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ABSTRACT 1 

Network-wide traffic prediction at the level of an intersection can benefit transportation systems 2 
management and operations. However, traditional traffic modeling approaches relying on 3 
mathematical or simulation-based models are either less useful or require higher computational 4 
time in predicting high fidelity traffic volumes. In addition, these frameworks need to be modified 5 
to ingest large-scale data (such as automated traffic signal performance measures) available from 6 

intersections. To overcome these challenges, in this study, a data-driven method based on a deep 7 
learning architecture has been developed for network-wide intersection-level traffic prediction. 8 
The study has tested two deep learning architectures: Graph Convolutional LSTM (GCN-LSTM) 9 
and Graph Convolutional Encoder Decoder LSTM (GCN-Encoder-Decoder) model to predict 10 
intersection-level hourly traffic movement volumes over multiple time steps (e.g., 4-hour 11 

sequence). Such deep learning architectures capture the spatiotemporal cross correlation among 12 

network wide traffic features while learning the patterns in traffic movement volumes. To test the 13 

model performances, we have fused data from multiple sources such as travel demand data, built 14 
environment characteristics etc. We have extracted 1-year (2016) of traffic movement volume data 15 
from Seminole County’s automated traffic signal performance measure (ATSPM) database. 16 
Experiment results show that the developed GCN-LSTM model outperforms all the other baseline 17 
models. The absolute difference between actual and predicted volumes are quite low (GEH<5); 18 
for right turn, through and left turn movement RMSE values are 4.02, 59.37, and 2.47, respectively. 19 
The R2 score of the model is 0.98, which indicates that the model can capture the spatiotemporal 20 

variations of traffic movement volumes very well.  21 

Index Term – Network model, artificial intelligence, traffic prediction, ATSPM 22 

1. Introduction 23 

Network-wide traffic prediction can benefit transportation systems management and operations 24 

including measuring traffic signal performance, optimizing signal timing plans, and managing 25 
incidents. Typically, traditional mathematical or simulation-based network modeling approaches 26 

have been applied to estimate traffic flows (Peeta and Ziliaskopoulos, 2001; Yi-chang et al., 2011). 27 
Although these approaches produce reasonable solutions for traffic prediction problems, the 28 
complexity and computation time required to implement such models make them less suitable for 29 
real world applications such as real-time link flow or intersection-level traffic volume prediction. 30 

In addition, these frameworks need to be modified to ingest large-scale data (such as automated 31 
traffic signal performance measures) available from intersections. 32 

Ubiquitous use of sensing technologies such as probe vehicles, roadway detectors, and social 33 
sensors has created an opportunity to overcome these challenges and implement deployable 34 

modeling approaches to predict traffic at a higher resolution such as the level of an intersection 35 
(i.e., direction wise and movement wise). However, large-scale network level traffic forecasting is 36 

more challenging due to higher computational complexity because of network size. For this 37 
purpose, a robust prediction model is required with the ability to capture spatial correlation of 38 
traffic among adjacent roads and learn driver route choice behavior from high resolution data.   39 

In recent years, researchers are exploring different data-driven approaches for traffic prediction. 40 
However, existing data-driven approaches have several limitations such as, they predict only short-41 
term traffic states (speed, flow, travel time) (Billings and Jiann-Shiou, 2006; Chen et al., 2021; 42 
Deshpande and Bajaj, 2016; Lee, 2009; Vlahogianni et al., 2014; Wu et al., 2004; Yu et al., 2016) 43 
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for one or multiple segments of highways, but not at the scale of a network (Gu et al., 2019; 1 
Rahman and Hasan, 2018; Saroj et al., 2021; Song et al., 2018). Moreover, these approaches do 2 

not consider features related to travel demand and land use when predicting future traffic. As such, 3 
these approaches consider traffic prediction as a simple time series problem and predict traffic 4 
state for a shorter time horizon (e.g., next 5 to 60 mins). 5 

To overcome the limitations of existing data-driven methods, we develop a new modeling 6 

framework for intersection-level movement volume prediction for a large-scale network. We 7 
develop a graph convolution based deep learning model to predict traffic movement volume by 8 
capturing the correlation between demand features and traffic flow patterns of a transportation 9 
network. To test the model, we have collected Automated Traffic Signal Performance Measure 10 
(ATSPM) data and zonal-level travel demand data for Seminole County, Florida. This study has 11 

made several contributions: 12 

• It develops a data pipeline incorporating extensive data assessment approaches to extract 13 
and process traffic movement volumes from ATSPM data; 14 

• It develops a new method for intersection-level traffic prediction considering the 15 
correlation between travel demand and traffic flow inside a transportation network; and  16 

• It provides empirical evidence on the performance of a deep learning-based model for 17 

traffic prediction using real-world large-scale traffic signal performance data.   18 

2. Literature Review 19 

Understanding traffic evolution and congestion propagation for an entire road network rather than 20 
a single road will be more helpful for traffic managers in transportation planning and proactive 21 

decision making (Zhan et al., 2017; Zhang et al., 2011). However, large-scale network level traffic 22 
forecasting is more challenging due to higher computational complexity incurred by the network 23 

size and topology, which requires a robust prediction model, with the ability (i) to capture the 24 
spatial correlation of traffic in interconnected roads, and (ii) to predict traffic for a long-term to 25 

reflect congestion propagation. But traditional traffic prediction models (Mahmoud et al., 2022, 26 
2021; Qiao et al., 2013; Qu et al., 2020; Rahman and Hasan, 2021) only consider temporal 27 
variations of traffic state variables, thus cannot deal with high dimensionality of the data to learn 28 

spatial correlation. 29 

Convolutional LSTM methods are the initial attempt to model the spatial and temporal correlation 30 

