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ARTICLE INFO ABSTRACT
Communicated by Massimo Fornasier Many physical processes in science and engineering are naturally represented by operators
MSC: between infinite-dimensional function spaces. The problem of operator learning, in this context,
68T67 seeks to extract these physical processes from empirical data, which is challenging due to the
infinite or high dimensionality of data. An integral component in addressing this challenge is
Keywords: model reduction, which reduces both the data dimensionality and problem size. In this paper, we
Deep learning theory utilize low-dimensional nonlinear structures in model reduction by investigating Auto-Encoder-
Generalization error based Neural Network (AENet). AENet first learns the latent variables of the input data and then
Model reduction learns the transformation from these latent variables to corresponding output data. Our numerical
Auto-encoder experiments validate the ability of AENet to accurately learn the solution operator of nonlinear
Operator learning partial differential equations. Furthermore, we establish a mathematical and statistical estimation

theory that analyzes the generalization error of AENet. Our theoretical framework shows that the
sample complexity of training AENet is intricately tied to the intrinsic dimension of the modeled
process, while also demonstrating the robustness of AENet to noise.

1. Introduction

In the last two decades, deep learning has made remarkable successes in various fields such as computer vision [34,18], natural
language processing [19], healthcare [47], and robotics [20], among others. More recently, deep neural networks have been extended
to a wide range of applications in scientific computing. This expansion includes numerical partial differential equations (PDEs)
[60,25,21,54,68], computational inverse problems [49,26], dynamics prediction [40], and model reduction [50,65,37,16,17], to
name a few. These developments demonstrate the versatility and potential of deep learning in scientific machine learning.

In a wide array of scientific and engineering applications, numerous objects of interest are represented as functions or vector fields.
For instance, many physical processes are modeled by operators that act between these function spaces. Differential equations are
typical tools used to model such physical processes. With the advancement of machine learning, there has been a surge in data-driven
approaches to understand physical processes. These methods enable the characterization and simulation of physical processes based
on training data. In recent years, significant advances have been made in the realm of operator learning, which focuses on learning
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unknown operators within functional spaces. Representative works include DeepONets [45] based on the universal approximation
theory in Chen and Chen [10], Neural Operators [32,1,39], BelNet [69], etc. Mathematical theories on the approximation and gen-
eralization errors of operator learning can be found in Lanthaler et al. [35] for DeepONets, in Kovachki et al. [31] for FNO, and in
Bhattacharya et al. [6], Liu et al. [43] for operator learning with dimension reduction techniques.

One of the major challenges of operator learning arises from the infinite or high dimensionality of the problem/data. Recent ap-
proximation theories on neural networks for operator learning [36] demonstrate that, operator learning methods, including DeepONet
[45], NOMAD [58] and Fourier Neural Operator (FNO) [39], suffer from the curse of dimensionality without additional assumptions
on low-dimensional structures. Specifically, Lanthaler and Stuart [36] proves that, there exists a r-times Fréchet differentiable func-
tional, such that in order to achieve an e approximation error for this functional, the network size of DeepONet, NOMAD (NOnlinear
MAnifold Decoder) and FNO is lower bounded by cxp(Ce‘l/ (1)) where C, ¢ are constants depending on the problem. Such results
demonstrate that, a huge network is needed to universally approximate r-times Fréchet differentiable functionals on an infinite di-
mensional space. It is impossible to reduce the network size unless additional structures about the operator (or input and output) are
exploited.

Fortunately, the vast majority of real-world problems exhibit low-dimensional structures. For example, functions generated from
translations or rotations only depend on few parameters [63,55,11]; Whale vocal signals can be parameterized by polynomial phase
coefficients [66]; In molecular dynamics, the dynamical evolution is often governed by a small number of slow modes [13,14]. Thus
it is natural to consider model reduction to reduce the data dimension and the problem size.

In the literature, linear reduction methods have shown considerable success when applied to models existing within low-
dimensional linear spaces. Examples include the reduced-basis technique [53,56], proper orthogonal decomposition [7,23], Galerkin
projection [23], and many others. A survey about model reduction can be found in Benner et al. [4,5]. More recently, linear model
reduction methods have been combined with deep learning in various ways. Hesthaven and Ubbiali [22], Wang et al. [64] consider
very low-dimensional inputs and employ Principal Component Analysis (PCA) [24] for the output space. Bhattacharya et al. [6] use
PCA for both the input and output spaces. The active subspace method is used in O’Leary-Roseberry et al. [51] for dimension reduc-
tion. In these works, dimension reduction is achieved by existing linear model reduction methods, and operator learning is carried
on the latent variables by a neural network. Theoretically, the network approximation error and stochastic error of PCA are analyzed
in Bhattacharya et al. [6]. A generalization error analysis on operator learning with linear dimension reduction techniques is given
in Liu et al. [43]. This paper shows that fixed linear encoders given by Fourier basis or Legendre polynomials give rise to a slow rate
of convergence of the generalization error as n increases, and data-driven PCA encoders are suitable for input and output functions
concentrated near low-dimensional linear subspaces.

However, many physical processes in practical applications are inherently nonlinear, such as fluid motion, nonlinear optical
processes, and shallow water wave propagation. As a result, the functions of interest frequently reside on low-dimensional manifolds
rather than within low-dimensional subspaces. Addressing these nonlinear structures is vital in model reduction. Recent studies have
shown that deep neural networks are capable of representing a broad spectrum of nonlinear functions [67,44,61] and adapting
to the low-dimensional structures of data [8,9,41,42,48]. Auto-Encoders, in particular, have gained widespread use in identifying
low-dimensional latent variables within data [33,28]. Approximation and Statistical guarantees of Auto-Encoders for data near a
low-dimensional manifold are established in Schonsheck et al. [57], Tang and Yang [62], Liu et al. [42].

In literature, Auto-Encoder-based neural networks have been proposed for model reduction in various ways [50,65,37,16,17,
15,58,30,27]. Seidman et al. [58] assumes that the output functions in operator learning are concentrated near a low-dimensional
manifold, and proposes NOnlinear MAnifold Decoder (NOMAD) for the solution submanifold. Numerical experiments in Seidman
et al. [58] demonstrate that nonlinear decoders significantly outperform linear decoders, when the output functions are indeed
on a low-dimensional manifold. In Kontolati et al. [30], Auto-Encoders are used to extract the latent features for the inputs and
outputs respectively, and DeepONet is applied on latent features for operator learning. Numerical experiments in Kontolati et al. [30]
demonstrate improved predictive accuracy when DeepONet is applied on latent features.

Despite the experimental success witnessed in Auto-Encoder-based neural networks for nonlinear model reduction, there is cur-
rently no established mathematical and statistical theory that can justify the heightened accuracy and reduced sample complexity
achieved by these networks. Our paper aims to investigate this line of research through a comprehensive generalization error analysis
of Auto-Encoder-based Neural Networks (AENet) within the context of nonlinear model reduction in operator learning. We present
theoretical analysis that demonstrates the sample complexity of AENet depends on the intrinsic dimension of the model, rather than
the dimension of its ambient space. This analysis provides a theoretical foundation for understanding how Auto-Encoder-based neural
networks effectively exploit low-dimensional nonlinear structures in the realm of operator learning, offering a novel perspective on
this subject.

1.1. Summary of our main results

This paper explores the use of Auto-Encoder-based neural network (AENet) for operator learning in function spaces, leveraging the
Auto-Encoder-based nonlinear model reduction technique. Our goal is to achieve numerical success of nonlinear model reduction in
comparison with linear model reduction methods. More importantly, as a novel part of this paper, we will establish a generalization
error analysis in this context.

We explore AENet to handle the operator learning problems when the inputs are concentrated on a low-dimensional nonlinear
manifold. Our algorithm has two stages. The first stage is to build an Auto-Encoder to learn the latent variable for the input. The
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second stage is to learn a transformation from the input latent variable to the output. The architecture of AENet is shown in Fig. 1(a).
Furthermore, we provide a framework to analyze the generalization error and sample complexity of AENet.

Let X and Y be two sets of functions in two Hilbert spaces and ¥ : X — Y be an unknown Lipschitz operator. Consider i.i.d.
samples {u; }1.221 C & and the noisy outputs

0; = v; +¢;, with v="(u),

where the i.i.d. noise {¢; }ffl

two subsets to train AENet, n data for each subset. The functions u € X,v € Y are discretized as Sy(u) € RD1 ,Sy(v) € RP2, where
Sy and Sy, are discretization operators for functions in & and Y, respectively. Given the discretized data {S, X(ui),Sy(i)‘i)}izgl, we
aim to learn the operator V.

When the input u € X is concentrated on a low-dimensional nonlinear set parameterized by d latent variables, we study AENet
which learn the input latent variable and the operator in two stages.

Stage I: We use {S X(u,-)}lf;l to train an Auto-Encoder (E",, an) with

is independent of the u;’s. Here 2n data are used for the ease of notation, as we will split the data into

E% :RP1 5 R? and D), : RY > RD
for the input. This Auto-Encoder gives rise to the input latent variable Ef\, oSy(u) e R4,

Stage II: We use {S,(u;), Sy(D;) .Zf to learn a transformation from the input latent variable to the output:
8 X\ PPV S i

2n
.1 ~
I € argmin ~ Y IT o EpoSx(u) sy(u,.)ngy, )
F;\INEFSN i=n+1
where || - || Sy is the discretized counterpart of the function norm in Y.
Combining Stage I and Stage II gives rise to the operator estimate in the discretized space

Dy =T \noEY RO RP2,

which transforms the discretized input function Sy () to the discretized output function Sy,(v).

Numerical experiments are provided in Section 5 to learn the solutions of nonlinear PDEs from various initial conditions. We
consider the transport equation for transportation models, the Burgers’ equation with viscosity 10> in fluid mechanics and the
Korteweg—De Vries (KdV) equation modeling waves on shallow water surfaces. Our experiments demonstrate that AENet significantly
outperforms linear model reduction methods [6]. AENet is effective in handling nonlinear structures in the input, and are robust to
noise.

This paper provides a solid mathematical and statistical estimation theory on the generalization error of AENet. Our Theorem 2
shows that, the squared generalization error decays in a power law as the sample size n increases, and the rate of decay depends on
the intrinsic dimension d. Specifically, Theorem 2 proves the following upper bound on the squared generalization error:

1
EpataEy | @y 0Sx @) — syoly(u)nzsy <C +6*n 7 log n, (2)

where C is a constant depending on the model parameters, and 62 represents the variance of noise. The contributions of Theorem 2
are summarized below:

Leverage the dependence on intrinsic parameters: This theory justifies the benefits of model reduction by AENet. The rate of
convergence for the generalization error depends on the intrinsic dimension d, even though the unknown operator is between two
infinite-dimensional function spaces. To our best knowledge, this is the first statistical estimation theory on the generalization error
of nonlinear model reduction by deep neural networks.

Robustness to noise: The constant C(1 + 0'2) in (2) is proportional to the variance of noise. Our result demonstrates that AENet
is robust to noise. Moreover, AENet has a de-noising effect as the sample size increases, since squared generalization error decreases
to 0 as n increases to oco.

Dependence on the interpolation error: In some applications, test functions are discretized on a different grid as training
functions. We can interpolate the test function on the training grid, and evaluate the output. In Remark 3, we show that, in this case
the squared generalization error has an additional term about the interpolation error.

1.2. Organization

This paper is organized as follows: We provide preliminary definitions and discuss function discretization in Section 2. We then
introduce the operator learning problem, explore nonlinear models and describe our AENet architecture in Section 3. Our main results,
including the approximation theory and generalization error guarantees of AENet, are presented in Section 4. Numerical experiments
are detailed in Section 5 and the proof of our main results is given in Section 6. Proofs of lemmas are postponed to Appendix B.
Finally, we conclude our paper with discussions in Section 7.
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2. Preliminaries and discretization of functions

In this section, we delineate the notations utilized throughout this paper. Additionally, we define key concepts such as Lipschitz
operators, the Minkowski dimension and ReLU networks. Furthermore, we provide details about the function spaces of interest and
the discretization operators employed in discretizing functions.

2.1. Notation

We use bold letters to denote vectors, and capital letters to denote matrices. For any vector x € R?, we denote its Euclidean norm
by [Ixll, = 1/ |x;12, its #° norm by ||x||, = sup; |x;|, and its £! norm by ||x||; = ¥, |x;|. We use || - ||o to denote the number of

nonzero elements of its argument. We use Bg (x, 6) to represent the open Euclidean ball in RY centered at x with radius §. Similarly,
Bgo (x,8) denotes the L™ ball in R¢ centered at x with radius 5. We use #E to denote the cardinality of the set E and | E| to denote the

. . . 1 . .
volume of E. For a function u : Q — R, its L” norm is [|ul| 15(q) := (/g [u(X)|7dx) /7 and its L* norm is llull Loy ©= SUPyeq lUX).
For a vector-valued function f defined on €, we denote ||f||, o, = Supyxeq IIf(X)|| - Throughout the paper, we use letters with a tilde
to denote their discretized counterpart, letters with a subscript NN to denote networks, letters with a superscript » to denote empirical
estimations.

2.2. Preliminaries

Definition 1 (Lipschitz operators). An operator ® : A — B is Lipschitz if

Ouy) —O(u
Loi= sup [1©@;) — Bl 5 < oo,
uyFuy €A lleey — upll 4

where Lg is called the Lipschitz constant of ©.

Definition 2 (Minkowski dimension). Let E C RP. For any £ >0, N'(¢, E, || - ||,) denotes the fewest number of e-balls that cover E in
terms of || - ||,- The (upper) Minkowski dimension of E is defined as

log N'(¢, E, || -
dy E :=limsup log V(€. E. ]l - leo) - leo)
0+ log(1/¢)

The Minkowski dimension is also called the box-counting dimension. It describes how the box covering number N'(¢, E, || - [|,)
scales with respect to the box side length e. If N'(¢, E, || - || ) ® Ce~%, then dyE=d.

Deep neural networks: We study the ReLU activated feedforward neural network (FNN):

Fxn®) =W -ReLU(W,_; - ReLUWx +b;)+ - +b; ;) +b, )

where x € R% for some positive integer ¢y, W,’s are weight matrices with W, € R%*“-1 and ¢; denoting the output dimension of the
I-th layer, b, € R% are biases and ReLU(a) = max{a,0} denotes the rectified linear unit (ReLU) which is applied elementwise. We
consider the following class of FNNs

Fan(d.dy, L,p, K, k, M) = { fan i RE = R%2| fn(x) is in the form of (3) with L layers, 4

width bounded by p, | fxnll o < M, [Willgo.co <5 Ibyllee < Ty Wil + lbyll < K}

where ||W ||y, o =max; ; [W,;|, |Iblls, =max; |b;| for any matrix W and vector b.

