermore, clinical EEG data may contain artefacts, which
may confound EEG power or synchrony measures.

In this study, we investigate a data-driven approach based
on tensor decomposition to automatically discover different
constituents that contribute to EEG measured on the scalp
without limiting the discovery to predefined frequency ranges
or EEG channels.?*** We applied this approach on the raw
power spectral densities of a large sample of 12 176 routine
scalp EEG recordings obtained in routine clinical setting
within a broad frequency range (1 Hz—45 Hz) across all
EEG channels (19 channels according to the 10-20 system).
This approach allowed us to quantify multiple EEG features
related to normal aging, neurodegenerative pathology and
artefacts. Using the relevant features, we then characterized
a subset of patients meeting clinical consensus criteria for
AD-MCI (N =30),** ADem (N =39),>> or DLB(N=31),”
along with 36 age-matched cognitively normal subjects.
Finally, we correlated the automatically extracted EEG
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features with their clinical diagnoses, cognitive test scores,
CSF AD biomarker measures and fluorodeoxyglucose-
positron emission tomography (FDG-PET) standardized up-
take value ratios (SUVR).

Our model demonstrates that data-driven tensor decom-
position of routine clinical EEGs can extract biologically
meaningful effects without a-priori selection of frequency
bands or channel sites. Moreover, these factors show good
differentiation between patients with cognitive impairment
due to AD and LBD and normal controls at the group level.
Future iterations will aim at improving the diagnostic accur-
acy at the single subject level, particularly in the MCI and
mild dementia stages of these diseases. Standardized quanti-
tative analysis of EEG features has great potential to enhance
the clinical utility of routine EEGs in cognitive neurology and
to provide a widely available and inexpensive tool that can as-
sist in the diagnosis and management of diseases such as AD
and LBD.

Materials and methods

We analyzed 12 176 clinical EEG recordings of 11 001 adult
patients (>18 years old) who underwent routine clinical EEG
study at the Mayo Clinic, Rochester, between the years 2011
and 2021. The EEGs were recorded using the XLTEK
EMU40EX headbox (Natus Medical Inc., Oakville,
Ontario, Canada) according to the standard 10-20 localiza-
tion system”® at a sampling rate of 256 Hz. This dataset is
representative of the patient population that is referred for
routine EEG at Mayo Clinic in Rochester, MN, which in-
cludes a wide range of neurologic and non-neurologic condi-
tions including epilepsy, cognitive impairment, episodic
migraines, cardiogenic syncope and functional spells.

The EEG records were visually reviewed by board-certified
epileptologists and graded based on the Mayo Clinic EEG
classification system: normal (no visible abnormalities),
Dysrhythmia 1 (mild slowing), Dysrhythmia 2 (moderate
to severe slowing) or Dysrhythmia 3 (epileptiform abnormal-
ities).”” These grades along with full EEG reports were
retrieved from the clinical EEG reporting database. We
then assigned the above grades to binary labels as follows:
(i) we combined normal and Dysrhythmia 1 grades to form
‘normal’ label; and (ii) we combined Dysrhythmia 2 and
Dysrhythmia 3 grades to form ‘abnormal’ label.

EEG records were first converted to the Multiscale
Electrophysiology Format (MEF).*® Using the Python
programming language, the raw EEG timeseries, channel
names and EEG sampling rate were extracted from the MEF
records and subsequently processed using the MNE library.*’
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The EEGs were bandpass-filtered within 0.5-45 Hz and mul-
tiple 10s-long eyes closed awake (EC) epochs (between 4 and
6 epochs per participant) were selected using an automated
algorithm. The automated algorithm consisted of the follow-
ing steps: (i) divide the preprocessed EEG recording into
epochs of 10 seconds; (ii) automatically score sleep stages
using a previously published algorithm®; (iii) select epochs
that do not contain eye blinks from the epochs scored
as ‘awake’ by the sleep staging algorithm??; (iv) rank those
eyes-closed epochs in order of spectral power in the alpha
frequency range (8-12 Hz) in posterior channels (O1 and
02); and (v) select the top six epochs (fewer if six epochs
were not available) with the highest posterior alpha power.>"
In subsequent analyses, we kept only the 19 standard EEG
channels according to the 10-20 system (i.e. Fp1, F3, F7,
C3, T7, P3, P7, O1, Fp2, F4, 8, C4, T8, P4, P8, 02, Fpz,
Fz, Cz and Pz) and excluded the sub-temporal EEG channels
(Tp11 and Tp12) and channels corresponding to EKG activ-
ity, SpO2 and stimulation, as they were not recorded in all
EEG studies.

For each epoch, we then estimated the power spectral density
(PSD, in decibels) at frequencies between 1 and 45 Hz (45 in-
teger frequencies) using the Welch fast Fourier transform
approach® for all 19 EEG channels. We then averaged the
PSD measures of each EEG record among all the identified
epochs to obtain a single PSD vector for each channel. The
PSD measures of each EEG record can now be represented as
a matrix with shape 19 x 45 (19 channels and 45 frequencies).

The PSD matrices of all EEG records were stacked to form a
3D tensor (EEG records, channels, frequencies). Then all va-
lues in this tensor were normed to be within the 0-1 range by
subtracting the minimum value and then dividing by the
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range of values. The dimensions of our final tensor were
12176 x 19 x 45.