among the traffic states for network level traffic prediction. A few studies (Bao et al., 2019; Guo 31 
and Zhang, 2020; Hao et al., 2019; Ma et al., 2017) have implemented the convolutional LSTM 32 

model for network level traffic speed, travel demand and crash risk prediction. Although this 33 
model outperforms existing state of art data-driven model, it does not consider stochastic traffic 34 
flow dynamics (i.e., flow propagation) while extracting spatial correlation among network traffic. 35 
Recently, graph convolution neural network (Guo et al., 2021; Kipf and Welling, 2016; Wu et al., 36 
2020; Zhang et al., 2019; Zhou et al., 2020) has been emerging as a new approach to overcome the 37 

limitation of convolutional neural networks in traffic prediction problem. Graph convolutional 38 
neural network approaches utilize the concepts of graph theory along with deep neural network 39 
architectures to model the stochastic traffic dynamics inside a network. These approaches aim at 40 
learning the interactions between roadways in the traffic network to forecast network-wide traffic 41 
states. However, the application of such a neural network architecture hardly exists for a large-42 
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scale transportation network. A few studies has utilized the concept of graph convolution to 1 
represent traffic network as a generalized graph for traffic state prediction (Bogaerts et al., 2020; 2 

Cui et al., 2020a, 2020b; Guo et al., 2021; Li et al., 2021; Y. Li et al., 2018; Z. Li et al., 2018; 3 
Zhang et al., 2021; Zhao et al., 2020). These studies, however, have focused on learning network-4 
wide short-term correlations among traffic states (e.g., speed) to predict future states 5 to 60 mins 5 
ahead of time.  6 

Data-driven methods for intersection level traffic prediction mostly involve traffic flow (Alajali et 7 
al., 2018), movement volume prediction (Ghanim and Shaaban, 2019; Li et al., 2020; Mahmoud 8 
et al., 2021) and traffic signal queue length prediction (Chang and Su, 1995; Lee et al., 2019; 9 
Rahman and Hasan, 2021). These studies are highly data intensive; previous studies either used a 10 
simulation-based or a hybrid approach to develop intersection-level traffic prediction models. For 11 

instance, Chang and Su (Chang and Su, 1995) developed a data-driven neural network model for 12 

predicting queue length at short time step (3s). They used the data from simulation experiments to 13 

train the model for queue prediction. Lee et al. (Lee et al., 2019) developed a deep learning model 14 
for queue length estimation. They relied on traffic simulations to generate the training data and 15 
used real-world driving data from the Federal Highway Administration’s Next Generation 16 
Simulation (NGSIM) program to test the approach. However, one limitation is that these 17 
approaches are based on isolated intersections without considering the coordination among 18 
multiple intersections.  19 

Recently, Alajali et al. (Alajali et al., 2018) applied gradient boosted decision tree based model to 20 

predict intersection traffic volume for large scale network which covers intersections at central 21 
business district (CBD) area of Melbourne, Australia. This study proposed an online and offline 22 
training approach to deal with the limitation in computation power for large scale data. However, 23 

the proposed method is limited to aggregate traffic volume prediction at intersection level rather 24 

than traffic movement volumes. A recent study by Li et al. (Li et al., 2020) proposed a deep 25 
learning method to predict intersection level traffic movement volume. This study utilizes 26 
Convolutional LSTM model to capture spatiotemporal dependency among network-wide traffic 27 

states considering traffic network as an image. Thereby fails to capture the stochastic traffic flow 28 
dynamics of the network. Moreover, the proposed approach does not consider travel demand 29 

features, thus limited to only short-term traffic movement prediction (i.e., 5-15 min ahead of 30 
current time).    31 

In summary, we find that most of previous studies adopted deep learning models without 32 
considering directional traffic volume. Moreover, capturing the spatiotemporal dependency of 33 
traffic for interconnected roadway segments can improve the model performance compared to 34 
traditional times series-based approaches. However, still there exists several research gaps in 35 

application of deep learning methods for intersection-level traffic movement volume prediction. 36 
First, these deep learning methods have not been tested for network scale intersection level traffic 37 
movement volume prediction, rather applied over isolated intersections or at a corridor level. 38 

Second, although graph theoretic approach has been applied for detector level or segment wise 39 
traffic state prediction, no study has considered traffic dynamics and tested its influence on model 40 
accuracy. Third, previous studies focused on short-term or cycle-level traffic prediction, thus, do 41 
not consider any demand related features to account for long-term demand variations. However, 42 
for predicting traffic over a long-term period (>1 hr.) we need to add the information on travel 43 
demand variation over different periods (peak hour, off peak hours etc.).   44 
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 1 

3. Problem Formulation 2 

We present a data-driven approach of learning intersection-level traffic movement patterns of a 3 
transportation network given that information on travel demand and corresponding traffic 4 

movement volumes are available. Instead of estimating traffic movement patterns using traditional 5 
traffic assignment models, here we implement the idea of learning those movement patterns from 6 
large-scale training data. Adopting the concept of graph convolution, we develop a deep learning 7 
model to capture the cross correlation among spatiotemporal traffic features to predict traffic 8 
movement over a long-term sequence.  9 

