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ABSTRACT Cyanobacterial blooms pose environmental and health risks due to their 
production of toxic secondary metabolites. While current methods for assessing these 
risks have focused primarily on bloom frequency and intensity, the lack of comprehen­
sive and comparable data on cyanotoxins makes it challenging to rigorously evaluate 
these health risks. In this study, we examined 750 metagenomic data sets collected from 
103 lakes worldwide. Our analysis unveiled the diverse distributions of cyanobacterial 
communities and the genes responsible for cyanotoxin production across the globe. Our 
approach involved the integration of cyanobacterial biomass, the biosynthetic potential 
of cyanotoxin, and the potential effects of these toxins to establish potential cyanobac­
terial health risks. Our findings revealed that nearly half of the lakes assessed posed 
medium to high health risks associated with cyanobacteria. The regions of greatest 
concern were East Asia and South Asia, particularly in developing countries experiencing 
rapid industrialization and urbanization. Using machine learning techniques, we mapped 
potential cyanobacterial health risks in lakes worldwide. The model results revealed a 
positive correlation between potential cyanobacterial health risks and factors such as 
temperature, N2O emissions, and the human influence index. These findings underscore 
the influence of these variables on the proliferation of cyanobacterial blooms and 
associated risks. By introducing a novel quantitative method for monitoring potential 
cyanobacterial health risks on a global scale, our study contributes to the assessment 
and management of one of the most pressing threats to both aquatic ecosystems and 
human health.

IMPORTANCE Our research introduces a novel and comprehensive approach to 
potential cyanobacterial health risk assessment, offering insights into risk from a 
toxicity perspective. The distinct geographical variations in cyanobacterial communities 
coupled with the intricate interplay of environmental factors underscore the complexity 
of managing cyanobacterial blooms at a global scale. Our systematic and targeted 
cyanobacterial surveillance enables a worldwide assessment of cyanobacteria-based 
potential health risks, providing an early warning system.

KEYWORDS lake, metagenome, cyanobacterial bloom, cyanotoxins, risk assessment, 
machine learning

E utrophication, elevated CO2 levels, and global warming are contributing to the 
widespread occurrence of potentially toxic cyanobacterial blooms (1–3). The 

frequency of global cyanobacterial blooms has been estimated to have increased by 
44% from the 2000s to the 2010s (4, 5). The ongoing expansion of cyanobacteria blooms 
poses an escalating threat to aquatic ecosystems and human health.

Cyanobacteria are common phytoplankton constituents in aquatic ecosystems and 
play vital roles in elemental cycling and energy transformation (6, 7). Additionally, they 
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can significantly alter the community structure and diversity of plankton communities, 
particularly in water bodies undergoing eutrophication (6, 8). Predominant genera 
responsible for harmful cyanobacterial blooms include Aphanizomenon, Cylindrosper­
mopsis, Dolichospermum, Microcystis, Nodularia, and Planktothrix (6), many of which 
thrive at temperatures >25°C (9, 10). Many of these genera can accumulate on the water 
surface via buoyancy, which is mediated by gas vesicles, thereby shading subsurface 
competing algal species and promoting cyanobacterial dominance (8, 11).

Cyanobacterial blooms can degrade water quality in freshwater ecosystems by 
producing various toxic secondary metabolites or cyanotoxins (12), including neurotox­
ins, hepatotoxins, cytotoxins, and dermatotoxins (13). These toxins have been detected 
globally, with liver-toxic microcystins frequently identified in 40%–75% of cyanobacte­
rial blooms (14). Human exposure to cyanotoxins can occur through the consumption 
of cyanobacteria-based foods and contaminated drinking water (15, 16). Additional 
exposure routes include dermal contact or aerosol exposure during recreational activities 
in waters affected by toxic blooms (17). Owing to the health risks associated with 
cyanotoxins, the WHO has established threshold values for a few cyanotoxins (e.g., a 
limit of 1 µg/L for microcystin-LR [MC-LR]) in drinking water on the basis of toxicological 
data (18). However, thresholds have not been established for multiple cyanotoxins (8).

Over the past few decades, monitoring techniques for cyanobacterial blooms 
and their health risk assessment have evolved. Current assessment methods include 
reporting cyanobacterial bloom frequency and magnitude via remote sensing (19, 
20). Remote sensing may detect and quantify cyanobacterial blooms on the basis of 
chlorophyll-a content, whereas low chlorophyll-a concentrations can make accurate 
measurements challenging (21). Another limitation of current assessment methods is 
their failure to differentiate cyanotoxin production and diverse toxic effects, which 
enhances human health risks (13).