The canonical polyadic decomposition or the PARAFAC
decomposition®® approximates a tensor with a sum of R
rank-one tensors, where R is the rank and the resulting num-
ber of factors. Mathematically, a CP decomposition of a 3D
tensor T with rank R can be written as follows:

R
T~) A®B®C
r=1

Here ® denotes an outer product and A,, B, and C, are
rank-1 tensors with shapes matching each of the three di-
mensions of T. The combination of A,, B, and C, is called
a factor. The optimal A,, B, and C, are found using an opti-
mization procedure known as the alternating least squares
approach.®>* Variations of the standard CP decomposition
including nonnegativity constraints can be utilized with non-
negative input data.”> Our analysis utilized the tensortools
Python library for performing tensor decomposition.*®

We performed a nonnegative canonical polyadic decompos-
ition on the above-formed tensor to yield six factors repre-
senting electrophysiological features that best approximated
the original tensor (Fig. 1A). We determined six to be a ration-
al choice for the number of factors based on visual inspection
of the identified factors, which demonstrated meaningful
independent electrophysiological features. Fewer factors
tended to combine some of these independent features,
whereas additional factors tended to divide them into less
meaningful features. Each factor consisted of 3 rank-1

+ + -+
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EEG #N Channel #1 Channel #19 1Hz =——> 45Hz

[l | 1
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EEG Record Factor
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Figure | Tensor decomposition of EEG power spectral densities. We formed a 3D tensor by stacking the PSD matrices of all the EEG
records (channels X frequencies X EEG records). (A) We then performed a nonnegative canonical polyadic decomposition on the above-formed
tensor to identify six factors that approximated the original tensor. (B) Each factor consists of three rank- | tensors corresponding to the channel,

frequency and EEG record dimensions.
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tensors corresponding to the EEG record, channel and fre-
quency dimensions (Fig. 1B). While the rank-1 tensors cor-
responding to the channel and frequency dimensions
characterize the spatial and frequency patterns of brain ac-
tivity, the rank-1 tensor corresponding to the EEG record
dimension allows us to characterize group differences be-
tween patients/EEG records. Hence, we treat the tensor of
the EEG record dimension as the weights/factor loadings
of individual EEG records on the brain activity patterns
characterized by the tensors corresponding to the channel
and frequency dimensions. In subsequent analyses, we use
the factor loading values to represent each EEG record in
a lower dimensional space (i.e. loadings corresponding to
six factors).

We visualized the rank-1 tensor corresponding to the chan-
nel dimension using the topographical headplots for visual
interpretation of the spatial distribution of brain activity
characterized by each factor.

Our subsequent analyses utilized the weights (rank-1 tensor
corresponding to the EEG record dimension) for each factor
to characterize group differences. Using linear regression, for
each factor, we regressed the weights on age at the time of
EEG and took the residuals as updated weights to control
for the effect of age.

A text string search of the EEG reports for ‘cognitive impair-
ment’, ‘MCP, ‘dementia’, ‘Alzheimer’, ‘AD’, ‘DLB’, ‘LBD’
and ‘Lewy’ was used to identify possible patients with cogni-
tive impairment due to AD or LBD pathology. These cases
were reviewed by a behavioural neurologist blinded to the
EEG reports and extracted features, and who independently
verified the patient’s diagnosis of either AD-MCI (n = 30),
ADem (1 =39) or DLB (7 =31) based on documented history
and clinical exam and established consensus criteria (i.e. the
2011 National Institute on Aging-Alzheimer’s Association
(NIA-AA) diagnostic guidelines for Alzheimer’s disease*’ and
MCL** and the 2017 Fourth consensus report of the DLB
Consortium”).

A score of <30 on the Kokmen Short Test of Mental Status
(STMS), which is a measure of cognitive performance used
routinely in the clinical evaluation of cognitively impaired
patients,”” was used as the cutoff between ADem and
AD-MCI.?® Because these diagnoses based on consensus cri-
teria were made based on clinical history and exam and
lacked confirmatory biomarker support (e.g. CSF biomar-
kers, amyloid PET, dopamine transporter imaging), sub-
group analyses were considered exploratory for the
purposes of this study. Moreover, using the consensus
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criteria creates an artificial dichotomy of clinical AD-MCI/
Dementia versus DLB, whereas in reality comorbid AD
and LBD pathology occurs in 30-75% of pathologically con-
firmed cases at autopsy.®” In cases of clinical ADem and
AD-MCI patients who received CSF AD biomarker testing,
an abnormal amyloid beta-42 (AB42) (< 1026 pg/ml) and/or
abnormal phosphorylated-tau (pTau)/AB42 ratio (>0.023)
were considered supportive of underlying Alzheimer’s disease
pathology (n=23).*°

For the control group, 342 additional subjects between the
ages of 50 and 90 were randomly selected from the overall
EEG cohort and their charts were reviewed by a behavioural
neurologist who was blinded to their EEG reports and fea-
tures. As these were patients who had clinical reasons for ob-
taining an EEG and as most did not have recorded cognitive
exam scores, a stringent list of exclusion criteria for potential
CNS abnormalities was used as a surrogate for approximat-
ing a cognitively normal (CN), age-matched cohort.

Exclusion criteria included objective or subjective cogni-
tive concerns (even with normal imaging and mental status
exam scores) or functional neurologic disorders, presence
of brain lesions such as stroke, malignancy (or brain/whole
body radiation), or traumatic brain injury, diagnosis or
strong clinical suspicion of epilepsy (regardless of EEG find-
ings), recurrent, unresolved spells including transient ische-
mic attacks, transient global amnesia, cardiogenic syncope,
polypharmacy or use of CNS-affecting medications other
than selective serotonin reuptake inhibitors, and/or persist-
ent sleep disturbances such as insomnia, hypersomnia,
REM behaviour disorder, or moderate to severe obstructive
sleep apnea. Ultimately 36 subjects with no clinical history or
concern for cognitive impairment and meeting the above ex-
clusion criteria were selected from the same-age cohort and
were excluded from the 110 001 adult patients used to create
the 12176 x 19 x 45 tensor. See Table 1 for patient demo-
graphic information.