To implement the model, we represent the transportation network as a graph where each node 10 
indicates an intersection, and the edges indicate the shortest path distance between two 11 

intersections. Let,  𝒢(𝑣, ℰ, 𝐴) is an undirected graph, where 𝑣 denotes the set of nodes (i.e., 12 

intersection) and ℰ denotes the set of links between nodes (𝑖, 𝑗). 𝐴 represents the connectivity 13 

between nodes as a weighted adjacency matrix, where weights are based on the distance between 14 

any two nodes (𝑖, 𝑗), defined as follows: 15 

                                                 𝑨(𝒊, 𝒋) = {
𝑑𝑖,𝑗           𝑖𝑓 𝑖 ≠ 𝑗

0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                             (1) 16 

where, 𝑑𝑖,𝑗 denotes the travel distance between the origin 𝑖 and the destination 𝑗 nodes. The 17 

connectivity inside an adjacency matrix detects which neighboring nodes (𝑗) will be influenced 18 

by the traffic condition at a given node (𝑖). Moreover, in a timeseries problem the existing traffic 19 

condition at a given node (𝑖) will also influence its future traffic condition, which means each node 20 

is temporally self-influenced. This is represented by adding an identity matrix (𝐼) with the 21 

adjacency matrix which ensures that nodes are self-accessible,       22 

                                                          𝑨̅ = 𝑨 + 𝑰                                                                                        (2)  23 

The proposed data-driven traffic prediction model aims to learn intersection-level traffic 24 
movement volume of a transportation network over multiple future time-steps based on capturing 25 

the spatiotemporal correlation among traffic features at different intersections. In other words, the 26 
framework captures how traffic at a given intersection influences the traffic condition at other 27 

intersection based on the distance between two intersections. Thus, we feed the model with 28 

information of two aspects: (i) a weighted adjacency matrix (𝐴̅) indicating the connectivity and 29 

distance between intersections and (ii) node level features (𝑿𝒕) representing traffic demand and 30 

traffic state variations.  31 

The traffic prediction problem aims to learn a function ℱ(. ) that maps 𝑙 instances of input sequence 32 

([𝑿𝒕−𝒍, 𝑿𝒕−𝒍+𝟏 … , 𝑿𝒕]) to predict intersection-level traffic movement volume 33 

(𝑭𝒕+𝟏, 𝑭𝒕+𝟐 … … … 𝑭𝒕+𝒑) for the entire network. We define the problem as follows:   34 

                        ℱ([𝑿𝒕−𝒍, 𝑿𝒕−𝒍+𝟏 … , 𝑿𝒕]; 𝒢𝑡(𝑣, ℰ, 𝑨̅])) = [𝑭𝒕+𝟏, 𝑭𝒕+𝟐 … 𝑭𝒕+𝒑]                            (3) 35 

where, 𝑙(= 0,1,2 … 𝑙) and 𝑝(= 1,2,3 … 𝑝) indicates the input and output sequence; 𝑭𝒕+𝒑 ∈ 𝑹𝑵×𝟏𝟐 36 

indicate the traffic movement volumes for the entire network at time 𝑡 + 𝑝. Each row of the matrix 37 

𝐹𝑡+𝑝 indicates all the possible movements (i.e., left, through, and right) at each approach (e.g., four 38 
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approaches) of an intersection. Description for all the notations associated with the model 1 
development is included in Table 1. 2 

Table1 3 

Description of the Notation associated with the model development 4 

Notation Description 

 𝓖 Transportation network 

𝒗 Set of nodes in 𝒢 with size of |𝑣| = 𝑁 

𝓔 Set of links in 𝒢 with size of |ℰ| = 𝐸 

𝑨 ∈ 𝑹𝑵×𝑵  Weighted adjacency matrix of 𝒢, defined by Equation (1) 

I ∈ 𝑹𝑵×𝑵 Identity matrix  

𝑨̅ ∈ 𝑹𝑵×𝑵 Neighborhood matrix defined by Equation (2) 

𝐃̅ ∈ 𝑹𝑵×𝑵 Degree matrix of 𝒢, a diagonal matrix where diagonal elements (𝑖, 𝑖) 
indicate the number of links connected with a node  

𝒅𝒊𝒋 distance between nodes 𝑖 and 𝑗 

𝒍 Input time sequence length ( 0,1, … … . 𝑙 ) 

𝒄 Number of input features 

𝑿𝒕 ∈ 𝑹𝑵×𝒄 Contains all the traffic features associated with each node (𝑖) of the 
network  

𝒈 Graph Convolutional filter to learn the congestion propagation inside 
the network  

𝒇(. ) Activation function 

𝐖𝐠𝐜 ∈ 𝐑𝑵×𝑵 
 

Learnable parameters for the convolution filter 

h Indicates the outputs from different layers of the proposed neural 
network architecture 

𝒑 Prediction horizon ( 1, … … . 𝑝 ) 

𝑭𝒕+𝒑  ∈ 𝑹𝑵×𝟏𝟐 Intersection level traffic movement volumes for entire network 

 5 

4. Methodology  6 

4.1 Graph Convolution for Spatial Dependency Modeling 7 

In a transportation network, the nodes are interconnected so traffic condition at a given node will 8 
impact the traffic in the neighboring nodes. This is because of the propagation of traffic flow from 9 



 7 

the origin nodes towards the neighboring nodes. Graph convolutional neural network can capture 1 
these intrinsic dynamics of the network (i.e., flow propagation), which means it can capture the 2 

spatial cross correlation among the neighboring nodes based on their position inside the network 3 
(Fig. 1(a)). In a graph convolution approach, we can represent the traffic flow propagation process 4 
using a convolutional filter. To derive the convolutional filter, the adjacency matrix is decomposed 5 
into its eigenvalues to represent the structural properties of a graph such as strength of a node (e.g. 6 
node level features), shortest path between two nodes etc. Such representation while feed into deep 7 

learning model suffers from exploding or vanishing gradient problem due to sparsity in eigen 8 
values’ distribution.  To overcome this exploding or vanishing gradient problem, Kipf and Welling 9 
(Kipf and Welling, 2016) proposed a normalization technique to represent a graph and its intrinsic 10 
dynamics known as spectral graph. Based on spectral graph representation method the convolution 11 
operation to capture the spatial correlation can be defined as follows, 12 

