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Abstract Terrestrial hydrological and nutrient cycles are subjected to major disturbances by agricultural
operations and urbanization that profoundly influence freshwater resources. Non‐point source pollution is one
of the primary causes for water quality deterioration, and thus an emerging imperative in limnology is
establishing empirical models that connect watershed attributes and hydrological drivers with lake nutrient
dynamics. Here, we compiled three nation‐wide nutrient, meteorological, and watershed‐landscape data sets, to
develop Generalized Linear Models that predict lake phosphorus and nitrogen concentrations as a function of
the surrounding watershed characteristics within various hydrological distances across 104 Chinese lakes and
reservoirs. Our national‐scale investigation revealed that lake nutrient concentrations can be satisfactorily
predicted by proxies of natural drivers and anthropogenic activities, reflecting the properties of the surrounding
watershed. Counter to previous studies, we found that China's lake nutrient concentrations strongly depend on
watershed characteristics within a hydrological distance of less than 45 km rather than the entire watershed.
Furthermore, extensive human activities in watersheds not only compromise our predictive capacity, but also
increase the hydrological distance that is relevant to predict lake nutrients. This national‐scale characterization
can inform one of the most contentious issues in the context of China's lake management, that is, the
determination of the extent of the nearshore area, where nutrient control should be prioritized. As far as we
know, our study represents the first attempt to apply the concept of hydrological distance and establish statistical
models that can delineate the critical spatial domain primarily responsible for the nutrient conditions along the
watershed‐lake continuum.

Plain Language Summary Connecting watershed attributes with lake water quality at multiple
scales is an emerging imperative in limnology. This study introduces the concept of hydrological distance and
establish lake‐watershed relationships based on a comprehensive water quality data set from 2,424 sampling
sites across China. Our key finding is that lake nutrient levels strongly depend on watershed features within a
<45 km hydrological distance rather than the entire watershed. Activities related to agriculture and urbanization
increase the relevant hydrological distance to modulate lake nutrient levels, and our national‐scale analysis
provides evidence that areas with discernible impact can be located far from the vicinity of a given lake.

1. Introduction
Anthropogenic activities (e.g., urbanization processes and agricultural operations) profoundly alter the hydro-
logical and nutrient cycles of terrestrial systems, and are intricately linked to both availability and distribution of
freshwater resources (Arnillas et al., 2021). Point sources pollution have historically been a primary cause of
freshwater degradation. However, during the past decades, wastewater treatment plants have effectively mitigated
their impacts. Therefore, nonpoint sources pollution has instead become the leading cause for the surface water
quality deterioration. Excess phosphorus (P) and nitrogen (N) loading from watersheds to lakes via rivers is a
continuing problem due to its linkage to a wide range of water quality problems including hypoxia, phytoplankton
blooms, biodiversity loss and fisheries degradation (Ho et al., 2019; Ibáñez & Peñuelas, 2019; Jane et al., 2021).
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Existing global estimates signify the delivery of large amounts of P (4–11 Tg/yr) and N (37–66 Tg/yr) from land
into receiving watercourses, with agriculture (>50%) being the dominant contributor (Beusen et al., 2016, 2022;
Sharples et al., 2017). Such high nutrient loading are responsible for a discernible increase in the magnitude and
frequency of phytoplankton blooms in 68% of lakes since the 1980s (Ho et al., 2019). Under the context of climate
change, N loading is estimated to increase 19% ± 14% within the United States during the 21st century, driven by
the projected increase in the frequency of precipitation extremes (Sinha et al., 2017).

Excess nutrient load is particularly severe in China, partly due to the excessive use of fertilizers (80 kg P ha−1 yr−1

and 305 kg N ha−1 yr−1) in millions of small farms compared to the worldwide average of fertilizer use
(12 kg P ha−1 yr−1 and 74 kg N ha−1 yr−1), with >50% leaching into receiving waters or emitting into atmosphere
(Cui et al., 2018; Liu et al., 2016; Lu & Tian, 2017; Zhang et al., 2013). To mitigate the severity of eutrophication
problems, water quality managers have made substantial and diverse efforts, for example, construction/resto-
ration of wetlands and wastewater treatment plants (WWTPs), with particular emphasis on three large and highly
eutrophic lakes (i.e., Lakes Dianchi, Taihu and Chaohu) and their surrounding watersheds (Huang et al., 2018;
Qin et al., 2019; Wu et al., 2017). Several laws and guidelines (e.g., Water Pollution Control Action plan released
on 16 April. 2015) delineated the framework for N and P control over the past decades. This legislative framework
provided the roadmap for considerable restoration efforts, such as the increasing wastewater treatment plants
from 1,535 units in 2008 to 4,960 units in 2017 (Tong et al., 2020). Through these remedial actions, harmful algal
blooms have been reduced, but not fully eliminated (Huang et al., 2019). They remain an on‐going challenge for
China's lakes with an areal magnitude as high as 775.4 km2 (Huang, Zhang, et al., 2020).