To estimate the factor weights of the above cohort of EEGs
on each of the discovered set of factors in an unbiased
way, we utilized a two-dimensional (2D) approximated pro-
jection approach.®® First, we created a rank-1 matrix for
each factor by taking the outer product of the channel and
spectral factors, resulting in a matrix of size 19 x45 (19
channels and 45 frequencies). Next, we unrolled this matrix
(corresponding to a factor) into a vector of size 1x 855.
Then, we stacked these vectors to form a matrix of all un-
rolled factors and solved a linear inverse problem to find
the weights for the new data (of size 1 x 19 x 45) on the un-
rolled set of factors from the original population tensor. If we
use U to denote this matrix of unrolled factors from the ori-
ginal population tensor (of size 6 X 855 using 6 factors of
interest) and x to denote the unrolled new data (of shape
1 % 855), then the projected weights are found as xU™".

$20Z Jaquieoa( 9z U0 Jasn Sal)iD) UIM| - BJOSBUUI 10 AlsioAiun AQ SOv L2/ ./.2Z8B0)//9/a[01e/SWWLOodUIRIg/WoD dno-olWwspeoe//:sdny WoJj papeojumoq



6 | BRAIN COMMUNICATIONS 2024, fcae227

Table | Characteristics of the EEG dataset and the
patient population

Attribute Statistics

EEG recordings Unique records: 12.176
Unique participants: |1 001
Age Range: 18-101
Mean = 49.92
Age groups:
18-30: 2473
30-50: 3555
50-70: 3987
>70: 2161
Gender Female = 5966 (54%)
EEG grade Normal: 6058
Dysrhythmia I: 3020
Dysrhythmia 2: 1369
Dysrhythmia 3: 1729
Cognitive impairment Cognitively Normal (CN)
subgroups N=36
Age: range = (50-86) mean = 69
Gender: Female = |7 (47%)
AD-Mild Cognitive Impairment (AD-MCI)
N=30
Age: range = (52-89) mean = 68
Gender: Female = 14 (47%)
Alzheimer’s Disease Dementia (ADem)
N=39
Age: range = (52-88) mean = 68
Gender: Female =25 (64%)
Dementia with Lewy Bodies (DLB)
N=3lI
Age: range = (54-84) mean =70
Gender: Female =4 (13%)

We then employed a Naive Bayes (NB) classification ap-
proach to evaluate the potential of classifying the different
cognitive etiologies from normal controls (i.e. AD-MCI ver-
sus CN, ADem versus CN and DLB versus CN). We chose to
utilize the NB classifier for this task because of the relatively
small sample size in each of those classifications. We identi-
fied exactly one EEG per patient (the first EEG in chrono-
logical order if multiple EEGs were available for a single
patient). We utilized the weights of each factor obtained
via tensor decomposition corresponding to the identified
EEGs as features in the classification approach. We assigned
labels of ‘1’ and ‘0’ to disease and control groups, respective-
ly, and evaluated them using a leave-one-patient-out cross-
validation strategy. We utilized the area under receiver
operating characteristics curve as the primary measure of
classification potential for comparisons.

Next, focusing on the automatically extracted factors that
best differentiated cognitively impaired from cognitively nor-
mal controls in the NB classifier, we compared Factors 2, 3, 4
and 6 to established clinical markers of disease severity and
cognitive performance. Three pair-wise comparisons were
carried out for each factor (CN versus AD-MCI, AD-MCI

W. Li et al.

versus ADem and ADem versus DLB), utilizing a
Mann-Whitney-Wilcoxon two-sided test with Bonferroni
correction (o.=0.05/3). Analysis of Factors 1 and 5 are in-
cluded in the supplement. As was done in our classification
analysis, we accounted for the role of age in EEG findings
by regressing the factors against the subject’s age at time of
EEG recording. Univariate linear regressions were used in
the following comparisons as our goal was simply to deter-
mine if the automatically extracted EEG features were bio-
logically meaningful (i.e. showed some correlation with
established clinical tests); quantifying the degree to which
the extracted features explained variations in clinical exam
scores or disease biomarkers through additional statistical
modelling was beyond the scope of this proof-of-concept
exercise.

The following main analyses were performed at the cohort
level, combining ADem, AD-MCI and DLB subjects. As ex-
ploratory analyses to evaluate the effect of clinical diagnoses
on the association between EEG features and established
biomarkers, we repeated the tests within the ADem/
AD-MCI and DLB groups separately.

We assessed correlations between the automatically ex-
tracted EEG features and cognitive exam scores based on
the Kokmen STMS. Ninety-seven subjects had recorded
Kokmen STMS scores within 12 months of their EEG.
First, we performed univariate linear regressions between
age-adjusted EEG factors and Kokmen STMS scores for all
92 subjects, P-values were adjusted by Bonferroni correction
(=0.05/4). As exploratory analysis, we performed the same
regressions within the clinical DLB group (#=27) and in a
subset of the clinical ADem and AD-MCI group that had
CSF biomarker measures supportive of AD pathology (ab-
normal AB42 and/or p-Tau/AB42 ratio) (n =20).