Metagenomics enhances the comprehensiveness and accuracy of studies on the 
structure and dynamics of ecosystems (22), reducing the uncertainties of remote sensing. 
Several studies have been conducted using metagenomics to characterize the ecological 
risks of cyanobacterial blooms, including antibiotic resistance carried by cyanobacterial 
blooms (23, 24). Some studies have employed metagenomic techniques to identify 
cyanotoxin genes (25, 26); however, few studies have comprehensively assessed the 
health risks associated with cyanobacteria and their secreted cyanotoxins by integrating 
multiple relevant indicators.

In this study, we analyzed 750 metagenomes from samples from lakes worldwide to 
depict the distribution of cyanobacteria and cyanotoxin biosynthesis genes. We then 
devised a novel framework to calculate potential cyanobacterial health risks in lakes 
by integrating cyanobacterial biomass, cyanotoxin biosynthesis genes, and cyanotoxin 
effects. Using machine learning, we mapped potential cyanobacterial health risks in lakes 
across the globe and identified contributing risk factors. Our study introduces a new 
approach to assess potential cyanobacterial health risks and identifies priority areas for 
cyanobacterial health risk management.

MATERIALS AND METHODS

Collection of 750 metagenomes for samples

We conducted a literature search via the keywords “Lake,” “Waterbody,” and “Metage­
nome” on Web of Science, Google Scholar, and PubMed. Our study encompassed a 
total of 750 metagenomes for samples retrieved from 103 lakes across five continents 
and 19 countries. These data were sourced from the National Center for Biotechnology 
Information (NCBI) SRA database. There is no uniform definition for cyanobacterial 
blooms. Nearly 70% of the samples in our data were collected during summer (see Table 
S1). Summer is generally considered the peak season for cyanobacterial blooms. Notably, 
in certain lakes and under specific climatic conditions, blooms may not be restricted to 
the summer months. During data collection, we adhered to specific criteria: (i) inclusion 

Full-Length Text Applied and Environmental Microbiology

November 2024  Volume 90  Issue 11 10.1128/aem.01936-24 2

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/a
em

 o
n 

23
 N

ov
em

be
r 2

02
4 

by
 1

52
.2

.1
76

.2
42

.

https://doi.org/10.1128/aem.01936-24


of samples from lake water columns; (ii) provision of accurate coordinates and lake 
names; (iii) exclusion of samples from systems treated with chemical compounds; and 
(iv) avoidance of sampling times coinciding with significant severe climate events such as 
heavy precipitation and strong winds.

Annotation and abundance calculation of taxonomy and cyanotoxin 
biosynthesis genes

We preprocessed raw metagenomic data via FastQC (v0.11.5; https://github.com/
s-andrews/FastQC) for data quality assessment, followed by trimming and quality 
filtering via Trimmomatic (v0.36) (27). Taxonomic annotation was accomplished through 
Kraken (v2.1.2) and the Nonredundant Protein Sequence Database (NR) at the phylum 
level (see Table S2). We focused on five cyanotoxins, namely, anatoxin, cylindrospermop­
sin, microcystin, nodularin, and saxitoxin. By conducting a literature search, we compiled 
a list of cyanotoxin biosynthesis genes (listed in Table S3) and acquired the correspond­
ing protein sequences from the NCBI protein database. We established a comprehensive 
database encompassing genes related to the five classes of cyanotoxin biosynthesis. The 
BWA (v0.7.13) tool enabled the annotation of clean data, and unmapped reads were 
removed via SAMtools. The abundance of cyanotoxin biosynthesis genes was calculated 
as reads per kilobase per million mapped reads (RPKM). We characterized the global 
distribution of cyanotoxins in lakes by integrating the corresponding biosynthetic genes.

Defining potential cyanobacterial health risk

Acknowledging that not all cyanobacteria are toxin producers, we recognized that 
cyanobacterial biomass does not necessarily correspond to cyanobacterial toxicity. 
Consequently, we evaluated potential cyanobacterial health risks via three crite­
ria: cyanobacterial biomass, cyanotoxin biosynthesis genes, and cyanotoxin toxicity. 
Cyanobacterial biomass was characterized by the relative abundance of cyanobacteria 
within bacterial communities at the phylum level. Toxicity indices were derived from 
the acute toxic effects of cyanotoxins, with higher median lethal dose (LD50) values 
indicating lower toxicity and lower health risk, and vice versa (28). We calculated the 
reciprocal of the LD50 values of the cyanotoxins. By taking the reciprocal, the resulting 
values are directly proportional to the level of health risk. These reciprocal values were 
then normalized to a 0–100 scale, with saxitoxin, the most toxic cyanotoxin, as the 
reference. This approach enables clear comparisons of relative toxicity levels. Notably, 
the toxicity index calculated on the basis of the reciprocal of acute toxicity refers to 
relative toxicity. We defined the toxicity index of saxitoxin as 100, which represents 
the highest acute toxicity of the five cyanotoxins (Table S6). The toxicity indices of the 
other cyanotoxins were standardized to equal proportions. We calculated the potential 
cyanobacterial health risk index for each sample. The cyanobacterial health risk index (RI) 
was then computed as follows:

RI = Cyanobacterial biomass × i = 1

n
Abundancecyanotoxin biosynthesis gene × Toxicity index

where n was the number of genes regulating cyanotoxin synthesis. Abundancecyano­

toxin biosynthesis gene was the abundance of the cyanotoxin biosynthesis gene in each 
sample. For example, we summarized the abundance of 10 genes containing mcyA-J to 
characterize the biosynthetic potential of microcystins.