The severity of nonpoint‐source pollution is modulated by a complex interplay among anthropogenic activities,
landscape attributes and transport pathways, and may be further amplified by climatic change (Huisman
et al., 2018; Hundey et al., 2016). Unlike point sources though, the diffuse and intermittent nature of pollution
from agricultural areas and urban settings makes it more difficult to monitor, quantify, and even more so to
integrate watershed and aquatic processes (Yin et al., 2022; Yuan et al., 2021). Environmental modelling has been
one of the pillars of the integrated watershed management, serving as an “information integrator” that brings
managers, scientists, and other stakeholders together to answer our knowledge gaps (Huang et al., 2018). Previous
studies attempted to link lake water quality with watershed characteristics via data‐driven and mechanistic
modeling (Huang et al., 2018; Peng et al., 2021; Wei et al., 2020). Data‐driven models (e.g., Generalized Linear
Models (GLMs) and Bayesian hierarchical models) attempted to link water quality of a lake/river with its cor-
responding watershed or surrounding area defined by a buffering distance (Huang et al., 2021). These empirical
models are simple linear (or non‐linear) relationships typically based on predictor variables (e.g., catchment
attributes, landscape characteristics, meteorological forcing) that are readily available, and are thus perfectly
tailored for broad‐scale investigations across multiple watersheds, where detailed data may not always be
available. Nonetheless, the simple nature of empirical models is also the primary reason for their limited use in
more comprehensive granular investigations, especially within individual catchments, as they fail to capture the
complexity of the processes underlying nutrient cycling during the transport from watersheds to lakes via rivers,
streams, and ditches. To address the structural and conceptual weaknesses of statistical models, another option is
to use process‐based (mechanistic) modeling to describe surface runoff, biogeochemical cycling, sediment
transport, and river routing along the watershed‐lake continuum (Arhonditsis et al., 2019a; Janssen et al., 2019).
Process‐based models require substantial input data, and are generally used for site‐specific applications rather
than broad‐scale studies and national‐scale assessments (Huang et al., 2018). Thus, notwithstanding our evolving
understanding of the key facets of non‐point source pollution, there is a multitude of “management‐relevant”
questions related to the delineation of high‐risk areas in anthropogenically disturbed watersheds and the iden-
tification of locations associated with excessive nutrient load generation and high delivery rates, as well as periods
of the year with high levels of risk (or uncertainty) for terrestrial and aquatic ecosystem resilience.

This study aims to establish linkages between a suite of natural and anthropogenic watershed attributes and in‐
lake N and P levels. A hydrological‐distance analysis framework was developed to identify the locations,
where the signature of the watershed landscape features on lake nutrient conditions is mostly discernible. For this
purpose, we compiled three comprehensive lake nutrient concentration, meteorological, and watershed‐landscape
data sets, to develop GLMs that predict lake N and P conditions as a function of the surrounding watershed
characteristics within various hydrological distances across 104 Chinese lakes and reservoirs. Empirical models
were then developed to estimate nutrient attenuation rates from watersheds to lakes. To the best of our knowledge,
the present study represents the first attempt to use the concept of hydrological distance in an applied context in
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order to identify not only the most sensitive predictors, but also to delineate the critical spatial domain that shapes
nutrient dynamics along the watershed‐lake continuum.

2. Materials and Methods
2.1. Study Area and Data

In China, there are 2,693 lakes with a surface area of >1 km2, with an increasing number of lakes during the past
decades (Ma et al., 2011; Zhang et al., 2019). Among these lakes, ∼142 lakes (including reservoirs) across China
are of concern because they are heavily impacted by human activities (Huang et al., 2019). To investigate the
relationships between lake N and P levels and watershed characteristics, the following three nationwide data sets
were compiled.

2.1.1. Lake Nutrient Data Set

To capture lake nutrient conditions across the nation, Chinese National Environmental Monitoring Center (http://
www.cnemc.cn/) conducted a monthly sampling program in China's 142 lakes (including reservoirs). Among
these, 104 lakes (including 48 reservoirs) have a watershed with hydrological distance >50 km, and were selected
as the study sites (Figure 1). Based on the sampling program, a large data set was collected including numerous
monthly samples during the 2016–2020 period. This data set included 24 water quality variables listed as the
environmental quality standards for surface water (GB 3838–2002). This study shed lights on total nitrogen (TN),
total ammonia nitrogen (NH3–N, the sum of free ammonia and ammonium), and total phosphorus (TP).