                                                𝒈𝒄𝒕 = (𝑾𝒈𝒄⨀𝑫̅−
𝟏

𝟐𝑨̅𝑫̅−
𝟏

𝟐)𝑿𝒕                                                           (4) 13 

where, 𝒈𝒄𝒕 indicates the convoluted feature matrix and 𝑾𝒈𝒄 indicates the parameters for the 14 

convolution filter. 𝑨̅ and 𝑫̅ indicates the adjacency matrix and degree matrix respectively and the 15 

expression 𝑫̅−
𝟏

𝟐𝑨̅𝑫̅−
𝟏

𝟐 indicates the symmetrically normalized adjacency matrix. 𝑿𝒕  indicates node 16 

level features, representing traffic demand variations. The convoluted feature matrix 𝒈𝒄𝒕 17 

represents the traffic flow propagation (i.e. network’s intrinsic dynamics) inside the network. 18 
 19 

   20 
(a) 21 

 22 
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(b)  1 

Fig. 1 Model Architectures (a) Graph Convolutional Neural Network (b) Long Short-Term 2 
Memory Neural Network 3 

4.2 LSTM Model for Temporal Dependency Modeling  4 

In traffic prediction problems, an LSTM (Hochreiter and Urgen Schmidhuber, 1997; Ma et al., 5 
2015; Rahman and Hasan, 2018) model is applied to capture the temporal correlation among traffic 6 

features. The basic difference between an LSTM model and other neural network models is that in 7 
a simple neural network model, a hidden state is stored as single vector or matrix whereas in a 8 

LSTM model the hidden state consists of two vectors a short-term state (ℎ𝑡) and a long-term state 9 

(𝑐𝑡) (Fig.  1(b)). To capture the short-term correlation (i.e., hourly pattern) between two 10 

consecutive timesteps the short-term state (ℎ𝑡) is recursively fed into each of the consecutive 11 

LSTM units (i.e., over the length of input sequences). Moreover, LSTM stores the long-term 12 
information (such as period or seasonal traffic variations) as it passes over multiple time steps. At 13 

each time step (t) the hidden states (ℎ𝑡, 𝑐𝑡) are continuously updated by four fully connected neural 14 

network layers known as input i(t), forget f(t), cell g(t) and output o(t) layers. In the final time 15 

step the hidden states (ℎ𝑡, 𝑐𝑡) are fed into the output layer to get the final output (y(t) = ℎ𝑡).  16 

 17 

4.3 Modeling Frameworks 18 

We proposed two different graph convolution based neural network architectures to model the 19 
traffic movement volumes over multiple temporal sequences: Graph Convolutional LSTM and 20 

Graph Convolutional Encoder Decoder LSTM. In the following sections, the proposed modeling 21 
framework is described,  22 

Graph Convolutional LSTM (GCN-LSTM): In the graph convolutional LSTM architecture, we 23 

stack the graph convolution and LSTM layer to capture both spatial and temporal dependency of 24 

traffic features.  The model takes intersection level traffic features (𝑋𝑡) such as hourly volume, 25 
zonal level trip attraction and production, characteristics of the built environment as inputs and 26 
outputs the predicted traffic movement volumes. Fig. 2 shows different components of the model 27 

as it unrolls over multiple time steps (i.e., length of input sequences). At each time step, the model 28 

performs a graph convolution operation over the input data (𝒢𝑡) and feeds the output (𝑔𝑐𝑡) into 29 

the LSTM model. After taking the input from the graph convolution (𝐺𝐶) layer, it updates the 30 

hidden states (ℎ𝑡 , 𝑐𝑡). In this architecture, the short-term state (ℎ𝑡) at the final time step (𝑡) is 31 

linearly transformed using a fully connected layer to get the predicted (𝑦𝑡) traffic movement 32 
volumes over multiple sequences. 33 
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 1 

Fig. 2 Modeling framework and information flow diagram for different components for Graph 2 

Convolutional LSTM  3 

Graph Convolutional Encoder Decoder LSTM (GCN-Encoder-Decoder): In this architecture, 4 
the outputs from the graph convolutional layer are fed into an encoder-decoder LSTM architecture. 5 

Similar to the previous architecture, the encoder LSTM captures the short-term and long-term 6 
dependencies of traffic features as it unrolls over multiple time step, thus it updates the hidden 7 

states  (ℎ𝑡, 𝑐𝑡). However, to get the final outputs over multiple temporal sequences, we use a 8 

decoder LSTM (Fig. 3). At the first-time step, the decoder LSTM takes the hidden states (ℎ𝑡 , 𝑐𝑡) 9 

and input state (𝑔𝑐𝑡) from the final encoder LSTM step (𝑡). In this architecture, we modify the 10 

traditional encoder decoder LSTM to pass the input state (𝑔𝑐𝑡)  at time step (𝑡) along with hidden 11 

state of encoder LSTM. We encode this input as a vector which indicates the starting point of future 12 
time series prediction. In the following time steps, it recursively takes the predicted traffic volumes 13 
(𝐹𝑡+1) and hidden states (ℎ𝑡+1, 𝑐𝑡+1) from the previous step to predict the traffic volumes in the 14 

next step (𝐹𝑡+2). The decoder LSTM iteratively performs this operation to generate the whole 15 
output sequence.   16 

 17 
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 1 

Fig. 3 Modeling framework and information flow diagram for different components of Graph 2 

Convolutional Encoder Decoder LSTM 3 

5. Data Collection and Processing 4 

5.1 Traffic Movement Volumes 5 

In Seminole County, majority of the signalized intersections are equipped with advanced traffic 6 
signal controllers on the arterials and each signal provides Automated Traffic Signal Performance 7 
Measures (ATSPM) (Fig. 4), which includes traffic movement volumes, signal timing, traffic 8 
queue volume etc. We extracted high-resolution event-based signal data for Seminole county from 9 

January 1, 2016 to December 31, 2016; in total we have collected data for 253 intersections. From 10 
the raw dataset, we mainly extracted the traffic movement volumes for different direction and 11 
movement types.   12 
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 1 

