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ABSTRACT

Network-wide traffic prediction at the level of an intersection can benefit transportation systems
management and operations. However, traditional traffic modeling approaches relying on
mathematical or simulation-based models are either less useful or require higher computational
time in predicting high fidelity traffic volumes. In addition, these frameworks need to be modified
to ingest large-scale data (such as automated traffic signal performance measures) available from
intersections. To overcome these challenges, in this study, a data-driven method based on a deep
learning architecture has been developed for network-wide intersection-level traffic prediction.
The study has tested two deep learning architectures: Graph Convolutional LSTM (GCN-LSTM)
and Graph Convolutional Encoder Decoder LSTM (GCN-Encoder-Decoder) model to predict
intersection-level hourly traffic movement volumes over multiple time steps (e.g., 4-hour
sequence). Such deep learning architectures capture the spatiotemporal cross correlation among
network wide traffic features while learning the patterns in traffic movement volumes. To test the
model performances, we have fused data from multiple sources such as travel demand data, built
environment characteristics etc. We have extracted 1-year (2016) of traffic movement volume data
from Seminole County’s automated traffic signal performance measure (ATSPM) database.
Experiment results show that the developed GCN-LSTM model outperforms all the other baseline
models. The absolute difference between actual and predicted volumes are quite low (GEH<5);
for right turn, through and left turn movement RMSE values are 4.02, 59.37, and 2.47, respectively.
The R? score of the model is 0.98, which indicates that the model can capture the spatiotemporal
variations of traffic movement volumes very well.

Index Term — Network model, artificial intelligence, traffic prediction, ATSPM
1. Introduction

Network-wide traffic prediction can benefit transportation systems management and operations
including measuring traffic signal performance, optimizing signal timing plans, and managing
incidents. Typically, traditional mathematical or simulation-based network modeling approaches
have been applied to estimate traffic flows (Peeta and Ziliaskopoulos, 2001; Yi-chang et al., 2011).
Although these approaches produce reasonable solutions for traffic prediction problems, the
complexity and computation time required to implement such models make them less suitable for
real world applications such as real-time link flow or intersection-level traffic volume prediction.
In addition, these frameworks need to be modified to ingest large-scale data (such as automated
traffic signal performance measures) available from intersections.

Ubiquitous use of sensing technologies such as probe vehicles, roadway detectors, and social
sensors has created an opportunity to overcome these challenges and implement deployable
modeling approaches to predict traffic at a higher resolution such as the level of an intersection
(i.e., direction wise and movement wise). However, large-scale network level traffic forecasting is
more challenging due to higher computational complexity because of network size. For this
purpose, a robust prediction model is required with the ability to capture spatial correlation of
traffic among adjacent roads and learn driver route choice behavior from high resolution data.

In recent years, researchers are exploring different data-driven approaches for traffic prediction.
However, existing data-driven approaches have several limitations such as, they predict only short-
term traffic states (speed, flow, travel time) (Billings and Jiann-Shiou, 2006; Chen et al., 2021;
Deshpande and Bajaj, 2016; Lee, 2009; Vlahogianni et al., 2014; Wu et al., 2004; Yu et al., 2016)
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for one or multiple segments of highways, but not at the scale of a network (Gu et al., 2019;
Rahman and Hasan, 2018; Saroj et al., 2021; Song et al., 2018). Moreover, these approaches do
not consider features related to travel demand and land use when predicting future traffic. As such,
these approaches consider traffic prediction as a simple time series problem and predict traffic
state for a shorter time horizon (e.g., next 5 to 60 mins).

To overcome the limitations of existing data-driven methods, we develop a new modeling
framework for intersection-level movement volume prediction for a large-scale network. We
develop a graph convolution based deep learning model to predict traffic movement volume by
capturing the correlation between demand features and traffic flow patterns of a transportation
network. To test the model, we have collected Automated Traffic Signal Performance Measure
(ATSPM) data and zonal-level travel demand data for Seminole County, Florida. This study has
made several contributions:

o Itdevelops a data pipeline incorporating extensive data assessment approaches to extract
and process traffic movement volumes from ATSPM data;

e It develops a new method for intersection-level traffic prediction considering the
correlation between travel demand and traffic flow inside a transportation network; and

e It provides empirical evidence on the performance of a deep learning-based model for
traffic prediction using real-world large-scale traffic signal performance data.

2. Literature Review

Understanding traffic evolution and congestion propagation for an entire road network rather than
a single road will be more helpful for traffic managers in transportation planning and proactive
decision making (Zhan et al., 2017; Zhang et al., 2011). However, large-scale network level traffic
forecasting is more challenging due to higher computational complexity incurred by the network
size and topology, which requires a robust prediction model, with the ability (i) to capture the
spatial correlation of traffic in interconnected roads, and (ii) to predict traffic for a long-term to
reflect congestion propagation. But traditional traffic prediction models (Mahmoud et al., 2022,
2021; Qiao et al., 2013; Qu et al., 2020; Rahman and Hasan, 2021) only consider temporal
variations of traffic state variables, thus cannot deal with high dimensionality of the data to learn
spatial correlation.