2.3. Function spaces and discretization

We consider compact domains Qy C R?x and Qy C Ry , and Hilbert spaces L2(Q ) and Lz(Qy). The space L*(Q v) = {u:
Qy >R '/QX |u(x)|?dx < o} is equipped with the inner product (u;,u,) := /Qev u; (Xuy(x)dx, Vuy,uy € L*(Qy). The norms of
LZ(QX) and Lz(Qy) are denoted by || - [|x =/ - ||L2(Qx) and || - [[y =1 ||L2(Qy), respectively. Let X C Lz(QX) and Y C LZ(QJ;). This
paper considers differentiable input and output functions:

X cC'(Qy) :={ue L*(Qy) : Vuis continuous}, (5)

yc c! (Qy) ={ve Lz(Qy) . Vv is continuous}, ©6)
and

sup sup [|[Vu(x)|l; <oo, sup sup [[Vu(y)ll; <co. @)

UEX XEQ ¥ VEY YEQy
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In applications, functions need to be discretized. Let {Xx; }i‘l CQy and {y; }jl_)zzl C Qy be the discretization grid on the Qy and Q,,
domain respectively. The discretization operator on X and Y are

D

Sy 1 X > RPL st Spu) = {u(x)}

D
Sy 1Y =R st Sy) = {v(y)) 2.
This discretization operator Sy gives rise to an inner product and the induced norm on RP! such that

D,
(S, Sx())s, = X, @ (Xr(X,), ®)

i=1

where {w; : ®; > O}ill | is given by a proper quadrature rule for the integral (u;,u,). Popular quadrature rules in numerical analysis
include the midpoint, trapezoidal, Simpson’s rules, etc. [2]. The basic properties of the norms || - || Sy and || - || sy are given in
Appendix C.

For regular function sets X and Y of practical interests, the convergence of Riemann integrals yields ||.S X(u)||éx = ||ul|

2
L2(Qy)

2
L2(Qy)
for any v € ), when the discretization grid is sufficiently fine. This motivates us to assume

for
any u € X and ||sy(u)||§y ~ vl
the following property:

Assumption 1. Suppose the function spaces X and Y are sufficiently regular such that: there exist discretization operators S, and
Sy satisfying the property:
0.5lullx < 1Sx@lls, <2[lully,  0.5]vlly < [ISy@s, <2lvlly ©)]

for all functionsu e X and v € Y.

Assumption 1 is a weak assumption which holds for large classes of regular functions as long as the discretization grid is sufficiently

fine. For simplicity, we consider Q, = [0, l]dQX and X C C!(Qy). Suppose the grid points {x; ,211 are on a uniform grid of [0, l]dQA’

with spacing Ax and the quadrature rule in (8) is given by the Newton-Cotes formula where the integrand is approximated by
splines. Piecewise constant, linear, quadratic approximations of the integrand give rise to the Midpoint, Trapezoid and Simpson rules,
respectively. Taking the Midpoint rule as an example, we can express

”SX(U)HSX = ||[consl°5X(u)||L2(QX)’ where I g RP1 - Lz(QA’)

is the piecewise constant interpolation operator, and I, 0Sx(u) is the piecewise constant approximation of u. As a result,

||u||L2(QX) = M eonst 0Sx (W) — u”LZ(QX) < ||Sx(u)||5(? < ”u”LZ(QX) + [ const ©Sx W) — u”LZ(QX)'

Assumption 1 hlolds.as long as ||Ic?nst°52€(f‘) —.u|| L2(2y) < %Ilul! L2(2y) uniformly for all functions u € X. By Calculus, piecewise
constant approximation of « at a uniform grid with spacing Ax gives rise to the error

[ const©Sx (1) = ull Lo,y < Ax sup [|Vux)ll;
XEQy

where Vu denotes the gradient of u, and ||Vu(x)||; is the £ ! norm of the gradient vector Vu(x).
If all functions in X satisfy mild conditions such that

1
_”u”LZQ
5= inf | —2 @D | g (10)
12 | Supeqy VGO,

then the discretization operator S satisfies Assumption 1 for all the function u € X aslong as Ax < 6. Roughly speaking, the condition
in (10) excludes functions whose function norm is too small, or whose derivative is too large. From the viewpoint of Fourier analysis,
the condition in (10) excludes infinitely oscillatory functions.

Example 1. Let A >a >0 and

N
x;{ 2 ay ek aslaklsA} c L%([0, 1]).

k=—N
When the uniform sampling grid is sufficiently fine that
a\/2N +1
YSANN D)

then the discretization operator Sy satisfies Assumption 1.

an
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Example 1 is proved in Appendix A.1. In Example 1, the function set X’ includes Fourier series up to frequency N. Assumption 1
holds as long as the grid spacing is sufficiently small to resolve the resolution up to frequency N, as shown in (11). The larger N is,
the more oscillatory the functions in X’ are, and therefore, Ax needs to be smaller.

When functions are discretized, an aliasing error occurs when the discretization grid is not fine enough to resolve the high
frequency components of the function. The impact of aliasing on operator learning is studied in Bartolucci et al. [3]. In practice,
aliasing can be avoided when the input and output functions are bandlimited and the discretization grid is fine enough, as shown in
Example 1. Our Assumption 1 excludes the possibility of aliasing by requiring the discretization grid to be sufficiently fine so that all
frequency components in the input and output can be resolved.

3. Nonlinear model reduction by AENet
In this section, we will present the problem setup and the AENet architecture.
3.1. Problem formulation

In this paper, we represent the unknown physical process by an operator ¥ : X — Y, where X’ and Y are subsets of two separable
Hilbert spaces L*(Qy) and Lz(Qy) respectively. Our goal is to learn the operator ¥ from the given samples: {u;, ; }1.2;‘] , where y; is

an input of ¥ and 7 is the noisy output. In practice, the functions u, v are discretized in the given data sets {S,(y;), Sy(ﬁ,-)}?:l.

Setting 1. Let Q C R%x and QyC R be compact domains, and X ¢ C! Qy)C Lz(QX) and Y c C! (Qy)C Lz(Qy) such that (7)
holds. Suppose the function sets X and  and the discretization operators S and Sy, satisfy Assumption 1. The unknown operator
¥ : ¥ - Y is Lipschitz with Lipschitz constant Ly > 0, and y is a probability measure on X. Suppose {u; },22 , are i.i.d. samples from
y and the 0;’s are generated according to model:

v;=%(u;) and U, =v; +¢, (12)
where the ¢;’s are i.i.d. samples from a probability measure on Y, independently of the u;’s. The given data are

T = {Sxw), Sy(@)},, (13)
where Sy, (0;) = Sy (v;) + Sy(e)).

For simplicity, we denote the discretized functions as & = S (u) and U= Sy(v) for the rest of the paper. Additional assumptions
on the measure y and noise ¢ are stated in Assumption 2 and 3 in the following subsections, respectively.

3.2. Low-dimensional nonlinear models

Even though L2(Q v) and Lz(Qy) are infinite-dimensional function spaces, the functions of practical interests often exhibit low-
dimensional structures. The simplest low-dimensional model is the linear subspace model. However, a large amount of functions in
real-world applications exhibit nonlinear structures. For example, functions generated from translations or rotations have a nonlinear
dependence on few parameters [63,55,11], which motivates us to consider functions with a low-dimensional nonlinear parameteri-
zation.

Assumption 2. In Setting 1, the probability measure y is supported on a low-dimensional set M C & such that: There exist Lipschitz
maps

f: M-[-1,11% and g:[-1,1]Y > M
such that u = gof (u) for any u € M. The Lipchitz constants f and g are L; >0 and L, > 0 respectively, such that

IEQu)) —E)lly < Lelluy —uslles  llg(z) — g@)llx < Lgllz) — 2,15
for any u,,u, € M, and z,,2, € [-1,1]¢. Additionally, there exists ¢, > 0 such that

M {u: lull Loy Scrllully}s as
and Ry, := supueM{ll\I’(u)lle(gy)} < 0.

Assumption 2 says that, even though the input « is in the infinite-dimensional space, it can be parameterized by a d-dimensional

latent variable. The intrinsic dimension of the inputs is d. Assumption 2 includes linear and nonlinear models since f and g can
be linear and nonlinear maps. The condition in (14) is a mild assumption excluding the case that the large values of u concentrate

at a set with a small Lebesgue measure. Assumption 2 implies that Ry :=sup,eq llull~(q,) < o0. Assumption 2 also implies a
low-dimensional parameterization of Sy (u). We denote the range of M under Sy by
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v

UEMCX v="U(u) ey
Sx(u) Sy(v)
T | ER R e S &
~ _ 37 ~mD £ d ~ D
teMCRT —> R ——— v=38y(v) e R™?
(a) AENet architecture (b) A transformation flow chart

Fig. 1. An illustration of the AENet architecture and the transformation flow chart. The oracle transformation @ has a dimension reduction component f and a forward
transformation component I'. These two components are marked in red. (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)

M :=Sp(M)={Sp) : ue M} cRP1,

Lemma 1. In Setting 1 and under Assumptions 1 and 2, every point in M exhibits the low-dimensional parameterization: f: McRD
[—1,11%, such that £(Sy(u)) :=f@w) and g : [—1,1] - M C RP1, such that §(§) := Syog(#) which guarantees

ol (Sy(w) = Sy(u), Yue M. (15)

f and g are Lipschitz with Lipchitz constants bounded by 2Ly and 2L, respectively.

Lemma 1 is proved in Appendix B.1. The low-dimensional parameterizations in Assumption 2 and Lemma 1 motivate us to perform
nonlinear dimension reductiorllg of M, shown in Fig. 1(b). Another advantage is that M is a d-dimensional manifold in R?1. The
following lemma shows that M has Minkowski dimension no more than d (proof in Appendix B.2).

Lemma 2. In Setting 1 and under Assumptions 1 and 2, the Minkowski dimension of M is no more than d:
dyM<d.
3.3. AENet

Since functions are always discretized in numerical simulations, in order to learn the operator ¥, it is sufficient to learn the
transformation @ on the discretized objects between U := Sy(u) € RP1 and 7:= Sy) e RP2, Specifically, ® : RP1 — RP2 is the
oracle transformation such that ®oSy(u) = Sy,0¥(u), Vu € X. In some applications, the training and test data are sampled on different
grids. We will discuss interpolation and the discretization-invariant evaluation for the test data at the end of Section 4.

In this paper, we study AENet which learns the input latent variable by an Auto-Encoder, and then learns the transformation from
this input latent variable to the output. The architecture of AENet is demonstrated in Fig. 1 (a). AENet aims to approximate the oracle
transformation

o= Syo‘l‘ogofi McCRP o R

such that

DSy W) = Sy).

The oracle transformation ® has two components shown in Fig. 1(b):

« A dimension reduction component: f : RP1 — R?;
* A forward transformation component:

[:=Sy0Pog: R — RP2. (16)

We propose to learn AENet in two stages. Given the training data J = {E,Sy('u‘i)}izgl in (13) with u; = Sy (u;), we split the data
into two subsets J| = {ﬁ,-,Sy(iJ\,-)}l’.Ll and J, = {E,-,S‘y(ii,-)}l.ziwrl (data can be split unevenly as well), where 7| is used to build the
Auto-Encoder for the input space and J, is used to learn the transformation I" from the input latent variable to the output.

Stage I: Based on the inputs {Ei}l’.':1 in J;, we learn an Auto-Encoder for the input space. The encoder EY, : M = R4 and the

corresponding decoder DY, : R? — RP1 are given by the minimizers of the empirical mean squared loss

n
) I~ -
(Dy.ER)= argmin  — 3|7~ DyoEx @), a7)
DXEF£§,EXEF£§ i=1
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with proper network architectures of Fﬁg and Fﬁ&". The Auto-Encoder in Stage I yields the input latent variable EY,(u) € RY. Stage
I of AENet is represented by the yellow part of Fig. 1 (a).

Stage II: We next learn a transformation I'yy between the input latent variable E', () and the output Sy (v) using the data in J,

by solving the optimization problem in (1) to obtain I'y. Stage II of AENet is indicated by the blue part of Fig. 1 (a).
Finally, the unknown transformation @ is estimated by

D =ThyoERL.
The performance of AENet can be measured by the squared generalization error
EgE, oy |PR0Sx ) - Syo‘P(u)llzy,

where E,,_, is the expectation over the test sample u ~ y, and E; is the expectation over the joint distribution of training samples.
4. Main results on approximation and generalization errors

We will state our main theoretical results on approximation and generalization errors in this section and defer detailed proof in
Section 6. Our results show that AENet can efficiently learn the input latent variables and the operator with the sample complexity
depending on the intrinsic dimension of the model.

4.1. Approximation theory of AENet

Our first result is on the approximation theory of AENet. We show that, the oracle transformation @, its reduction component f
and transformation component I" can be well approximated by neural networks with proper architectures.

Theorem 1. In Setting 1, suppose Assumptions 1 and 2 hold.
(i) For any €, €(0,1/4),&, € (0, 1), choose the network architectures 7’"‘5{\‘; =FwDy.d, Ly,p. Ky, k1, M) and FI\IDlil\) =Fwn. Dy, Ly,
D2, Ky, k5, M) with parameters

Ly =0(ogey"), py=0(7"). Ky =0(7%). k;=0(]"), M, =1,
Ly =0(loge;"), p, =0(e;9), Ky =0(e;%1oges "), ky=0(e;"), My =Ry.
. ry E ~ D . .
There exists fyn € Fyn and guy € Fyy satisfying
sup, iz Ifan @ — F @l <.
super_1.1)¢ 1I8nn (@) — 8@l < €3

SUPL IBxnofxn @) — Bof @)l < £, + 2\/d_Lg51 .

The constant hidden in O(-) depends on d, L;, Lg, Ry and is polynomial in D,.
(ii) For any €5 € (0, 1), there exists a network I'yy € Fyn(d, Dy, L3, p3, K3, k3, M3) with

Ly= O(loge;l), p3= O(e;d), K5 = O(s;d logegl), Ky = O(s;l), M5 =Ry
satisfying
SUP,e(-1,114 ITan (@) —T(Z)| o < &3-

The constant hidden in O(-) depends on d, Ly, Lg and is linear in D,.

