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Abstract

This paper investigates toxic algal blooms (TABs) and their management as an example of a complex emerging con-
taminant (EC) problem through the lens of interconnected social, technical, ecological systems (SETS). We use mixed
methods including analysis of a national survey of public drinking water systems and interviews with drinking water
managers and state regulators. For the first time, we extend SETS to the drinking water context to advance a holistic
understanding of the complexity of TABs as a problem for drinking water systems and identify specific intervention
points to ease TABs management difficulty. We find that management challenges arise at the intersection of SET
domains, and often coincide with circumstances where water managers and existing technologies are pushed
outside of their traditional operating spheres or when new technologies are introduced creating cascading SET chal-
lenges. ECs that do not behave like traditional contaminants and pollutants require adapting social and technical
systems to be responsive to these differences. Understanding how management difficulties arise within SET domains
and their intersections will help drinking water managers and state regulators mitigate management difficulties

in the future. These findings have implications for understanding and mitigating other EC management challenges
as well.
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Introduction

Emerging contaminants (ECs) like algal toxins, 1,4-Diox-
ane, 1,2,3-tricholoropropane, nanoparticles, mircroplas-
tics, plasticizers, and pharmaceuticals [68] are ubiquitous
and proliferating globally [78]. ECs in drinking water
may have adverse health effects on humans but are not
regulated in water law [57, 77]. ECs are difficult to man-
age because they often do not conform to the patterns
of existing regulations and analytical techniques aimed
at detecting traditional drinking water pollutants [72].
For example, ECs have the potential to transform and
be transported long distances, creating unforeseen and
uncharacterized chemicals in areas distant from the
source (Machado et al. 2016) whereas drinking water reg-
ulations focus mostly on specific pollutants and contami-
nants not derivatives or mixtures of chemicals and on
protecting source waters from local sources of pollution.
ECs are also challenging because they differ from tradi-
tional contaminants making them difficult to remove
using conventional drinking water treatment technolo-
gies and management practices [32, 75]. Common treat-
ment processes including filtration (sand, activated
carbon) and disinfection (chlorine, ozone) are ineffective
or only partially effective at removing ECs [11, 26, 31, 73].
In some cases, conventional drinking water treatment
practices may make ECs worse. For example, chemicals
used in disinfection can increase the formation of antibi-
otic-resistant bacteria and genes [49, 87].

Calls for greater understanding and management of
ECs in drinking water have advanced understanding. But,
most of this understanding is focused on the technical
and to some extent the ecological dimensions (e.g., bet-
ter detection, treatment and removal technologies, envi-
ronmental fate and transport, respectively) [3, 5, 9, 38, 56,
64, 65, 69, 79, 80, 82]. The human dimensions and their
intersections with technical and ecological dimensions
have largely been ignored. For example, while research
examines the prevalence of antibiotic-resistant organ-
isms in the environment and whether drinking water
systems (DWS) remove them [23, 49, 87], there is less
understanding of how farmer decisions, politics, and
markets interact to increase antibiotic use leading to
the proliferation of antibiotic-resistant organisms in the
first place [44]. Moreover, there is very little to no work
that we know of concerning managers at DWS and how
they make decisions or think about ECs management.
And while there is increasing recognition of the need for
understanding human dimensions of ECs and DWS [42,
43], there is very little actual progress.

We argue a more holistic approach to understanding
ECs and their management in DWS is urgently needed.
To begin to fill this gap we apply a social, technological,
and ecological systems (SETS) [27, 50, 52] lens to explore
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different dimensions and their interconnections using
algal toxins as an example. While scholars have begun to
think about infrastructure, particularly urban stormwater
and flood control systems, as complex, interdependent
SETS [27, 50, 52], to the best of our knowledge, this is the
first application of SETS to DWS.

Water infrastructure as complex, interdependent SETS
SETS emerged to more fully explain infrastructure
dynamics and failures stemming from the un-designed,
non-linear relationships that emerge when one part of
the system (often the technological) is optimized without
consideration of the dynamics between technical, social,
and ecological dimensions which collectively impact sys-
tem performance [50, 81]. This emergence coincided with
a broader evolution in thinking of infrastructure as more
than technological systems and as a primarily human
construct [30, 45, 48, 50].

SETS evolved from two streams of scholarship: one
focused on sociotechnical systems (STS) and another
focused on social-ecological systems (SES). Funda-
mentally, STS views social processes and technology as
mutually constructive, interacting to shape and reshape
each other in myriad ways [6, 10, 39]. While STS deeply
engages social and technological functions and dynam-
ics, STS largely ignores ecological dimensions [2]. SES
emerged from collaborations between scholars in ecol-
ogy and political science seeking to explain unsustain-
able outcomes in the management of natural resources
through the lens of complex adaptive, multilevel systems
[4, 8, 35, 46]. While SES scholarship engages ecosystem
functions and dynamics and social processes equally,
technological dynamics are left to the sidelines [2]. SETS
brings these dimensions together arguing that technol-
ogy shapes and is shaped by human—environment rela-
tionships. This view opens the possibility of approaching
questions not addressed in SES or STS, such as how
system pressures in complex SETS are linked and how
socio-technical dynamics affect and are affected by envi-
ronmental or socio-environmental dynamics [2].

In defining SETS, social systems (S) include actors,
values, knowledge and practices, policy, governance,
and related components, while ecological systems (E)
include natural resources, pollution, and ecological struc-
tures, functions and behaviors [33]. Finally, technological
systems (T) include physical and cyber infrastructure,
expert knowledge, and decision-support (Graboswki
et al. 2017). In addition to S, E, and T, there are intersec-
tions between socio-technical (S-T), socio-ecological
(S-E) and technical-ecological (T-E) dimensions repre-
senting both interconnectivity as well as mutual con-
structions as one-dimension shapes another and vice
versa. Figure 1 is our conceptual model showing DWS
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Fig. 1 Overview of drinking water systems as interconnected social, technical, and ecological and systems (SETS). The arrows at each
socio-technical, socio-ecological, and technical-ecological interaction describe how emerging contaminants (ECs) may impact DWS. Figure adapted

from Markolf et al. [50]

as SETS and illustrating (with arrows) how a SETS lens
may be useful to explore how ECs might impact DWS. As
illustrated, starting with S-T interactions, ECs may not be
regulated and therefore DWS are not required or engi-
neered to remove them nor are DWS required to moni-
tor for them and existing monitoring approaches may not
detect them in source or treated water (respectively, the
S-T, T-E and S-E interactions).