Convolutional LSTM methods are the initial attempt to model the spatial and temporal correlation
among the traffic states for network level traffic prediction. A few studies (Bao et al., 2019; Guo
and Zhang, 2020; Hao et al., 2019; Ma et al., 2017) have implemented the convolutional LSTM
model for network level traffic speed, travel demand and crash risk prediction. Although this
model outperforms existing state of art data-driven model, it does not consider stochastic traffic
flow dynamics (i.e., flow propagation) while extracting spatial correlation among network traffic.
Recently, graph convolution neural network (Guo et al., 2021; Kipf and Welling, 2016; Wu et al.,
2020; Zhang et al., 2019; Zhou et al., 2020) has been emerging as a new approach to overcome the
limitation of convolutional neural networks in traffic prediction problem. Graph convolutional
neural network approaches utilize the concepts of graph theory along with deep neural network
architectures to model the stochastic traffic dynamics inside a network. These approaches aim at
learning the interactions between roadways in the traffic network to forecast network-wide traffic
states. However, the application of such a neural network architecture hardly exists for a large-
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scale transportation network. A few studies has utilized the concept of graph convolution to
represent traffic network as a generalized graph for traffic state prediction (Bogaerts et al., 2020;
Cui et al., 2020a, 2020b; Guo et al., 2021; Li et al., 2021; Y. Li et al., 2018; Z. Li et al., 2018;
Zhang et al., 2021; Zhao et al., 2020). These studies, however, have focused on learning network-
wide short-term correlations among traffic states (e.g., speed) to predict future states 5 to 60 mins
ahead of time.

Data-driven methods for intersection level traffic prediction mostly involve traffic flow (Alajali et
al., 2018), movement volume prediction (Ghanim and Shaaban, 2019; Li et al., 2020; Mahmoud
et al., 2021) and traffic signal queue length prediction (Chang and Su, 1995; Lee et al., 2019;
Rahman and Hasan, 2021). These studies are highly data intensive; previous studies either used a
simulation-based or a hybrid approach to develop intersection-level traffic prediction models. For
instance, Chang and Su (Chang and Su, 1995) developed a data-driven neural network model for
predicting queue length at short time step (3s). They used the data from simulation experiments to
train the model for queue prediction. Lee et al. (Lee et al., 2019) developed a deep learning model
for queue length estimation. They relied on traffic simulations to generate the training data and
used real-world driving data from the Federal Highway Administration’s Next Generation
Simulation (NGSIM) program to test the approach. However, one limitation is that these
approaches are based on isolated intersections without considering the coordination among
multiple intersections.

Recently, Alajali et al. (Alajali et al., 2018) applied gradient boosted decision tree based model to
predict intersection traffic volume for large scale network which covers intersections at central
business district (CBD) area of Melbourne, Australia. This study proposed an online and offline
training approach to deal with the limitation in computation power for large scale data. However,
the proposed method is limited to aggregate traffic volume prediction at intersection level rather
than traffic movement volumes. A recent study by Li et al. (Li et al., 2020) proposed a deep
learning method to predict intersection level traffic movement volume. This study utilizes
Convolutional LSTM model to capture spatiotemporal dependency among network-wide traffic
states considering traffic network as an image. Thereby fails to capture the stochastic traffic flow
dynamics of the network. Moreover, the proposed approach does not consider travel demand
features, thus limited to only short-term traffic movement prediction (i.e., 5-15 min ahead of
current time).

In summary, we find that most of previous studies adopted deep learning models without
considering directional traffic volume. Moreover, capturing the spatiotemporal dependency of
traffic for interconnected roadway segments can improve the model performance compared to
traditional times series-based approaches. However, still there exists several research gaps in
application of deep learning methods for intersection-level traffic movement volume prediction.
First, these deep learning methods have not been tested for network scale intersection level traffic
movement volume prediction, rather applied over isolated intersections or at a corridor level.
Second, although graph theoretic approach has been applied for detector level or segment wise
traffic state prediction, no study has considered traffic dynamics and tested its influence on model
accuracy. Third, previous studies focused on short-term or cycle-level traffic prediction, thus, do
not consider any demand related features to account for long-term demand variations. However,
for predicting traffic over a long-term period (>1 hr.) we need to add the information on travel
demand variation over different periods (peak hour, off peak hours etc.).
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3. Problem Formulation

We present a data-driven approach of learning intersection-level traffic movement patterns of a
transportation network given that information on travel demand and corresponding traffic
movement volumes are available. Instead of estimating traffic movement patterns using traditional
traffic assignment models, here we implement the idea of learning those movement patterns from
large-scale training data. Adopting the concept of graph convolution, we develop a deep learning
model to capture the cross correlation among spatiotemporal traffic features to predict traffic
movement over a long-term sequence.