Next, we assessed correlations between the automatically ex-
tracted EEG features and FDG-PET standardized uptake value
ratios (SUVR) at the voxel level. Sixty-two subjects had clinical
8E_FDG-PET scans within 12 months of their EEG, which
were acquired using a PET/CT scanner (GE Healthcare).
Participants were injected with '*F-FDG in a dimly lit room
and, after a 30-minute uptake period, four 2-min dynamic
frames were acquired. PET images were normalized to MNI
space and masked using a grey matter template. We then inten-
sity normalized the images to the pons and smoothed with a
5 mm full-width half-maximum Gaussian kernel. Finally,
SUVR were standardized to a sample of age- and sex-matched
cognitively normal controls (7 =492).

Voxel-wise regression analyses of the age-adjusted factor
residuals and SUVR were performed for the total sample
and, as exploratory analysis, within each subgroup (clinical
DLB, n=18 and CSF biomarker supported ADem/
AD-MCI, n=16). We additionally assessed the extent to
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which the association between FDG-SUVR and EEG factor
loadings differed between the subgroups by exploring inter-
action terms of each factor x subgroup as a predictor for the
regression analyses. For these analyses, the main terms of the
interaction were entered as covariates. Effects are shown un-
thresholded and thresholded with a false discovery rate cor-
rected alpha level of 0.05. Analyses of FDG-PET and EEG
features were carried out using the Nilearn library (version
0.9.0) in python.*!

Finally, we assessed correlations between extracted factors
and CSF AD Biomarker measures. Forty-six subjects under-
went Roche Elecsys AD CSF Biomarker testing within
12 months of their EEG. We adjusted for the effect of age
on CSF biomarker values using the same linear regression
method against the subject’s age at the time of CSF testing.
Univariate linear regressions were performed between the
age-adjusted EEG factor residuals and age-adjusted AD bio-
marker residuals (AB42, total Tau (tTau) and pTau and the
pTau/AB42 ratio). P-values were adjusted for repeat com-
parisons via a Bonferroni correction (o= 0.05/12).

As an exploratory analysis, we repeated the regressions in
the clinical ADem/AD-MCI group regardless of CSF bio-
marker results (#=33) and the DLB group (n=13). We
did not further segregate the ADem/AD-MCI subjects based
on biomarker normal/abnormal status as biomarker values
were the variable of interest.

Statistical analyses for the STMS and AD Biomarker sec-
tions were carried out using R version 4.1.1.
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Results

Table 1 shows the characteristics of the EEG dataset and the
patient population. The EEG dataset included 12 176 unique
routine EEG studies from 11 001 unique participants. Most
repeat studies were performed on seizure patients evaluating
for epileptic foci and antiepileptic drug efficacy, some with
upwards of six studies for a single participant. The partici-
pants were from a wide age range between 18 and 101
with a mean age of ~50, with a majority between the ages
30 and 70. In addition, most of the EEG studies (49.8%)
were normal based on expert visual review. We further iden-
tified an age-matched subset of patients who met the criteria
for neurodegenerative etiologies and cognitively normal con-
trols. Specifically, we identified EEG studies of 36 CN, 30
AD-MCI, 39 ADem and 31 DLB patients for further analyses.
Allindividuals in this subset were within the age range of 50—
89. One control subject had two EEGs performed 2 years
apart; we used the first EEG which was performed within
12 months of clinical documentation of normal cognition.

Figure 2 illustrates six factors derived using a nonnegative ca-
nonical polyadic decomposition of the average power spec-
tral densities extracted from 12.176 EEG during
eyes-closed wakefulness. Each factor consists of three
rank-1 tensors corresponding to the EEG record, channel

EEG Record Factor Channel Factor Frequency Factor
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Figure 2 Factors derived using a nonnegative canonical polyadic decomposition. A large population-level routine EEG database was
used to identify common spectral patterns during eyes-closed wakefulness. Using a nonnegative canonical polyadic decomposition, we
decomposed the 19-channel power spectra of eyes-closed epochs extracted from 12 176 routine EEG records into six factors. Each factor
consists of three components representing the EEG record, channel and frequency dimensions related to a common brain activity pattern. While
the EEG record factor represents the weights of EEGs with respect to the spatial and spectral profiles, we illustrate it using a histogram for clarity.
We postulate that factors |-6 represent eye movement, posterior alpha rhythm, Rolandic beta activity, frontal slowing, bitemporal muscle activity

and slower alpha activity, respectively.
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and frequency dimensions. Factor 1 indicates beta and gam-
ma (13-45 Hz) activity focused on the prefrontal regions,
which might represent eye-movement-related muscle activ-
ity. Factor 2 indicates alpha activity (8-13 Hz) in the poster-
ior region, which might represent the posterior dominant
alpha rhythm. Factor 3 indicates beta activity (13-25 Hz)
in the centroparietal regions, which may be associated with
a host of different biological generators,*” including
Rolandic beta activity from the sensorimotor area.** Factor
4 indicates delta and theta (1-6 Hz) activity in the frontotem-
poral regions, which could represent frontal slowing asso-
ciated with cognitive decline.** Factor 5 indicates beta and
gamma (13-45 Hz) activity focused on the bitemporal re-
gions, which could represent temporal muscle artefacts.
Finally, factor 6 indicates theta to slower alpha band (6-9 Hz)
activity focused on the posterior regions, which could re-
present slowing of the posterior dominant rhythm.