Fig. 4 The study area (Open Street Map) 2 

The raw data collected from traffic detectors are subjected to errors. Several factors such as 3 

detector’s malfunctioning, false encoding during storing the data into the server, overlapping of 4 
multiple entries, duplicate entries, bad weather conditions etc. can cause errors. Therefore, before 5 
proceeding to any data analysis, we need an extensive data cleaning and quality checking. Fig. 5 6 

shows the framework for the data processing steps.  7 

To check the quality of the data, we followed several steps starting with checking the percentage 8 
of missing data for different detectors. We consider the detectors having a higher percentage of 9 

missing values as unreliable detectors. Moreover, data imputation is not feasible for the detectors 10 
with too many missing values as it will produce unrealistic data distribution. Considering this 11 

issue, we retain the detectors having missing values less than 20% of total data samples. We apply 12 
three techniques to check the quality of the data and detecting outliers.  13 

First, we compare vehicle per hour for each movement types (i.e., left, through, right) with Federal 14 

Highway Administration (FHWA) guidelines on capacities at signalized intersection. According 15 
to the FHWA guidelines for left and right turn movement the capacities vary from 150-350 veh/hr, 16 
while for through movement the capacity varies from 1600-2100 veh/hr depending on number of 17 

available lanes (FHWA, 2004). We observe the distribution of the hourly turning movement 18 
volume for different movement types. Almost all the data samples, except a few (less than 0.1%), 19 
have hourly volume less than capacity. We consider the samples with values greater than capacity 20 
as outliers.  21 

Second, we apply isolation forest algorithm (Liu et al., 2012) to detect outlier based on temporal 22 

pattern of traffic volume for each movement types. The algorithm learns traffic pattern with respect 23 



 12 

to variations in hours of the day and days of the week and isolates the outliers which show unusual 1 
pattern.  2 

 3 

Fig. 5 Data processing framework 4 

Third, we check if the turning movement volume remains within the range between (𝑄1 − 1.5 ∗5 

𝐼𝑄𝑅) and (𝑄3 + 1.5 ∗ 𝐼𝑄𝑅), where 𝑄1 and 𝑄3 indicates the first and third quartile and IQR 6 

indicates the interquartile range (𝑄3 − 𝑄1).         7 

Finally, we use a technique known as multivariate iterative imputation (van Buuren and Groothuis-8 

Oudshoorn, 2011) adapting Bayesian ridge regression as an estimator to impute the missing values 9 
and outliers. To fit the estimator, we use time of the day (hour), day of the week (day), and volume 10 
with missing values as inputs. For each imputation the algorithm takes a sample from gaussian 11 
posterior of the fitted estimator. We use Python scikit learn (Pedregosa et al., 2011) library to 12 
implement the algorithm. The details about the data imputation algorithm are provided in reference 13 
(van Buuren and Groothuis-Oudshoorn, 2011).  Fig. 6 shows the distribution of through movement 14 
volumes before and after data processing. After cleaning the data, we have in total 196 15 



 13 

intersections in our final data set. Moreover, we only keep the data in between 6 am (Early 1 
Morning) and 12am (Midnight), most of cases from 12 am to 6 am the traffic activity within this 2 

region is either zero or nearly zero.  We have also removed the data for special events and holidays 3 
such as hurricane evacuation period (September 28, 2016 – October 10, 2016), thanksgiving 4 
holiday etc. 5 

 6 

Fig. 6 Distribution of data samples based on vehicles per hour per lane 7 

5.2 Travel Demand Features 8 

To generate the travel demand for the study area, we employ Central Florida Regional Planning 9 
Model (CFRPM 6.1) which outputs average weekday trip production and trip attraction at the 10 

Traffic Analysis Zone (TAZ) level by trip purpose and special generators. Our study area 11 
(Seminole County, Florida) includes 230 TAZs, so, we can aggregate the weekday trips to estimate 12 

total production and total attraction for each of these 230 zones. However, each TAZ has multiple 13 
intersections within its boundary. Hence, to link this demand information with operational 14 

characteristics of an intersection, we need to partition these TAZs into a finer spatial resolution.   15 

Considering this issue, we develop a technique to partition the TAZs into multiple subzones to 16 

generate demand at a finer resolution.  17 

We considered multiple approaches for creating the sub-zones.  We determine the number of 18 
subzones based on spatial distribution (196 intersections sparsely distributed over 230 TAZs) of 19 
intersections. This will ensure an adequate representation for each TAZ while extracting the spatial 20 
features. We also considered employability of the approach by transportation agencies; hence we 21 

adopt a stable process to divide the TAZs. Based on these considerations, we divide each TAZ into 22 
5 subzones which ensures an adequate representation of each TAZ.  23 

We use Geographic Information System (GIS) software to create the subzones for each TAZ. The 24 

TAZ shape file is a polygon shape file in GIS which is usually constructed by joining multiple 25 

points in the perimeter. To identify the points to be connected, we followed the following process:  26 

• First, we convert the polygon TAZ shapefile to point shape file using GIS. For example, 27 

if a given TAZ shape file contains total 100 points in the perimeter, we alter the TAZ 28 

shape file to the corresponding 100 points.  29 
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• Second, we divide the number of points into 5 groups. If the number is not divisible by 5, 1 

then we assign all the remaining points in the last group. For example, with 100 points, 2 

we will have 5 groups of 20 points each. If we have 101 points, then the last groups will 3 

have 21 points. Also, it is important to note that the last point of a group will be the first 4 

point of the subsequent group. So, for 100 points, the groups will be: 1-20; 20-40; 40-60, 5 