To implement the model, we represent the transportation network as a graph where each node
indicates an intersection, and the edges indicate the shortest path distance between two
intersections. Let, G(v,&,A) is an undirected graph, where v denotes the set of nodes (i.c.,
intersection) and £ denotes the set of links between nodes (i,j). A represents the connectivity
between nodes as a weighted adjacency matrix, where weights are based on the distance between
any two nodes (i, j), defined as follows:

d;j ifi #j
0, otherwise

A = { (1)
where, d; ; denotes the travel distance between the origin i and the destination j nodes. The
connectivity inside an adjacency matrix detects which neighboring nodes (j) will be influenced
by the traffic condition at a given node (i). Moreover, in a timeseries problem the existing traffic
condition at a given node (i) will also influence its future traffic condition, which means each node
is temporally self-influenced. This is represented by adding an identity matrix (I) with the
adjacency matrix which ensures that nodes are self-accessible,

A=A+1 )

The proposed data-driven traffic prediction model aims to /earn intersection-level traffic
movement volume of a transportation network over multiple future time-steps based on capturing
the spatiotemporal correlation among traffic features at different intersections. In other words, the
framework captures how traffic at a given intersection influences the traffic condition at other
intersection based on the distance between two intersections. Thus, we feed the model with
information of two aspects: (i) a weighted adjacency matrix (A) indicating the connectivity and
distance between intersections and (ii) node level features (X;) representing traffic demand and
traffic state variations.

The traffic prediction problem aims to learn a function F (. ) that maps [ instances of input sequence
(Xi—, Xi—t41 X)) to  predict intersection-level  traffic  movement  volume
(Fes1, Fegg oon o e F,,) for the entire network. We define the problem as follows:

T([Xt—l:Xt—l+1 e Xels G (v, 5,2])) = [Ft+1'Ft+2 "'Ft+p] 3)

where, [(=0,1,2 ...1) and p(= 1,2,3 ... p) indicates the input and output sequence; Fy,,, € RV*12

indicate the traffic movement volumes for the entire network at time t + p. Each row of the matrix
F¢4p, indicates all the possible movements (i.e., left, through, and right) at each approach (e.g., four



approaches) of an intersection. Description for all the notations associated with the model
development is included in Table 1.

Tablel

Description of the Notation associated with the model development

Notation Description
g Transportation network
v Set of nodes in G with size of |[v| = N
E Set of links in G with size of |E| = E
A€ RVN Weighted adjacency matrix of G, defined by Equation (1)
1€ RV*N Identity matrix
ie RVN Neighborhood matrix defined by Equation (2)
D e RVN Degree matrix of G, a diagonal matrix where diagonal elements (i, i)
indicate the number of links connected with a node
d;; distance between nodes i and j
l Input time sequence length (0,1, .......1)
c Number of input features
X, € RVx¢c Contains all the traffic features associated with each node (i) of the
network
g Graph Convolutional filter to learn the congestion propagation inside
the network
() Activation function
W € RV*N Learnable parameters for the convolution filter
h Indicates the outputs from different layers of the proposed neural
network architecture
14 Prediction horizon ( 1, .......p)

Fup € RM*12  [ntersection level traffic movement volumes for entire network

4. Methodology
4.1 Graph Convolution for Spatial Dependency Modeling

In a transportation network, the nodes are interconnected so traffic condition at a given node will
impact the traffic in the neighboring nodes. This is because of the propagation of traffic flow from
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the origin nodes towards the neighboring nodes. Graph convolutional neural network can capture
these intrinsic dynamics of the network (i.e., flow propagation), which means it can capture the
spatial cross correlation among the neighboring nodes based on their position inside the network
(Fig. 1(a)). In a graph convolution approach, we can represent the traffic flow propagation process
using a convolutional filter. To derive the convolutional filter, the adjacency matrix is decomposed
into its eigenvalues to represent the structural properties of a graph such as strength of a node (e.g.
node level features), shortest path between two nodes etc. Such representation while feed into deep
learning model suffers from exploding or vanishing gradient problem due to sparsity in eigen
values’ distribution. To overcome this exploding or vanishing gradient problem, Kipf and Welling
(Kipf and Welling, 2016) proposed a normalization technique to represent a graph and its intrinsic
dynamics known as spectral graph. Based on spectral graph representation method the convolution
operation to capture the spatial correlation can be defined as follows,

=1 __ 1
gce = (WyOD 24D 2)X, 4
where, gc; indicates the convoluted feature matrix and W, indicates the parameters for the

convolution filter. 4 and D indicates the adjacency matrix and degree matrix respectively and the
1

= 1__ 1 : . : . o
expression D 24D 2 indicates the symmetrically normalized adjacency matrix. X, indicates node
level features, representing traffic demand variations. The convoluted feature matrix gc,
represents the traffic flow propagation (i.e. network’s intrinsic dynamics) inside the network.