2.1.2. Meteorological Data Set

To capture the role of meteorological conditions in shaping lake nutrient concentrations, the Chinese Meteoro-
logical Forcing Data set (CMFD) with a 0.1° spatial and daily temporal resolution was used. The data set with
gridded near‐surface meteorological data was specifically developed for studies of land‐surface processes (https://
data.tpdc.ac.cn/). The data set includes seven variables: precipitation (Pr, mm/d), pressure (Pa), air temperature
(T, °C), specific humidity (kg/kg), wind speed (m/s), downward shortwave and downward longwave radiation
(W/m2) (He et al., 2020).

Figure 1. (a) Nationwide monitoring network in China's lakes/reservoirs with two examples of lake‐watershed systems, that is, (b) Lakes Taihu and (c) Chaohu, and
(d) the distribution of the values of nine predictor variables for 104 lake‐watershed ecosystems across China.
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2.1.3. Watershed Landscape Data Set

The data set includes eight variables: land use, elevation, slope, precipitation, air temperature, water treatment
capacity of WWTPs, nighttime light intensity, and watershed‐to‐lake ratio (Figures S1 and S2 in Supporting
Information S1). Land use was obtained from the Resource and Environment Data Cloud Platform (http://www.
resdc.cn/Default.aspx). Elevation data were obtained from Shuttle Radar Topography Mission (SRTM, http://
srtm.csi.cgiar.org/srtmdata/). Slope data were derived using the elevation data. Meteorological data (precipitation
and air temperature) were obtained from CMFD. Nighttime light intensity was obtained from the Defense
Meteorological Satellite Program (DMSP) satellites (https://www.ngdc.noaa.gov/eog/download.html). The wa-
ter treatment capacity of WWTPs were obtained from a national study by Chen et al. (2019).

2.2. Linking Lake N and P Concentrations to Watershed Characteristics

To establish the linkages along the lake‐watershed continuum, a hydrological‐distance analysis module was
developed to extract the boundary and hydrological connectivity for 104 lake‐watershed systems (Figure 2).
GLMs were developed to predict lake N and P concentrations based on watershed features within various (<1, <2,
…, <50 km) hydrological distances, and subsequently estimate nutrient attenuation rates from watersheds to
lakes.

2.2.1. Drainage Networks With Flow Direction to Characterize Lake‐Watershed Systems

A hydrological‐distance analysis module (HDA) was developed to identify the watershed boundary (upstream
area) of each lake, and to establish drainage network with flow direction that characterize mass exchange along
the lake‐watershed continuum.

The module was implemented using the Python package of GDAL and PCRaster. Compared with the existing
vector data set for lakes and watersheds, such as the Lake‐Catchment data set (Hill et al., 2018) and the data set of
HydroLAKES (Messager et al., 2016), the HDA module is targeted at the drainage direction within a watershed
rather than watershed boundary. Based on the HDA module, we characterized the watershed boundary and
hydrological distances for 104 lake‐watershed systems according to the following steps: (a) A raster map with a

Figure 2. Schematic illustration of our modeling analysis on the response of lake phosphorus (P) and nitrogen (N) concentrations to watershed characteristics.
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500 × 500 m resolution was derived using lake boundary data. (b) A drainage direction network, covering the lake
and its surrounding areas, was developed using an eight‐flow direction matrix (D8) from the PCRaster package.
(c) Nearshore cells of the lake were classified as sub‐watershed outlet points. Each nearshore cell was linked to a
sub‐watershed, and each cell within these sub‐watersheds was assigned a value representing the hydrological
distance of the cell from the corresponding lake. The raster images were transferred into vector files (Shapefile
format), and therefore each lake was assigned a watershed boundary file, along with a hydrological distance file
including 50 polygons that had a hydrological distance of 1, 2, …, 50 km to the lake. Two examples (Lakes Taihu
and Chaohu) of this process can be found in Figure S3 of Supporting Information S1.

2.2.2. Lake‐Watershed Models in Relation to Hydrological Distance

Based on the data sets (Section 2.1) and watershed boundaries (Section 2.2.1), we generated paired data of lake N
and P concentrations and watershed characteristics for the selected 104 lake‐watershed systems. The average
values of the watershed characteristics for various areas within a certain (1, 2, …, 50 km) hydrological distance
were calculated. GLM models were then developed to predict TP, TN and NH3‐N concentrations using predictors
reflecting watershed characteristics within various (<1, <2, …, <50 km) hydrological distances. In their generic
form, GLM model equations can be described as follows:

WQk
i = GLM (xk

1,…,xk
j …,xk

n) (1)

where xk
j represents the predictor variable j ( j = 1, 2, …, 9) from the area with a hydrological distance of <k km.