Theorem 1 provides a construction of three neural networks to approximate EQ,F with accuracy €4, €,, £5 respectively. A proper
choice of £; and &5 yields the following approximation result on the oracle transformation ®:

£ in Theorem 1 and denote the network

Corollary 1. Under the assumptions in Theorem 1, for any € € (0, 1), set 6, = ———,&; =
4dLyL, 02

Oyn =T'nn OFNN- Then we have
Py 57 1P — O@)l o <.

Theorem 1 and Corollary 1 are proved in Section 6.1 and 6.2 respectively. Corollary 1 provides an explicit construction of neural
networks to approximate the oracle transformation ®. It demonstrates that AENet with properly chosen parameters has the repre-
sentation power for the oracle transformation with an arbitrary accuracy ¢.
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Remark 1. In Corollary 1, the input is a discretization by Sy, and @y is constructed for inputs discretized by S,. By interpolating
functions on Q,, we can apply this network to functions discretized on a different grid. Suppose a new input u is discretized by

another discretization operator S(’Y(u) € [RD/I , where the grid points of Sy and S ;( are different. Then S:Y(u) cannot be directly passed
to ®yy. Let Py, » be an interpolation operator from the grid to the whole domain Q. For the input S’,(«), we can interpolate it
by Pp and then discretize it by Sy to obtain Sy (P, X(S;((u))) € RP1, Based on this setting and under the same condition of
Corollary 1, we have (see details in Appendix A.2)

SUAPil [ PaNOSx (Pryep 2 (S5 () = P(Sx (@)l < € + Suj& [ PaNOSx (P (S5 (1)) — PanoSx ()| o5 (18)
ue. ue

where the first term captures the network approximation error, the second term arises from the interpolation error on Q.

Remark 2. In Petersen and Voigtlaender [52], it is shown that all upper and lower bounds concerning approximation rates of fully-
connected neural networks for functions translate to essentially the same bounds concerning approximation rates of convolutional
neural networks. By utilizing Petersen and Voigtlaender [52, Theorem 4.1], one can translate our approximation results in Theorem 1
and Corollary 1 to convolutional neural networks.

4.2. Generalization error of AENet

Our second main result is on the generalization error of AENet with i.i.d. sub-Gaussian noise.

Assumption 3. Let Sy, be the discretization operator in Y under Setting 1. The noise distribution y in Setting 1 satisfies: For any
sample e ~ u (a random function defined on Q)), {(Sy(e))k}szzl with (Sy(e)); = e(y,) are i.i.d. sub-Gaussian with E [(Sy(e))k] =0
and variance proxy ctfork=1,... ,D,.

Theorem 2. Consider Setting 1 and suppose Assumptions 1, 2 and 3 hold. In Stage I, set the network architectures Plf{\‘; =Fww(Dy.d, Ly, py,
K,,x;,M,) and PI\ZI)I(}’ =Fand, Dy, Ly, py, Ky, Ky, M) with parameters
d d_ T
L, =0(ogn), py =0(n2+d), K, =0(n2d), k; =0(n2+d), M|, =1, (19)
d d 1
L, =0(logn), py=0(n2+d), K, =0(n2d logn), k, =O0(nZd), M, = Ry. (20)
In Stage II, set the network architecture FII\;N =P~ Dy, L, p3, K53, k3, M3) with
S 4 1
Ly =O(logn), p; =0(n2C+d), K3 =0(n2C+d logn), k3 = 0(n2@d), M3 =Ry, 2n
Let EY,, D, be the empirical minimizer of (17) in Stage I, and I\, be the empirical minimizer of (1) in Stage II. For n> 42*d | the squared
generalization error of O =1\ o EY, satisfies
1
EE,, |08 0Sy(w) - Syo‘P(u)Iléy <C( + 062" 74 log’n, 22)
for some C > 0. The constant hidden in O(-) and C depend on d, Ly, Lg, Ly, Ry, Ry, [Qy], |Qy| and is polynomial in D, and is linear
in D,.

Theorem 2 is proved in Section 6.3. Its contributions are summarized in the introduction.

Remark 3. In Theorem 2, @ is trained on the inputs discretized by Sy. The result of Theorem 2 can be applied to a new input
discretized on a different grid, as considered in Remark 1. Under the condition of Theorem 2, we have (see details in Appendix A.3)

E 7 By 1PN O S (Prnip, 2 (Sp)) = Sy o‘P(u)llﬁy

1
<C(1+ 070" 7 log® n+ E 5 E,,0, |9 0S 2 (Pip 2 (S (W) — @;Nosx(u)ngy, (23)

where the first term captures the network estimation error and the second term arises from the interpolation error on €.

Remark 4. The setting in this paper has some similarity with that considered in Liu et al. [43, Theorem 15] in the sense that the input
functions are assumed to exhibit a low-dimensional nonlinear structure. However, there are fundamental differences in the encoding
procedure and the utilization of latent features, as well as in proof techniques.

Encoding Procedure: In Liu et al. [43], the encoder and decoder are either given or to be estimated, which are assumed to be
Lipschitz and the Lipschitz constants of the encoder and decoder are upper bounded by a constant. In this paper, we use a nonlinear
Auto-Ecoder for encoding and decoding. Due to the complicated structure of the nonlinear encoding and decoding networks, their



H. Liu, B. Dahal, R. Lai et al. Applied and Computational Harmonic Analysis 74 (2025) 101717

Lipschitz constants are not guaranteed to be upper-bounded by a constant. As a result, the theory in this paper can not be implied from
that of Liu et al. [43], and highly nontrivial techniques are developed in this paper to allow encoding and decoding by Auto-Encoder.
Utilization of Latent Features: In model reduction, one is not only interested in the prediction of the output given an input, but also
interested in the low-dimensional latent feature. [43] focuses on operator learning to predict the output given an input, and a single
feedforward network in [43] does not necessarily provide meaningful low-dimensional latent features which represent the geometry
of underlying low-dimensional structure. In comparison, this paper focuses on learning meaningful low-dimensional latent features,
as well as the output predicted from the low-dimensional latent feature, which is beyond the scope of [43].

Proof Technique: Since this paper aims to learn meaningful low-dimensional latent features in the setting of operator learning, the
proof is more challenging and complicated than that of [43, Theorem 15]. In this paper, a careful analysis is performed to guarantee
that the Auto-Encoder is “well behaved”. By “well-behaved”, we mean that the Auto-Encoder has sufficient representation power and
well-controlled variance. With these properties in place, the operator can be effectively learned.

5. Numerical experiments

We next present several numerical experiments to demonstrate the efficacy of AENet. We consider the solution operators of the
linear transport equation, the nonlinear viscous Burgers’ equation, and the Korteweg-de Vries (KdV) equation.

For all examples, we use a 512 dimensional equally spaced grid for the spatial domain. The networks are all fully connected feed-
forward ReLU networks as in our theory. We trained every neural network for 500 epochs with the Adam optimization algorithm
using the MSE loss, a learning rate of 1073, and a batch size of 64. For training of the neural networks, all data (input and outputs
function values) were scaled down to fit into the range [—1,1].

All training was done with 2000 training samples and 500 test samples, except for the training involved in Fig. 4(e), Fig. 8(e),
and Fig. 11(e) where the training sample varies.

For all examples, the input data has a low dimensional nonlinear structure. Indeed, the input data matrix (by stacking the initial
conditions) for all examples we consider has slowly decaying singular values (see Fig. 2(a), 6(a) and 9(a)), which indicates the
shortcomings of using a linear encoder and the necessity of using a nonlinear encoder as in AENet. Additional plots showing the
nonlinearity of the data can be found in Fig. 2(b), 6(b), and 9(b).

We compare AENet with two methods involving dimension reduction and neural networks. PCANet refers to the method in
Bhattacharya et al. [6], which consists of a PCA encoder for the input, a PCA decoder for the output, and a neural network in between.
We also consider DeepONet [45] implemented with the DeepXDE package [46], a popular method for operator learning that also
involves a dimension reduction component (i.e. the branch net). In DeepONet, we take the output dimension of the branch/trunk net
as the reduced dimension.

For all examples, we implement the Auto-Encoder for AENet with layer widths 500, 500, 500, d,,,, 500, 500, 500, and we implement
the operator neural network for AENet and PCANet with layer widths 500, 500, 500. We use 40 dimensional PCA for the output in
PCANet. We use a simple unstacked DeepONet. The total computation time for each model is shown in Table 1.

5.1. Transport equation

We consider the linear transport equation given by

u=—u,, xel0,1],1€[0,0.3] (24)

with zero Dirichlet boundary condition and initial condition u(x,0) = g(x),x € [0, 1]. We seek to approximate the operator ¥ that

takes g(x) = u(x,0) as input and outputs u(x,0.3) from the solution of (24) at t = 0.3. We consider the weak version of this PDE,

allowing us to consider an g that is not differentiable everywhere. Note that the analytic solution to this equation is u(x,t) = g(x — ).
Let o(x) = max(x,0), and fix ¢ = 0.05. For any a and #, define the “hat” function

Ha’t(x)=2?a(a(x—t)—Zo-(x—t—%)+o-(x—t—e)).

Let a €[1,4] and h € [0, 1]. We define the “two-hat” function

8an(¥)=H 0 1(x)+ Hy 50240140 (25)

Our sampling measure ¥,,4,por is defined on M :={g,, : a €[1,4],h € [0, 1]} by sampling a, 4 uniformly and then constructing
8a,h-

Fig. 2(a) plots the singular values in descending order of the input data sampled from ,,,,s,,- The slow decay of the singular
values indicates that a non-linear encoder would be a better choice than a linear encoder for this problem. Fig. 2(b) further shows the
non-linearity of the data, when we project the data to the top 2 principal components. Fig. 2(c) and 2(d) further show the projections
of this data set to the 1st-6th principal components. This data set is nonlinearly parametrized by 2 intrinsic parameters, but the top
2 principal components are not sufficient to represent the data, as shown in Fig. 2(b). Fig. 2(c) shows that the top 3 linear principal
components yield a better representation of the data, since the coloring by a and 4 is well recognized.

We then use the nonlinear Auto-Encoder for a nonlinear dimension reduction of the data. Fig. 3 shows the latent features given
by the Auto-Encoder with reduced dimension 2. The intrinsic parameters a and 4 are well represented in the latent space.

10
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Fig. 2. Nonlinearity of the initial conditions for the transport equation. (a) shows the singular values of the data matrix. (b) shows the projection of data to the top
2 principal components and (c) shows the projection to top 3 principal components. (d) shows the projection to the 4th-6th principal components. In (b), (c) and (d),
the projections are colored according to the a parameter in the left subplots and according to the 4 parameter in the right subplots.
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Fig. 3. Latent features of the initial conditions g, , (Transport) in (25) given by the Auto-Encoder. The left plot is colored according to a and the right plot is colored
according to A.

Fig. 4(a) shows a sample u ~ ¥,,.45por> @S well as ¥(u). Before learning the operator ¥, we compare the projection error of Auto-
Encoder and PCA on a test sample from y in Fig. 4(b). In Fig. 4(b), Auto-Encoder is trained three times with different initilizations, and
the average squared test error is shown with standard deviation error bar. Auto-Encoder yields a significantly smaller projection error
than PCA for the same reduced dimension. Fig. 4(c) shows the relative test error of AENet, PCANet, and DeepONet (after learning
¥) as functions of the reduced dimension. We further show the comparison of relative test error (as a percent) in Table 1(a). AENet
outperforms PCANet when the reduced dimension is the intrinsic dimension 2, and they are comparable when the reduced dimension
is bigger than 2. Finally, Fig. 4(d) shows an example of the predicted solution at t = 1 for AENet and PCANet with input reduced
dimension 2. See Fig. 20 in Appendix D.1 for more comparisons of the predicted solution from AENet and PCANet.

To validate our theory in Theorem 2, we show a log-log plot of the absolute squared test error versus training sample size in
Fig. 4(e) for AENet. The curve is almost linear, depicting the theorized power law in the sample size n. To show robustness to noise,
we plot the squared test error versus the variance of Gaussian noise added to the output data in Fig. 4(f), depicting the theorized
relationship. In Fig. 4(f), the latent dimension of AENet is taken as 2. In Fig. 4(e) and 4(f), we perform three experimental runs, and
show the mean with standard deviation error bar.

5.2. Burgers’ equation
We consider the viscous Burgers’ equation with periodic boundary conditions given by (for fixed viscosity v = 1073)

11
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Fig. 5. w, and w, used for the Burgers’ example.
u=vu,, —uu,, x€[0,1),1e€(0,1] (26)

with a periodic boundary condition and the initial condition u(x,0) = g(x), x € [0, 1). We seek to approximate the operator ¥ which
takes g(x) = u(x,0) as input and outputs u(x, 1) from the solution of (26) at t = 1.

2
Let w, and w, be two functions sampled from the probability measure N (0, 74— dd? + 721 )‘2‘5> on [0, 1), which is considered

in Bhattacharya et al. [6]. Fig. 5 shows a plot of the b, and b; used for the results in this section. For any a € [-0.9,0.9] and 4 € [0, 1],
define

ga,h(x) = aw()(x -h+Vl1- azwl(X —h). 27)

Our sampling measure y,,,, is definedon M :={g, , : a €[-0.9,0.9], & € [0, 1]} by sampling a and 4 uniformly and then constructing
Zan restricted to x € [0, 1).

Fig. 6(a) plots the singular values in descending order of the input data sampled from y,,,,. The slow decay of the singular values
indicates that a non-linear encoder would be a better choice than a linear encoder for this problem. Fig. 6(b) shows the non-linearity
of the data, when we project the data into the top 2 principal components. Fig. 6(c) and 6(d) further show the projections of this data
set to the 1st-6th principal components. This data set is nonlinearly parametrized by 2 intrinsic parameters, but the top 2 principal
components are not sufficient to represent the data, as shown in Fig. 6(b).

On the other hand, we can use Auto-Encoder for nonlinear dimension reduction. Fig. 7 shows the projection of the training data
by the encoder of a trained Auto-Encoder with reduced dimension 2. The latent parameters reveal the geometry of an annulus, i.e.
the Cartesian product of an interval and a circle. This matches the distribution of parameters in M, because the first parameter a
varies on a closed interval, and the second parameter b represents translation on the periodic domain which represents a circle.