Xi
t=1 gCe—1
I
® I I I Y R LT
‘ I||I|||\|||\|I|III fL |||'|||||||I|||I|
w p L FL LTI
- gc 4 Xt 4
gce
g  Graph convolutionalfilter f  Non-linear function ®  Elementwise multiplication
W), Parameters for the convolution filter ;|  Inputtime sequence length p  OQutput sequence length
X, Contains input features for all the nodes
(a)
Yo
Cen ® @\ Co
| el
fi i )
g0
forget gate input gate output gate
(logistic) tanh (logistic) (logistic)
he1y ]\ \ //I /]

\{/

gt
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(b)

Fig. 1 Model Architectures (a) Graph Convolutional Neural Network (b) Long Short-Term
Memory Neural Network
4.2 LSTM Model for Temporal Dependency Modeling

In traffic prediction problems, an LSTM (Hochreiter and Urgen Schmidhuber, 1997; Ma et al.,
2015; Rahman and Hasan, 2018) model is applied to capture the temporal correlation among traffic
features. The basic difference between an LSTM model and other neural network models is that in
a simple neural network model, a hidden state is stored as single vector or matrix whereas in a
LSTM model the hidden state consists of two vectors a short-term state (h;) and a long-term state
(cy) (Fig. 1(b)). To capture the short-term correlation (i.e., hourly pattern) between two
consecutive timesteps the short-term state (h;) is recursively fed into each of the consecutive
LSTM units (i.e., over the length of input sequences). Moreover, LSTM stores the long-term
information (such as period or seasonal traffic variations) as it passes over multiple time steps. At
each time step (t) the hidden states (hy, ¢;) are continuously updated by four fully connected neural
network layers known as input i(t), forget f(t), cell g(t) and output o(t) layers. In the final time
step the hidden states (h;, c;) are fed into the output layer to get the final output (yq) = hy).

4.3 Modeling Frameworks

We proposed two different graph convolution based neural network architectures to model the
traffic movement volumes over multiple temporal sequences: Graph Convolutional LSTM and
Graph Convolutional Encoder Decoder LSTM. In the following sections, the proposed modeling
framework is described,

Graph Convolutional LSTM (GCN-LSTM): In the graph convolutional LSTM architecture, we
stack the graph convolution and LSTM layer to capture both spatial and temporal dependency of
traffic features. The model takes intersection level traffic features (X;) such as hourly volume,
zonal level trip attraction and production, characteristics of the built environment as inputs and
outputs the predicted traffic movement volumes. Fig. 2 shows different components of the model
as it unrolls over multiple time steps (i.e., length of input sequences). At each time step, the model
performs a graph convolution operation over the input data (G,) and feeds the output (gc;) into
the LSTM model. After taking the input from the graph convolution (GC) layer, it updates the
hidden states (h¢, c;). In this architecture, the short-term state (h;) at the final time step (t) is
linearly transformed using a fully connected layer to get the predicted (y;) traffic movement
volumes over multiple sequences.



w N

O 00 N O U b

10
11
12
13
14
15
16

17

| Travel Demand |

Sub Zonal Level
Trip Attraction —

Sub Zonal Level

GC ¥ LSTM

Movement
Volume

(INT.NL,

=

Trip Production (Ge—1) (he—1,ce-1) NR, SL,ST,
SR, EL, ET,
v ER, WR,

WT, WR])

Built Environment
Characteristics G
t-1

GC [—» LSTM

(he—141,0
(gf—l+1) Cf—l+1) E

1
h 4

GC —» LSTM
p -

=

Built Env. Types:
Industrial,
recreational etc. L
Roadway Types:
Urban, Rural etc.

| Seasonality | Ge & I

Time of the Day,
Day of the Week

[ Trafic |
Aggregated Hourly
Traffic Volume at | —
the intersection

gt+ 1

gt+p

=

Spatiotemporal (Ge-1) (ht—1,ct-1)
Graph (§)

Reshape

Y

FC

Y

GC —» LSTM

=

Go)

(3 Graph Convolution Layer (GC) 83 Fully Connected Layer (FC)

Node Level
Features(X;)

Fig. 2 Modeling framework and information flow diagram for different components for Graph
Convolutional LSTM

Graph Convolutional Encoder Decoder LSTM (GCN-Encoder-Decoder): In this architecture,
the outputs from the graph convolutional layer are fed into an encoder-decoder LSTM architecture.
Similar to the previous architecture, the encoder LSTM captures the short-term and long-term
dependencies of traffic features as it unrolls over multiple time step, thus it updates the hidden
states (h¢, ¢;). However, to get the final outputs over multiple temporal sequences, we use a
decoder LSTM (Fig. 3). At the first-time step, the decoder LSTM takes the hidden states (h;, ¢;)
and input state (gc,) from the final encoder LSTM step (t). In this architecture, we modify the
traditional encoder decoder LSTM to pass the input state (gc;) at time step (t) along with hidden
state of encoder LSTM. We encode this input as a vector which indicates the starting point of future
time series prediction. In the following time steps, it recursively takes the predicted traffic volumes
(F;41) and hidden states (h;y1, Ct+1) from the previous step to predict the traffic volumes in the
next step (Fyy2). The decoder LSTM iteratively performs this operation to generate the whole
output sequence.



Travel Demand

Sub Zonal Level
Trip Attraction
Sub Zonal Level
Trip Production

Built Environment

Characteristics

<N

(Ge-1)

Built Env. Types:
Industrial,
recreational etc.