WQk
i (i = 1, 2, 3) represents the predicted variable i (TN, NH3‐N, or TP) using the xk

j predictors as model inputs.
Therefore, a total of 50 (k = 1, 2, …, 50) GLM models were developed to provide a prediction per lake for nutrient
considered.

Nine predictor variables, both natural and anthropogenic, were used to characterize lake N and P variability
(Figures S1 and S2 in Supporting Information S1). The natural predictor variables included slope (°) and elevation
(m) to represent the capacity of two prevalent landscape features to determine mass transport rates and conse-
quently in‐stream attenuation, daily average air temperature (oC) and annual precipitation (mm/yr) to account for
the influences of weather conditions on biogeochemical processes and flow rates, watershed‐to‐lake ratio to
represent the areal extent of the contributing land relative to the surface area of the receiving waterbody. Both lake
and watershed areas were obtained from the corresponding boundary files. The anthropogenic predictors included
area percentage of urban (%) and area percentage of farmland (%) as proxies for non‐point source pollution
associated with the extent of agriculture and urbanization in the surrounding watersheds, water treatment capacity
of WWTPs (t/d/km2) to discern China's efforts in controlling point‐source pollution, nighttime light intensity to
collectively represent the magnitude of human footprint. The nighttime light intensity had a high spatio‐temporal
resolution and was thus more suitable for our national analysis. To address potential collinearity problems among
these 9 predictor variables, recursive feature elimination (RFE) was used to determine targeted predictors used in
our models (Liu et al., 2021). The predictor selection was subsequently conducted for the development of each
GLM (Neter et al., 1996).

2.2.3. Characterization of Nitrogen and Phosphorus Attenuation Rates From Watersheds to Lakes

To further quantify N and P attenuation rates from watersheds to lakes, empirical models were developed based
on the assumption that the watershed area with a shorter hydrological distance can exert greater control on lake
conditions. The governing equation for this exercise is expressed as:

WQi = GLM (x1,…,xj…,xn) (2)

xj = ∑
50
k=1 [max(1 − μk,0) × ks × xk

j ] (3)

μk = μ0 × θk (4)

ks = Sk/S1 (5)
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where WQi(i = 1, 2, 3) represents the predicted variable i (TN, NH3−N, or
TP) using the relationships developed in the previous step (Equation 1); xj

represents a weighted average of the predictor variable j ( j = 1, 2, …, 9) that is
calculated using Equation 3; μk is a weight coefficient (0–1) representing the
attenuation rate for the area/watershed sector with a hydrological distance
between k−1 and k km; μ0 is a decay/attenuation constant, and θ is the
attenuation coefficient for the watershed sector k; ks is the ratio of the
watershed area Sk:S1; Sk represents the watershed area with a hydrological
distance between k and k−1 km; S1 represent the watershed area with a hy-
drological distance between 0 and 1 km. Assuming a circular shape for the
watershed surrounding each lake (Figure 3), S1 and Sk can be empirically
estimated by π × (k0 + 1)

2 − π × k0
2 and π × (k0 + k)

2 − π × (k0 + k − 1)
2,

respectively. The contribution of the watershed sector k is determined by
weighting the value of each predictor variable j with the corresponding area Sk

(larger as we move from the lake to upstream sites) and the hydrological
distance from the receiving waterbody (expressed as a power function, in
which the exponent is the distance from the lake inlet). We used a random

sampling method to generate permutations for the parameters μ0 and θ that determine the contribution of each
hydrological‐distance area, after assigning uniform distributions to each parameter within plausible ranges. We
generated 2,500 (50 × 50) parameter sets to obtain the optimal combination that resulted in the best performance
for each of the TN, NH3−N and TP models.