Toxic algal blooms and drinking water

The occurrence of harmful algal blooms (HABs), which
include both nuisance and toxic algal blooms (NABs and
TABs) in surface water bodies, is increasing worldwide
[37, 62, 63]. Many of these surface waters experiencing
HABs are used as a water source for DWS. NABs cause
taste and odor problems but are generally harmless to

humans. TABs are caused by organisms, most often
cyanobacteria, that release toxic chemicals; these tox-
ins, considered a category of ECs, negatively affect both
human and environmental health [7, 14, 15, 24, 25, 40,
41, 55, 60] (Richardson and Kimura 2017). Despite the
presence of TABs in drinking water sources [3, 9, 75] and
in treated drinking water [16, 19, 28, 38], there is no uni-
form federal drinking water regulation for algal toxins in
the US.

While the US federal government (e.g., USEPA) does
not regulate cyanotoxins, TABs outbreaks in drinking
water in Ohio and Oregon [13, 41, 55] prompted state
action. In Ohio, TABs noticeably increased from 2007
to 2012 prompting the state’s Environmental Protec-
tion Agency (OHEPA) to initiate drinking water test-
ing for the algal toxin microcystins (see "US State TABs
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regulations for DWS" section in 2011 (OHEPA 2022).
Microcystin testing alerted officials to problems in Car-
rol Township in 2013 and Toledo in 2014 when cyano-
toxins were detected in the finished water. Four years
later, the same problem happened in Salem, Oregon.
In all three cases, the DWS shut down temporarily to
protect public health [13, 41, 55]. These outcomes were
predictable. Research shows that existing drinking
water infrastructure—whether consisting of conven-
tional or more advanced treatment systems—may be
incapable of completely removing algal toxins [9, 38, 85,
86] and other ECs more broadly [47].

We know that TABs, like other ECs, are difficult to
manage [75]. While TABs management challenges
encompass multiple dimensions, research tends to
focus on a single dimension at a time ignoring impor-
tant intersections and potentially missing critical
insights. Research on the social dimensions of cyano-
toxins in DWS beyond the health impacts is particu-
larly scarce. We aim to fill this gap by learning from
regulatory staff and DWS managers in states with
and without TABs regulations who have experience
with different cyanotoxin monitoring, treatment, and
reporting requirements. Specifically, we use a SETS
lens to gather and analyze data to answer the question
how do human, environmental (e.g., EC behavior), and
technical factors and their interconnections influence
TABs management?

This paper is organized as follows; "US State TABs
regulations for DWS" section provides a brief over-
view of US state TABs regulations. We describe our
mixed methods in "Methods" section and present our
findings in "Results" section. Finally, in the conclusion
we include practical advice for drinking water regula-
tors and managers on how to improve TABs and ECs
management and response, and suggest areas for future
research.
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US State TABs regulations for DWS

Three U.S. states regulate cyanotoxins, at least partially.
These states set regulatory limits (Table 1), require cyano-
toxin monitoring and often recommend (or require)
specific analytical methods for detecting cyanotoxins
(Table 2). These analytical detection methods include
approaches such as enzyme-linked immunosorbent assay
(ELISA), quantitative real-time polymerase chain reac-
tion (qPCR), and liquid chromatography with tandem
mass spectrometry (LC-MS-MS) [14, 15, 36, 60, 83].

Methods

We use mixed methods combining data from a previously
conducted a survey [75] with semi-structured interviews
to understand the experiences, management approaches,
and management challenges with TABs across DWS in
states with and without TABs regulations. We gather and
analyze these data using a SETS lens to answer the ques-
tion how do human, environmental, and technical factors
and their interconnections influence TABs management?
Prior to conducting the research, we secured University
of Michigan Institutional Review Board approval under
HUMO00148793. The research was conducted in accord-
ance with the ethical principles for respect for persons,
beneficence and justice. Respondents provided verbal
consent prior to initiating research.

Survey

We collected data through an online Qualtrics sur-
vey (Qualtrics, Provo, Utah) of U.S. public DWS previ-
ously described in Treuer et al. [75]. For the survey, we
identified DWS using the USEPA’s Safe Drinking Water
Information System database focusing on those that pri-
marily use surface water. In total, 355 water managers
from 42 U.S. states responded out of 3,067 contacted.
The 12% response rate is typical for self-selecting surveys
[74]. Despite the low response rate, respondents were

Table 1 Cyanotoxin thresholds/health advisory levels for treated drinking water in Ohio, Oregon, and Rhode Island, U.S

Region Total Microcystins Cylindrospermopsin Anatoxin-a Total Saxitoxins Reference(s)
(ng/L) (pa/L) (na/L) (ng/l)

Ohio 030 0.7° 03° 03¢ (58]
160 30° 16° 16°

Oregon 0.3° 0.7¢ none none [59]
1.6 3.0°

Rhode Island 03¢ 1€ 20° 0.2° [66]

2 Children less than six years old and sensitive populations
b Action Level

¢ Children six years old or more and adults

9 Infant formula

€ Maximum Contaminant Level
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Table 2 Cyanotoxin monitoring requirements Ohio, Oregon, and Rhode Island, U.S

State/Province Cyanobacteria monitoring and cyanotoxin testing requirements for PWSs