Fig. 8 contains various plots comparing AENet, PCANet, and DeepONet for the Burgers’ equation, analogous to the role Fig. 4 plays
for the transport equation. In Fig. 8(c) AENet outperforms PCANet for all reduced dimensions. Fig. 8(d) compares AENet with reduced
dimension 2 to PCANet with reduced dimension 2 for domain and 40 for range. See Fig. 21 in Appendix D.1 for more comparisons of

12
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Fig. 6. Nonlinearity of the initial conditions for the Burgers’ equation. (a) shows the singular values of the data matrix. (b) shows the projection of data to the top 2
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Fig. 7. Latent features of the initial conditions g, , (Burgers’) in (27) given by the Auto-Encoder. The left plot is colored according to a and the right plot is colored
according to |h —0.5].

the predicted solution from AENet and PCANet. Fig. 8(e) and 8(f) display the absolute squared test error. Figs. 8(e) and 8(f) are also
generated using AENet with reduced dimension 2. The comparison of relative test error (as a percent) is further shown in Table 1(b).

For the projection error, Auto-Encoder does a much better job than PCA on all three examples. However, for learning the operator,
how much information is needed and which information is important depends on the complexity of the PDE. For simple PDEs, such as
the transport equation by solving which the initial condition is only shifted, only rough information of the initial condition is sufficient.
Even though PCANet has a larger projection error than AENet, it can produce a small operator error as AENet, as demonstrated in
Fig. 4(b) and (c). However, solutions of the Burgers’ equation have more complicated dynamics. For the Burgers’ equation, the operator
needs more comprehensive information of the initial condition. In this case, AENet can better extract the intrinsic representation of
the initial condition, leading to a smaller operator error.

5.3. Korteweg—De Vries (KdV) equation
We consider one dimensional KdV equation given by
u,=-u

e — iy, X €[0,6],1€(0,0.01] (28)

13
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Fig. 8. Results of the Burgers’ equation.

with initial condition u(x,0) = f(x), x € [0, 6]. We seek to approximate the operator which takes u(x,0) as input and outputs u(x,0.01)
from the solution of (28).
For any a € [6,18] and & € [0, 3], consider the function

a? a 2 6 6 2
gun(x) = Tsech (E(x - 1))) + - sech <§(x —2- h))) . (29)
Our sampling measure y,,, is defined on
M :={g,, :a€l6,18],h€[0,3]} (30)

by sampling a and A uniformly and then constructing g, restricted to x € [0, 6].

Fig. 9(a) plots the singular values in descending order of the input data sampled from y,;,. The slow decay of the singular values
indicates that a non-linear encoder would be a better choice than a linear encoder for this problem. Fig. 9(b) further shows the
non-linearity of the data, when we project the data into the top 2 principal components. Fig. 9(c) and 9(d) show the projections of
this data set to the 1st-6th principal components. This data set is nonlinearly parametrized by 2 intrinsic parameters, but the top 2
principal components are not sufficient to represent the data, as shown in Fig. 9(b). Fig. 9(c) shows that the top 3 linear principal
components yield a better representation of the data, since the coloring by a and 4 is well recognized.

Fig. 10 shows latent parameters of the training data given by the Auto-Encoder with reduced dimension 2. The intrinsic parameters
a and h are well represented in the latent space.

Fig. 11 contains various plots comparing AENet, PCANet, and DeepONet for the KdV equation, analogous to the role Fig. 4 plays
for the transport equation. Fig. 11(d) compares AENet with reduced dimension 2 to PCANet with reduced dimension 2 for domain
and 40 for range. See Fig. 22 in Appendix D.1 for more comparisons of the predicted solution from AENet and PCANet. Fig. 11(e) and
11(f) display the absolute squared test error with respect to n (in log-log plot) and noise variance respectively. Figs. 11(e) and 11(f)
are generated using AENet with reduced dimension 2. We further compare the relative test error (as a percent) of AENet, PCANet,
and DeepONet in Table 1(c).

5.4. Comparison of relative test error

We compare AENet, PCANet, and DeepONet with various reduced dimensions for the input on the three PDEs mentioned above
(using a reduced dimension of 40 for the output of PCANet). We repeat the experiments 3 times and report the mean relative test
error along with the standard deviation among the runs in Table 1(a)-(c). DeepONet becomes successful when the reduced dimension
is 100 or more.

AENet reaches a stable value for the projection and test error at k = 2 reduced dimension. This is because the number of latent
variables in the dataset is 2 by construction. We can estimate the intrinsic dimension using state of the art algorithms: Maximum
Likelihood Estimation (MLE) [38] and Two Nearest Neighbors (TwoNN) [12]. The estimated dimension of the transport, Burgers, and
KdV equation are reported in Table 2. All values in the table are approximately 2, which agrees with the reduced dimension where
AENet stabilizes.

14



H. Liu, B. Dahal, R. Lai et al. Applied and Computational Harmonic Analysis 74 (2025) 101717

a h
% 16 25
2 10°
c o o
% é 14 E 2.0
s 1074 é. é
g S 12 3 15
S 1078 H H
= 3 10 3 1.0
Sq0-12
glO 8 05
£
0 1 2
10 10 10 -15 -1.0 -05 0.0 0.5 1.0 15 -1.5 -1.0 -05 0.0 0.5 1.0 15
Index First Component First Component
(a) Singular values (b) Projection to 2 principal components

o © o
VI
o o ©
e g N =

]
S
N

Jusuodwod PAUL
5
JuauodWOoD PAUL

1.0
Mene 04 150>

(c) Projection to 3 principal components (d) Projection to 4th-6th principal components

Fig. 9. Nonlinearity of the initial conditions for the KAV equation. (a) shows the singular values of the data matrix. (b) shows the projection of data to the top 2
principal components and (c) shows the projection to top 3 principal components. (d) shows the projection to the 4th-6th principal components. In (b), (¢) and (d),
the projections are colored according to the a parameter in the left subplots and according to the 4 parameter in the right subplots.
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Fig. 10. Latent features of the initial conditions g,, (KdV) in (29) given by the Auto-Encoder. The left plot is colored according to a and the right plot is colored
according to A.

5.5. Test data on a different grid as the training data

Finally, we show the robustness of our method when the test data are sampled on a different grid from that of the training data,
as shown in Remark 1 and 3. Our training data are sampled on a uniform grid with 256 grid points. When the test data are sampled
on a different grid, we interpolate the test data to the same grid as the training data and then evaluate the operator. Fig. 12 shows
the squared test error for operator prediction when the test data are sampled on a different grid size for the transport equation in
Subsection 5.1, the Burgers’ equation in Subsection 5.2 and the KdV equation in Subsection 5.3. We used cubic interpolation for all
equations. The operator prediction on test samples by this simple interpolation technique is almost discretization invariant as long
as the test samples have a sufficient resolution. For the transport equation, the squared test error is almost the same when the grid
size is more than 102. For the Burgers’ equation and the KdV equation, the squared test error is almost the same when the grid size
is more than 10! and 102, respectively.

5.6. Ablation study
The specific architecture for our numerical experiments is described at the beginning of Section 5, but there are many alternative
architectures (in terms of network size) that could be used. In this section, we compare the experimental performance of AENet on

the examples of the preceding subsections while varying the network width and depth.
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Comparison table of the relative test error (as a percent) when the reduced dimension (in the first row) for the input varies. Each column corresponds to a reduced
dimension for the input, except for the last column. The first number is the mean, and in parentheses is the standard deviation among 3 trials. The last column shows

time taken to train the model for reduced dimension 2.
(a) Transport equation

Method 1 2 4 6 8 10 20 40 100 Time (k=2)

AENet 12.1 (0.2) 1.1 (0.5) 1.3 (0.7) 1.0 (0.2) 0.9 (0.1) 1.5(0.4) 0.8 (0.2) 0.9 (0.2) 1.0 (0.1) 284.9s

PCANet 38.6 (0.0) 5.1(0.2) 0.9 (0.3) 1.0 (0.2) 1.1 (0.1) 0.9 (0.0) 1.1 (0.2) 0.8 (0.3) 0.7 (0.0) 101.7 s

DeepONet 96.4 (0.0) 96.4 (0.0) 96.4 (0.0) 96.4 (0.0) 96.4 (0.0) 66.0 (6.2) 33.7 (26.0) 18.5(8.3) 5.0 (1.6) 61.3s

(b) Burgers’ equation

Method 1 2 4 6 8 10 40 100 Time (k=2)

AENet 28.6 (4.2) 4.2 (0.6) 3.7 (0.8) 3.6 (0.2) 3.8(0.4) 3.3(0.4) 3.1 (0.5) 3.1(0.2) 3.2(0.2) 266.0 s

PCANet 68.0 (0.1) 14.7 (0.2) 6.2 (0.2) 6.3 (0.3) 6.3 (0.1) 6.1 (0.1) 6.1 (0.1) 6.5 (0.2) 6.6 (0.3) 101.7 s

DeepONet  100.0 (0.0)  97.5(4.3) 97.5(4.3) 72.8(16.7) 70.1 (12.5) 55.2 (21.0) 31.2(6.2) 18.2 (2.6) 10.7 (0.9) 61.3s

(c) KdV equation

Method 1 2 4 6 8 10 20 40 100 Time (k=2)

AENet 51.9 (0.6) 5.7 (0.9) 4.7 (0.5) 5.2(1.2) 3.9 (0.1) 4.4(0.7) 4.7 (1.0) 4.8 (0.0) 5.0 (0.3) 2825

PCANet 38.7 (0.0) 19.9 (0.4) 4.0 (0.5) 3.9 (0.4) 4.8 (1.4) 3.4(0.2) 3.7 (0.2) 4.2 (0.7) 3.8(0.2) 101.2s

DeepONet 91.1 (0.1) 91.1 (0.1) 68.9 (3.1) 68.0 (2.2) 62.6 (3.4) 56.0 (2.9) 42.5 (5.2) 20.9 (0.7) 9.1 (0.8) 61.7 s
Table 2

Estimated intrinsic dimension of
data used in our experiments
by Maximum Likelihood Estima-
tion (MLE) [38] and Two Nearest
Neighbors (TwoNN) [12].

MLE  TwoNN
Transport 2.06 1.99
Burgers 2.00 2.02
Kdv 2.08 1.95

Specifically, we construct the encoder, decoder, and latent map “component” networks of AENet using ReLU networks with a fixed
latent dimension of 2 and varying width and depth. The number of hidden layers of each component network is 2, 3, or 4 hidden
layers, and the width is 100, 200, 300, 400, 500, 600, or 700. We use the same experimental setup as Section 5, and we perform
three trials with different random seeds. We report the Auto-Encoder projection error for each architecture and problem in Table 3,

and the operator error in Table 4 (in terms of the average relative L? error over the trials).
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Fig. 12. Squared test error of AENet versus grid size of the test data for the transport equation in Subsection 5.1, the Burgers’ equation in Subsection 5.2 and the KdV
equation in Subsection 5.3. To evaluate the operator for a test sample, we interpolate the test sample to the same grid as the training data.

Table 3
Relative L2 Projection Error (as a %) of AENet with various architectures (averaged over
3 trials).
Width Transport Depth Burgers’ Depth KdV Depth
2 3 4 2 3 4 2 3 4
100 1.49 205 156 506 418 504 150 1.48 1.12
200 210 195 186 233 367 448 126 123 1.20
300 1.29 1.08 1.72 2.49 4.02 3.33 1.15 1.15 1.67
400 204 162 173 377 379 353 198 147 198
500 144 186 179 377 298 274 1091 1.55 201
600 210 114 171 369 362 385 149 1.76  1.85
700 1.66 1.27 1.96 2.98 4.60 4.83 1.95 1.79 1.64
Table 4
Relative L? Operator Error (as a %) of AENet with various architectures (averaged over 3
trials).
Width Transport Depth Burgers’ Depth KdV Depth
2 3 4 2 3 4 2 3 4
100 1.30 122 109 1056 747 743 774 7.69 6.79
200 150 127 118 6.64 523 582 658 412 587
300 1.25 0.90 1.33 5.64 4.65 4.33 6.87 4.40 4.17
400 1.32 123 111 5.77 480 431 7.88 420 4.48
500 092 1.16 130 587 402 406 513 518 527
600 1.03 1.22 0.92 5.57 4.87 4.63 6.03 5.69 5.77
700 143 092 095 5.26 538 583 620 620 4.56

In addition, Fig. 13 shows the relative projection and operator errors as a function of the number of trainable parameters for all
problems, with the starred point corresponding to depth 3 and width 500 networks as used in the preceding subsections (with each
trial appearing as a different point). This shows that AENet performs similarly among various architectures, once a sufficiently large
number of parameters is picked (as seen by the KdV operator error).

5.7. Comparison to convolutional neural networks

While our theory applies to feedforward neural networks, it is also common to use convolutional neural networks (CNNs) as the
building block for Auto-Encoders for scientific computing [37]. In this subsection, we experimentally compare the performance of a
modified AENet using CNNs. We employ convolution layers for the encoder in the Auto-Encoder, and we use transposed convolution
layers for the decoder in the Auto-Encoder and the output network.

Appendix D.2 provides a definition of convolutional Auto-Encoder. To be brief, we employ a 3 layer convolution network (CNN)
with kernel size 8, maximum number of channels 64 which uses max pooling. For the decoder and output networks, we employ a 3
layer transpose convolution network (TCNN) with kernel size 8 and maximum number of channels 64. The encoder CNN has input
dimension D and output dimension k, while the decoder and output TCNNs have input dimension k and output dimension D.

The same experimental setup is used as described at the start of this Section 5 (e.g. D = 512). The number of trainable parameters
in the convolutional AENet is 1,517,514 compared to 1,580,225 for the feedforward AENet which is made up of feedforward networks
with depth 3 and width 400. We perform three trials of each experiment, and we report the mean with standard deviation error bars
for relevant plots in the rest of this section.
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Fig. 13. Performance of AENet with architectures with varying parameter counts (x is the chosen architecture with depth 3 and width 500).
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Fig. 14. Latent features of the initial conditions g, , (Transport) in (25) given by the convolutional Auto-Encoder. The left plot is colored according to a and the right
plot is colored according to A.
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Fig. 15. Projection and test errors of AENet for transport equation versus reduced dimension.

We consider the same transport equation and data as in Subsection 5.1. Fig. 14 shows the learned latent features given by the
convolutional Auto-Encoder with reduced dimension 2, which appears similar to the result for feedforward Auto-Encoder shown in
Fig. 3. We further compare the projection and test errors for varying reduced dimensions in Fig. 15.

Next, we consider the same Burgers’ equation and data as in Subsection 5.2. Fig. 16 shows the learned latent features given by
the convolutional Auto-Encoder with reduced dimension 2, which appears similar to the result for feedforward Auto-Encoder shown
in Fig. 7. We further compare the projection and test errors for varying reduced dimensions in Fig. 17.

Finally, we consider the same KdV equation and data as in Subsection 5.3. Fig. 18 shows the learned latent features given by the
convolutional Auto-Encoder with reduced dimension 2, which is similar to the result for feedforward Auto-Encoder shown in Fig. 10.
We further compare the projection and test errors for varying reduced dimensions in Fig. 19.