Figure 3 illustrates the relationship of the identified factors
with participant age and EEG grade. Here we analyzed the
factor loadings with respect to the six factors defined by the

W. Li et al.

channel and frequency dimensions. We performed an ordin-
ary least squares analysis and a logistic regression analysis, re-
spectively, to quantify the relationships of the factors with
age and binarized EEG grade (i.e. normal versus abnormal).
Figure 3A shows the linear model coefficients for age and
boxplots of highly weighted factors in different age groups.
Utilizing a Mann-Whitney-Wilcoxon two-sided test with
Bonferroni correction (0.=0.05/3) to compare age groups
(18-30 versus 30-50, 30-50 versus 50-70, 50-70 versus
>70), we found that Factors 2 and 4 were weighted higher
compared to other factors in explaining age and that both fac-
tors were negatively correlated with increasing age (Fig. 3B
and C). Figure 3B shows the linear model coefficients for bi-
narized EEG grade and boxplots of highly weighted factors
for different EEG grade categories. We find that Factor 4
was weighted the highest in explaining EEG abnormality
grade while Factor 2 showed a moderate correlation
(Fig. 3E and F).

We then analyzed the relationship of the above factors
with neurodegenerative etiologies after controlling for age,
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Figure 3 Factor correlations with age and EEG grade. (A): Linear model coefficients of the factor loadings in explaining patient ages. (B and
C): violin plots showing the distributions of factor 2 and 4 loadings in different age groups. (D): Logistic model coefficients of the factor loadings in
explaining binarized EEG abnormality grades (normal versus abnormal). (E and F): violin plots showing the distributions of factor 4 and 6 loadings
in normal and abnormal EEG records. In figures A and D, the redline indicates a zero coefficient and the red asterisk indicates non-significant
results (P> 0.05). In figures B, C, E and F, a non-parametric Mann-Whitney-Wilcoxon test with Bonferroni correction was used for pair-wise
comparisons. * indicates a significant difference with P < 0.05 and **** indicates a significant difference with P < le-4. Full cohort of unique EEG
recordings (n =12 176). Age group 18-30 (n =2629), 30-50 (n = 3742), 50-70 (n =4309), > 70 (n =2370). EEG grade: Normal (n = 6476),

Abnormal (Dysrhythmia Grade 1-3) (n = 6754).
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Figure 4 Differentiation between neurodegenerative diseases and machine learning classification. (A-D): Violin-swarm plots

illustrating the differences between cognitively normal (CN) (n = 36), Alzheimer’s Disease associated mild cognitive impairment (AD-MCI)
(n=30), Alzheimer’s disease dementia (ADem) (n = 39), and dementia with Lewy bodies (DLB) (n = 31) based on loadings of factors 2, 3, 4

and 6 respectively. (E=G): classification of AD-MCI, ADem and DLB patients against CN individuals using leave-one-patient-out cross-validation
strategy, using (E) factors 2 and 4 only, (F) factors 2, 3, 4, and 6, and (G) all six factors. (H) classification of ADem patients against DLB patients
using factors 2, 3, 4 and 6 separately. In figures A-D, a non-parametric Mann-Whitney-Wilcoxon test with Bonferroni correction (o = 0.05/3) was
used for pair-wise comparisons. ns indicates no significant difference, * indicates a significant difference with P < 0.05 and ** indicates a significant

difference with P < 0.01.

the results of which are shown in Fig. 4A-D. Factor 2 (Fig. 4A)
and Factor 4 (Fig. 4C) loadings show decreasing and increas-
ing relationships, respectively, with disease severity (cogni-
tively normal controls, MCI, dementia). Factors 2 was able
to differentiate the AD-MCI group from cognitively normal
controls, and both Factors 2 and 4 were able to differentiate
AD-MCI from ADem. Factor 3 (Fig. 4B) demonstrated a
similar trend to Factor 2 with lower factor loadings in demen-
tia groups (DLB and ADem) compared to AD-MCI and cog-
nitively normal controls, whereas Factor 6 (Fig. 4D)
demonstrated a similar trend to Factor 4, with higher factor
loadings in dementia and MCI groups.

We also performed experiments to quantify the classifica-
tion potential as illustrated in 4D-F. We found that factors 2
and 4 were able to classify ADem and DLB from CN with
good AUC metrics (Fig. 4E) and that the addition of factors
3 and 6 (Fig. 4F), or using all the factors did not provide any
significant gains in the classification potential (Fig. 4G).
Factors 2 and 4 demonstrated moderate AUC metrics in clas-
sifying AD-MCI from CN;j again, the addition of factors 3
and 6, or all factors did not significantly improve classifying
potential. Finally, we found that factors 3 and 6 could clas-
sify DLB patients and ADem patients while factors 2 and 4
did not perform better than chance level (Fig. 4H). (For
AUC confidence intervals and P-values see Supplementary
Table 1).

Clinical correlations

Across the full cohort of subjects with a documented
STMS within 12 months of their EEG (72 =92), Factor 4
demonstrated a negative correlation with STMS scores
(B=—5.06, R*=10.33, p.adj <0.001) and Factor 2 demon-
strated a positive correlation with STMS scores (B=4.07,
R*=0.19, p.adj < 0.001). Factors 3 and 6 showed no correla-
tions with cognitive exam scores. (Figure SA) No significant
correlations were found between Kokmen STMS scores and
Factors 1 and 5 at the cohort level. (Supplementary Fig. 1).