Reference

Ohio

Routine testing (weekly, biweekly, or monthly depending source water microcystins occurrence) of source water (58]

for toxin-production genes (i.e., indicating cyanobacteria present are capable of producing microcystins, cylindrosper-
mopsin, total saxitoxins, or anatoxin-a) is required using gPCR?, followed by cyanotoxin testing using ELISA® if toxin-
production genes are present. Cyanotoxin testing using LC-MS/MS€ is required if detections are greater than 50%

of the toxin threshold
Oregon

Biweekly testing of source water for cyanotoxins (i.e,, microcystins and cylindrospermopsin) is required from May 1 [59]

through October 31 using ELISA, or another EPA-approved method that applies at the time samples are analyzed. Weekly
testing is required if cyanotoxin concentrations are > 0.3 pg/L. For cylindrospermopsin, if detections greater than 0.7 pug/L
are found, samples must be analyzed using LC-MS/MS, or another EPA-approved method that applies at the time sam-

ples are analyzed
Rhode Island

Daily visual monitoring of source waters is required from May through October. Weekly cyanobacteria screening [66]

for genera present and cell count or biovolume information is required if the DWS determines it necessary. Toxin testing
(i.e, for microcystins, cylindrospermopsin, total saxitoxins, or anatoxin-a) ELISA or LC-MS/MS may be required by the RI
Department of Health Director on a case-by-case basis. Toxin analysis using LC-MS/MS is required if total microcystins

exceed the Maximum Contaminant Level

@ Molecular quantitative polymerase chain reaction (qPCR)
b Enzyme-linked immunosorbent assay (ELISA)
¢ Liquid chromatography with tandem mass spectrometry (LC-MS/MS)

representative of the population of DWS based on own-
ership type and size (population served).

The survey consisted of both multiple choice and open-
ended questions on water system characteristics (e.g.,
population served, water source) and their experience
managing NABs and/or TABs. Water managers were
asked if and how often they experience TABs and NABs
events (never, rarely, once every 2-3 years, 1-2 times a
year, more than twice a year, total number of years), when
blooms typically occur (with instructions to select typi-
cal months during the year), and for how long (i.e., how
many days blooms typically last). Water managers were
also asked about TABs management and response includ-
ing where they sample for cyanotoxins (i.e., at the intake,
at multiple depths, at multiple locations), if they have an
algal bloom response plan, and what strategies they use
to manage algal blooms (i.e., watershed management,
preventative measures in the source water, in source
treatment, and in plant treatment). Finally, water man-
agers were asked to describe their management strate-
gies in more depth in an open-ended response question.
NABs and TABs were defined for participants before the
start of the survey. NABs were defined as, “blooms that
negatively impact the taste, odor, oxygen levels, and/or
appearance of water bodies but that do not have high lev-
els of harmful toxins” TABs were defined as those that,
“occur when certain organisms, most often cyanobacte-
ria, grow out of control and release toxic chemicals into
the water. Toxins typically produced include microcyst-
ins, cylindrospermopsin, and anatoxin-a”.

We refer readers to Treuer et al. [75] for detailed quan-
titative survey results summarizing how many DWS
experience TABs, how often, and manager perceptions

about whether TABs are getting worse and if they feel
prepared to handle TABs. Here we use the survey as
follows: 1) to identify interviewees (among those that
experience TABs, see "Interviews and Qualitative Data
Analysis") and "US State TABs regulations for DWS"
sections) to analyze responses to survey questions that
have not been analyzed previously including open-ended
questions about strategies managers use to respond to
HABs and providing a more nuanced understanding
of the interaction between TABs experience and TABs
management difficulty. We describe how we analyzed
these data in the next section and interweave the quanti-
tative survey results with the qualitative interviews in the
results.

Survey data analysis

We used bivariate statistical tests (chi-square and t-tests)
to understand relationships between the type of HABs
experience (TABs experience, NABs experience, and no
experience) and responses to HAB events (e.g., moni-
toring and management strategies). For the open-ended
question, two co-authors independently coded responses
into fifteen management categories (e.g., Change Source,
Selective Withdrawal, Prevent in Lake, Use Algaecide,
Conventional Treatment, Adjust Flow, Oxidize, Per-
manganate, Chlorination, PAC, Use Advanced Technol-
ogy, Nutrient Management, Increased Sampling, Clean
Filters, None) to understand the diversity of manage-
ment options used for NABs and TABs. The categories
were developed inductively based on common manage-
ment strategies described by survey respondents in their
open-ended responses [12, 54, 67] and were detailed in
a codebook [20] (see Supplemental Information). We
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assessed intercoder reliability in two ways— consistency
of judgment over absence and presence and consistency
of judgement across the two independent coders. Results
indicated > 95% agreement and were deemed satisfactory
[12, 54, 67].

Interviews and qualitative data analysis

Between May and August 2019, we carried out 24 in-
depth interviews with water regulators (from five US
states and one Canadian province) and water managers
(from seventeen water systems across eight U.S. states
with and without cyanotoxin regulations) using an inter-
view guide (see Supplemental Information). Interviews
helped us understand in more depth the challenges and
complexities of TABs management and response using a
SETS lens. We identified water regulators through inter-
net searches in states with TABs regulations and then
snowballed to have representation from states with and
without TABs regulations. We identified DWS interview-
ees through a random sample of our survey respondents
who indicated they had TABs experience and via snow-
ball sampling of interviewees. We aimed for variation in
TABs experience, geographic coverage, and population
served among the interviewees. In total, we identified and
contacted 61 individuals from 22 different U.S. states, of
which, 24 agreed to be interviewed, a 39% response rate.

We conducted interviews by phone, lasting on aver-
age 42 min (ranging from 17 to 70 min). We asked state
regulators about their state’s overall TABs experience,
cyanotoxin regulations, if applicable, ease or difficulty
in managing TABs, using follow-ups as needed to probe
for human, environmental and technical difficulties (or
lack thereof), and amount and type of collaboration with
different entities around TABs management. Collabora-
tion was theorized to ease TABs management in prior
research [75]. We asked water managers at DWS about
their TABs experience, concerns, and ease or difficulty
in managing TABs as well as about the regulatory envi-
ronment for cyanotoxins, including cyanotoxin monitor-
ing, testing and treatment. As with state interviewees, we
used follow-ups as needed to probe human, environmen-
tal and technical difficulties (or lack thereof). We report
evidence from interview and survey respondents using
codes, where S =state interviewee, SU=survey respond-
ent, and U=drinking water manager, followed by num-
bers to indicate the first, second, or third interviewee or
survey respondent.