Experimental design

To explore the relationship between cyanotoxin biosynthesis genes and cyanotoxin 
concentrations, we conducted laboratory simulations of varying cyanobacterial bloom 
levels. For this purpose, we selected Meiliang Bay, situated in the northern part of 
Lake Taihu, China’s third largest lake; this bay experiences eutrophication and toxic 
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cyanobacterial blooms (29). On 28 June 2023, we collected water samples from two sites 
(31°31′16″N, 120°13′51″E and 31°31′57″N, 120°11′12″E) at a depth of 0.5 m. Subse­
quently, we added cultured Microcystis aeruginosa (FACHB-905) to untreated Lake Taihu 
water at various concentrations of the culture to simulate different levels of cyanobacte­
rial blooms, creating concentrations of 2, 3, 4, and 5 mL for M. aeruginosa culture and 3, 2, 
1, and 0 mL of sterile water in 200 mL of lake water, in triplicate, for each treatment. 
To ensure a concentration gradient of M. aeruginosa among the treatment groups, 
M. aeruginosa cultures were added from the same culture bottle for each treatment. 
We shook the cultures before dispensing to ensure homogeneity. After addition, we 
measured the cell density at 680 nm via a spectrophotometer to determine the biomass 
gradient. The M. aeruginosa strain was procured from the Institute of Hydrobiology, 
the Chinese Academy of Sciences (Wuhan, China). The cultures were maintained under 
controlled conditions of 25 ± 0.5°C with a fluorescent light intensity of 46 µmol m−2s−1 

and a 12-hour light/12-hour dark cycle. The cultures were manually agitated three times 
daily to ensure uniform cyanobacterial distribution during the 5-day incubation period.

DNA was extracted from the mixture via 0.2-µm polycarbonate filter membranes 
and a SPINeasy DNA kit for soil (MP Biomedicals LLC, Ohio, USA). DNA concentration 
and quality were assessed via spectrophotometric analysis (30), with the extracted DNA 
stored at −20°C for subsequent analysis. High-throughput quantitative PCR of microcys­
tin biosynthesis genes was conducted via the StepOnePlus Real-time PCR system. We 
utilized a total of 10 primer sets targeting 10 microcystin biosynthesis genes (mcyA-J) 
and the 16S rRNA gene as a housekeeping gene for the relative quantification of 10 
genes. The reaction mixture was heated for 10 minutes at 95°C, followed by 40 cycles of 
1 minute at 60°C and 20 seconds at 72°C. The relative gene copy number was calculated 
according to the methodology proposed by Zhu et al. (31).

Microcystin-LR analysis was performed via an Agilent 1290 Infinity II high-perform­
ance liquid chromatograph coupled with a 6540 quadrupole time-of-flight mass 
spectrometry system. A C18 column (1.8 µm, 50 mm × 2.1 mm) was employed at a 
temperature of 30°C, and microcystin-LR concentrations were measured via tandem 
mass spectrometry. Electrospray ionization was used; the scanning mode was positive 
ion mode; the drying gas temperature was 350°C at a flow rate of 10 L/min; the capillary 
voltage was 4,000 V; and the monitoring mode was multiple reaction monitoring.

Machine learning algorithms for predicting and controlling potential 
cyanobacterial health risk

We used a geographic information system to derive information on climate change 
and anthropogenic activities across all lakes (see Table S4). The variable inflation factor 
(VIF) of the independent variables was calculated via the R package “car,” resulting 
in the selection of 23 independent variables with VIF values below 10 (32). This step 
minimized the impact of multicollinearity from independent variables on the predictive 
model. The machine learning model was developed alongside the risk index via different 
methods, including four linear regression types and four nonlinear regression types. 
Linear regression encompassed models with and without stepwise selection, as well as 
models such as least angle regression (33) and elastic net (34). Nonlinear regression 
approaches include random forest (RF) (35), the boosted tree model (36), the model 
bagged tree (37), and the cubist model (38). Model performance and fit were evaluated 
through 10-fold cross-validation. The original data set was divided into 10 equal subsets, 
with nine serving as training sets and one serving as the test set, generating 10 results 
to assess algorithm accuracy (39, 40). The RF model was selected as the final prediction 
model because of its superior accuracy.