3. Results
3.1. Lake‐Watershed Relationships as a Function of the Hydrological Distance

Through the investigation of lake‐watershed relationships, we found that N and P concentrations can be accu-
rately estimated by natural and/or anthropogenic characteristics within a certain hydrological distance rather than
the entire watershed. Although the model fit against the in‐lake TN, NH3−N and TP levels varied with the hy-
drological distances from 1 to 50 km, all the 150 (=50 × 3) predictive outputs achieved satisfactory model fit with
P < 0.05 (Figure 4). TP models displayed superior performance relative to their counterparts for TN and NH3−N
concentrations. Specifically, the predicted lake TP values were closer to the observed ones, R2 = 0.52 ± 0.04
(mean value ± standard deviation), than those for TN and NH3−N, for which the R2 values were 0.17 ± 0.005 and
0.35 ± 0.05, respectively (Figure 4a). The latter R2 difference may reflect the more complex terrestrial and aquatic
biogeochemical processes associated with the nitrogen cycle. Except from the TN models (Figure 4b), the per-
formance (almost) monotonically increased with increasing hydrological distance once a threshold value of 5 km
was exceeded. Interestingly, the NH3−N and TP models had similar response to hydrological distance (Figures 4c
and 4d), and achieved the best model fit (R2 = 0.41 and 0.57 respectively) at a hydrological distance of 45 and
44 km, respectively. TN, NH3−N and TP models leading to the best fit can be found in Section 1 of the Supporting
Information S1. The variable selection process consistently identified the water treatment capacity (WWTP)
along with the percentage area of farmland (FarmS) as the two most significant predictors for NH3−N and TP
concentrations. The inclusion of the former variable likely weakened the signature of other proxies of the human
footprint in urbanized settings, such as the percentage urban area (UrbanS) and the nighttime light intensity (LI).
Likewise, the annual precipitation (PR) has a discernible role in shaping in‐lake NH3−N and TP levels, whereas
the impact of the watershed elevation (DEM) and/or slope (SL) appears to be relatively minor, and even in some
instances, the derived regression coefficients were counterintuitive (see negative relationship between TP con-
centration and watershed slope).

To further shed light on the capacity of the hydrological distance to modulate the lake‐watershed relationships,
104 samples (lakes) were separated into two (high‐ and low‐value) groups according to the median values of the
predictors (Figure 1d and Figure S4 in Supporting Information S1). Our comparison revealed that human ac-
tivities pose challenges in predicting lake N and P concentrations. Furthermore, human activities increased the
required hydrological distance to predict lake N and P using the watershed characteristics. Based on the model fit
patterns in response to the hydrological distance (Figure 5), we found that the high‐value group for the anthro-
pogenic variables generally led to higher performance for both NH3−N and TP concentrations, when longer

Figure 3. Conceptual description of a lake with the surrounding watershed.
The watershed sector with a hydrological distance between k and k−1 km
has an area of Sk. The sector with a hydrological distance between 0 and 1 km
has an area of S1.
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hydrological distances (39.3 ± 7.5 km) were considered. Natural predictor variables did not reveal a consistent
impact on lake‐watershed relationships, as the model fit between low and high values did not result in consistently
superior (or inferior) performance of the lake‐watershed relationships. The only notable exception was the
catchment slope as a predictor for lake TP, where steeper slopes had improved performance relative to flatter
watersheds (Figure 5b). This result probably indirectly reflects the strong relationship between slope and human
footprint, in that watershed areas with higher slope generally have less intense anthropogenic activities.

3.2. Nutrient Attenuation From Watersheds to Lakes

Based on 7,500 (3 × 50 × 50) tested models, we identified the optimal parameter sets (μTN
0 = 0.05 and θ = 1.065;

μNH
0 = 0.05 and θ = 1.057; μTP

0 = 0.29 and θ = 1.021) that can be used to infer on the TN, NH3−N, and TP
attenuation rates from watersheds to lakes (Figures 6a–6c). These three models provided the best model fit
(P < 0.001) with R2 values of 0.57, 0.10 and 0.41 for TP, TN and NH3−N, respectively. Based on these parameter
estimates, the average attenuation rates within 1 km from the lake inlet were equal to 0.0533, 0.0529 and 0.2961
for TN, NH3−N, and TP, respectively. In a similar manner, nutrients originating from watershed sectors with
hydrological distances of 47, 54, and 60 km can still contribute non‐point source loads downstream for the three
nutrient forms. The same derived attenuation rates also suggest that the natural and anthropogenic watershed
attributes within a hydrological distance of 50 km could explain >40% and nearly 60% of the NH3−N and TP
variability in the receiving waterbodies (Figure 7).

The spatial distribution of the model error with the optimal parameter sets revealed that both N and P for the lakes
at the middle and lower reaches of Yangtze River were better predicted, which incidentally is the most intensively
studied area (Figure 7). The distribution of prediction bias (= predictive value–measured value) revealed that
there is little systematic bias for NH3−N and TP models, in that there are no geographic regions displaying
excessively high error values.

Figure 4. (a) TN, NH3‐N and TP model performance using as predictor variables the watershed characteristics within
hydrological distances varying from 1 to 50 km. (b–d) Highest performing models to predict TN, NH3‐N, and TP
concentrations within hydrological distances of 10, 45, and 44 km, respectively.
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Figure 5. TN, NH3‐N, and TP model fit with varying (1–50 km) hydrological distance for both high‐ and low‐values of each
predictor variable. The best model fit within a hydrological distance of 6–50 km for each group is labeled as dash line.