We recorded and transcribed [29] the interviews, and
then two authors independently reviewed and coded
the transcripts using qualitative data analysis soft-
ware NVIVO 11 (QSR International, Burlington, Mas-
sachusetts, USA). Intercoder reliability was assessed
in the same way as previously described for coding of
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open-ended survey questions and likewise determined
to be satisfactory (>95% agreement) [12, 54, 67]. In
addition to general questions about TABs experience,
we coded responses to the following questions: In your
opinion, how difficult is it to manage or remove cyano-
toxins? Have you experienced any challenges in moni-
toring or testing for cyanotoxins in your source water? If
so, how have you addressed those challenges? Have you
encountered any issues in communicating with the pub-
lic or regulators about cyanotoxins? Themes emerged
during coding spanning a range of technological (moni-
toring and treatment), social (perceptions of difficulty,
regulatory compliance, knowledge, communication),
and ecological (organism behavior) dimensions as well
as interconnected challenges and solutions (for the code-
book, see Supplemental Information).

Results

DWS managers with and without TABs experience

About a fifth the 355 water systems in our sample expe-
rienced TABs [75], these managers reported TABs occur
for 3.0+ 1.7 months per year typically from July through
September. Water managers also reported that when
TABs occur, they last anywhere from 1 to 120 days with a
median of 14 days.

Of the 18 DWS managers interviewed, the major-
ity (77.8%) experienced TABs including not just in
their source water but also within the water treatment
plant (12 of 18) and in the finished water (1 of 18). Of
the fourteen interviewees with TABs experience, eight
DWS managers detected total microcystins in their
source waters, making microcystins the most detected
cyanotoxin. Two managers detected cylindrospermop-
sin, two detected anatoxin-a, and only one DWS man-
ager detected saxitoxin. Three additional water systems
reported that they detected cyanotoxins in their source
water but did not identify a specific toxin.

Interviews with six state water regulators painted a
similar picture with microcystins being the most fre-
quently detected cyanotoxin followed by cylindrosper-
mopsin. One state regulator reported 60% of systems
found microcystin in the raw water while another state
reported that 8 out of 10 DWS asked to test for micro-
cystin found the cyanotoxin in their source water. The
following sections use the interview and survey data
to describe in detail the SETS challenges water manag-
ers face in dealing with TABs and how water managers
address those challenges.

Social dimensions and intersecting socio-technical

and socio-ecological dimensions

Regulations that establish toxin limits can both help
and hinder TABs management. Some water managers
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in states with cyanotoxin regulations (e.g., Oregon and
Ohio) reported challenges with regulatory compliance
early on, specifically in soliciting help from state regula-
tors to aid in compliance— “...it was like the blind lead-
ing the blind” (U3), and in keeping up with the frequency
of regulatory changes (U6). Surveyed water managers
agreed with this general lack of expertise at the state on
how to handle HABs (SU19). Also, because cyanotoxin
regulations usually focus on either total microcystin or
microcystin-LR, other toxins (e.g., microcystin cogen-
ers, cylindrospermopsin, anatoxin-a, and saxitoxin) are
not regulated. This is a challenge because DWS manag-
ers detect not only regulated toxins like microcystin and
cylindrospermospin in source waters, but also unregu-
lated ones including anatoxin-a or saxitoxin (U18). Other
water managers reported regulations provided certainty
that helped ensure public trust in the safety of their water
supplies. For example, water managers reported that
new cyanotoxin regulations help by providing a limit
(U7), which gives, “..water customers more confidence
that their drinking water is safe to drink” (U4). Table 3
summarizes how social interventions (e.g., regulations)
impact TABs management difficulty across social, socio-
technical, and socio-ecological dimensions.

Along with establishing limits for cyanotoxin in drink-
ing water, regulations also establish requirements for
cyanotoxin monitoring and reporting (Table 2) that can
make management more (or less) difficult. On the one
hand, management is more difficult because cyanotoxin
monitoring is not as easily incorporated within the stand-
ard contaminant monitoring framework for DWS and
because monitoring does not always yield predictable
results. Water managers test for cyanotoxins more fre-
quently than is normally required for other chemicals
and toxins (S2). Among surveyed systems, water man-
agers with TABs experience did more routine sampling
(i.e., at multiple depths and/or at multiple locations) than
systems with NABs or no HABs experience (i.e., lim-
ited sampling to one location, the water treatment plant
intake) (x*=22.641, N=355, p<0.0001). Despite all the
monitoring, for most (88%) of surveyed water manag-
ers, monitoring results did not yield clear information
for TABs management. Statements from managers range
from being unable to detect distinct patterns to predict
if a bloom will produce toxins (U9), to knowing very lit-
tle about when toxins are produced (S6) and struggling
to understand species’ type as source water quality is
dynamic (U2). For example, managers mentioned that, “If
you take five different samples in the lake, you will get five
different readings. Toxin levels vary greatly from location
to location” (U4), or “..[toxin levels are] never the same
in two different places” (U7),".. you could have a bloom
that’s toxic, and one right down the lake from it that’s not
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toxic..” (U14), and a bloom can happen “... overnight and
then suddenly [there is] a toxin in the source water” (S1).
Results exemplify the difficulty in using current monitor-
ing protocols and tools to predict when blooms occur,
which species will dominate a bloom, and if the organ-
isms present will produce toxins.