To quantify the contribution of environmental drivers to potential cyanobacterial 
health risk, we employed the R package “rfPermute” to calculate the increase in the 
mean squared error. By randomly assigning values to predictor variables, we identified 
variables of greater importance as those that, when replaced with random values, 
led to a greater increase in model prediction error. Moreover, we conducted a partial 
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dependence analysis via the R package “pdp” to elucidate the impact of each independ­
ent factor on the predicted risk within the range of possible values indicated by the 
RF model. The partial dependence plot allowed visualization of the average partial 
relationship between the predicted response and one or more features (41).

Global map of potential cyanobacterial health risks in lakes

We gathered coordinates and shoreline polygons of approximately 1.4 million lakes 
worldwide from HydroLAKES V1.0 (https://www.hydrosheds.org/products/hydrolakes). 
Smaller lakes, which are more influenced by multiple environmental drivers and tend 
to exhibit less stable cyanobacterial blooms, were excluded if their size was less than 
1 km2. Additionally, lakes situated at high latitudes were omitted due to insufficient 
high-latitude lake samples were available for model development. Following these 
criteria, we identified 73,030 lakes globally (see Table S5). The environmental factors 
for each lake were extracted on the basis of coordinates, and a global prediction of 
potential cyanobacterial health risk for lakes was generated via an RF algorithm. The 
k-means method (42) was employed to categorize the risk values of the 73,030 lakes into 
10 ranks, ranging from the highest risk (rank 10) to the lowest risk (rank 1). After the risk 
for each lake was determined, the data were visualized via ArcGIS (v10.8) to represent the 
global distribution of cyanobacterial risk in the lakes.

Statistical analysis

The analyses were primarily conducted via R version 4.1.1 (R Foundation for 
Statistical Computing) with relevant software packages. Alpha diversity metrics, 
including the Shannon index and richness, were calculated via the “vegan” 
and “picante” packages at the genus level for cyanobacterial communities, with 
additional assessment of the diversity of cyanotoxin biosynthesis genes. Significant 
differences  (P  < 0.05) were identified  via Kruskal‒Wallis tests implemented in IBM 
SPSS Statistics (v20.0.0).  Nonmetric multidimensional scaling (NMDS) based on Bray‒
Curtis distances was generated via the R “ggplot2” package. Regression and stacking 
analyses were performed via the same package. Bar and line graphs were generated 
via GraphPad Prism 8 and Origin 2021.

RESULTS

Global distribution of cyanobacteria in lakes

On the basis of the metagenomic annotation results, cyanobacteria were the third-larg­
est taxonomic group of bacteria in the lake habitat, accounting for 9.50% of bacteria (Fig. 
S1). Cyanobacterial abundance in the US-Canada Great Lakes, East Asia, and South Asia 
reached the highest level (Fig. 1a). Although the cyanobacterial community composition 
in global lakes at the order level was mainly composed of Synechococcales, Oscillatoriales, 
Gloeobacterales, Nostocales, and Chroococcales, they displayed geographically specific 
patterns. For example, Chroococcales, Nostocales, and Synechococcales were in highest 
abundance in Southeastern Asia, North America, and South America, respectively (Fig. 
1b). Microcystaceae was predominant (>70%) in the Asian region. Among the US-Canada 
Great Lakes, we found that only Lake Erie had a higher abundance of Microcystaceae, 
while the rest were dominated by Synechococcaceae (Fig. S2).

We calculated the alpha diversity of cyanobacteria in each sample and found that it 
varied on different continents. The highest alpha diversity of cyanobacteria was detected 
in the European region (Fig. S3a and b). The similarity of cyanobacterial composition in 
the 750 samples was evaluated via NMDS, which revealed that the cyanobacterial 
community structure differed between continents (P < 0.001, R2 = 0.07) and between 
countries (P < 0.001, R2 = 0.15) (Fig. S3c and d). The geographic characteristics of beta 
diversity were consistent with the geographic variation in cyanobacterial composition 
and alpha diversity (Fig. S2 and S3).
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Global distribution of cyanotoxins in lakes

The distribution of the abundance of cyanotoxin biosynthesis genes among various 
lakes was similar to the relative abundance of cyanobacteria. The US-Canada Great 
Lakes region and Southeast Asia were potentially the areas with the highest cyanotoxin 
production (Fig. 2a). The global composition of cyanotoxin biosynthesis genes in lakes 

FIG 1 Cyanobacterial distribution patterns in lakes worldwide. (a) Map of the relative abundance of cyanobacteria in all samples. (b) Global map of prominent 

cyanobacterial orders and their relative abundance in lakes. Base maps are from the default world hydrography map provided by ArcGIS v10.8 software.
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displayed significant geographic variation, whereas mcy and ana, which are responsi­
ble for the biosynthesis of microcystin and anatoxin, respectively, were the dominant 
cyanotoxin biosynthesis genes in lakes worldwide. The cyr gene (encoding a gene for 
cylindrospermopsin biosynthesis) was more abundant in North America than in other 
regions (Fig. 2b; Fig. S4).