Exploratory analysis demonstrated that the correlation
between Factors 2, 4 and STMS score remained robust in
both the DLB subgroup and the biomarker-supported
ADem/AD-MCI subgroup. Factors 3 and 6 failed to show
any correlations with STMS scores in either subgroup.
(Figure 6B and C)

Voxel-wise regression analyses with FDG-PET SUVR
showed positive correlations in lateral frontal, parietal tem-
poral, occipital regions for Factor 2 across the whole sample
with available FDG-PET, whereas Factor 4 demonstrated
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Cognitive Test Scores (Kokmen STMS)
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Figure 5 Univariate linear regression between Kokmen STMS and Factors 2, 3 and 4. (A) For the full cohort (n = 92), Factor 2
showed a positive correlation whereas Factor 4 showed a negative correlation with cognitive performance. P-values by Bonferroni correction.
(0.=0.05/4). (B) Exploratory subgroup analysis of biomarker-supported Alzheimer’s Dementia and AD-MCI subjects (n = 20), Factor 2 also
shows a positive correlation whereas Factor 4 a negative correlation. (C) Subgroup analysis of clinical DLB subjects (n = 27), Factor 2 again shows a
positive correlation whereas Factor 4 shows a negative correlation. * = Statistically Significant Correlation.

negative correlations in the same regions (7 = 62). For Factor
3 we observed similar, albeit weaker, associations to Factor 2
and Factor 6 demonstrated similar, but weaker correlations
to Factor 4. (Figure 6. See Supplementary Fig. 2 for effects thre-
sholded with FDR-corrected P = 0.05). Regressing voxel-wise
effects for Factor 4 on Factor 2 effects showed that effects were
an inverse of each other (Supplementary Fig. 3).

Repeating the analyses in each subgroup and using inter-
action analyses demonstrated that effects for Factor 2 were
mostly driven by the DLB subgroup. Factor 4 effects were
not significantly different between the ADem/AD-MCI and
DLB subgroups. For Factors 1 and 5 we only observed
weak effects (Supplementary Fig. 4).

Across the full cohort of subjects with AD CSF biomarker re-
sults (1 =46), univariate linear regression analysis demon-
strated a positive trend between Factor 2 and CSF AB42
measures (f=195, R*=0.11, p.adj=0.3) and a negative

trend between Factor 4 and CSF AB42 measures (8 =—154,
R%*=0.09, p.adj=0.49). Both correlations failed to survive
correction for multiple comparisons. (Figure 7A) No sig-
nificant correlations were found between CSF biomarker
measures and Factors 1, 3, 5 and 6 at the cohort level.
(Figure 7A and Supplementary Fig. 6).

Exploratory analyses of the ADem/AD-MCI subgroup re-
vealed a more robust negative correlation between Factor 4
to CSF AB42 correlation (8=-289, R*=0.25, P=0.003)
and a positive correlation between AB42 and Factor 2
(=298, R*=0.28, P = 0.001). We found no significant asso-
ciations between the factors and p-tau levels in this subgroup,
suggesting that associations between the p-Tau/AB42 ratio
and Factor 2 was driven by the AB42 associations (Fig. 8A
and D).

In the DLB subgroup, p-Tau residuals showed a robust
positive correlation with Factor 2 (B=6.49, R*=0.4,
P=0.02) and Factor 3 (p=4.23, R*>=0.5, P=0.007). Factor
4 and 6 showed an opposite, negative trend with p-Tau but
failed to reach significance. Total-Tau showed a similar
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Figure 6 Z-maps of voxelwise regression analyses between FDG-PET SUVR and Factors 2, 3 and 4. For the whole sample, AD and
DLB subgroups, and interaction effects of the factors X subgroups. For the interaction effects, warmer colours (red) indicate greater effects for
the AD, colder colours (blue) greater effects for the DLB subgroup. Z-maps thresholded with a false discovery rate corrected P = 0.05 can be
found in the Supplementary Material (Supplementary Fig. 2). Total sample (n = 62), CSF biomarker supported ADem/AD-MCI (n = 16), clinical

DLB (n = 18).

positive trend with Factors 2 and 3 (with only Factor 3 reach-
ing statistical significance), and a negative trend with Factor
4, as did the p-Tau/AB42 ratio, which was driven by the as-
sociation with p-Tau. No correlations were noted with AB42
measures (Fig. 7I-L).

Discussion

In this study, we performed a large-scale tensor decomposition
of population-level routine EEG data set containing 12 176
EEG records and identified meaningful features representing
known brain activity patterns in EEG recordings during
eyes-closed wakefulness. The automatically extracted features
demonstrated high classification accuracies between cognitive-
ly normal and MCI and especially dementia subjects and to a

lesser extent between ADem and DLB. Features which approxi-
mated posterior alpha, anterior theta-delta and centroparietal
beta activity correlated with established markers of disease se-
verity including STMS, FDG-PET SUVR and CSF AB42 con-
centration. These studies demonstrate that coupling routine
clinical EEGs with automated, data-driven analysis methods
could lead to a quick, noninvasive and relatively inexpensive
test to differentiate between different neurodegenerative causes
of cognitive impairment.