60-80 and 80-100.  6 

• Finally, within each group, we identify the first and last point and connect both these 7 

points with the centroid, thus converting one single TAZ to 5 sub-TAZs.  8 

In total we create 1150 subzones from 230 TAZs. Fig.  7 shows the TAZs and generated subzones 9 

for the study area. From the CFRPM model we estimate average weekday trip attraction and 10 

production at a subzone. Afterwards, we expand the daily demand into hourly demand using hourly 11 
distribution factors provided by CFRPM (see (FDOT, 2014) for more details).       12 

  13 

Fig. 7 Traffic Analysis Zones and Subzones for the Analysis 14 

We have also extracted exogenous variables including built environment and land-use 15 
characteristics for each subzone. Built environment characteristics variables are processed from 16 
NAVSTREET data and include number of restaurants, shopping centers, business centers, 17 

entertainment establishments and educational institutions. Land-use characteristics are processed 18 
using high resolution parcel level land-use data sourced from Florida Department of Revenue. 19 

Each parcel is assigned a unique ID (Parcel ID) linking it with equivalent parcel level attribute 20 
information such as property/feature value, land value, land area in square feet, land-use codes  21 

(DOR-UC), owner name, owner address, physical address, physical zip code, building details and 22 
so on contained in the Name-Address-Legal (NAL) file. In this study we consider five land use 23 

categories: Residential, Retail/Office, Industrial/Manufacturing, Institutional/Infrastructure, 24 
Recreational etc. 25 

 26 

6. Experiments  27 

6.1 Input features and Graph Representation  28 

In this section we discuss about spatiotemporal features extraction technique from the data. We 29 

also discuss about the graph representation from geolocation of the intersections.  30 
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Input features in the data samples (𝐗𝐭): We have extracted different types of features to 1 
represent the travel demand and built environment characteristics corresponding to each 2 

intersection. Since the spatial variations in built environment characteristics are more subtle, we 3 
use natural logarithm of the areas (acre) corresponding to different built environment types (Table 4 
2), which scales the subtle changes and make it more prominent. Finally, we merge these variables 5 
with hourly trip attraction and trip production. To feed the model with short term travel demand 6 
variations, we use aggregated intersection level hourly traffic volume. We also use temporal 7 

features such as time of the day and days of the week to capture the seasonality inside the data.   8 

In total we have 11 features; we formulate the traffic data sample as [number of samples (𝑛),  input 9 

time sequence (𝑙), number of nodes (𝑁), input features (𝑐)]. Since, we have the data from 196 10 

intersections, so the number of nodes, 𝑁 = 196. We select 6-hour input data sequence to predict 11 

traffic for next 4 hour, so input time sequence length 𝑙 = 6 and prediction horizon length, 𝑝 = 4. 12 

In total we have 𝑐 = 11 input features: days of the week (i.e. Saturday, Sunday etc.), time of the 13 

day as hour (1 to 24 hr), intersection specific aggregated traffic volume, hourly trip attraction, 14 
hourly trip production, proportion of highway among total roadways of a zone. We have 5706 data 15 
samples from a one-year period (2016). Finally, the input data and target data samples have the 16 
shape as [5706, 6, 196, 11] and [5706, 4, 196, 12], respectively.  17 

Table 2. Description of Input Features 18 

Variables Description 

𝒕𝒅 Days of the week (i.e. Saturday, Sunday etc.) 

𝒕𝒉𝒓 Time of the day as hour  

𝒒𝒕 Intersection specific aggregated traffic volume at time 𝑡  

  𝑻𝑨 Hourly Trip Attraction  
 

𝑻𝑷 Hourly Trip Production 

𝑯𝑾𝒑𝒓𝒐𝒑 Proportion of Highway among total roadways of a zone 

𝑩𝒊𝒏𝒅 Ln(industrial) 

𝑩𝒓𝒆𝒄 Ln(recreational) 

𝑩𝒓𝒆𝒕 Ln(retail/office) 

𝑩𝒊𝒏𝒔𝒕 Ln(institutional) 

𝑩𝒓𝒆𝒔 Ln(residential) 
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Graph Representation: We follow several steps to construct the graph. First, we map the signals’ 20 
locations into Open Street Map. Second, considering the signalized intersections as nodes we 21 

connect each of them with their neighboring nodes. To find the neighboring nodes, we select an 22 
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origin node and find the shortest path from the origin node to all the other nodes. The nearest node 1 
on each of these shortest paths is the neighboring node to the origin. Finally, after constructing the 2 

network, we represent the network using adjacency matrix (see equation 1 and 2). We use the 3 
travel distance as weight for the graph adjacency matrix. We also perform gaussian transformation 4 
on the weighted graph adjacency matrix,  5 

                                           𝑨(𝒊, 𝒋) = {
exp (−

𝑑𝑖,𝑗
2

𝜎2
) ,   𝑖𝑓 𝑖 ≠ 𝑗  

0,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                 (5) 6 

where, 𝜎 indicate the standard deviation of distances.     7 

6.2 Baseline Models 8 

We implement three baseline models to compare the performance of the proposed graph 9 
convolution-based models.  10 

Historical Average (HA):  In the Historical average method we compute intersection specific the 11 
average traffic volume for each direction (i.e., Left, Though, Right) and each hour (i.e., 1 to 24 12 
hour). We estimate this average based on the training data. So, if we want to forecast traffic for a 13 

given intersection at 2pm then we will take the average of all the traffic at 2pm from the historical 14 
data.  15 

LSTM: In the LSTM model, we use single LSTM layer to predict traffic for next 4 hours. In the 16 

hidden layers we assign 196 (number of nodes) hidden neurons. The output layer is a fully 17 
connected layer with tanh activation function.  18 

Convolutional LSTM (Conv-LSTM): In the Convolutional LSTM (Conv-LSTM) model we 19 
stacked a convolution layer with LSTM layer. Convolutional layer use convolution filter to extract 20 
the spatial correlation among traffic features in among neighboring intersections. We experiment 21 

with different size of the kernel (𝑘) and find that the model performs best for a kernel size of 3. 22 
The output from the convolutional layer is feed into the LSTM layer to capture temporal 23 

correlation among traffic features while predicting traffic flow over a temporal sequence.  24 