But regulations requiring monitoring could also ease
management difficulty partly because some managers
are able to invest in improved monitoring equipment and
are able to learn from experience from monitoring over
time. State regulations enabled investment in cyanotoxin
management and response such as improving lab test-
ing methods (U18) or access to equipment — specifically,
qPCR (quantitative polymerase chain reaction) (U3) to
help determine if the cyanobacteria present can produce
toxins or not. Managers in states without regulations
are less able to justify the costs to improve TABs man-
agement without a regulatory push (U13). Accumulating
data over time also helps. Two managers described using
phycocyanin fluorescence, a technique that detects light
emission from phycocyanin [60], a pigment in cyanobac-
teria and an indicator of cyanobacteria biomass. “Phyco-
cyanin seems to be a big indicator of harmful algae... what
we've seen over the past three years is that every time our
Pphycocyanin level actually gets above the chlorophyll level
in the raw water... [we] see a spike in our microcystin...
in our raw water” (U15). Another used microscopy to
identify and quantify algal species over time to under-
stand when certain species present at certain amounts
are associated with cyanotoxin detection. Eventually one
can begin to detect toxins at certain levels and establish
thresholds for future monitoring (U6). Ongoing monitor-
ing of TABs over time may help some managers under-
stand organism behavior and improve management;
however, this may be context specific and counter intui-
tive. For example, we found that DWS that experienced
TABs more often (once every 2—3 years or more often)
versus rarely, reported TABs as more difficult to manage
(mean="7.44) compared to those who experienced them
less often (mean=6.24, p <0.05).

In addition to anticipating whether a bloom will pro-
duce cyanotoxins or not, water managers need to rec-
ognize if the toxin is intra- or extra-cellular to inform
treatment decisions [21]. While some water managers
are equipped to identify whether the toxin is intracellu-
lar or not and conduct tests weekly to make this deter-
mination (U12), others lack this capacity (U17). Water
managers who can identify where the toxin is either
inside or outside the cells use that information to make
decisions about their treatment process and whether
the goal is to remove the toxins or to remove the cells
(U17). Conversely, water managers who cannot distin-
guish intra- or extra-cellular toxin, must be conservative
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in their treatment approach, e.g., using chemicals such
as powered activate carbon as a precaution, resulting in
unnecessary treatment costs if there is no extracellular
toxin present (U8). Needing to determine whether toxin
is inside or outside of cells is yet another monitoring pro-
cess outside the norm of managing typical contaminants
and pollutants drinking water.

State regulations often recommend or require that
water managers use specific cyanotoxin tests or meth-
ods like ELISA, LC-MS/MS, or qPCR (Table 2); yet the
complexities in performing tests and obtaining reliable
results, as well as the limitations in what cyanotoxins
tests can detect, presents a challenge for water manag-
ers. For example, the ELISA test is widely used by water
managers to test for toxin presence and to estimate how
much total microcystins is in the water. However, water
managers reported that, “the Abraxis [ELISA] presence/
absence field test strips [for Rapid Contaminant Detec-
tion]...” are difficult to use (Ul) and results were incon-
sistent and inaccurate (U11). Even automated cyanotoxin
testing systems like the Cyanotoxin Automated Analy-
sis System (CAAS) for ELISA, meant to ease the testing
burden, can be challenging to use, requiring steep learn-
ing curves (U17). Another challenge with ELISA is that
it cannot differentiate between individual toxin variants
[60, 83]. For example, one state water manager noted
ELISA cannot test for different forms or derivatives of
microcystins, and, even if it could, state regulators do not
know all the different cyanotoxin forms out there (S6).
Finally, test results can be difficult to use for regulatory
compliance when cyanotoxin levels are hovering around
the minimum detection level. This is because the lower
regulatory level limit and detection level for cyanotoxin
are the same. For example, the ELISA test has a mini-
mum cyanotoxin detection level of 0.3 pg/L for micro-
cystins, which is the same as the lower total microcystins
threshold (0.3 pg/L) for states with cyanotoxin regula-
tions (see Table 1). For water managers this means that
ELISA is a useful screening tool for the presence of tox-
ins, but because the detection level (0.3 pg/L) is the same
as the health advisory level for young children (under
school age), getting a positive results means the water is
already a risk for children. One manager stated the chal-
lenge succinctly, “ELISA doesn’t give you any warning..”
that cyanotoxins are in the water before it is already a
problem (U6). While other methods can quantify toxin
amounts (i.e., LC-MS/MS) and screen for the presence
of toxin producing genes (i.e., qPCR) [17, 22, 60, 61], both
are more expensive and require more technical expertise
to perform than ELISA.

Not all DWS required to conduct cyanotoxin testing
have the capacity for in-house testing; without in-house
testing capacity, these DWS often ship their samples to
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an outside certified lab resulting in delayed test results.
For example, one DWS reported they must ship samples
across the country requiring on average seven days for
results (U1), which is frustrating in the middle of a cri-
sis (U11). Another manager indicated they experience
significant delays, getting their results back “..maybe a
month or more..” after sample collection (U13). The defi-
ciency of accredited labs able to do cyanotoxin testing
further exacerbates the problem (S6).

Finally, while most states do not establish limits for
cyanotoxins nor require routine monitoring for cyano-
toxins, some states do provide guidance to DWS such
as recommending visual inspection as a way to deter-
mine water source quality (S5; [83]),however, visible
blooms (bluish-green, brown, or purple color, surface
scum, cloudiness) are an unreliable method of determin-
ing the presence or absence of cyanotoxins [18]. Indeed,
interview and survey data suggest that water managers,
in states without cyanotoxin regulations, often rely on
visual inspection to decide whether to test their source
water for toxins. For example, a survey respondent said
they are trained to recognize possible HABs, and only
test for cyanotoxins if a visual bloom is present (SU20).
When a bloom is present then they test for toxins using,
“..test kits for microcystin [and]... an ELISA plate reader
to mounitor for toxic algae” (SU20). Similarly, an inter-
viewee said, “If we were to see a massive bloom... that
might be an indication, we'll do testing [for cyanotoxins]”
(U13). Yet, relying on visual cues could cause toxins to go
undetected, putting water customers at risk. For exam-
ple, one water manager detected toxins during routine
monitoring without a visible bloom (U1), acknowledging
that visual inspection is not the best approach (U4). This
is consistent with Christensen et al. [18] who sampled
cyanotoxins before and after a bloom noting the pres-
ence or absence of a bloom did not align with the absence
or presence of cyanotoxins. With no mandate to moni-
tor, cyanotoxins seep into source water, posing a threat
to public health. Table 3 summarizes how interven-
tions in the social dimension (i.e., regulations) increase
or decrease TABs management difficulty across social,
socio-technical, and socio-ecological dimensions.