Modular and explainable features
derived using tensor decomposition

Several previous studies have investigated the use of tensor
decomposition on multichannel EEG data.** Unlike the
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CSF AD Biomarkers
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Figure 7 Univariate linear regression between age-adjusted Factors 2, 3, 4, 6 and Alzheimer’s Disease Cerebrospinal Fluid
Biomarkers. (A-D) Full Cohort (n =46). For the full cohort, Factor 2 demonstrated a positive correlation and 4 demonstrated a negative
correlation with Amyloid Beta 42 measures but failed to survive correction for multiple comparisons (A).

traditional approaches that focus on predetermined fre-
quency bands such as the delta, theta, alpha, beta and gam-
ma bands, the tensor decomposition approach can derive
frequency and spatial profiles in a data-driven manner.
Some groups have utilized tensor decomposition on ictal
EEG data to accurately localize seizure onset zones in focal
epilepsy patients.*>**¢ Others have utilized tensor decompos-
ition on event-related potentials (ERP) to characterize dis-
ease states”” and differences between stimuli.*® In the latter

ERP studies, tensors were generally formed using time, fre-
quency, space and group dimensions. In the area of neurode-
generative diseases, EEG tensor decomposition has been
explored previously, including comparisons between CN,
MCI and ADem.*>*

In relation to these AD EEG studies, our work presents
the first analysis using a large-scale population-level EEG
database characterizing the main brain activity patterns
during eyes-closed wakefulness. Notably, the modular
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Figure 8 Univariate linear regression between age-adjusted Factors 2, 3, 4, 6 and Alzheimer’s Disease Cerebrospinal Fluid
Biomarkers. (A-D) Clinical Alzheimer’s Dementia and Mild Cognitive Impairment (ADem & AD-MCI). (E-H) Dementia with Lewy Bodies
(DLB). In the ADem & AD-MCI subgroup, Amyloid Beta 42 demonstrated a positive correlation with Factor 2 and a negative correlation with
Factor 4 (A), driving the association between the p-Tau/AB42 ratio and Factor 2 (D). In the DLB subgroup, Total-Tau (F), phosphorylated-tau (G)
and the p-Tau/AB42 Ratio (H) demonstrated a positive trend with Factors 2 & 3, and a negative trend with Factors 4 & 6. Only the Factor 3
association with Total-Tau (F) and Factors 2 & 3 associations with phosphorylated-Tau (G) reached statistical significance. (* = Statistically

Significant Correlation).

decomposition successfully extracted well-known biologic-
ally meaningful brain activities (e.g. posterior alpha rhythm,
anterior slowing, centroparietal beta) without having to first
reject segments associated with eye blink or temporalis mus-
cle artefact contamination. As such, our study presents an
unbiased approach to the identification of EEG spectral
and spatial profiles and has the potential to find additional
patterns by analyzing EEG segments associated with other
physiological and pathological states.

Our results indicate that our tensor decomposition approach
of resting state EEG has substantial classification potential to
distinguish cognitively normal subjects and those with cogni-
tive impairment due to underlying Alzheimer’s or Lewy Body
pathology. The classification potential of using Factors 2 and
4 also appears to extend to patients with mild cognitive

impairment due to Alzheimer’s disease (AD-MCI) (AUC
0.59), defined here as having a Kokmen cognitive test score
greater than 30 (out of 38) and meeting the NIA-AA diagnos-
tic guidelines for AD.*

Early identification of cognitive impairment, particularly
in the preclinical or MCI stages is crucial for clinical prog-
nostication and risk stratification, which in turn inform
counselling and selection of potential treatments. While sev-
eral previous studies already demonstrated this potential
using resting state EEG,'®!" the clinical applicability of these
methods is ultimately dependent on incorporating these tech-
niques into a routine clinical workflow. The tensor decom-
position methods explored here can be used to automate
the extraction of EEG features that correlate with biological-
ly meaningful electrophysiologic attributes, and may ultim-
ately lead to a more economical option for early
identification of individuals with MCI or dementia com-
pared to current methods of CSF biomarker testing,
FDG-PET and neuropsychologic exams.*°
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Our results demonstrate strong associations between data-
driven EEG features and dementia physiology, and further
support the purported biological meaning behind the auto-
matically extracted factors. Higher Factor 4 and lower
Factor 2 loadings were associated with worse pathologic dis-
ease states (i.e. lower Kokmen STMS and FDG-PET metab-
olism), consistent with established literature demonstrating
that an increase in slow wave (delta-theta) activity** and a re-
duction in posterior alpha activity,”" respectively, are asso-
ciated with increasing dementia severity and cognitive
decline. Factor 6, which corresponds to slower theta-alpha
band activity in the same posterior region as Factor 4, de-
monstrates similar higher loading with lower cognitive test
performance and FDG-PET hypometabolism.

Factor 3 is also positively associated with FDG-PET metab-
olism, which appears to be driven by the DLB subgroup but
fails to reach statistical significance. Previous work in
Parkinson’s disease (PD) patients have shown that motor cor-
tex beta oscillations can be normalized with dopaminergic
medication or basal ganglia deep brain stimulation.’* Given
the shared alpha-synuclein pathology and basal ganglia/dopa-
mine deficits between PD and DLB, this may explain why the
Rolandic beta activity represented by Factor 3 is associated
with disease severity in DLB but not ADem/AD-MCI and
why Factor 3 may uniquely differentiate AD from DLB on ma-
chine learning classifiers (AUC = 0.61). Notably, the brain re-
gions associated with EEG factor loadings on FDG-PET are
similar to a pattern of lateral frontal-parietal-temporal metab-
olism representative of global brain functioning in multiple
neurodegenerative conditions including ADem, DLB and fron-
totemporal dementias based on prior work by our group in
FDG-PET eigenbrain decompositions.* This suggests that ex-
tracted EEG features may offer a non-regional approach to
measuring brain function and can complement existing
localization-based approaches such as MRI and FDG-PET.