FIG 2 Global distribution patterns of cyanotoxin biosynthesis genes in lakes. (a) Map of the abundance of cyanotoxin biosynthesis genes (RPKMs). (b) Global 

map of cyanotoxin biosynthesis genes in lakes. The mcy, ana, cyr, nda, and sxt genes encode the biosynthesis of Microcystin (Mcy), Anatoxin (Ana), Cylindrosper­

mopsin (Cyr), Nodularin (Nda), and Saxitoxin (Sxt), respectively. Alpha diversities of the cyanotoxin biosynthesis genes in all the samples. Base maps are from the 

default world hydrography map provided by ArcGIS v10.8 software.
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The alpha diversity of cyanotoxin biosynthetic genes differed in lakes from differ-
ent continents. For example, cyanotoxin biosynthetic genes from European samples 
presented greater alpha diversity than those from other continents did (Fig. S5a and b). 
The similarity of cyanotoxin synthesis genes in the 750 samples was evaluated via NMDS, 
which revealed that the composition of cyanotoxin synthesis in the lakes also differed 
between continents (P < 0.001, R2 = 0.14) and between countries (P < 0.001, R2 = 0.31) 
(Fig. S5c and d).

Potential cyanobacterial health risk assessment framework

The toxicity of different cyanotoxins on the basis of the intraperitoneal acute LD50 
varied considerably, with a minimum toxicity index of 0.37 for cylindrospermopsin and 
a maximum toxicity index of 100 for saxitoxin (Fig. S6). To develop a comprehensive 
framework for potential cyanobacterial health risk assessment, we integrated the relative 
abundance of cyanobacteria, the abundance of cyanotoxin synthesis genes, and the 
toxicity index of each cyanotoxin (Table S6; details can be found in the Methods). Our 
experimental results confirmed that the abundance of cyanotoxin biosynthesis genes 
was significantly positively correlated with cyanotoxin concentration; thus, it is feasible 
to characterize potential cyanotoxin concentrations in terms of cyanotoxin biosynthesis 
gene abundance (Fig. 3b). Importantly, while our cultures expressed microcystin and 
presented this correlation, it may not hold true for all cyanotoxins across different natural 
environments. This limitation should be considered when interpreting the outputs of our 
algorithm, as the dynamics of cyanotoxin production can vary significantly in diverse 
ecological contexts. The risk map revealed East Asia and South Asia as the areas with the 
highest risk (Fig. 3a). The relative abundance of Synechococcaceae was greater in low-risk 
samples than in high-risk samples, whereas Microcystaceae was significantly enriched in 
high-risk samples (Fig. 3c), and the composition of cyanotoxin biosynthesis genes was 
similar across risk ranks (Fig. S7). To characterize the risk rank visually, we discretized the 
data via the k-means method and then classified the samples into 10 ranks on the basis 
of risk (rank 10 for the highest risk and rank 1 for the lowest risk). The risk rank here 
represented relative risk. In total, 618 (82.4%) of the 750 samples were ranked first, and 
the other 17.6% had a higher risk (ranked 2 to 10).

Predictors of potential cyanobacterial health risks

We ultimately obtained 23 factors with a VIF less than 10 to construct a machine learning 
model together with the risk index (Fig. S8). To construct the best model for predicting 
cyanobacterial health risk, regression modeling was conducted, including four different 
linear and four different nonlinear regression types (Fig. S9). Tenfold cross-validation 
revealed that the RF model explained the highest percentage (R2 = 0.74), indicating a 
good prediction of cyanobacterial health risk (Fig. 4b; Fig. S9). We quantified the 
contributions of environmental factors to potential cyanobacterial health risks (Fig. 4a). 
The results indicated that temperature was the most important predictor in the model, 
followed by the human influence index and N2O emissions (Table S7). Extreme climatic 
conditions and anthropogenic activities can greatly increase the potential health risk of 
cyanobacteria (Fig. 4c; Fig. S10). For example, the wind speed and mean temperature of 
the wettest quarter were strongly positively correlated with the risk index at high levels. 
Similar trends were observed for agricultural yield and N2O emissions (Fig. 4c). In 
addition, we found that climatic factors exhibited more complex patterns. The extent of 
the impact of the climate parameters varied considerably over a range of values (Fig. 
S10).