Figure 6. TN, NH3‐N, and TP model fit as a function of the attenuation rates during the transport processes within watershed
context, as represented by the parameters of μ0 (attenuation constant) and θ (attenuation coefficient).
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4. Discussion
Landscape attributes modulate terrestrial contributions to water paths by shaping the amount of external fluxes
along with their fate and transport within the receiving water bodies (Hou et al., 2022; Li et al., 2022; Smits
et al., 2021). Consequently, the establishment of relationships between catchment characteristics, land degra-
dation, human‐environment interactions, and lake water‐quality deterioration has been highly concerned (Wei
et al., 2020; Zwart et al., 2018). Most of these empirical models aimed to elucidate the relationships at the
macroscale (e.g., regional to national scales), and have been developed using cross‐section data sets, which
included multiple‐site measurements across broader regions. Due to the significance of among‐site variability,
such data sets often exhibit broader ranges for the variables involved in the empirical relationships, and the
subsequent model fit frequently results in well‐identified parameter estimates (Cheng et al., 2010; Shimoda &
Arhonditsis, 2015). Despite their simplicity in both concept and structure, these macroscale models are seen as
important tools in management practices to increase our understanding on the populations of watershed‐lake
systems, and enhance the ability to extend investigation results to unobserved sites or scale‐up local results to
larger scales, assist with the recovery of impaired waterbodies, and the conservation of unaffected lakes (Huang
et al., 2020b, 2021; Lapierre et al., 2015; Soranno et al., 2015). Within this context, this study presented a
national‐scale characterization between a set of natural and anthropogenic watershed characteristics and in‐lake
nutrient levels, augmented by a novel hydrological‐distance analysis framework to delineate the watershed
sectors with the strongest footprint on lake nutrient dynamics.

Based on a broad review of existing attempts to link lake water quality with watershed characteristics (Table S1 in
Supporting Information S1), data‐driven models were characterized by a large performance variation, generally
evaluated in terms of both fit statistics (e.g., R2) and evidence of model statistical significance; that is, evidence to
falsify the null hypothesis of a lack of a discernible relationship between response and predictor variables. The
models presented here are both statistically significant (P < 0.05) with moderate to satisfactory performance
(R2 = 0.18–0.57). Our models were able to establish acceptable relationships among in‐lake TP, land‐use patterns,
landscape features, and watershed hydrology. The higher model fit of TP compared with TN is plausible. TP
concentrations often exhibit a strong relationship with flow, owing to the active transport of particulate con-
stituents either by overland flow or via soil macropores to tile drains, as well as due to their capacity to be readily
remobilized from the streambed/bank (Godsey et al., 2009; Meybeck & Moatar, 2012). Contrary to our under-
standing of P fate and transport, there is less clarity regarding an overall concentration‐discharge paradigm for N,
primarily because a larger proportion of TN is present in the dissolved phase. Because of their high solubility,
nitrite/nitrate can be transported through diverse flow pathways including overland, subsurface or groundwater,
and demonstrating apparent stability of the concentrations in relation to flow fluctuations (Long et al., 2014,
2015). Ammonium and total Kjeldahl nitrogen, as compared to other N species, exhibit relatively low solubility
and/or lower susceptibility to subsurface leaching due to their immobilization by clay or other soil chemical

Figure 7. Prediction bias of (a) TN, (b) NH3‐N, and (c) TP concentrations at 104 lakes/reservoirs across China. Insert panels show the error distribution along with the
model fit scatterplots based on the lakes (green dots) and reservoirs (blue dots).
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constituents, and may thus notably increase during snowmelt and precipitation events (Long et al., 2014). The N
cycling within water, soil/sediment, and biota is driven by diverse biogeochemical processes, which contribute to
legacy accumulation and long turnover times, such as N uptake by plants and soil microbial community, plant root
or litter decomposition, nitrification and denitrification, soil organic matter ammonification, mineral precipita-
tion/dissolution, and sorption/desorption (Beaulieu et al., 2011; Seitzinger et al., 2006). It is thus not surprising
that the fit of our TN models was relatively low (R2 = 0.18), which in turn underscores the importance to
characterize N cycle‐related processes at specific sites (Cui et al., 2013; Liu et al., 2016; Wu et al., 2022).