In general, the performances of convolutional Auto-Encoder and feedforward Auto-Encoder are similar, while it seems that con-
volutional Auto-Encoder does a better job in learning the latent feature. We leave a more thorough theoretical study of convolutional
architectures for AENet as an interesting future work.
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Fig. 16. Latent features of the initial conditions g, (Burgers’) in (27) given by the convolutional Auto-Encoder. The left plot is colored according to a and the right
plot is colored according to |A —0.5].
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Fig. 17. Projection and test errors of AENet for Burgers’ equation versus reduced dimension.
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Fig. 18. Latent features of the initial conditions g,, (KdV) in (29) given by the Auto-Encoder. The left plot is colored according to a and the right plot is colored
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Fig. 19. Projection and test errors of AENet for KdV equation versus reduced dimension.
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5.7.1. Discussion

In all examples, AENet with convolutional architecture has similar performance to feedforward AENet. Some example predicted
outputs for the three problems are displayed in Appendix D.2. Further experimentation to select the best convolution-based architec-
ture for each component between encoder, decoder, and output is left as a future work.

6. Proof of main results

In this section, we present the proof of our main results: Theorem 1, Corollary 1 and Theorem 2. Proofs of lemmas are given in
Appendix B.

6.1. Proof of the approximation theory in Theorem 1

Proof of Theorem 1. We will prove the approximation theory for the Auto-Encoder of the input ¥ and the transformation I in order.
« Approximation theory of Auto-Encoder for the input u: We first prove an approximation theory for the Auto-Encoder of i = Sy (u).

We will show that T and g can be well approximated by neural networks. Note that fis only defined on M. The following lemma
shows that it can be extended to the cubical domain [-Ry, R X]Dl while keeping the same Lipschitz constant.

Lemma 3 (Kirszbraun theorem [29]). If E C R, then any Lipschitz function f : E — R? can be extended to the whole R keeping the
Lipschitz constant of the original function.

In the rest of this paper, without other specification, we use f to denote the extended function.
For the network construction to approximate f, we will use the following neural network approximation result on a set in R”
with Minkowski dimension d < D, which is a variant of Nakada and Imaizumi [48, Theorem 5] (see a proof in Appendix B.3):

Lemma 4. Let D,d be positive integers with d < D, M >0 and E C [0, 1]1°. Suppose d > d,,;Z. For any € > 0, consider a network class
Pxn(D, 1, L, p, K, x, M) with

L=0(oge™"), p=0(?), K =0("?), k= O(g 341 +lox2 My
Then for € € (0,1/4) and any Lipschitz function f* : [0, 1] — [-M, M with function value and Lipschitz constant bounded by M, there
exists a network fyn € Fxn(D. 1, L, p, K, k, M) satisfying

lAan = Nl <€
The constant hidden in O(-) depends on d, M and is only polynomial in D.

To use Lemma 4 to derive an approximation result of f, we need an upper bound on supue[ Ry Ryl ||f(“)|| Note that f is

the extended function from M to [— Ry, R X]Dl Even though ||f (N)|| « is bounded by 1 for ' € M, ||f(~)||°o may exceed 1 for u €
[-Rx.R X]D 1. Since f (N) e[-1,1) forany i € M and we are building the approximation theory of fon M we can clip the value of
f (‘) for i € [-Ry, Ry]P1 to [-1,1]¢. Specifically, we introduce the clipping operator

CL(f) = min{max(f,—1},1}, (31)

where min, max are applied element-wisely. The operator CL(f) clips the outputs of fto[—1,119 Itis easy to show that the functions
CL(f ) are Lipschitz with the same Lipschitz constant as f.

Now, we are ready to conduct approximation analysis on f: M- [-1,1]¢. Denote f= [/71 e fd]T. For k=1,...,d, by Lemma 1,
each CL( fk) is a function from [~ Ry, R,]P1 to [-1, 1] and with Lipschitz constant 2L;. According to Lemma 2, we have d ; Sy (M) <
d. For any &, > 0, by Lemma 4 with a proper scaling and shifting, there exists a network architecture Fyn(Dy, 1, Ly, py, Ky, k4. My)
with

Ly=0(loge™"), py=0(7"), K;=0(e7"), k,=0(]"), My=1
so that for each f,;, there exists fNN,k € Fan(Dy, 1, Ly, py, Ky, k4, M) satisfying

73k = CLUON oo iy S €

The constant hidden in O(-) depends on d, L¢, Ry and polynomially in D;.
Define the network fNN [ fNN Lo fNN,d 1T as the concatenation of SNNS- We have

sup [Ifun@ — F@l o = sup [Ifn(@ — CLoF @)l <&
uem uem

since CLoF(D) =F(E') e[-1,1]¢ forany u € M.
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ry E .
Furthermore, we have fyy € Ff = Fun(D),d, Ly, py, Ky, k1, M) with

Ly=L,=0(oge™"), p; =dp,=0(e7"), Ky =dK,=0(]"), x; =x,=0(]"), M) =1.

For the network approximation of g, we will use the following result:

Lemma 5 (Theorem 1 of Yarotsky [67]). For any € € (0, 1), there is a network architecture Fin(D, 1, L, p, K, x, M) with

L=0(oge™"), p=0(P), K=0(Ploge™), k=0(""), M=1
so that for any Lipschitz function f* : [0,1]° — [~1,1] with Lipschitz constant bounded by 1, there exists a network fyy €
Fan(D, 1, L, p, K, k, M) satisfying

ILfan = ¥l oo go,17py < €

The constants hidden in O(-) depend on D.

Denote g = [g], .»&p,]- By Lemma 1, each g, is Lipschitz with Lipschitz constant 2L,. By Lemma 5 with a proper scaling and
shifting, for any ¢, € (0, 1), there exists a network architecture Fy(d, 1, Ls, ps, K5, k5, M5) with

Ls = 0(log(1/#7)), ps =0(e;"), K5 =0(e; log(1/e,)), k5 =0(e;"), M5 =Ry
so that for each g; , there is a gyy x € Fn(d, 1, Ls, ps, Ks, ks, M5) satisfying

lgnnk = 8icll Loor-1,179) < €2- (32)

The constant hidden in O(-) depends on d, L, and Ry.
Define g = [gxN,15 -+ 8NN, D, 1T as the concatenation of g,’s. According to (32), we have

sup  |I8nn(2) — E@)llo < €,
ze[~1,114

and By € Fal = Fn(ds Dy, Ly, py, Ky, k3, M) with
L, = Ls=0(log(1/#,)), py=D;ps = 0(e;*),
Ky =D, K5 =0(g," log(1/€,)), k3 =x5=0(e;"). My=Ry.

The constant hidden in O(-) depends on d, L,, Ry and is linear in D;.
As a result, we have the following for any u € M:

B ofano S @) — BoFo S ()l
<IEanofn oSy 1) — Bofyn oS (1)l + [[Bofyn0 S () — Bof oS (1)l
<&y + 2\/5Lg£] . (33)

« Approximation theory for the transformation I" from the input latent variable to the output: The network approximation of
the transformation I" can be proved using Lemma 5. First, we notice that the operator I is Lipschitz (see a proof in Appendix B.4).

Lemma 6. The operator I defined in (16) is Lipschitz with Lipschitz constant 2Ly L,:
||F(Z1)—F(Zz)||5y SZL\PLg”Zl -5, (34

for any z,,2, € [-1,1]¢.

Denote I'=[I"},....,T" DZ]T. According to Lemma 6, each I is Lipschitz with Lipschitz constant 2Ly L,. By Lemma 5 with proper
scaling and shifting, for any £; € (0, 1), there exists a network architecture Fyn(d, 1, Lg, pg, K¢, kg, M) With

Lg = 0(log(1/¢3)). ps=0(e39), Kg=0(e7¢log(1/e3)), ks =0(e3"). Mg =Ry

so that for each I'y, there is a I'yy ; € Fn(d, 1, Lg, ps, K¢, kg, M) satisfying

TN — Tk ||L°°((—1,1]d) <.
The constant hidden in O(-) depends on d, Ly, Ly and Ry.
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Define the network Iy = [\ 1 - I'nng] ! as the concatenation of the 'y ’s. Then we have

sup  ||[Tyn(@) —T(@)||o < €3.
ze[-1,114

Furthermore, we have I'yy € ?EN =TFynd, Dy, L3, p3, K3, k3, M3) with
Ly =Lg=0(log(1/e3)), p3 =dps=0(e;),
K;3 =dKg=0(c7" log(1/€3)), K3 =K =0(e'). M3 =Ry,
The constant hidden in O(-) depends on d, Lg, Ly, Ry and is linear in D,. []

6.2. Proof of Corollary 1

Proof of Corollary 1. For any i € M, we have
1NN (@ = Pl =Ty obn @ — Tof @,

< ofn @ — Tofyn @)l oo + ITofyn @) — Tof @)l
<ITN = Tlloo + 2Ly Lylifan — Flloo < €3 +2VdLyLye, =¢. [

6.3. Proof of the generalization theory in Theorem 2

In this section, we first give an upper bound of the generalization error of Stage I in Section 6.3.1. The generalization error
combining Stage I and II is analyzed in Section 6.3.2.

6.3.1. An upper bound for the generalization error in Stage I
In Stage I, the encoder EY, and decoder D', are learned based on the first half data J;. We expect that D”XoE(’{,(E') is close to u for

any u € M. We study the generalization error
E g, Euny | Dy o E @) — 12, (35)

Let F = Fyn(dy.da, L, p, K, k, M) be a network class from [— B, B]‘! to [-R, R]* for some B, R > 0. We denote N'(8,F, || - || j.co)
as the §-covering number of 7, where the norm || - || ; .« is defined as || Fyn|l poo.c0 = SUPye(_ B p)1 [ Fx\nX) |l for any Fyy € F.
An upper bound of the generalization error in (35) is given in the following lemma (see a proof in Appendix B.5).

Lemma 7. Suppose Assumption 1 and 2 hold. For any €, € (0,1/4),€, € (0, 1), set the network architectures Pgﬁ =Fyn(Dy.d, Ly, py, Ky,
K1, M) with

Ly =0(oge"), py=0(e]"). K; =0(7%). k;, =0(]"), M, =1,
and rlfl)l\f =Fn~(d, Dy, Ly, pa, Ky, ky, M) with

Ly=0(ogey"), pr=0(;"), Ky =0(e;" logey "), 6, =0(e; "), My = Ry.
Denote the network architecture

Fn = 1Gxy : RP1 = RP1 |Gy = DyyoEny for Dyy € Fl\ll)lif’ Exn € Flf?; }.

Let EY,, D', be the learned autoencoder in Stage I given by (17). For any 6 > 0, we have

Eg,Euny [IDyo ER@) 4l ] <16d Lie] +4e;
2
48R?,

n

+ log A" <i,rgN, - IIL«,,W> +66. (36)
iR,

In Lemma 7, €;,€, correspond to the approximation error of Flx PI?I(}) in Theorem 1, respectively. For any ¢ € (0,1/4), by

NN’
Theorem 1, we choose | = €, = € and set the network architectures Fﬁg =Fyn(Dy.d, Ly, p;. Ky, k1, M) with

L;=0(oge™"), p; =0, K, =0(E™), kK, =0"), M, =1, 37)
and Fp = Fan(d. Dy, Ly, py. Ky, 3. M) with

L, = O(log(1/€)), p, = 0(e™%), K, = O log(1/¢)), k3 =0(™"), My =R,. (38)
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There exist fNN € F N BNN € F N satisfying

sup |[fn@) — @l <e.  sup  [[Bxn(@ —E@|l <e.
weM ze[-1,114

The constant hidden in O(-) depends on d, Ly, Ly, Ry and is polynomial in D;.
By Lemma 7, we have

Ej,Euny (I Dyo ELG) - 12| 5(16dL2 +4)e?

48R2

logN< Fae - ||Lmo> +66. (39)

The following lemma gives an upper bound of the covering number of any given network architecture:

Lemma 8 (Lemma 5.3 of Chen et al. [9]). Let Fyn(dy,d,, L, p, K, k, M) be a network architecture from [— B, B]/1 to [—R, R]2 for some
B, R > 0. We have

2L2(pB + Z)KLpL+1 )dzk

NG Fro Il - llpssin) < ( :

According to the definition of 7, we have FgN C Pxn(Dy, Dy, Ly, py, Ky, k4, My) with

NN’
L, =0(oge™"), p, =0, K, =0 loge™"), ki, =0(™"), My=R;. (40)

Substituting (40) into Lemma 8, we get

5 _ _ _ _
log./\f<4R el ||LM,> <Cie¥log?e  (loge™" +1logs™), (41)

for some C; depending on d, Ly, Ly, Ry, |Qy|, and is polynomial in D;.
Substituting (41) into (39) gives rise to

Eyey | D0 Ef0S() — Sx)lI2,
C,48R2
<(16d12 +4)e? 4 X —d log? l(1og 1y log L D)) +66. (42)
g n I3 € )
1
By balancing the terms in (42), we set e =n" 2+d ,§ = % The bound in (42) reduces to
Ej, D% 0 E% oS (u) — Sx)l|%, < Con™ b= log®n

MN}’

for some C2 depending on d, Lt, Ly, Ry and is polynomial in D;.
By Markov inequality, we further have the probability bound

2
Ej Eyey I Do EY oSy (u) — Sx(“)” C2n_2+_d log®n

P(I Do ERyoSx(w) = Sy @2, 2 1) < - t

(43)

fort>0and u~y.

6.3.2. Proof of Theorem 2

Proof of Theorem 2. Recall that the dataset is evenly splitted into J; and .J,, which are used in Stage I and Stage II, respectively.
We decompose the error as

EgEumy [P0 Sx@) = Syo¥@ll |
=EE, [19%@ - 51, |

gl

J

~112
=Ey, [2{%[ Z 10 @ = T3,

i=n+1

T,
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)

J

+Ey [[EJ2 Euey 198 @ = 7113, |71 —ZIEJZ[ Y el - T, |7

i=n+1

2'g

T,

The term T; captures the bias of network approximation. The term T, captures the variance. We will derive the upper bound for each
term in the rest of the proof.