Roadway Types:
Urban, Rural etc.

Seasonality Ge A

<N

(Ge-141)

Spatiotemporal

Time of the Day, Graph (G)
raph (G

Day of the Week

<N

| Traffic

Aggregated Hourly
Traffic Volume at
the intersection

Node Level
Features(X;)

3 Graph Convolution Layer (GC)

O Encoder
[ Decoder

(Ge-1)

Go)

<N
i

LSTM

GC

(he—i ce—1)

Y

GC LSTM

A 4

N

)

T
1
(P
[}
Ct—1+1) 1
1
1

A4
GC LSTM

Y

N

(Fr+p—1)

(he-1,€-1)

A 4

(ht. CI‘,')

LSTM

A A

GC

<N

(Fev2)

Fv1)

Encoded State

h 4

Movement
Volume
([NT, NL,
NR, SL.ST,
SR, EL, ET,
ER, WR,
WT, WR])

gt+ 1

Fig. 3 Modeling framework and information flow diagram for different components of Graph
Convolutional Encoder Decoder LSTM

5. Data Collection and Processing

O 00N O

5.1 Traffic Movement Volumes

In Seminole County, majority of the signalized intersections are equipped with advanced traffic
signal controllers on the arterials and each signal provides Automated Traffic Signal Performance
Measures (ATSPM) (Fig. 4), which includes traffic movement volumes, signal timing, traffic
queue volume etc. We extracted high-resolution event-based signal data for Seminole county from
January 1, 2016 to December 31, 2016; in total we have collected data for 253 intersections. From
the raw dataset, we mainly extracted the traffic movement volumes for different direction and

movement types.

10
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The raw data collected from traffic detectors are subjected to errors. Several factors such as
detector’s malfunctioning, false encoding during storing the data into the server, overlapping of
multiple entries, duplicate entries, bad weather conditions etc. can cause errors. Therefore, before
proceeding to any data analysis, we need an extensive data cleaning and quality checking. Fig. 5
shows the framework for the data processing steps.

To check the quality of the data, we followed several steps starting with checking the percentage
of missing data for different detectors. We consider the detectors having a higher percentage of
missing values as unreliable detectors. Moreover, data imputation is not feasible for the detectors
with too many missing values as it will produce unrealistic data distribution. Considering this
issue, we retain the detectors having missing values less than 20% of total data samples. We apply
three techniques to check the quality of the data and detecting outliers.

First, we compare vehicle per hour for each movement types (i.e., left, through, right) with Federal
Highway Administration (FHWA) guidelines on capacities at signalized intersection. According
to the FHWA guidelines for left and right turn movement the capacities vary from 150-350 veh/hr,
while for through movement the capacity varies from 1600-2100 veh/hr depending on number of
available lanes (FHWA, 2004). We observe the distribution of the hourly turning movement
volume for different movement types. Almost all the data samples, except a few (less than 0.1%),
have hourly volume less than capacity. We consider the samples with values greater than capacity
as outliers.

Second, we apply isolation forest algorithm (Liu et al., 2012) to detect outlier based on temporal
pattern of traffic volume for each movement types. The algorithm learns traffic pattern with respect

11
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Fig. 5 Data processing framework

Third, we check if the turning movement volume remains within the range between (Q1 — 1.5 *
IQR) and (Q3 + 1.5 % IQR), where Q1 and Q3 indicates the first and third quartile and IQR
indicates the interquartile range (@3 — Q1).

Finally, we use a technique known as multivariate iterative imputation (van Buuren and Groothuis-
Oudshoorn, 2011) adapting Bayesian ridge regression as an estimator to impute the missing values
and outliers. To fit the estimator, we use time of the day (hour), day of the week (day), and volume
with missing values as inputs. For each imputation the algorithm takes a sample from gaussian
posterior of the fitted estimator. We use Python scikit learn (Pedregosa et al., 2011) library to
implement the algorithm. The details about the data imputation algorithm are provided in reference
(van Buuren and Groothuis-Oudshoorn, 2011). Fig. 6 shows the distribution of through movement
volumes before and after data processing. After cleaning the data, we have in total 196

12
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intersections in our final data set. Moreover, we only keep the data in between 6 am (Early
Morning) and 12am (Midnight), most of cases from 12 am to 6 am the traffic activity within this
region is either zero or nearly zero. We have also removed the data for special events and holidays
such as hurricane evacuation period (September 28, 2016 — October 10, 2016), thanksgiving
holiday etc.
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Fig. 6 Distribution of data samples based on vehicles per hour per lane
5.2 Travel Demand Features

To generate the travel demand for the study area, we employ Central Florida Regional Planning
Model (CFRPM 6.1) which outputs average weekday trip production and trip attraction at the
Traffic Analysis Zone (TAZ) level by trip purpose and special generators. Our study area
(Seminole County, Florida) includes 230 TAZs, so, we can aggregate the weekday trips to estimate
total production and total attraction for each of these 230 zones. However, each TAZ has multiple
intersections within its boundary. Hence, to link this demand information with operational
characteristics of an intersection, we need to partition these TAZs into a finer spatial resolution.