Another major finding of our national‐scale study is that ambient nutrient concentrations depend strongly on
watershed characteristics and delivery mechanisms (or attenuation rates) within a specific hydrological distance
rather than the entire watershed or the narrower lake buffering zone (Nielsen et al., 2012; Peng et al., 2021;
Wollheim et al., 2022). Moreover, depending on the nutrient form examined, our analysis showed that watershed
sectors with hydrological distances between 45 and 60 km from the lake shoreline can still contribute nutrients
downstream. In the same vein though, recent research has added another layer of complexity by signifying the
variation in in‐stream attenuation rates that arises from the prevailing flow regimes and stream order/size
considered (Neumann, Saber, et al., 2021; Wellen et al., 2012). Specifically, small‐ and medium‐flow streams
tend to display higher attenuation rates, and consequently higher nutrient retention. This is due to the higher
sedimentation rates and larger biotic uptake in the context of slower flow velocities, shallow stream depths, and
consequently longer residence times, particularly in dry years compared to wet years (Aguilera et al., 2012;
Behrendt & Opitz, 1999). In contrast, large streams are characterized by lower nutrient retention without sig-
nificant difference between dry and wet years (Neumann, Saber, et al., 2021). Viewed in this context, the
moderately strong signature of precipitation as predictor variable of in‐lake nutrient conditions in our models is
not surprising. Likewise, the areal extent of farmland and/or the proxies of urbanization (nighttime light intensity
and percentage of urban area) had a plausibly discernible signature on the ambient nutrient conditions of the
receiving waterbody, especially for the TP and NH3‐N models. In particular, Chinese agriculture has achieved
yields that are nearing the maximum attainable for a wide range of crops (Mueller et al., 2012). However, the side‐
effect of this successful outcome is the excessive use of fertilizers with a rate twice as high to the amount for crop
assimilation (Liu et al., 2016). Legacy nutrients stored in soils can then be influenced by various hydrological and
biogeochemical mechanisms (Basu et al., 2010), which modulate the magnitude and delivery rate of nutrient
loading downstream. Consistent with our results, a significant body of literature also emphasized the importance
of urban runoff as a primary source of nutrients, surpassing other land uses, but also as the non‐point source
exhibiting the greatest discrepancies in their impact between dry and wet years (Neumann, Saber, et al., 2021).
The increased nutrient loading originating from urban areas can be attributed to the flashiness of urban watersheds
caused by higher hydrological connectivity to drainage networks, and the heightened likelihood of precipitation
events generating surface runoff and the resulting loading of constituents in impermeable areas (Bieroza
et al., 2018).

While the notion that water quality is intricately determined by the attributes of the surrounding watersheds is well
established in the limnological literature (Paltsev & Creed, 2022; Peng et al., 2021; Wu & Lu, 2021), identifying
hot spots of nutrient export along the watershed‐lake continuum arguably remains a controversial topic in the
context freshwater management. Recognizing the need to mitigate the ubiquitous water‐pollution problems, the
Chinese government released the Lake Chief System, which represents a roadmap on the land‐use planning and
design of the nearshore zone. However, the extent of the nearshore area, where restoration measures for nutrient
control should be prioritized, is not clearly defined and may be a contentious issue. For example, water quality
managers in Lake Taihu treated the nearshore area within a 3‐km distance from the shoreline, whereas the local
government used a 5‐km buffer distance. Even more so, our analysis showed that the distance of the watershed
sectors with a discernible impact on ambient nutrient concentrations can be even longer (14–45 km in Figure 5).
This lack of clarity in the definition of the nearshore area or the variability in the catchment size that can
conceivably impact in‐lake conditions hinders the design of effective nutrient control strategies in space and time.
Our study provided an avenue to determine the critical hydrological distance in any given watershed by estab-
lishing linkages between ambient nutrient variables (e.g., TN, NH3‐N and TP) and watershed attributes associated
with natural factors and anthropogenic activities alike. This more granular characterization of the effective
hydrological‐distance, instead of expressing the predictor variables over the entire watershed, can offer a first
approximation of the urban and agricultural sites that should be prioritized for the implementation of best
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management practices (BMPs) in a cost‐effective and ecologically beneficial manner (Eckart et al., 2017; Martin‐
Mikle et al., 2015).