Bounding T,. We deduce

T, =Ey, 2[E32[ Z ligd oE;{osx(ui)—syoly(ui)||§y|31]]

i=n+1

| [ Z % oE;osX(u»—syo\P(u,»)—sy(ei>+sy(ei)||§y|31]]

i=n+1

~E, [ > Ik oE;osx<ui)—sy(ﬁ,»>+sy<e,«>||§y\mH

i=n+1

—EEJ,[ IEJZ[Z ITRo ER oS (@) = Sy@)lls, + 1Syl

i=n+1

+2(Th\o EpoSx() = Syo(u) = Sp(e). Sy(€)) >|.71H

—[EJ]

IEJQ[ Z Mo B oS (wy) = Sy@)lls, = ISy(e)lly,
i=n+1

+2 (Do EyoSx(). Sy(e)) )|,]1H

2n

. 1 D,
e 2 (o Egosat) - Sy@1%, - syl )|
EMNN " i=ntl

=E,, [Z[E 5 [

+[EJ2[ Z (ry, oE:'\,oSX(ui),Sy(ei»Sy‘Jlﬂ

i=n+1

2n
. 1 D
1 2[‘/ mfrl‘ IEJZ [; z <||F;\TNOE:IYOS/Y(L{") - Sy(l),-)sty - ||Sy(€f)||éy> |J1]

NN i=n+1

+[EJZ[ Z (r oEfYoSX(u,-),Sy(ei»sy‘Jl]]

i=n+1

2n
. 1
=E;, [2r i, Eg [; > <||r;INoE;osX<u,>—sy(u,->—sy<e,->||§y—||sy(e,->||§y>1ﬂl]

!
NNEIN i=n+1

+[EJ2[ Z( oE:‘YoSX(ui),Sy(ei»sy‘JIH

i=n+1

2n
=E,, [2F, inf [EJZ[ D <||F;\IN0E;’(OSX(L4[)—S’yo‘I’(ui)Hi.y

i=n+1

—2(T\NoE% oSy (u;) — sy(u)sy(e))s >|J1]+[EJ2[ Z (r}, oE;;osX(u,),sy(ei))Sy )%H

i=n+1

=Ej, [2 L inf [||r;1NoEg(osx(u) — Syo¥ll}, |J1”
NI

NE NN
Tla
+[EJ[ Z (o oSX(ui),Sy(ei)>sy]. (45)
i=n+1
Ty
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Term T, captures the approximation error and term T ;, captures the stochastic error. We will analyze T, and T, separately.

Bounding T,,. We first focus on T, in (45) and derive an upper bound using approximation results of Eg and I'. We define the
&-neighborhood of a set as follows:

Definition 3. For a set Z € [-M, M]? for some M > 0, the &-neighborhood containing = is defined as the set

Te® =zl jnf |1z -2l <£). (46)

We next show that for any £ > 0, the function T defined in Lemma 1 extended to RP according to Lemma 3 can be well approxi-
mated by a network on T:(M).

The following lemma shows that we can approximate CL(f) well on a é-neighborhood of F.A/Vl, where CL(-) is the clipping operator
defined in (31).

Lemma 9. For any € € (0,1/4) and & > 0, set network architectures Fyn(D;.d, Ly, p;, K;, k1, M) with
Ly =0(oge™"), py=0(e7"). Ky =0(e7"), k; =0(e7"), M, =1.

For any Lipschitz function f: M—[-1,1]¢ extended to domain [-R v» Ry 1P according to Lemma 3, with Lipscthiz constant bounded by
L, there exists fyy € Fyn(Dy.d, Ly, py, K.k, M) such that

sup [Ifyn (@) — CLof (@)l < CD(e + &), 47)
TET; (M)

for some absolute constant C. The constant hidden in O(-) depends on d, Ly, &, Ry and is polynomial in D.
Lemma 9 is proved in Appendix B.6.
Let £;,€ € (0,1/4). By Lemma 9, set the network architecture 7_‘]5;\‘; =Fun(Dq.d, Ls, ps, K5, k5, M5) with
Ls=0(oge; "), ps=0(e]"), Ks=0(e["), k5=0(]"), M5s=1.
There exists fyy € T_’Iff: satisfying

sup_ [Ifxn @) — CLof @]l < C3(e; +8) 48)
TET,(M)
for some Cj linear in D;, where CL(:) is the clipping operator defined in (31).
By Theorem 1, set the network architecture T_’IEN =TFnn(d, Dy, Lg, pe, K¢, kg, M) With
Lg=0(loge}"), ps=0(e7"), Kg=0(e7"loge]"), k5 =0(]"), Mg=Ry.

. = =T . .
There exists I'yy € Fyy satisfying

sup [[Fan(@) —T (@)l <.
ze[-1,114
The constant hidden in O(-) depends on d, Ly, L, and is linear in D,.
Define the network

r _ / . d D /' T ) ~/
Fan = {Tw ¢ [=1 117 = [=Ry, Ry] P2 | Ty = Tiyofin o8y

= oy
for [\ €F,

£/ nExy =1 Dy
e I € P 8 €

where T’I\?I(‘I’ is given in (38).
We have Fl € Fan(d, Dy, Ly, p7. K7, 57, M7) with
L,=0 (log(e_l + El_l)) , p7=0 (E_d + el_d) ,K;=0 ((e_d + el_“')log(e_1 + 61_1)) R
k;=0 (e_] +el_7) , M; =Ry,

and Tyyofyno D), € Fy . We thus have

Ty, :IEJ1 [2 inf Eyey [HF&NOE:’YOSX(M) - Syo‘P(ll)“?gy |J1]

r;\INGFII\;N
<E,, [2[EM [||l_“NNofNNoD:’YoE§,oSX(u) - Syl ‘JIH
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=k 7 |25, [IFnofwwo Do B oSy - Tefosy @il | |
<E4 [Z[EMN}, [3||FNN0fNN0DfYOE:'YOS;((H) - FofNNoD”XoEfYOSX(M)”?gy
£ n n _ 2 n n 2
+ 3||Tofyno DY 0 EY0S x(u) Fo(CLof)oDXoEXoSX(u)”Sy
+3|ICo(CLoF)o D0 B0 Sy () — Fofosx(u)”éy]]
<Ey |2E,., [319y1e}
+ 121 Ly|Ifxno Dy o Ey oSy (u) - (CLof)o D", o E" oS ()|
+ 123 L2||(CLof)o Dy o Elbo Sy(u) - FOSX(u)H%] ] 49)

where we used Lemma 6 in the last inequality.
To derive an upper bound of (49), denote

1= 1213, L2 |[fxno DYyo Efy oSy () — (CLoF)o Dy 0 Ef0Sx )3,
M= 12L?I,L§||(CLof)oDj(oE:'\,oSX(u) —FoS,wll2.

We have
1<12LG L (64d R}, LE) = 768d Ly, Ly L RS,
1 <48LG Lyd.
When || D0 E% oSy (u) — SyW)l|2, < &2, we have D% o E%oSy(u) € Té(ﬂ), and by (48),
1<24C L3, LAE +&P),
< 12L%PL§||(CLoF)oD"XoE;osX(u) — CLof oS (w2

S96LY Ly LTI DyoEfoSy(w) = Sy(lly <96LLLILTE".

We thus have

E . Eyey [1+10] <P(|| Do EfoSp(u) — Sx@)|% < 52)(24C§L§,L§ + 96L§,L§L§)(sf + &%)

+ P(|| Do EfoSy(u) — Sy@)|12, > E2)(768|Qy |L\21,L§L%R§; + 48L?yL§)
S(QACTLG Ly +96 Ly Ly LY)(e] + &%)
E [IID%0E%oSy(u) — Sx)l|2,]

52

27272R2 272
+(768|Q | Ly Ly LE RS, +48L5, L2)
<QACTLy Ly +96LG L L{)(e] + &%)

2 .
Cyn 2+d log” n

2727252 272
+(768|QX|LWLgLfRX +48L\¥,Lg) 2 R (50)
where we used (43) in the last two inequalities.
1
Set e% =¢2 =p 2+ with n > 424 (50) becomes
1
Eg Epmy T+T < Cyn” 2 log®n, (51)
for some C, depending on d, Ly, Ly, Ly, Ry, Ry, |Qy| and is polynomial in D, and is linear in D,.
1
Substituting (51) and s% =n 2+ into (49) gives rise to
1
Ty, < Csn 7+ log® n, (52)

for some Cs depending on d, L, Lg, Ly, Ry, Ry, [Qyl, |Qy| and is polynomial in D, and is linear in D,.
The resulting network architecture is PgN € Pxn(d, Dy, Ly, py, K7, k7, M) with
L;=0(log(e™)), p;=0(e7), K;=0 (e loge™"), k,=0(e7"/?), M; =Ry,
2

fore=n"2+d.
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Bounding T);,. Define the network architecture
S _ (! ’o_ ’ r Ex
Frn = 1@ | Phn = T Exn for Tiw € Fane Exn € P}

and denote

2 _ 2
Pl = 2 1P{ oS @), -
i=n+1

An upper bound of T}, is given by the following lemma (see a proof in Appendix B.7):

Lemma 10. Under conditions of Theorem 2, for any 6 > 0, we have

2n
1 n
E, [; Z <<I>NN05A:(“;)’SJ7(€i)>Sy:|

i=n+1

410g NS, FE || - || foos) + 6
|9y|a< Ey [Il@8 - ®I2] ++/ 25) \/ NNn +1Qy 80 (53)
Substituting (52) and (53) into (45) gives rise to
T, =2E, [ Z |, OSX(ui)—Syo‘P(u,-)||§.y:| =2E; [[|ofy — @I%]
i=n+1
. 410g N8, FE || - |l fooo) + 6
<Csn” 74 log® n +4|Qy|60 +8 |Qy|t7< Ey [l@n, —®l2] + |szy|5>\/ NN T TE . (54)
n

In (54), the term E 7 [||<I>"NN - CI>||3] appears on both sides. We next derive an upper bound of T, by applying some inequality to
(54).

Denote
Ey 19k — @I3].
1
Csn™ 7+ log® 410g N'(8, FE || - Il Looco) + 6
a:ﬂ’fg”umﬂaawmﬂaa\/ N7 TR ,
n

410g,/\/.(5 =|| ” ooac)+6
b= z,/|szy|a\/ NN T E

Relation (54) implies

»* < a+2bw.

We deduce
(@-b<a+b=>|w-b<Va+b <\a+b.
When w > b, we have

w—b<ya+b=>w<\a+2b= w? <(\a+2b)? <2a+8b.

When o < b, we also have w? < 2a + 8b%. Substituting the expression of w, a, b into the relation @? <2a + 8b%, we have

1 410g NG, F2 || - |l o) + 6
T, = 2w’ <2Csn” 4 log® n+ 8|Qy |60 + 16|Qy|ms\/ NN DT
n
,210g N6, Fi Il - oeoo)+3
+128]Qy|0? N D T (55)
n
Bounding T,. The upper bound of T, can be derived using the covering number N'(§, F, NN, | - || 0.0 ) and Bernstein-type inequalities.
The upper bound is summarized in the following lemma (see a proof in Appendix B.8).
Lemma 11. Under conditions of Theorem 2, for any 6 > 0, we have
48R% |Qy |
yIrey o @
Ty < ———log N [ ——,Fns || - | oo ) +66. 56
2= n 0g <4Ry|9y| NN ” ”L > (56)

27



H. Liu, B. Dahal, R. Lai et al. Applied and Computational Harmonic Analysis 74 (2025) 101717
Putting T and T, together. Substituting (55) and (56) into (44), we have

E 7 E ey | D0 S () — syoly(u)||§y

Pl =) 46

L, 4log N'(5,
<2Csn T log? n+ (81Qy | + 6)36 + 16|Qy |05

65
n
10] 2

+64|9y|62210gN(6’PNT I Nl o) +3 .\ 43R5 [Qy| <m’fﬁw I lle) 7

The network architecture satisfies Pf]’N C Fyn(Dy, Dy, Lg, pg, Kg, kg, Mg) with
Lg=0(loge™), pg=0(e™), Kg=0(c"loge™), kg =0(e™"), Mg=Ry,. (58)

Substituting (58) with £ = rfﬂid ,6 =n"! into Lemma 8, we get

log N (8, P Il + [l pooss ) < Coe ™ log? e (loge™ +1logs™!) < 2cﬁnz+id log>n, (59)

for some Cg depending on d, Ly, Lg, Ly, Ry, Ry,|Qx|,|Qy| and is polynomial in D, and is linear in D,.
Substituting (59) into (57) gives rise to

__L
E 7 Eye 1@ 0 S () — syo\P(u)ngy < Cy(1+ 0%~ 7 log’ n,

for some C; depending on d, L, Lg, Ly, Ry, Ry, |y, |Qy| and is polynomial in D, and is linear in D,.
The resulting network architectures are stated in (19), (20) and (21). []

7. Conclusion and discussion

This paper explores the use of Auto-Encoder-based neural network (AENet) for operator learning in function spaces, leveraging
Auto-Encoders-based nonlinear model reduction techniques. This approach is particularly effective when input functions are situated
on a nonlinear manifold. In such cases, an Auto-Encoder is utilized to identify and represent input functions as latent variables. These
latent variables are then transformed during the operator learning process to produce outputs. Our study establishes a comprehensive
approximation theory and performs an in-depth analysis of generalization errors. The findings indicate that the efficiency of AENet,
measured in terms of sample complexity, is closely linked to the intrinsic dimensionality of the underlying model.

We next discuss some potential applications and improvement of this work.

Network architecture: In this paper, we have an Auto-Encoder applied on the input functions, instead of two Auto-Encoders applied
on the input and output functions, respectively, since in our numerical experiments, training the Auto-Encoder on the output is almost
as hard as training the transformation from the input latent variable to the output. In literature, Auto-Encoders are applied on the
output in Seidman et al. [58] and Kontolati et al. [30]. For the simulation of high-dimensional PDEs, it may be important to apply an
Auto-Encoder on the output to reduce its dimension. Our proof technique may be extended to Auto-Encoder-based neural networks
(AENets) where two Auto-Encoders are applied on the input and output functions, respectively. We will investigate this in our future
work.

Generating the solution manifold: AENet has the advantage of producing the solution manifold of the operator ¥ from low-
dimensional latent variables. With the transformation I“;IN given in (1), we can express the solution manifold as {F;IN(Z) A
[—1,1]9}. In other words, AENet not only learns the operator ¥, but also gives rise to the solution manifold. AENet is a potential tool
to study the geometric structure of the solution manifold.

Data splitting in Stage I and II: Our algorithm involves a data splitting in Stage I and II, in order to create data independence in
Stage I and II for the proof of the generalization error. This data splitting strategy is only for theory purpose. In experiments, we use
all training data in Stage I and II.