Considering this issue, we develop a technique to partition the TAZs into multiple subzones to
generate demand at a finer resolution.

We considered multiple approaches for creating the sub-zones. We determine the number of
subzones based on spatial distribution (196 intersections sparsely distributed over 230 TAZs) of
intersections. This will ensure an adequate representation for each TAZ while extracting the spatial
features. We also considered employability of the approach by transportation agencies; hence we
adopt a stable process to divide the TAZs. Based on these considerations, we divide each TAZ into
5 subzones which ensures an adequate representation of each TAZ.

We use Geographic Information System (GIS) software to create the subzones for each TAZ. The
TAZ shape file is a polygon shape file in GIS which is usually constructed by joining multiple
points in the perimeter. To identify the points to be connected, we followed the following process:

e First, we convert the polygon TAZ shapefile to point shape file using GIS. For example,
if a given TAZ shape file contains total 100 points in the perimeter, we alter the TAZ
shape file to the corresponding 100 points.
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e Second, we divide the number of points into 5 groups. If the number is not divisible by 5,
then we assign all the remaining points in the last group. For example, with 100 points,
we will have 5 groups of 20 points each. If we have 101 points, then the last groups will
have 21 points. Also, it is important to note that the last point of a group will be the first
point of the subsequent group. So, for 100 points, the groups will be: 1-20; 20-40; 40-60,
60-80 and 80-100.

e Finally, within each group, we identify the first and last point and connect both these
points with the centroid, thus converting one single TAZ to 5 sub-TAZs.

In total we create 1150 subzones from 230 TAZs. Fig. 7 shows the TAZs and generated subzones
for the study area. From the CFRPM model we estimate average weekday trip attraction and
production at a subzone. Afterwards, we expand the daily demand into hourly demand using hourly
distribution factors provided by CFRPM (see (FDOT, 2014) for more details).

L] OpenstreetMap contributars C1 DpenSrestMag contributars

Fig. 7 Traffic Analysis Zones and Subzones for the Analysis

We have also extracted exogenous variables including built environment and land-use
characteristics for each subzone. Built environment characteristics variables are processed from
NAVSTREET data and include number of restaurants, shopping centers, business centers,
entertainment establishments and educational institutions. Land-use characteristics are processed
using high resolution parcel level land-use data sourced from Florida Department of Revenue.
Each parcel is assigned a unique ID (Parcel ID) linking it with equivalent parcel level attribute
information such as property/feature value, land value, land area in square feet, land-use codes

(DOR-UC), owner name, owner address, physical address, physical zip code, building details and
so on contained in the Name-Address-Legal (NAL) file. In this study we consider five land use
categories: Residential, Retail/Office, Industrial/Manufacturing, Institutional/Infrastructure,
Recreational etc.

6. Experiments
6.1 Input features and Graph Representation

In this section we discuss about spatiotemporal features extraction technique from the data. We
also discuss about the graph representation from geolocation of the intersections.
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Input features in the data samples (X;): We have extracted different types of features to
represent the travel demand and built environment characteristics corresponding to each
intersection. Since the spatial variations in built environment characteristics are more subtle, we
use natural logarithm of the areas (acre) corresponding to different built environment types (Table
2), which scales the subtle changes and make it more prominent. Finally, we merge these variables
with hourly trip attraction and trip production. To feed the model with short term travel demand
variations, we use aggregated intersection level hourly traffic volume. We also use temporal
features such as time of the day and days of the week to capture the seasonality inside the data.

In total we have 11 features; we formulate the traffic data sample as [number of samples (n), input
time sequence (1), number of nodes (N), input features (c)]. Since, we have the data from 196
intersections, so the number of nodes, N = 196. We select 6-hour input data sequence to predict
traffic for next 4 hour, so input time sequence length [ = 6 and prediction horizon length, p = 4.
In total we have ¢ = 11 input features: days of the week (i.e. Saturday, Sunday etc.), time of the
day as hour (1 to 24 hr), intersection specific aggregated traffic volume, hourly trip attraction,
hourly trip production, proportion of highway among total roadways of a zone. We have 5706 data
samples from a one-year period (2016). Finally, the input data and target data samples have the
shape as [5706, 6, 196, 11] and [5706, 4, 196, 12], respectively.

Table 2. Description of Input Features

Variables Description
ty Days of the week (i.e. Saturday, Sunday etc.)
th, Time of the day as hour
q: Intersection specific aggregated traffic volume at time ¢
T, Hourly Trip Attraction
Tp Hourly Trip Production
HW ;.0 Proportion of Highway among total roadways of a zone
Bina Ln(industrial)
Bec Ln(recreational)
B et Ln(retail/office)
Binst Ln(institutional)
B, s Ln(residential)

Graph Representation: We follow several steps to construct the graph. First, we map the signals’
locations into Open Street Map. Second, considering the signalized intersections as nodes we
connect each of them with their neighboring nodes. To find the neighboring nodes, we select an
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origin node and find the shortest path from the origin node to all the other nodes. The nearest node
on each of these shortest paths is the neighboring node to the origin. Finally, after constructing the
network, we represent the network using adjacency matrix (see equation 1 and 2). We use the
travel distance as weight for the graph adjacency matrix. We also perform gaussian transformation
on the weighted graph adjacency matrix,

AL j) = { exp - d_) =i s)

0, otherwise
where, o indicate the standard deviation of distances.