6.3 Model Training  25 

We use 80% of the data for training (learning the parameters), 10% for validation (tuning hyper-26 

parameters), and rest 10% of the data is used for testing (checking performances) the model. Based 27 
on the validation accuracy we tune the hyper-parameters such as learning rate, types of activation 28 
functions (i.e., tanh, sigmoid etc.), maximum number of iterations. Once the final model 29 

parameters are fixed, we test it on the test data set. 30 

We train the model using mean squared error (MSE) as the loss function. At each iteration, the 31 

model estimates the MSE for the estimated traffic movement volume (𝐹̂𝑡+𝑝
𝑖𝑗

) and the actual 32 

movement (𝐹𝑡+𝑝
𝑖𝑗

) volume for a given intersection (𝑖), and movement types (𝑚). Afterward, the 33 

gradient of the loss function is backpropagated to adjust the weights to reduce loss function value.  34 

The loss function can be defined as:  35 

                                                          𝐿𝑚 = 𝐿𝑜𝑠𝑠(𝐹𝑡+𝑝
𝑚𝑖 , 𝐹̂𝑡+𝑝

𝑚𝑖 )                                                            (6) 36 
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                                               𝑀𝑆𝐸 = ∑
1

𝑁
∑

1

𝑀
∑(𝐹𝑡+𝑝

𝑖𝑚 − 𝐹̂𝑡+𝑝
𝑖𝑚 )

𝑀

1

𝑁

1

𝑝

1

                                                     (7) 1 

where, 𝐿𝑜𝑠𝑠(. ) is the function to estimate the error between the actual (𝐹𝑡+𝑝
𝑖𝑚 ) and estimated 2 

values (𝐹̂𝑡+𝑝
𝑖𝑚 ). 𝑖 and 𝑚 denotes the intersections (i.e., nodes) and movement types (i.e., NL 3 

(northbound left), NT (northbound through), NR (northbound right) etc.). 4 

We implement the model using pytorch library (“PyTorch,” 2016) and train it in Ubuntu 18.04.5 5 
LTS (GNU/Linux 5.4.0-62-generic x86_64) supported by a cluster of four NVIDIA RTX 2080Ti 6 
11 GB GPUs. While training the model, we track the training and validation loss values to check 7 

whether the model is overfitting or not. From the loss values, we find that it takes about 100 epochs 8 
with a learning rate of 0.001 for the GCN-LSTM model to converge (i.e., similar train and 9 

validation loss value) (Fig.  8). Moreover, after 100 epochs, the value of the loss function for the 10 
validation data gradually starts increasing, indicating that the model starts to overfit. We use 11 
Adaptive Moment Estimation (ADAM) to train the model. Compared to other optimizers such as 12 
Adaptive Gradient (AdaGrad), Root Mean Square Propagation (RMSProp) etc., ADAM optimizer 13 

gives more stable solutions, which means MSE values for train and validation data almost remain 14 
same after convergence.    15 

 16 

Fig. 8 Variations of training and validation loss values GCN-LSTM model 17 

We also compare the training time for different models. Compared to other models, the GCN-18 

LSTM model takes less training time. The reason is that for other models it takes more than 100 19 

epochs to converge to a stable solution. Moreover, on average the GCN-LSTM takes less time per 20 

epoch (6.16 seconds) compared to the Conv-LSTM (8.19 seconds) and the GCN-Encoder-Decoder 21 

(7.19 seconds).  22 
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 1 

Fig. 9 Overall Training time for different models 2 

6.4 Experiment results  3 

Once the final model is fixed, we test it on the test data set. We calculate Root Mean Squared Error 4 
(RMSE), Mean Absolute Error (MAE), and GEH (Transport for London, 2010) statistics as 5 

performance measures to check the accuracy of the implemented model. Performance metrics are 6 

defined as,  7 

                                            𝑅𝑀𝑆𝐸 =   √∑
1

𝑁
∑

1

𝑀
∑(𝐹𝑡+𝑝

𝑖𝑚 − 𝐹̂𝑡+𝑝
𝑖𝑚 )

𝑀

1

𝑁

1

𝑝

1

                                           (8) 8 

                                              𝑀𝐴𝐸 =
1

𝑝
∑

1

𝑁

𝑝

𝑝

∑
1

𝑀
| 𝐹𝑡+𝑝

𝑖𝑚 − 𝐹̂𝑡+𝑝
𝑖𝑚 |

𝑁

1

                                                        (9) 9 

                                               𝐺𝐸𝐻 =  √
2(𝐹̂𝑡+𝑝

𝑖𝑚 −𝐹𝑡+𝑝
𝑖𝑚 )2

𝐹̂𝑡+𝑝
𝑖𝑚 +𝐹𝑡+𝑝

𝑖𝑚                                                                  (7) 10 

where, 𝐹𝑡+𝑝
𝑖𝑚  and 𝐹̂𝑡+𝑝

𝑖𝑚
 indicate actual and predicted movement volumes for each intersection (𝑖) and 11 

movement types (𝑚) at time (𝑡 + 𝑝).     12 

In Table 3, we report the performance of model on the test data. To test the sensitivity of the model 13 
over different data samples, we randomly split the data to generate 10 different train, test and 14 

validation datasets. Finally, we train 10 different models and report the mean and standard 15 
deviation of the estimated performance measures on the test data sets. Based on performance 16 
measures, we find that the proposed GCN-LSTM model performs best compared to other baseline 17 

models. The RMSE and MAE values of the model for through traffic movement are 59.27 and 18 
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23.072, respectively. However, RMSE and MAE provide aggregate information (average over all 1 

the outputs) on the performance of the models, hence, we also estimated 𝑅2 score. As shown in 2 

table 3, the 𝑅2 score for all the movement types of the proposed model is above 0.98 indicating 3 

that the model can learn the traffic movement patterns very well (Fig.  9 (a)).  4 