Optimality of convergence rate: This paper provides the first generalization error analysis of nonlinear model reduction by deep
neural networks. Theorem 2 proves a power-law convergence of the squared generalization error as n increases, and the exponent
depends on the intrinsic dimension of the model. The rate of convergence (exponent) in Theorem 2 may not be optimal. One of our
future works is to improve the rate of convergence.

Appendix A. Example 1 and the error bound in Remark 1 and Remark 3

A.1. Proof of Example 1

2mikx

Proof of Example 1. For any u = ZkN=_ N Qe , we have

N

Y lal?2aV2N +1,

k=—N

lull 20,17 =
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N N
<27A Z lk| =27 AN(N +1).
k=—N

ay2mike? ik
k=—N

du
—|= sup

sup
dx| xelo,1]

x€[0,1]

ay2N+1
Therefore, é > m. D

A.2. Derivation of (18)
We have
sup [|@nN0Sx (Prngpx (S @) = Pl o
uem
< sup [[|On0Sx(1) = Syo(W)lq, + [ PanOSx (P (S5 () = PrnoSx (@)l
UeEM
<e+ suj\pil ||<I>NNoSX(Pimp,X(S(’\,(u))) — OO Sy ()]l o>
ue
where the last inequality is based on Corollary 1.
A.3. Error bound in (23)

We have

E 7 By 1P O S (Prnip. 2 (S @) = Sy O\P(u)ll?gy

<E 7 E oy 100 S (@) = SyoP @I + [P0 S (Parp (S @) — Do Sp @I ]
-
<C(1 +06%)n” 7 log’ n+ E 7, [| @ 0Sx (Prngp (S (w))) — CP"NN°5»e(u)||25yv
where the last inequality is based on Theorem 2.

Appendix B. Proofs of lemmas

B.1. Proof of Lemma 1

Proof of Lemma 1. We have
2of(Sy () = Syogof () = Sy ()
which proves (15). The Lipschitz property of T follows from, for any u;,u, € M,

IF(S () = E(Sp@)lly = 1£uy) — £ully < Lelluy — sl < 2LellSx () = Sp)lls, -

We next show that g is Lipschitz. For any z,,z, € [-1, 114, we have
I8(z) —8@)lls, = ISxo8(z)) — Sxog@)lls, <2lg) — 8@y <2Lgllz) — 25, O
B.2. Proof of Lemma 2

Proof of Lemma 2. By Lemma 1, we have

Sy(M)={8(2) : ze[-1,1]"}

where g is Lipschitz. For any & > 0, the covering number N'(5,(0,1)?, || - ||,) is upper bounded by C6~¢ with a constant C > 0 [59].
In other words, there exists a finite set F; C [—1, 11¢ such that

. #F; <C57,
* [=1,119 CU,er, BY(0,6).

The Lipschitz property of g and the condition [|ul| «(q,) < ¢;[|ull; imply that

||§(21) —E(Zz)”oo = ||Sxog(z)) — Syog(z)lle
<llgz)) — 8@ )l Lo < c1118(z)) — 8@y <1 Lgllz) — 25l (60)
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The manifold Sy (M) can be covered as

Sp(M)CE (UzeF(ng(z,é) ni-1, 1]”’) CUper, B (BY@.6) N [-1,11%) CUyer, B (8@). ¢, L,5)

where the last inclusion follows from (60). By setting ¢, Lgé =g, we have

—d
N (e, Sx(M), |- lloo) <H#F; <C <L> .
e Ly
Therefore, the Minkowski dimension of Sy (M) is no more than d. []

B.3. Proof of Lemma 4

Proof of Lemma 4. Lemma 4 is a variant of [48, Theorem 5], and can be proved similarly. In [48, Proof of Theorem 5], the authors
constructed CIDEf = @mans’ @ psm @:i/“;“l in order to have a constant number of layers. To relax such a requirement, we construct

Cbgf ' as <I>{ I = pmax.Cardl tbzi/“;“'. Then the error bound can be derived by following the rest proof and the network architecture is
specified in Lemma 4. []

B.4. Proof of Lemma 6

Proof of Lemma 6. We have

IT(z;) - F(Zz)”sy = ||5y°q’°g(ll) - 5y°ly°g(12)||sy
<2||Wog(z)) — Yog(zp)lly <2Lyllg(z)) — 82l x 2Ly Lgllz) — 2,1, [

B.5. Proof of Lemma 7

Proof of Lemma 7. To simplify the notation, denote G = D', oE",. We decompose the error as

n
~ 1 ~ o~
E g Euny [IGRn@ ~ 7% =2E5, |~ 3 ||G"NN(ui)—u,-||§o] +
i=1

TX,

n
~ 1 ~ o~
Eg Euny [1GRN@ =015, ] - 2B, [; > ||G"<u,«>—u,.||§o] : 61)
i=1

TX,

The term TX, captures the bias and the term TX, captures the variance.

To bound TX,, we will use the approximation result in Theorem 1. Let Fﬁg,?ﬁl\f be specified as in Lemma 7. According to

. - Ex ~ Dy oo .
Theorem 1 (i), there exists fyy € Fy»8nn € Fy satisfying

IBxn ofn @ — B @l < €5 +2Vd Lye,

for any u € M. Denote éNN =8gnN OFNN. We bound TX; as
1 n
TX, =2E, [; D IGEN @) —ﬁin?,o]
i=1

, 1 N
=2E;; inf [;leG{\IN(”i)_”f”i]
i=1

/ G
GanEPNN

n
. 1 ~ o~
<2 inf Ey [;Z||G&N<u,«)—ui||§o]
i=1

GNP N
1 n
<2E5 | = D NG ) — T |12
szb g [”,-=1 | NN (%) ul”oo]

=2E,., [IGn @ - BT @2
<16dLje] +4e3. (62)
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To bound TX,, we will use the covering number of FI\?N. We have the following lemma (see a proof in Appendix B.9).
Lemma 12. Under the condition of Lemma 7, for any 6 > 0, we have

TX, <

8R?
X o G
1 — ol - 64. 63
" 0gN<4RX e ||oo,oo>+ (63)

Substituting Lemma 12 and (62) into (61) proves Lemma 7. []
B.6. Proof of Lemma 9
Proof of Lemma 9. We will use the following lemma, which is another variant of [48, Theorem 5].

Lemma 13. Let D, d be positive integers with d < D, M >0 and E C [—1, 1]P some set. Suppose d > d,,E. For any € > 0, consider a
network class Fyn(D, 1, L, p, K, k, M) with

L=0(oge™"), p=0(?), K =0("?), k= O(g 341 +loxa My
Then if € € (0,1/4) and for any Lipschitz function f : [—1,1]° — [-M, M] with Lipschitz constant bounded by L > there exists a network
JNN With this architecture so that

/N = fll o7, @) < CD(E +8)

for some constant C depending on M. The constant hidden in O(-) depends on d, M, L ;,& and is only polynomial in D.

Proof of Lemma 13. Lemma 13 is another variant of [48, Theorem 5], and can be proved similarly. In [48, Proof of Theorem 5],
the authors first cover = using hyper-cubes with diameter r, which was set to £/3M D. Denote set of cubes by C, = {A;, }kci]. The
authors in fact prove that if the network architecture is properly set, there exists a network fyy with this architecture satisfying

sup | fn® - f®)] <e. (64

x€Uy Ak
Denote the center for Ay, by c,. Instead covering E by C,, we will use C,»; = {Ay ,10¢ }fil , where A ... is the hyper-cube with
center ¢, and diameter r + 2&. Then we have T(8) C |J; Ay 40¢-

Then similar to the proof of Lemma 4, we construct <I>Ef ! as CD{ ! = @max.Cardl i @21/'2“'. By following the rest of the proof, we deduce
that

I/ = F ®)l L1, ) = S;I()H) /AN = f®I< sup [/ inE) - fR)] < CD(e +&) (65)
Xe (=

x€Uy Arr

for some constant C depending on M. The network architecture is specified in Lemma 13. []
Lemma 9 can be proved by following the first part of the proof of Theorem 1 and replacing Lemma 4 by Lemma 13. []

B.7. Proof of Lemma 10

NG FgsllllLoo.c0)

Proof of Lemma 10. Let {¢yy j }j: )

Dl oo < 6. We have

be a é-cover of FﬁN. There exists ¢y, in this cover satisfying |¢nn. —

2n
Esy % Z <¢§N°5A’(“1)’5y(€i)>sy]

i=n+1

2n
1
=Es " Z <¢'HNN°SX(”[) = ONNOSx (1) + PN 0 Sk (1) — PoSx (1), Sy(e,-)>5y
i=n+1

B 2n
<Ey % Z <®”NN°5A’(”[)_¢NN,*°5X(”;)=5y(€i)>5y]
i=n+1
1 2n
+E5 | > (¢NN’*05A,(UI)-cposx(u,.),sy(e[))sy]. (66)
i=n+1

For the first term in (66), by Lemma 15 and Jensen’s inequality, we have
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2n
[n Z (DOUNOSx(U) = Pan oS W) Sy(e)) ]

i=n+1

[ Z [ osx(u»—¢NN,*osx<ui>||sy||sy<e,»>||sy]

i=n+1
PR (1S3 (ells, |
i=n+1
|Qy 6 Zn
< Ey [ISyeI2, |
i=i n+1
<1Qy56. (67)

Substituting (67) into (66) gives rise to

[ Z (o, oSX(u,-),Sy(ei)>Sy]

i=n+1

<E [n Z (Danw0S () — DoSp(u), Sy(e)) ¢ ] +1Qyl60

i=n+1

[[dnn — @l ZI'Z:nH <¢NN,*°SX(”i) - q)°SX(”i),5y(€[)>Sy

\/n Vrlldnn,: = @ll,
Note that
llbnn — @I,
1 n
=\ 2 b 08 (wy) = D08 (uy) + @0 S () = PoSx @Il
i=n+l1
2 2n
N\n 2 (b oS (@) = Do S @I + [P0 Sl = PoSx I )
i=n+1
5 2n
5\ =Y (le|52+ ||®§N05X(ui)—CI)oSX(ul-)Hi,y)
i=n+1

V201 - DI, + /212516, (69)

where we used (a + b)> < 2a® + 2b? in the first inequality, and V/a? + b2 < a+ b for a,b > 0 in the last inequality.
Combining (69) and (68), we have

2n
1
Esy [_ Z <¢’111N°5A’(”i)’537(€i)>5y]
n i=n+1
2n
-, V2L = @l + /210516 Litnet {Pranc0Sa(ty) = PoSx(u), Sy(e) ) s
Vn Valldnn 0 S ) = DSy (upll,
2, 2 i1 (ONN oS ()P S (), Sy (& ))Sy
Valldan,jo S ) —@oSx ),

+19Qy60. (70)

Denote z; = . Since ¢\ .. is one element of the 5-cover of F,, we have

l n+1 <¢NN *OSX(”) (I)OSX(u) Sy(é' )>5y
Vil .0 S () = PoS @)l

Apply Cauchy-Schwarz inequality to (70), we have

<max |z;].
J

Z (@lyoSw). Sy(en) s,

i=n+1
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V2l - @ll, + /21218

<E
==J
\/n

B 2
5\/; E, [<||¢;N—c1>||n+ |Qy|5> ] E; [mfx|zj|2] +1Qy|é0

2
<4/ = no— @2 2
_\/;<\/[EJ 211D q>||n]+\/2|gy|5) E; [mjaxlzj| ]+|Qy|56

- 2 Eg [max Iz ]

=2 ( \/Eg [I1fy — @II2] +1/1Qy16 +1Qyléo. (71)

Since each element of Sy, (e) is sub-Gaussian with variance parameter o2, for given {u; } e each z 5 is sub-Gaussian with variance pa-

max |z;| | +|Qy |60
J

rameter |Qy |62. Thus E 7 [max jlz; |2] involves a collection of squared sub-Gaussian varlables. We bound it using moment generating
function. For any ¢ > 0, we have

1

Eg [mjaxlzjlzl{u,}lf;l] :?logexp <t[EJ [m}axz?l{ui}f;l])
1

S?longJ [exp <tmjz_1xz12.|{u,-};'=l>]

1
5? logE; [2 exp(tzf.)l {u; },L]]
J

<02 NG, P8 - o) + 1 102 [exp(rzDI (1}, 72)

Since z, is sub-Gaussian with variance parameter |Qy,|c for given {u;}" W, we have
> ’E [zz"l{u-}f' ]
J *1 ii=1
Ey [exp@zD)l{u )] =1+ ) #

[+

e 1/2p
tP n
<1+2 —/exp -— |d
l; k! J < 2|Qy|62>

2k(21|Qy|0?)k

=1+ ——Te®

k=1

&)

=142 21Qyls?)f, (73)
k=1

2)—1

where I'; denotes the Gamma function. Setting t = (4|Qy|c , we have

Ey [mjax|zj|2|{u,.}7=l <4|Qy]6% 1og N'(8, Fngs |1 loo.0) + 412y 07 log 3

<4|Qy]6% 1og N'(8, Fyngs | lloo.0) + 612y 02 (74)

Substituting (74) into (70) proves the lemma. []
B.8. Proof of Lemma 11

Proof of Lemma 11. Lemma 11 can be proved by following the proof of Lemma 12. One only needs to replace the definition of g(u)
to g(u) = ”q)ﬁ]NOS x() — Sy o‘l’(u)||§y. The proof is omitted here. []

33



H. Liu, B. Dahal, R. Lai et al. Applied and Computational Harmonic Analysis 74 (2025) 101717

B.9. Proof of Lemma 12

Proof of Lemma 12. Denote g(u) = [|G"0Sy(u) — S(\g(u)llio =|G"(@) — Ellgo. We have ||2]l Lo(rg) < 4R§(. We deduce
1%, =€, &, B~ 2 ) &)
2 =% u~]/gu ni_lgui
1 R
=2E; [EEMN,@(»{)] - Z?(u,—)]
i=1

=2E, [Eu~y[§<un - aw) - %Euw[fg(u)]] . 75)
i=1
Note that

Eyey [ @] =E,,, [IIG"0Sx ) — Sx)I%, ]
=E,, [1G"0Sxw) — Sy @)% 8w
<E,., [4R3EW)] . 76)

Using relation (76), we have

TX, <2E, [[EMNVL@(u)] L B - ﬁEM [gAz(u)]] . a7
i=1 X

Let {u; }l’.': ! be independent copies of {y; }:’: |- Denote the function class

G={8) = 1GNoSx@) — SxWII5, |Gy € Fy -

We have [|gl| feoag) < 4R§€ for any g € G. We bound (77) as
1 % 1
TX, <2E,; |sup( E o, [g@)] -~ Y gu,) — —E,_, [g*W)]