Technical dimensions and intersecting socio-technical

and socio-ecological dimensions

For conventional treatment plants, having the ability to
adjust chemical feed rates (e.g., powdered activated car-
bon (PAC), chlorine, chloramine, chlorine dioxide) and/
or flow rates through the water treatment plant, gives
water managers flexibility to treat cyanotoxins. This
flexibility, however, has limits and can also create other
problems. For example, some managers increase chlorine
contact time from 7 or 8 h a day, to 13 or 14 h a day in
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hopes of reducing toxicity (U8). While increasing chlo-
rine contact time allows the chlorine to oxidize cyano-
toxins (Merel et al. 2020), not all cyanotoxins respond
in the same way. Increasing chlorine dosing and con-
tact time is effective at reducing toxicity of microcystin
and cylindrospermopsin but not anatoxin-a, due to its
slow reaction kinetics [53]. Chorine is also ineffective if
the toxin is intracellular, as “...whole cells ... protect [the
toxin] from chlorine by being still enclosed by the cell
wall” (U3). Adding too much chlorine or increasing con-
tact time too long can cause other problems, in particu-
lar increasing disinfection byproduct (DBP) formation,
which in turn, may put water managers at risk of violat-
ing DBP limits established under the Safe Drinking Water
Act. One water manager noted that, “... because I keep a
free chlorine residual so high... I form a lot of disinfection
byproducts in my system... it puts me over [the limit for]
disinfection byproducts... (U15). Thus, water managers
must manage algal blooms, while trying to prevent DBP
formation (SU22). Table 4 summarizes interventions
in the technical dimension (e.g., process flexibility, new
treatment processes) that can increase or decrease TABs
management difficulty across technical, techno-social,
and techno-ecological dimensions.

For most DWS, treatment plants offer limited or no
flexibility. For example, complete toxin removal using
PAC that adsorbs extracellular toxin often requires high
PAC dosing amounts (i.e., more than 20 mg/L) [76].
However, PAC is expensive and not all DWS can afford
to dose at high levels for extended periods of time (U11),
nor can some water systems handle high PAC dosing for
extended periods (U11,SU23). Others have no flexibility
to adjust their chemical feeds or plant flow rates. Two
water managers interviewed indicated that, “..chlorine
contact time is [fixed and is] only 20 min,” so, if toxin con-
centrations are too high, there is not much they can do
to reduce toxin amounts using the treatment plant (U2;
SU21).

Water managers equipped to identify the type of cyano-
bacteria and whether the toxin is intra- or extra-cellular
can make more informed treatment decisions (e.g., to
lyse cells and treat the extra-cellular toxin or leave the
cells intact and remove them via filtration); nevertheless,
each option comes with limitations and challenges. Pur-
poseful lysing works well for Microcystis because these
cyanobacteria lyse easily with permanganate (U4), allow-
ing water managers to treat the extra-cellular toxin if they
have the capability to add PAC and chlorine and so long
as they manage DBP formation. Other cyanobacteria like
Planktothrix, which has a “hardy cell wall’, do not lyse
easily and are often removed whole as explained by this
water manager, “...[Planktothrix]... is easier to remove
the whole cell and with it the cyanotoxin concern” (U4).
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For this particular DWS shifting treatment to remove
whole cells required upgrading clarifiers at considerable
cost from what were traditional gravity settling clarifiers
to new dissolved air flotation units capable of removing
floating Planktothrix.

Removing whole cyanobacteria creates other potential
challenges both within the plant and with sludge handling
and disposal. First, intact cells may produce toxins within
the treatment plant, particularly in the sludge beds and
clarifiers as noted by this water manager, “...there’s been
a few studies now that show you can have growth within
sludge beds. You can have growth within your clarifiers.
So, you can be producing the toxins within your plant..”
(U1). The potential for producing cyanotoxins within a
plant complicates treatment. Second, if cyanobacteria are
kept whole, then the sludge produced by the treatment
process is assumed to be toxic and, as such, requires a
different, more costly management approach. The poten-
tial for producing cyanotoxin contaminated sludge has
reshaped how water managers deal with sludge, as noted
by this water manager, “Most of our sludge is actually lime
sludge. So, we were putting it on farmland,” but after expe-
riencing TABs, “... it was recommended that... the sludge
be tested for microcystin if we see it in our raw [water]”
(U15). Now, “.. We totally removed it from farmland and
went right to landfill with all our sludge” (U15). Another
water system producing sludge with, “...a lot of lime and
cyanobacteria solids... won’t be able to lagoon them like
we do now;” but instead will, “...thicken the solids to about
15% water... mix that with fuel and burn it to get rid of
the cyanotoxin contaminated solids. It won’t be cost neu-
tral but it will solve the problem” (U4). Of course, in states
without cyanotoxin regulations, the potential for toxin
contaminated sludge is not a consideration.

Social dimensions that challenge water managers

Water managers who encounter cyanotoxins, or risk
detecting them in their drinking water, struggle to com-
municate with water customers about cyanotoxin risks
because risks vary depending on the population exposed
and because decisions to limit risk can erode public trust
in drinking water. One water manager captured the com-
munication challenge noting the different regulatory
limits for different age groups “...is hard to explain to the
public” (U10). Another manager expressed their frustra-
tion saying, “How do you say [to the public that] it is not
okay for a 6-year-old to drink the water, but a 6.5 year old
or a 7 year old...is fine?” (U3). Even more complicated
for water managers is issuing a ‘Do not Drink’ or ‘Do not
Consume’ advisory if cyanotoxins are detected in the
treated water. Water managers explain that such declara-
tions can erode public trust in drinking water supplies:
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.. if we see cyanotoxins... in finished water it’s a
‘Do Not Consume; which is a huge issue for a util-
ity. ... in terms of the logistics ... But also, in terms
of consumer confidence in the utility. Which is a
really long-lasting impact...” (U1).