A global map of potential cyanobacterial health risks in lakes

The predicted results were discretized into the aforementioned 10 ranks. On the basis of 
the predictions and discretization results, we mapped the potential cyanobacterial 
health risk in 73,030 lakes across the globe (Fig. 5a). East Asia, South Asia, and southern 
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Africa were the areas with the highest potential cyanobacterial health risk ranks. North 
America and Western Europe, the most economically developed regions, presented the 
lowest potential cyanobacterial health risk. The potential cyanobacterial health risk 
along the southeast coast of Australia was lower than that in the rest of Australia. We 
further divided the prediction results into low- (ranks 1, 2, and 3), medium- (ranks 4, 5, 
and 6), and high-risk (ranks 7, 8, 9, and 10) lakes, accounting for 51.29%, 37.88%, and 
10.82% of the global lakes, respectively (Fig. 5b). In terms of risk distribution by conti­
nent, Europe presented the lowest potential cyanobacterial health risk, with more than 
60% of the lakes at low risk. Africa was the highest risk region, with nearly half of the 
lakes being at high risk (Fig. 5c).

FIG 3 Characterization of potential cyanobacterial health risks for all samples. (a) Potential cyanobacterial health risk map for 750 samples. 

RI = Cyanobacterial biomass × i = 1

n
Abundancecyanotoxin biosynthesis gene × Toxicity index. The base map is from the default world hydrography map provided by 

ArcGIS v10.8 software. (b) Linear regression of the normalized copy number (sum of the microcystin biosynthesis genes mcyA-J) and the concentration of 

microcystin-LR. (c) The five cyanobacterial families with the highest average abundance of all samples. The risk index was discretized via the k-means method 

and was divided into 10 ranks according to the size of the risk index.
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DISCUSSION

We identified and quantified cyanobacterial communities and cyanotoxin biosynthesis 
genes in 750 metagenomes from samples from lakes worldwide. Our findings revealed 
distinct geographical patterns in both cyanobacterial communities and cyanotoxin 
biosynthesis genes. The dominance of particular cyanobacterial species varies signifi-
cantly across different regions, presenting a substantial challenge for the management of 
cyanobacterial-infested water bodies (8, 43). Notably, the prevalence of cyanobacteria in 
the US-Canada Great Lakes region and Southeast Asia aligns with previous remote 
sensing-based monitoring results of cyanobacterial blooms (5). Furthermore, cyanotoxin 
biosynthesis genes are widespread in these regions. Some studies highlight the use of 
remote sensing for monitoring cyanobacterial blooms (8, 44–47). However, genome-
based assessments of lake environmental toxicity serve as a crucial complement to these 
methods. Utilization of metagenomic data enhances the precision of cyanobacterial 
community characterization, circumventing the uncertainties associated with remote 
sensing techniques in identifying phytoplankton (44), including the differentiation of 
dominant cyanobacteria across different regions (45, 46). Our approach enhances 
cyanobacterial toxicity evaluation beyond satellite monitoring, offering more detailed 
insights that can improve early warning systems for lake cyanobacterial pollution.

The ongoing global surveillance of cyanobacterial blooms (18) relies primarily on 
assessing bloom frequency and area, which does not convey the full extent of potential 
cyanobacterial health risk (48–50). Additionally, the abundance of cyanobacteria may not 
necessarily correlate with their toxicity, given that not all cyanobacterial taxa produce 
toxins (28). Our study introduces a comprehensive framework that evaluates cyanobac­
teria by linking common cyanotoxin toxic effects with cyanotoxin biosynthesis genes, 
offering a fresh perspective on potential cyanobacterial health risk assessment. Intrigu­
ingly, despite the high cyanobacterial abundance and cyanotoxin gene presence in 
North America, this region did not present elevated potential cyanobacterial health risks. 
This is attributable to the high abundance of cyr genes in North America, which corre­
sponds to the lowest toxicity index (cylindrospermopsin, synthesized by cyr genes), 
contributing to the overall low toxicity of North American lakes. Importantly, however, 

FIG 4 Predictors of potential cyanobacterial health risks. (a) Importance of different factors for potential cyanobacterial health risk. The larger the grid square 

is, the more important the factor. (b) Performance of random forest models in predicting potential cyanobacterial health risks. The slope of the red line is 1. The 

closer the fitted straight line is to y = x, the better the fit of the model. The dots represent the samples used by the random forest models. (c) Partial dependence 

diagram illustrating the effects of various factors on the potential health risk of cyanobacteria.
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our assessment system relies on the qualification of five major classes of common 
cyanotoxins. There are substantial differences in toxicity between structural variants 
within the same class of cyanotoxins, so we characterized the toxic effects of the five 
major classes of cyanotoxins as the mean values. More accurate and comprehensive 
information on cyanotoxins would further strengthen the capabilities of our assessment 
system. Furthermore, our assessment represents only potential risks, as the cyanotoxin 
concentration is influenced by gene abundance and expression. Our experiments 
confirmed a positive correlation between MC-LR concentrations and the relative gene 
copy number of mcy. A previous study also revealed a positive correlation between 
cyanotoxin concentrations measured via enzyme-linked immunosorbent assay and the 
copy number of related cyanotoxin biosynthesis genes (51). However, the existence of 
this positive correlation in the biosynthesis of all cyanotoxins remains to be 