Table 3 5 

Comparisons among different models to predict traffic volume over 4-hour sequence for 6 

different movement types 7 

Model   
  

RMSE MAE R2 Score 
Left Through Right Left Through Right Left Through Right 

HA Mean 7.597 134.369 3.453 1.004 60.72 0.341 0.948 0.927 0.961 
Std - -__ -  - - - - - 

LSTM Mean 5.768 89.784 3.457 1.143 40.584 0.579 0.966 0.967 0.961 
Std 0.343 6.885 0.191 0.098 3.734 0.098 0.004 0.005 0.004 

GCN- 
Encoder- 
Decoder 

Mean 4.888 82.283 2.855 0.913 32.462 0.488 0.976 0.972 0.973 

Std 0.258 3.309 0.141 0.128 0.899 0.112 0.003 0.002 0.002 
Conv-
LSTM 

Mean 4.177 61.145 2.572 1.289 23.832 0.926 0.982 0.985 0.978 
std 0.114 1.945 0.074 0.115 0.623 0.119 0.001 0.001 0.001 

GCN-
LSTM 

Mean 4.018 59.372 2.458 1.189 23.072 0.830 0.983 0.985 0.980 
std 0.062 0.706 0.065 0.148 0.227 0.155 0.001 0.000 0.001 

 8 

We also estimate the absolute difference between the actual and predicted traffic volume. Fig.  9 9 
(b) shows the cumulative distribution function (CDF) value of absolute errors for all the movement 10 
types. For left and right turn movement, more than 95% of the predicted volumes have an absolute 11 

error less than 5, whereas for through movement about 90% of the predicted volumes are less than 12 
60. This is because through movement volumes are higher compared to left and right turn 13 

movement. To provide a normalized value for accuracy measure we also estimate GEH score. A 14 
GEH score of less than 5 is considered as a good match between actual and predicted volumes. 15 

According to (Nezamuddin et al., 2011) 85% of the predicted volumes should have a GEH score 16 
less than 5, while In our case more than 90 % cases GEH score is less than 5 (Fig. 9 (a)). 17 

 18 



 20 

 1 

(a) Comparison between actual and predicted traffic volume 2 
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 1 

(b) Cumulative distributions of absolute different between actual and predicted traffic volume 2 

Fig. 9 Performance of the model in turning and through movement prediction 3 

In Fig. 10 and 11 we show the distribution of through movement types for all the intersection at a 4 

given weekday and weekend time periods (i.e. four-hour sequence prediction). For a few 5 
intersections we do not have all the movement types, in those cases the model predicts the volume 6 

as zero or close to zero (<1). So, the figures include values for a valid movement type of an 7 
intersection based on the actual data. From the figures we find that incase of both weekday and 8 
weekend the model captures the distribution of traffic movement volumes very well.     9 

 10 

 11 



 22 

 1 

 2 

Fig. 10 Predicted through movement volumes for all intersections for a given weekday time 3 
period (timestamp 08-10-2016 2 pm – 6pm)  4 

 5 

 6 

 7 

 8 

Fig. 11 Predicted through movement volumes for all intersections for a given weekend time 9 
period (timestamp 2016-11-13 2 pm – 6pm)  10 
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7. Conclusion  1 

Accurate traffic forecasting at the scale of a network is critical to ensure proactive decision making 2 
and optimal action plans for traffic operations and management.  However, traditional network 3 
models involve complex mathematical or simulation-based approaches, which require higher 4 

computational time in predicting traffic at the level of an intersection including turning volume. In 5 
this study, we develop an alternative data-driven approach adopting the concept of graph 6 
convolution. We propose two different modeling frameworks GCN-LSTM and GCN-Encoder 7 
Decoder to predict hourly traffic volume over multiple time steps. From the model results, we find 8 
that GCN-LSTM model outperforms other baseline models. The overall R2 value of the model is 9 

close to 1 indicating that the model captures the traffic movement volumes very well.  Moreover, 10 
the absolute difference between actual and predicted volumes are quite low (GEH<5); for right 11 
turn, through and left turn movement RMSE values are 4.02, 59.37, and 2.47 respectively. We also 12 

compare the efficiency of the model in terms of required training time. Based on the comparison 13 
results, the proposed GCN-LSTM model takes less training time (10.53 min), being more efficient 14 
compared to traditional deep learning models.  15 

Another benefit of the proposed model is that traditional deep learning methods follow a black box 16 

approach to select the number of parameters and most of the cases it requires more manual effort. 17 
Whereas, in our case we develop the model architecture automatically based on the structure of 18 
the network. Even in case of large networks we can automate this process by dividing a large 19 

network into small sub networks.  20 

 Although this study provides viable solution to model and predict real time network traffic 21 
volumes at a higher accuracy, one of the limitations of this study is that we do not use any 22 

information on real-time variations of travel demand, rather we use hourly demand which is 23 

constant for all the days. High resolution demand data from emerging technologies such as mobile 24 

phone sensors or connected vehicles data can be used to overcome this issue. A comparison 25 
between traditional demand data and emerging data might give us more insights on model 26 

performance.   27 

Moreover, in this study, we only explore the two variants of graph neural networks Graph 28 
Convolutional LSM and Graph Convolutional Encoder Decoder. However, future research should 29 

explore more variants of graph neural network such as Graph Attention Networks (Veličković et 30 
al., 2018)and GraphSage (Hamilton et al., 2017) based neural networks to improve the overall 31 
accuracy of network-wide traffic movement volume prediction. 32 
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