In China, the severe eutrophication problems in Lakes Taihu and Chaohu have received considerable public
attention due to the harmful impact to a large population (Huang, Zhang, et al., 2020). To address these problems,
the government has proposed a series of management strategies (Table S3 in Supporting Information S1) that
heavily rely on the determination of the boundaries of the nearshore areas as well as the priority sites within that
zone. The nearshore areas of the two lakes comprise both highly developed urbanized sites and intensive agri-
cultural land (Figures S1c and S1d in Supporting Information S1), including aquaculture ponds and rice‐wheat
rotation farmlands. Such intensive agricultural activities are particularly prone to high N and P losses, and are
thus conducive to exacerbating lake eutrophication. Remedial measures to mitigate the eutrophication severity
involve the optimization of fertilizer use, seasonal land abandonment for agriculture farmlands, wastewater
recycling for aquaculture ponds, and construction of WWTPs (Huang, Chen, et al., 2020; Jiangsu Provincial
Department of Ecology and Environment, 2017; Yan et al., 2022). However, cost‐efficiency of these actions has
been debated, mainly due to the lack of scientific evidence in establishing precision farming practices, such as
“4R” fertilization strategies (right time, right source, right rate, and right placement of fertilizers). The traditional
shoreline‐buffering approach has an implicit assumption that the areas closer to the watercourses exert a greater
water‐quality control, for which our analysis showed may not necessarily be true as the areas with discernible
impact can be located far from the vicinity of a given lake (Figures S1a and S1b in Supporting Information S1).
The introduction of the hydrological distance into our simple empirical models can be regarded as a relative
weight in calculating the pollutant contribution from a specific watershed sector (Figure 7), and can thus offer
insights into the candidate sites that should be prioritized for the implementation of mitigation measures.

From a modeling standpoint, the most popular practice to estimate the magnitude of non‐point source pollution is
based on sophisticated spatially distributed process‐based models. Their capacity to partition watersheds into
multiple distinct units to capture the spatial heterogeneity of parameters and inputs makes them highly relevant for
source attribution exercises and assessment of land‐use management scenarios (Wellen et al., 2015). Never-
theless, a common approach using distributed process‐based models involves their calibrating them against a
single point, typical a gauging site located at the outlet of the watershed (Wellen et al., 2015), which could
undermine their capacity to accommodate the spatial heterogeneity on topography, land use, soil characteristics,
and human activities within a watershed (Dong et al., 2019; Nossent & Bauwens, 2012). The use of over-
parameterized process‐based models can lead to a convoluted exercise that is confounded by significant uncer-
tainty. Thus, the decision‐making processes can be strengthened by coupling them with data‐driven (or empirical)
watershed models, like those presented in our analysis (Neumann, Dong, et al., 2021). Alongside their capacity to
offer first approximations to characterize critical watershed processes, using parsimonious data‐driven models
can provide a statistically rigorous means to pinpoint unnoticed or newly emerged nutrient “hot spots” or “hot
moments”, as well as critical pathways for nutrient transport (Kovacs et al., 2012; Long et al., 2015). The out-
comes produced by data‐driven watershed models can also be utilized to highlight the need to improve sub-
routines of complex mechanistic models, and to obtain the required data to calibrate, validate and verify them
effectively (Arhonditsis et al., 2019a, 2019b). Thus, our empirical lake‐watershed modeling framework not only
can support a regional assessment for high risk of nutrient export in time and space, but is also conducive to
identifying areas to advance our mechanistic understanding at the catchment level (Neumann, Dong, et al., 2021).
However, our simple empirical models have limited capacity to represent the multitude of hydrological and
biogeochemical processes (surface runoff, groundwater, sediment transport, nutrient cycling, and channel rout-
ing) that determine the fate and transport of nutrients within the studied lake‐watershed ecosystems. To overcome
this weakness, the establishment of model ensembles, coupling data‐driven (e.g., statistical and machine learning)
together with mechanistic models, offers an appealing strategy that can address a wide range of conceptual and
operational uncertainties typically underlying any modeling exercise (Reichstein et al., 2019).

5. Conclusions
A variety of management practices are implemented to mitigate the impact of nonpoint source pollution assuming
their effectiveness is guaranteed in short and long term. However, emerging evidence indicates significant
variability in their outcomes and moderate improvements in nutrient conditions downstream, often considerably
lower than the specific requirements of their expectation. The present study aimed to establish a macroscale
modeling framework that will ultimately connects regional scale (“big picture”) analysis with watershed‐level
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design of management plans of non‐point sources at individual sites in agricultural and urban settings. Our
national‐scale investigation revealed that China's lake nutrient concentrations can be satisfactorily predicted by
watershed attributes, and was particularly sensitive to proxies of natural drivers and anthropogenic activities
within a <45 km hydrological distance. The strength of the human footprint has an impact of the predictive
capacity, as well as the hydrological distance within a watershed context that can be relevant for predicting lake
nutrient levels. The design of optimal nutrient‐control practices has become a cornerstone of the on‐going water
quality remediation measures in China. Therefore, the development of a parsimonious spatially explicit, network
of empirical modeling tools is essential to identify high‐risk areas with elevated pollutant export, and determine
land‐to‐water transport and in‐stream attenuation across a multitude of watersheds in China. Such modeling tools
and their application would enhance our understanding of how land uses and extreme events impact flow regimes
and biogeochemical cycling within a watershed.

Data Availability Statement
The collected data set for our modelling practice is provided in Table S4 of Supporting Information S1 and
available in Huang et al. (2024).
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