This became a reality for a water system that issued
a ‘Do Not Drink’ advisory as recommended by their
state regulator after finding cyanotoxins in their fin-
ished (i.e., fully treated) drinking water. Referring to
this event, a water manager at a nearby water system
noted that although the utility, “... did the right thing
and reported what they found with the toxins... they
received some really bad press because of it” (Ull).
Another water manager nearby said that the cyanotoxin
violation by their neighbor utility decreased customers’
trust in their water despite not having any cyanotoxin
violations themselves (U3). To help build public trust,
this water manager proactively met with their water
customers to help them better understand the risks and
safety of their water supply:

“We try to communicate with our customers as
often as we can. ... If someone calls us up with an
issue with their water or how it tastes, we go to
their house. We put a face to the organization. It
helps to build trust” (U3).

In addition to better communication around an event,
some water managers increase overall transparency to
proactively build public trust. For example, one water
system noted their toxin levels in raw and finished
waters is available on the state regulator’s website for
the public to see (U4). Another manager said that they
disclose warnings and toxin levels in their Consumer
Confidence Report, and regularly update their website
with information on drinking water quality (U11). Both
water managers suggested that being more transparent
with toxin data lets the public know that they are not
hiding anything. Despite these approaches, our results
suggest communication can both help and hinder TABs
management difficulty (see Table 5).
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Discussion

While TABs management challenges encompass mul-
tiple dimensions, research tends to focus on a single
dimension at a time ignoring important intersections
and potentially missing important insights. For example,
research focusing on technical dimensions finds chlo-
rine is effective at oxidizing some but not all cyanotoxins
(Merel et al. 2020). But this insight alone is not enough
to help DWS seeking to manage TABs. This is partly
because DWS managers must first identify which algal
toxins are in the source water (and whether the toxin is
intra- or extra-cellular) and if the particular algal toxin is
amenable to oxidation (T-E dimensions). If the toxin can
be oxidized (T-E dimension), and if the treatment plant
can accommodate additional dosing or contact time (T
dimension), then DWS managers may employ this strat-
egy. However, from interviewees using this strategy, we
learned that increased chemical dosing can cause other
problems such as increasing other contaminants (e.g.,
DBPs) [84] that risk SDWA violations and raise treatment
costs (S-T dimension). We also learned that not all DWS
managers have the capacity to identify specific algal tox-
ins (S-T dimension). This suggests that purely technical
information and solutions when applied in a real-world
context, are insufficient because ecological stressors
(cyanotoxins) interact with socio-technical systems in
dynamic ways (i.e., DWS managers use technology to
identify and treat cyanotoxins (e.g., using high levels of
oxidizers like chlorine) to protect public health but cre-
ate carcinogens (e.g., disinfection by products at too high
amounts harmful to public health and violate drinking
water regulations).

Similarly, other technical-focused research suggests
most existing drinking water infrastructure cannot com-
pletely remove algal toxins [9, 38, 85, 86]. While this is
an important insight, conversations with DWS man-
agers helped to disentangle how treatment challenges
manifest in practice and how they intersect with SETS.
For example, whether the cyanotoxin is intra- or extra-
cellular and the type of cyanobacteria matters, though
not all DWS managers have the capacity to determine

Table 5 Interventions in the social dimension (e.g., communication) that can increase or decrease TABs management difficulty

Interventions

Social Dimensions

Management Difficulty

Increased

Decreased

Social Dimensions  Communicating about cyanotoxins

trust

- Communicating about risks that vary
depending on the population at risk
« Issuing do not drink advisories erode public

- Proactively meet with water customers
to explain risks
- Proactively disclose toxin levels and warnings
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specifics about their TABs to inform treatment (T-S
dimension). With intracellular toxins, we learned that
treatment processes that leave cells whole can be effec-
tive initially; however, complications arise when intact
cyanobacteria produce toxins inside the plant as well as
when dealing with sludge contaminated with cyanotox-
ins (E-T dimensions). Indeed, research shows that par-
tially oxidized cells retained on a filter surface or in solids
can continue to release toxins into the finished drinking
water [34] or worse, break through filter media and end
up in the finished water [88]. Dealing with these compli-
cations requires additional testing (for toxins within the
plant not just in the source water and for testing sludge
for toxin contamination) and disposal costs (for toxic
sludge) (T-S dimensions) and potentially expensive new
treatment processes to remove toxic algae. Interview-
ees noted the added monitoring costs as well as chemi-
cal and waste disposal costs associated with cyanotoxin
treatment are not insignificant and can quickly eat up
annual operating budgets. These costs are often passed
onto consumers in the form of increased drinking water
costs. A recent report documented rising costs of drink-
ing water in Toledo resulting from increased monitoring
with households paying nearly $100 more per year for
drinking water [1]. Again, this example shows how eco-
logical stressors (cyanotoxins) interact with technology
and socio-technical systems creating cascading impacts.
Approaching the problem from a more holistic SETS lens
helps to illuminate these interconnected SETS issues that
scholars and drinking water practitioners may otherwise
overlook if focusing only on one dimension or consider-
ing only STS or SES.

Just as technical dimensions focused research is insuf-
ficient, social dimensions focused research too provides
an incomplete picture of the range of challenges man-
agers face. For example, Treuer et al. [75] concluded
that the lack of federal regulations increases manage-
ment difficulty by leaving DWS managers unprepared if
TABs occuryet, our in-depth study revealed regulations
both increase and decrease TABs management difficulty.
Using a SETS lens, we find that regulations can help ease
management difficulty by providing certainty and help-
ing to justify investments in new technologies and equip-
ment to improve management. Regulations can also ease
customer concerns about the quality of drinking water
both of which are social dimensions issues. However, we
found regulations also increase management difficulty
particularly while DWS managers and state regulators
learn and adjust. Management difficulty is also increased
because regulations requiring monitoring are challenging
to implement as TABs monitoring is not easily integrated
into ongoing monitoring programs. Established moni-
toring programs are akin to sociotechnical structures,
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resilient until they become destabilized [70]. In this case,
the destabilization comes from the ecological dimension.
Unlike conventional contaminants and pollutants that
are well characterized by routine monitoring, cyanotox-
ins require non-standard monitoring approaches and
organism behavior is difficult to predict [60, 83]. Consist-
ent with He et al. (2016), cyanotoxin tests are difficult to
use, and results are sometimes difficult to interpret, fur-
ther challenging efforts to establish new sociotechnical
structures for monitoring. These two challenges might
help explain our finding why new monitoring require-
ments did not lead seamlessly to improved TABs decision
making. Dealing with unfamiliar ecology and unfamiliar
technology makes it doubly hard for water managers to
find their footing in the SET system. Finally, communi-
cating cyanotoxin risks to the public is challenging for
water managers given the complexities of the contami-
nant and what we know about who is at risk and when.
Thus, regulations, in some cases, may actually increase
TABs management difficulty, largely because of inter-
acting SETS factors that undermine the DWS managers’
ability to make informed TABs management decisions.