6.2 Baseline Models

We implement three baseline models to compare the performance of the proposed graph
convolution-based models.

Historical Average (HA): In the Historical average method we compute intersection specific the
average traffic volume for each direction (i.e., Left, Though, Right) and each hour (i.e., 1 to 24
hour). We estimate this average based on the training data. So, if we want to forecast traffic for a
given intersection at 2pm then we will take the average of all the traffic at 2pm from the historical
data.

LSTM: In the LSTM model, we use single LSTM layer to predict traffic for next 4 hours. In the
hidden layers we assign 196 (number of nodes) hidden neurons. The output layer is a fully
connected layer with tanh activation function.

Convolutional LSTM (Conv-LSTM): In the Convolutional LSTM (Conv-LSTM) model we
stacked a convolution layer with LSTM layer. Convolutional layer use convolution filter to extract
the spatial correlation among traffic features in among neighboring intersections. We experiment
with different size of the kernel (k) and find that the model performs best for a kernel size of 3.
The output from the convolutional layer is feed into the LSTM layer to capture temporal
correlation among traffic features while predicting traffic flow over a temporal sequence.

6.3 Model Training

We use 80% of the data for training (learning the parameters), 10% for validation (tuning hyper-
parameters), and rest 10% of the data is used for testing (checking performances) the model. Based
on the validation accuracy we tune the hyper-parameters such as learning rate, types of activation
functions (i.e., tanh, sigmoid etc.), maximum number of iterations. Once the final model
parameters are fixed, we test it on the test data set.

We train the model using mean squared error (MSE) as the loss function. At each iteration, the

model estimates the MSE for the estimated traffic movement volume (F, H ) and the actual

t+p

movement (F, g ) volume for a given intersection (i), and movement types (m). Afterward, the

t+p
gradient of the loss function is backpropagated to adjust the weights to reduce loss function value.

The loss function can be defined as:

Ly, = Loss(FI's,, FIE) (6)
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where, Loss(.) is the function to estimate the error between the actual (FtiTp) and estimated

values (I:"tiﬁ_”p). i and m denotes the intersections (i.e., nodes) and movement types (i.e., NL
(northbound left), NT (northbound through), NR (northbound right) etc.).

We implement the model using pytorch library (“PyTorch,” 2016) and train it in Ubuntu 18.04.5
LTS (GNU/Linux 5.4.0-62-generic x86_64) supported by a cluster of four NVIDIA RTX 2080Ti
11 GB GPUs. While training the model, we track the training and validation loss values to check
whether the model is overfitting or not. From the loss values, we find that it takes about 100 epochs
with a learning rate of 0.001 for the GCN-LSTM model to converge (i.e., similar train and
validation loss value) (Fig. 8). Moreover, after 100 epochs, the value of the loss function for the
validation data gradually starts increasing, indicating that the model starts to overfit. We use
Adaptive Moment Estimation (ADAM) to train the model. Compared to other optimizers such as
Adaptive Gradient (AdaGrad), Root Mean Square Propagation (RMSProp) etc., ADAM optimizer
gives more stable solutions, which means MSE values for train and validation data almost remain
same after convergence.

Variations of Loss Values During Training

0.0016 1 valid

+ train

0.0014 4

0.0012 -

0.0010 1

i

Loss Values

0.0008 1
0.0006 1

0.00041 |

0.0002 4 +++M
0 20 40 60 80 100
Epochs

Fig. 8 Variations of training and validation loss values GCN-LSTM model

We also compare the training time for different models. Compared to other models, the GCN-
LSTM model takes less training time. The reason is that for other models it takes more than 100
epochs to converge to a stable solution. Moreover, on average the GCN-LSTM takes less time per
epoch (6.16 seconds) compared to the Conv-LSTM (8.19 seconds) and the GCN-Encoder-Decoder
(7.19 seconds).
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Fig. 9 Overall Training time for different models

6.4 Experiment results

Once the final model is fixed, we test it on the test data set. We calculate Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and GEH (Transport for London, 2010) statistics as
performance measures to check the accuracy of the implemented model. Performance metrics are
defined as,

14 1 N 1 M
RMSE = | =% =% (R, — Finy) ()
1 1 1
14 N
MAE =y = | R, - R 9
p N - M 14 14
p

Fim im 2
2(Fgvp—Feyp)

pim im
FeyptFeip

(7)

i =im . . . ,
where, F ltrfp and Fy, indicate actual and predicted movement volumes for each intersection (i) and
movement types (m) at time (t + p).