Subgroup analysis also revealed that AD subjects had strong
associations between Factors 2 and 4 and CSF AB42 measures
whereas the DLB subjects did not, suggesting that beta-amyloid
burden is associated with electrophysiologic pathology in
‘pure’ AD cases,' whereas in clinical DLB subjects, the electro-
physiologic profile may be driven by a-synuclein regardless of
amyloid pathology burden.” The DLB population also demon-
strated stronger associations with Factor 2 loadings on
FDG-PET, consistent with multiple studies demonstrating dis-
ruptions in posterior alpha activity were more associated with
Lewy body compared to AD pathology.””* Combined with
DLB’s (but not AD’s) strong association with Factor 3, this sug-
gests that automatically extracted EEG features may be differ-
entially affected by underlying disease pathology and supports
its potential role in distinguishing between AD and DLB.

Finally, to our knowledge, no study has evaluated the as-
sociation between CSF-tau and EEG findings in DLB. In our
DLB group, higher Factors 2 and 3 and lower Factors 4 and

W. Li et al.

6, associated with lower disease severity on all other clinical
measures, were associated with increasing t-Tau, p-Tau and
p-Tau/AB42 ratio. One possible explanation is that high CSF
p-Tau and t-Tau in the DLB subgroup do not necessarily re-
present a more advanced disease state, but rather a higher
contribution of AD pathology to the overall disease burden.
DLB subjects with low CSF tau who derive their disease pri-
marily from a-synuclein therefore have worse electrophysio-
logic disturbances compared to patients whose disease may
be attributed to higher co-morbid AD pathology (high CSF
Tau). This would be internally consistent with the lack of as-
sociation between Factor loadings and CSF p-Tau and t-Tau
in the ADem/AD-MCI group, and the stronger association
between clinical DLB and electrophysiologic disturbances.”

Limitations to the current study methodology are best cate-
gorized between EEG processing and subject and biomarker
selection.

Since tensor decomposition is a type of blind source separ-
ation approach, it may be useful to think of the factors de-
rived from EEG data as distinct physiological origins of
EEG activity. Estimates from automated approaches to deter-
mine the optimal number of factors often do not conform to
the physiological properties of EEG data.*? Using a manual
trial-and-error visual review approach, we were able to iden-
tify the six features representing commonly known sources of
EEG activity during eyes-closed wakefulness.’*> We note
that this approach may not be feasible in settings with limited
existing knowledge of underlying EEG characteristics, and
automated approaches, such as difference of fit (DIFFIT)®
and automatic relevance determination’” could ensure repro-
ducibility and wider adoptability in future studies. Future
studies directly comparing data-driven approaches against
traditional EEG analysis methods will help determine
whether automated approaches are truly robust enough to
identify meaningful effects without manual artefact rejection.

Furthermore, we demonstrated the classification potential
of the identified features using a simple Naive Bayes classi-
fier. Naive Bayes classification is well suited for small sample
sizes and independent input features. Although the factors
identified by CP decomposition are not necessarily orthogon-
al by their construct, from visual inspection, we can confirm
that the factors represent independent physiological features.
Hence, we believe Naive Bayes is a sensible choice for our
classification studies with limited sample sizes. In the future,
with larger sample sizes, we may explore additional classifi-
cation approaches that enable learning of more sophisticated
relationships between the factors to further inform our un-
derstanding of the underlying physiological processes and
their relation to cognitive diseases.

Subject grouping based on clinical presentation and STMS
scores rather than biomarker positivity can produce discrep-
ancies between the consensus diagnoses and the underlying
pathophysiology. However, the clinical classification scheme
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does capture the natural heterogeneity of disease pathology
seen in neurology clinics. For example, in the clinical DLB
subgroup, 5 of 13 subjects (40%) had an abnormal p-Tau/
ABA42 ratio supportive of AD co-pathology, similar to the re-
ported frequency of AD co-pathology in DLB patients,>’
whereas 7 of 33 subjects (22%) in the clinical AD-MCI/
ADem group had all normal CSF biomarkers and ratios, like-
ly representing some early/mild amnestic cases or tau-
negative dementias such as hippocampal sclerosis causing
amnestic MCL>® Moreover, establishing correlations be-
tween EEG features, underlying neurophysiological pro-
cesses, and widely used clinical metrics (e.g. clinical
consensus criteria and brief cognitive tests) goes toward
our goal of making EEG interpretation in neurodegenerative
cases more accessible to the community neurologist.

Future studies will utilize true control subjects and better
characterized clinical cohorts with pathology confirmation
and neuropsychiatric measures, explore different sleep
stages, spectral and temporal EEG features and tensor de-
composition methods.’”®' Longitudinal studies will help
evaluate the ability of EEGs to monitor cognitive improve-
ment or response following pharmacologic interven-
tions®>®® and in identifying individuals at risk of
developing cognitive impairment. Finally, feasibility studies
will evaluate how best to integrate these approaches into
clinical practice and assess for advantages over existing diag-
nostic methods in real-world clinic settings.

Conclusion

This study has demonstrated the ability to reliably differentiate
between cognitively normal individuals and individuals with
AD and LBD-related cognitive impairment using tensor decom-
position of routine clinical 10-20 scalp EEG studies. Our meth-
od of automated processing and tensor decomposition of
routine clinical scalp EEGs can extract recognized biologically
meaningful electrophysiologic features associated with estab-
lished markers of disease severity and can incorporate these fea-
tures into group-level clinical classification. This study
demonstrates that using clinical EEGs in the diagnosis and
management of cognitive impairment is feasible and may sig-
nificantly improve patient access to timely diagnosis and qual-
ity of memory care in community clinical settings.
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