FIG 5 A global map of potential cyanobacterial health risks in lakes. (a) Potential cyanobacterial health risk maps for 73,030 lakes worldwide via machine 

learning model predictions; the coordinates and shoreline polygons of the lakes were obtained from HydroLAKES V1.0. The base map is from the default world 

hydrography map provided by ArcGIS v10.8 software. (b) Global distribution of potential cyanobacterial health risk in lakes. We divided the 10 risk levels into 

three categories: low, medium, and high. (c) Composition of potential cyanobacterial health risk ranks in lakes by continent.
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demonstrated, and the increase in such studies in the future will greatly optimize our 
assessment framework. Moreover, we solely considered potential health risks linked to 
cyanobacterial toxicity, overlooking ecological risks tied to community structure 
changes, such as hypoxia potential and disruption of food webs.

In this study, we classified lakes into larger regions (e.g., Asia and North America) 
to increase the sample size and statistical power. However, this broad classification 
may obscure ecological differences across varying elevations and latitudes. Future 
research should analyze the influences of environmental factors on lake ecosystems 
and cyanotoxin distributions at a finer geographical scale. After completing the potential 
cyanobacterial health risk assessment, we delved into the potential determinants of 
cyanobacterial health risk. Although the factors driving potential cyanobacterial health 
risk are multifaceted, our machine learning model identified temperature as the most 
pivotal factor. Warm climates and human activities have emerged as major contributors 
to cyanobacterial toxicity, which aligns with findings by Paerl and Paul (2). The human 
influence index, the second most influential factor in our model, offers a quantitative 
measure of human activity impact encompassing population pressure, land use, and 
infrastructure distribution (52). Potential cyanobacterial health risks exhibited height­
ened levels in regions marked by pronounced anthropogenic activities, such as the 
Indian Peninsula and Eastern China. However, compared with anthropogenic activities, 
climatic factors exhibited complex and more dominant patterns in the predictive model. 
The contributions of these factors to potential cyanobacterial health risk underscore 
the necessity of robust human interventions to counteract climatic effects. As anthropo­
genic activities such as fossil fuel combustion significantly influence climate change, 
they present a more manageable target than the manipulation of climate conditions 
does (53). Previous research on China’s Lake Taihu revealed that a 46.3% reduction 
in phosphorus could alleviate the risk of extensive cyanobacterial blooms (48). Fur­
thermore, our study underscores that extreme climatic conditions (elevated tempera­
tures) significantly increase potential cyanobacterial health risk, echoing findings that 
climate extremes fuel cyanobacterial blooms (54–57). In summary, the management of 
cyanobacterial blooms is increasingly complex in the face of more frequent extreme 
weather events (58). However, we did not consider nutrients such as P or N when 
exploring potential determinants of potential cyanobacterial health risk, even though 
they are known to be decisive factors in cyanobacterial blooms. This is because few 
studies have uploaded complete water quality parameters and different methods of 
determining nutrients; for example, nitrogen is characterized as nitrate, nitrite, ammo­
nium nitrogen, and total nitrogen. We were unable to obtain water quality data that were 
standardized and adequate for analysis. However, nutrient concentrations and loads are 
broadly linked to the intensity of human activity.

Our global risk map underscores the critical situation of potential cyanobacterial 
health risk in lakes. High-risk areas often cluster in underdeveloped regions such as 
southern Africa and Southeastern Asia, where rapid industrialization and urbanization 
threaten the ecological integrity of lakes (59). Negative repercussions stemming from 
potential cyanobacterial health risks can lead to substantial economic costs, particularly 
those associated with recreation and tourism (60). Moreover, underdeveloped regions 
with limited healthcare face challenges in managing cyanotoxin-related illnesses such as 
liver damage and cancer. While large-scale cyanobacterial epidemics are rare, localized 
outbreaks from contaminated water can cause gastrointestinal, hepatic, and skin issues, 
posing serious public health risks where water treatment is lacking (61). Therefore, our 
study stresses the need for prioritizing cyanobacterial bloom management efforts in 
underdeveloped regions and the reinforcement of measures in other areas. Our global 
risk maps based on predictions have reference significance for the monitoring and 
management of cyanobacteria. However, we acknowledge that our prediction model is 
limited by sample numbers, particularly the scarcity of samples from Africa. Although 
the lack of suitable African samples led to uncertainties, our predictions were similar 
to those of existing reports. A review of cyanobacterial blooms in Africa spanning a 
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decade revealed that the most cosmopolitan genus is Microcystis, which is similar to the 
characteristics of the high-risk areas we identified (62). In Mozambique, where only 50% 
of people have access to safe drinking water, MCs (hepatotoxins) are not monitored; 
consequently, the population may be exposed to MCs. The monitoring results for MCs 
in some areas of Africa were very high, approximately seven times above the maximum 
limit recommended by the WHO (63). In addition, our sampling of large lakes was limited 
by temporal and spatial discontinuities. The uneven distribution of sampling points 
might cause deviations in the assessment results. However, the impact of deviation 
from such sampling points is low in terms of the prediction results. For example, Lake 
Taihu has suffered from recurring cyanobacterial blooms for more than two decades, 
particularly since the 1990s, due to increasing nutrient pollution and eutrophication. The 
limitations of the Lake Taihu samples did not affect its ability to predict a high potential 
cyanobacterial health risk lake. To summarize, we call for a global collaborative system 
to gather high-quality metagenomic data from lakes subjected to cyanobacterial bloom 
monitoring.