=2Ey, [Zgg ([Eu/Ny [% Z (s - g(u,-))] - 16%[&/’%}, [gz(u/) + gz(u)]>] . (78)
X

i=1
A CXARRS)

We then consider a §-cover of G: G* = { P

g e G sothat ||g — g*|l o <6.
We will derive an upper bound for (78) by replacing g by g*. Then the problem is converted to analyzing the concentration result
on a finite set. First note that

, where N'(5,G,] - ||.) is the covering number. For any g € G, there is a

g —gw) =g — g*) + g* (') — g* () + g"(u) — g(w)
<g* W) —g*w) + 26, 79)
and
W)+ w = (W) - €)W)) + (€ W)+ (&) W) — (")) — g*w))
=(g")2 W) + (8" W) + (g') — g* W N(gW) + g* () — (8" W) — gw)(g* W) + g(w))
2(g") W)+ (@)’ W) — |g@) — g* W)l |gW) + g* W) - |g" ) — gw)l|g* ) + g(w)]
>(g")*() +(g")*(w) — 8R36 — 8R%S
=(g")’ (') + (g*)*(u) — 16R3,5. (80)
Utilizing (79) and (80) in (78), we get

TX, <2E4;E,., [még <% Z (g* W) —g*u)) - ﬁ By [(g*)z(u’) + (g*)z(u)] >] + 66
g

i=1 X
1% 1
=2 By |max (Y (60D =8/ ) = — e, [(€)7@)+ )2@)] ) | + 6. (81)
i\n& 16R2,
Denote h;(i) = gj’.‘(u,’.) - g;.“(ul-). We have IEu;,u,~yhj(i) =0 and
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Varlh ()] = Ey -, [126)] = RM4@w>gw0 2,y | (820 + (8 P

Thus (81) can be written as

TX, < TX) + 65

with TX,’ =2E;Ey., [max( Zh i) — 32? ZVar [h (i) )] (82)

We will derive an upper bound for TX, using moment generating function. Note that ||, || ;o < 8R2,. For 0 <t/n < 3/(8RZ%), we have
2 JIL X X

(I/n)"hk(l)
Eyy ey [oxp (51,0) | =Eupiy oy |14 11, (1)+27
[ (t/n)*R2(i)(8R2, )+ 2
1 , J X
SlEu:,u,wy _1 + ;hj(l)‘f'kgz T
[ (t/m)?h%G) & (1/m)k2(8R2, )2
—Ey. . |1+ L/’lj(i)+ /n U (t/n) k(_2 )
i ] n 2 fc 3
202(;
=E, ., |1+ Lh6)+ /ny 1 !
IO 2 1 8R% /(3n)
. 1
=1+ (t/n)*Var [h; ()] Tm
) 3(t/n)?
< Var [k, ()] ———— ), 83
‘eXp< o /(l)]6—481R§€/n> 83

where the last inequality used the relation 1 + a < exp(a).
We use (83) to bound TX,' as

T lw, . 1 1x .
exp( B ) =exp <t[EJ1 Euny [mjax(; ;hj(t)— W; ;Var [hj(l)]>] )
<E; Ey., [exp <tmax< Zh i) - ZVar [h;(0) >>]
J
S N )

3(t/n)* t 1 .
< Var |h; - - Var |4
Zexp(_ < ar [ (i) 6—4StRL/n 1 32RC ar | J(l)]>>

3

c 3t
=Y exp( Y Lvar [hf(i)] /n - ! =) (84)
7 o n 6 —48tR /n 32R;,
Sett=—" 3 _ _L_—0. We have
24R 6-48(R%, /n  32RZ
’ 5 2
t72 <log Y exp(0) =T} < Tlog NG.G I - ll=) = L 10g N8, Go Il - Il o). (85)
J
We then derive a relation between N'(6,G, || - || ;o) and N'(5, F, NN’ Il o.c0)- Note that for any g;,g, € G, there are GNN " GII\IN , € PI\GIN

with g,(0) = |Glyy , oS (@) = Sx @12, £2() = |Gl ,0Sx () = S @)%
We have

llg1 — &2l Leoany
= sup ‘llGNN 1082 () = Sx @12, = Gy ,0S W) = Sx(u)llzo‘

2 2
= sup max ([GNN 10Sx@] — [Sk‘(u)]k> - max ([GII\IN,ZOSA»(”)]/(' - [SX(”)]k’> |
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< sup
UeEM

= sup ‘m}iix [([G;Wl oS ()], — [G;\]N’ZOSX(M)],() ([GI’W’] oS ()]y + (Gl S ()] — Z[SX(u)]k)H

2 2
max [([G’NN,] oSl ~ [Sx @ ) = (G 2055 @i = [Sx W)y ) ] ‘

uem

< sup |Grex. 05300 = G 0 S @)]|_ [[Glon oS (@) + Gy 105 = 282w _

4Ry sup Grex 0 S@) = G poS@)|

4Ry | Glox, — G

NN, 1 NN.2 (86)

Substituting (86) and (85) into (82) gives rise to
)

R2
X G
n lOgN <E’FNN, ” : “oo,oo) +66.

TX, <
The lemma is proved. []
Appendix C. Basic properties about || - ||, and || - ||s,,

In this section, we provide some basic properties of | - || Sy and || - || Sy These properties will be used frequently in the proof of
our main results.

Lemma 14. Suppose Assumption 1 holds. The discretization operator Sy, Sy, is Lipschitz with Lipschitz constant 2:

(1Sx ) — sx(uz)”sX <L2)luy —uplly, and [|Sy(v)) — Sy(Uz)Hsy L2|lvy = vally

for any uy,uy € X,vy,v, €Y.

Proof of Lemma 14. For any u,u, € X, we have [|Sy(u;) = Sx)lls, = ISx; —u)lls, <2llu; —u,l| . The case for Sy, can be
proved similarly. []

Lemma 15. The operation -,-)s, and {:,-) Sy satisfies

|(SX(”1)’5X(”2)>SX| < ”SX(MI)HSX”*SX(”Z)”SXa
|(5y(U1),5y(U2))5y| < ||5y(U1)||5y ||5y(U2)||sy

for any u,u, € X and vy, v, € Y.

Proof of Lemma 15. We prove the inequality for (-,-) s+ The inequality for Sy, can be proved similarly. Denote u= [wi/ 2u(xl )

w;)/lzu(x D, )]T. By Holder’s inequality, we have

D,
> w P x))aw;Puy(x,))

i=1

D,
(S (), Sx@a)) s, | = Y wiany (%)uy(x) =
i=1

D D
=[(up, wyl) < luy [l l[uyll, = J Z wi“?(X;)J Z wis (%) = 1Sl s, ISy @)l O
i=1 i=1

Lemma 16. || - ||s, and | - |ls, are norms in RP1 and RP2, respectively.

Proof of Lemma 16. For any u € X, we have || Sy (u)|| Sp 2 0 since the wj;’s are positive. Furthermore, ||Sy(u)|| Sy = 0 if and only if
Sx(u)=0. For any A € R, we have

D,
X w 22u(x)? = |Al|Sx@)lls, -

i=1

ISx(An)lls, =
We next prove the triangle inequality: For any u;,u, € X, we have

1Sx () + Syl s,

= V(Sx(uy) + Sy(ty), Sy (uy) + S () x
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'! —— Exact Solution
051 :=  AENet 0.012
- 1
i —— PCANet
‘.‘= 0.010 4
] ] i 0.008
03] i '
- h Iy
n iy 0.006 -
02 oo
i n [ 0.004 4
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01 T
: [ 0.002 4
o
Do
0.0 0.000
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(a)
480
Outputs Absolute Error
1.0
—== Input 0.0200
] — Exact Solution | o
0.8 i — AENet :
;‘: —— PCANet 0.0150
i
0.64 :': | 0.0125
i H
" n 0.0100
0.4 T i
[ " 0.0075
1 |
o
0.2 ! " I 0.0050
H Vo 0.0025
o [
0.04 L L 0.0000
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Fig. 20. Comparison of PCANet and AENet on transport data. The subplot number indicates the test example number which was randomly selected.

D, D, Dy D,
= Z w;(uy (X;) + uy(x;))? = Z wiuf(xi) +2 Z wiuy (Xup (X;) + Z witty (%;)?)
s i=1 i=1 i=1

=S @DI%, +2(Sx(w). Sx))s,, +Sx@l,

S\/llsz\’(ul)”éx +2[Sxwlls, ISx @)l s, +5X(“2)”§~X =[1Sxplls, +1Sx@)lls,

where we use Lemma 15 in the first inequality. The result about || - | Sy, can be proved similarly. []

Appendix D. Experimental figures
D.1. Comparison to PCANet figures

Fig. 20 shows the predicted output of AENet and PCANet on various input data for the transport equation. As in the main paper,
we use a depth 3 width 500 feedforward architecture for the components of AENet and PCANet, and we consider a fixed reduced
dimension of 2, see Section 5 for more details. Figs. 21 and 22 are analogous plots for the Burgers’ and KdV equation respectively.

D.2. CNN figures

Let C|,C,,K, S, P,D € N. A (one-dimensional) convolution layer with C; input channels, C, output channels, kernel size K,
stride .S, (two-sided) padding P, and input dimension D is a function C,,, : R“*P — RCXD" where D' =1 + [%J that is

associated with a “kernel” w € RC2XC1XK and bias b € R2XP" such that (where * is defined in the equation)

q o K
— / /
(CoXNyy =y + P Wi #xh =b 4 D D wy o p X, k-1
c=1 c=1k=1

where x’ € RE1X(P+2P) s obtained by padding P zero entries on both sides of each channel of x/, i.e.

()i =x.,;_, if p<i<d+potherwise (x),; =0.

After applying the convolution layer, we will subsequently apply a max pooling layer which subsamples the entry of each channel
by the maximum value in a sliding window. Let C, K,,,..S, D € N. A max pooling layer with C channels, kernel size K,,,,, and
input dimension D is a function P, : RE*P — REXD" where D' = LKLJ such that
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Fig. 21. Comparison of PCANet and AENet on Burgers’ data. The subplot number indicates the test example number which was randomly selected.
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Outputs Absolute Error
- -=- Input —— AENet
0.14 — Exact Solution | ¢ s | —— PCANet
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0.10 0044
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0.00 0.00 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6
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— Exact Solution | 0.030 —— PCANet
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0.00 0.0004

oA

Fig. 22. Comparison of PCANet and AENet on KdV data. The subplot number indicates the test example number which was randomly selected.

P

max X

1

() =, _ max { ,Kmax-<j—1>+k}~

=L,...Kpax

For the encoder component of the autoencoder, we use convolution layers with kernel size K = 8, padding P =8, and stride S =2,

followed by max pooling layers with kernel size K,

=2.Letd,,.d

>

38

out?

LK, K

max

€ N. A (ReLU) convolutional neural network
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Fig. 23. Comparison of convolution AENet and feedforward AENet on transport test examples. The subplot number indicates the test example number which was
randomly selected.

(CNN) with input dimension d;,, output dimension d,,, depth L, kernel size K, and max pooling kernel size K,,,  consists of a
composition of convolutional layers, max pooling layers, and the ReLU activation function L times. Specifically, for 1 </ < L, define
the kernel weights w' € R€*C1-1XK and bias b' € RE*Pt where C, =2/*3 for I > 0 and C, = 1 for number of channels. After the
convolution layers, we flatten the result which has C; channels and D, entries, and then multiply by a matrix W € Réw*CPL and
add a bias B € R%u to obtain a vector of output dimension d,,,. Thus the CNN is a function of the form (where o is ReLU):

xb—>B+W-(aoP

max©CpL 000 - 000P,  oC, i ) (x)

max

Now let Cy,C,, K, S, H, D € N. A (one-dimensional) transpose convolutional layer with C; input channels, C, output channels,
kernel size K, stride .S, output padding H, and input dimension D is a function C; b RCOXD s RC:XD" where D' = S(D — 1)+ H

that is associated with a “kernel” w € RE2XC1XK and bias b € RE2*P’ such that (where #’ is defined in the equation)

C C K
(C;,b(x’))i,j = bi,j + Z Wie,. * xé}. = bi,j + Z Z Wick* x;,S~j—k+1’
c=1 c=1k=1
for1<j<D'—H,and (C;’ ,(X));; = 0 otherwise (this is output padding by H). Here, x’ € RE*(P+2P) i obtained by adding | K /2]
entries with value 0 on both sides of each channel of x’'.
For the decoder component of the Auto-Encoder and the solution network, we use transpose convolution layers with kernel size
K =38, output padding H =1, and stride S =2. Let d,,.d,,,, L, K € N. A (ReLU) transpose convolutional neural network (TCNN)
with input dimension d,,, output dimension d,,,, depth L, and kernel size K is a composition of transpose convolutional layers with
the ReLU activation function L times. Specifically, for 1 </ < L, define the kernel weights w' € RC€/*Ci-1XK and bias b’ € RE*Dr,
where C; =2/*3 for I > 0 and C, = 1 for number of channels. After the transpose convolution layers, we flatten the result which has
C, channels and D, entries, and then multiply by a matrix W € R*CLPL and add a bias B € R%u to obtain a vector of output
dimension d,,,,. Thus the TCNN is a function of the form (where ¢ is ReLU):

x—=B+W- <0'0CT, 000 - OGOCTl ) (x).
wr w

Fig. 23 shows the predicted output of a convolutional AENet on various input data for the transport equation. We compare the
output of the convolutional AENet architecture (3 layers with kernel size 8) with the feedforward AENet architecture. Figs. 24 and
25 are analogous plots for the Burgers’ and KdV equation respectively.

39



H. Liu, B. Dahal, R. Lai et al. Applied and Computational Harmonic Analysis 74 (2025) 101717

16
Outputs Absolute Error
ECR RPN -=- Input
084 ’ \ —— Exact Solution
: —— FF Prediction
0.6 —— CNN Prediction
0.4+
0.24
0.04
-0.24
-0.44
—0.61
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(a)
345
Outputs Absolute Error
~ 0.200
SN --- Input — FF
0.8 / Y .
/ \ — Exact Solution | 0.175 — CNN
0.6 / \ —— FF Prediction
—— CNN Prediction | 0.150
0.4
0.125
0.24
0.100
0.04
0.075
—0.24
0.050
-0.44
0.025
-0.61
0.000
-0.8 T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 24. Comparison of convolution AENet and feedforward AENet on Burgers test examples. The subplot number indicates the test example number which was
randomly selected.
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Fig. 25. Comparison of convolution AENet and feedforward AENet on KAV test examples. The subplot number indicates the test example number which was randomly
selected.
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Data availability
Data will be made available on request.
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