While not having regulations is associated with fewer
TABs management challenges, interviewees indicated
that states often advise DWS managers to rely on visual
inspection of source water quality to decide whether to
test for toxins (also noted in Yeager & Carpenter [83]).
Yet, visible blooms are an unreliable indicator of the
presence or absence of cyanotoxins [18] and reliance on
visual inspection may mean cyanotoxins go undetected
putting public health at risk. Likewise, if DWS managers
do not perceive cyanotoxins to be a problem for their sys-
tem, toxins may go undetected putting public health at
risk [51, 71, 75]. Moreover, toxic algae may contaminate
sludge, and for states without cyanotoxin regulations,
contaminated sludge may be unknowingly spread onto
farmland or other land areas used for sludge application
and disposal.

Conclusions

In this paper we investigate TABs and their management
as an example of a complex EC problem through the lens
of interconnected social, technological, and ecological
systems (SETS). We use mixed methods including new
analysis of a national survey of public drinking water
systems and interviews with drinking water managers
and state regulators to advance a holistic understanding
of TABs management in drinking water systems, extend
SETS to the drinking water context, and identify specific
intervention points to ease TABs management difficulty.
We aimed to uses insights from our investigation of TABs
to inform broader considerations of ECs management.
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We build on prior research that found TABs are dif-
ficult for water managers to deal with and offer a more
nuanced view of what makes TABs harder or more dif-
ficult to manage. Our analysis suggests that rather than
making TABs management easier as we might intuit,
cyanotoxin regulations (S dimension) can increase man-
agement difficulty. Challenges arise at the intersection of
SET domains, as unfamiliar ecology intersects with new
testing methods and protocols, established treatment
approaches, and spawns communication challenges.
Challenges arise with testing in part because traditional
routine monitoring does not work for cyanobacteria.
Rather, testing occurs more frequently than routine test-
ing is typically performed, is more difficult to do, and test
results may not be automatically helpful (intersecting
SETS domains). Treatment is also challenging. Treatment
challenges stem in part from the need to adapt existing
infrastructure—designed to remove conventional pol-
lutants and contaminants—to remove unconventional
biological toxins. For some water systems, treatment sys-
tems are less flexible making it more difficult to increase
chemical dosing amounts or to add or change chemicals
used in the treatment process. And, for some systems,
adjusting treatment processes to remove toxins or cells
can cause other problems (e.g., forming regulated car-
cinogens in drinking water, toxin production within the
treatment process, toxic sludge). Treatment challenges
like these increase TABs management difficulty. Finally,
complex ecologies intersect with regulations and testing
limitations confounding communication with the public
about who is at risk and when.

TABs management is made easier, when there are fewer
intersecting SET domain issues. For example, in states
where cyanotoxin regulations provide certainty, water
managers invest in treatment and testing (S-T domain).
In turn, when such investments are themselves not dif-
ficult to manage (i.e., treatment and testing are doable)
(S-T domain), testing produces good information for
decision-making (S-T domain) and treatment results in
good quality drinking water (E-T domain), making TABs
management easier. Finally, good outcomes and open and
transparent communication with the public, improve
public trust of drinking water (S domain), making TABs
management easier.

While not having regulations is associated with fewer
TABs management challenges, our research suggests
that toxins may go undetected putting public health at
risk [51, 71, 75]. Moreover, toxic algae may contaminate
sludge, which may be unknowingly spread onto farmland
or other land areas used for sludge application and dis-
posal spreading toxins far from source waters. In areas
where TABs are emerging or increasing, new regulations
protective of public health may be a prudent step if there
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are also provisions for financial assistance to water sys-
tems to make investments needed to comply with those
regulations and provided these investments help moder-
ate drinking water rate increases to avoid undue financial
burden on residents. Absent new regulations, increasing
surveillance for cyanotoxins in drinking water sources
could help identify where toxins are of greatest concern
enabling targeted next steps.

Prior research on ECs and TABs in particular mostly
focus on a single dimension, often technical and this over-
simplifies both ECs as a problem and the effectiveness of
potential solutions. We identify a range of intersecting
SET factors associated with TABs difficulty. We find that
management challenges arise at the intersection of SET
domains, and often coincide with circumstances where
water managers and technologies are pushed outside of
their traditional operating spheres. Understanding how
management difficulties arise within SET domains and
their intersections may help DWS and state regulators
mitigate management difficulties in the future by thinking
more holistically about their response. For example, facili-
tating learning around monitoring and regulatory compli-
ance when issuing new regulations or modifying existing
regulations would help lower SETS challenges. This kind
of training is regularly provided when the USEPA issues
new regulations, such as those for PFAS. But states may
need more assistance in providing effective training pro-
grams particularly when managing for ECs that may not
behave like conventional pollutants and contaminants and
when monitoring and testing are also new and different.
Leaning into evidence-based approaches like peer-to-peer
learning can help as well as sharing both challenges and
successes can aid DWS managers improve TABs and ECs
response more broadly.

Future research is needed that applies SETS to other
emerging contaminants to understand ECs and their
management more holistically and to explore whether
and how intersecting SETS increase (or diminish) man-
agement challenges. Within TABs research, interven-
tions aimed at reducing SET domain issues such as
improving TABs prediction (T domain) and testing tools
(T domain) or providing training to improve communi-
cating TABs risks with water customers (S domains) or
reducing intersecting SET issues (e.g., training for test-
ing coupled with better tests) could be assessed for their
effect on reducing TABs difficulty.
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