On the basis of the global map of potential cyanobacterial health risks, we find 
medium–high risk in western China and eastern Hudson Bay in Canada. There is evidence 
that cyanobacteria can be quite toxic in lakes and fjords at high latitudes, which would 
certainly include Hudson Bay (64–67). High-latitude water bodies show surprisingly 
high toxicity, probably because of long summer day-length conditions allowing plenty 
of light for cyanotoxin synthesis. According to our risk assessment framework, the 
biosynthetic potential of cyanotoxins and their high toxicity indices (such as microcystin 
and nodularin) resulted in a relatively high potential cyanobacterial health risk in Hudson 
Bay (ranked in the top 30% of a total of 750 samples). Our model, after adjusting its 
parameters, achieved an R² of 74%. However, similar to other studies, uncertainties 
remain due to limitations in environmental data, potential model assumptions, and 
inherent variability (68, 69). Addressing these uncertainties is essential for improving 
the robustness of future predictions. The precision of the environmental factors was 
one of the main reasons for the prediction uncertainty. We obtained environmental 
factors for each sample from publicly available databases, but the resolution of the 
data from different databases was variable, ranging from 30 arc seconds to 10 minutes. 
Therefore, the accuracy of the environmental factors via GIS may deviate, even if they 
were extracted from similar latitude and longitude coordinates.

Conclusion

Our research introduces a novel approach to potential cyanobacterial health risk 
assessment, offering insights into the risk from a toxicity perspective. The distinct 
geographical variations in cyanobacterial communities coupled with the intricate 
interplay of environmental factors underline the complexity of managing cyanobacte­
rial blooms at a global scale. Our systematic and targeted cyanobacterial surveillance 
enables a worldwide assessment of cyanobacteria-based potential health risks, providing 
an early warning system. In conclusion, the combined impact of extreme climatic events 
and anthropogenic activities amplifies the health risk posed by cyanobacteria. Urgent 
action is needed to address cyanobacterial bloom mitigation in underdeveloped regions, 
whereas robust strategies are crucial to combat blooms in a warmer, more climatically 
extreme world. We recommend a global collaborative system to gather more high-qual­
ity and continuous metagenomic data from lakes monitored for cyanobacterial blooms. 
Moreover, harmonized standards for the measurement of environmental parameters in 
the context of global cooperation are needed.
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DATA AVAILABILITY

We collected 96 factors on climate change and anthropogenic activity. There 
were 37 climate change factors, 19 from WorldClim (https://www.worldclim.org/data/
worldclim21.html), 16 from CliMond (https://www.climond.org/BioclimRegis­
try.aspx#BioclimFAQ), and 2 from CGIAR-CSI (https://cgiarcsi.community/2019/01/24/
global-aridity-index-and-potential-evapotranspiration-climate-database-v2/). Livestock 
production: https://dataverse.harvard.edu/dataverse/glw_4 (Food and Agriculture 
Organization of the United Nations). Proportion of feed nitrogen: http://www.fao.org/
geonetwork/srv/en/ (FAO GeoNetwork). Agricultural yield: https://cgiarcsi.commun­
ity/2019/01/04/global-spatially-disaggregated-crop-production-statistics-data-for-2010/ 
(CGIAR-CSI). Fertilizer use: https://beta.sedac.ciesin.columbia.edu/search/data?con­
tains=Nitrogen+Fertilizer+Application (EarthData). Travel time to cities and 
ports: https://cgiarcsi.community/2019/01/28/travel-time-to-cities-and-ports-2015/ 
(CGIAR-CSI). Population density of the world: https://beta.sedac.ciesin.colum­
bia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals 
(UN-Adjusted Population Density). Human influence index: https://beta.sedac.cie­
sin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic (EarthData). 
Per capital GDP: https://datadryad.org/stash/dataset/doi:10.5061/dryad.dk1j0 (Dryad). 
Global emissions of polluting gases: https://edgar.jrc.ec.europa.eu/dataset_ghg70 
(Emissions Database for Global Atmospheric Research). Wind speed: An artificial 
intelligence reconstruction of global gridded surface winds (70). The codes associated 
with this study are publicly available at https://github.com/Huhangupup/Cyanobacterial-
risk.
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