In Table 3, we report the performance of model on the test data. To test the sensitivity of the model
over different data samples, we randomly split the data to generate 10 different train, test and
validation datasets. Finally, we train 10 different models and report the mean and standard
deviation of the estimated performance measures on the test data sets. Based on performance
measures, we find that the proposed GCN-LSTM model performs best compared to other baseline
models. The RMSE and MAE values of the model for through traffic movement are 59.27 and
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23.072, respectively. However, RMSE and MAE provide aggregate information (average over all
the outputs) on the performance of the models, hence, we also estimated R? score. As shown in
table 3, the R? score for all the movement types of the proposed model is above 0.98 indicating
that the model can learn the traffic movement patterns very well (Fig. 9 (a)).

Table 3

Comparisons among different models to predict traffic volume over 4-hour sequence for
different movement types

Model RMSE MAE R’ Score
Left | Through | Right | Left | Through | Right | Left | Through | Right
HA Mean | 7.597 | 134.369 | 3.453 | 1.004 | 60.72 | 0.341 | 0.948 | 0.927 | 0.961

Std - - - - - - - -
LSTM Mean | 5.768 | 89.784 | 3.457 | 1.143 | 40.584 | 0.579 | 0.966 0.967 | 0.961
Std 0.343 6.885 [ 0.191 | 0.098 3.734 | 0.098 | 0.004 0.005 | 0.004
GCN- Mean | 4.888 | 82.283 | 2.855 | 0.913 | 32.462 | 0.488 | 0.976 0.972 | 0.973
Encoder-

Decoder | Std 0.258 3309 | 0.141 | 0.128 | 0.899 | 0.112 | 0.003 |  0.002 | 0.002
Conv- |Mean | 4177 | 61.145|2.572| 1.289| 23.832]0.926 | 0.982 | 0.985| 0.978
LSTM | gd 0.114 1.945 | 0.074 | 0.115 0.623 | 0.119 | 0.001 0.001 | 0.001
GCN- | Mean | 4.018 | 59.372 | 2.458 | 1.189 | 23.072 | 0.830 | 0.983 |  0.985 | 0.980
LSTM | gd 0.062 0.706 | 0.065 | 0.148 0.227 | 0.155 | 0.001 0.000 | 0.001

We also estimate the absolute difference between the actual and predicted traffic volume. Fig. 9
(b) shows the cumulative distribution function (CDF) value of absolute errors for all the movement
types. For left and right turn movement, more than 95% of the predicted volumes have an absolute
error less than 5, whereas for through movement about 90% of the predicted volumes are less than
60. This is because through movement volumes are higher compared to left and right turn
movement. To provide a normalized value for accuracy measure we also estimate GEH score. A
GEH score of less than 5 is considered as a good match between actual and predicted volumes.
According to (Nezamuddin et al., 2011) 85% of the predicted volumes should have a GEH score
less than 5, while In our case more than 90 % cases GEH score is less than 5 (Fig. 9 (a)).
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Fig. 9 Performance of the model in turning and through movement prediction

In Fig. 10 and 11 we show the distribution of through movement types for all the intersection at a
given weekday and weekend time periods (i.e. four-hour sequence prediction). For a few
intersections we do not have all the movement types, in those cases the model predicts the volume
as zero or close to zero (<1). So, the figures include values for a valid movement type of an
intersection based on the actual data. From the figures we find that incase of both weekday and
weekend the model captures the distribution of traffic movement volumes very well.
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Fig. 10 Predicted through movement volumes for all intersections for a given weekday time
period (timestamp 08-10-2016 2 pm — 6pm)
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Fig. 11 Predicted through movement volumes for all intersections for a given weekend time
period (timestamp 2016-11-13 2 pm — 6pm)
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7. Conclusion

Accurate traffic forecasting at the scale of a network is critical to ensure proactive decision making
and optimal action plans for traffic operations and management. However, traditional network
models involve complex mathematical or simulation-based approaches, which require higher
computational time in predicting traffic at the level of an intersection including turning volume. In
this study, we develop an alternative data-driven approach adopting the concept of graph
convolution. We propose two different modeling frameworks GCN-LSTM and GCN-Encoder
Decoder to predict hourly traffic volume over multiple time steps. From the model results, we find
that GCN-LSTM model outperforms other baseline models. The overall R? value of the model is
close to 1 indicating that the model captures the traffic movement volumes very well. Moreover,
the absolute difference between actual and predicted volumes are quite low (GEH<S); for right
turn, through and left turn movement RMSE values are 4.02, 59.37, and 2.47 respectively. We also
compare the efficiency of the model in terms of required training time. Based on the comparison
results, the proposed GCN-LSTM model takes less training time (10.53 min), being more efficient
compared to traditional deep learning models.

Another benefit of the proposed model is that traditional deep learning methods follow a black box
approach to select the number of parameters and most of the cases it requires more manual effort.
Whereas, in our case we develop the model architecture automatically based on the structure of
the network. Even in case of large networks we can automate this process by dividing a large
network into small sub networks.

Although this study provides viable solution to model and predict real time network traffic
volumes at a higher accuracy, one of the limitations of this study is that we do not use any
information on real-time variations of travel demand, rather we use hourly demand which is
constant for all the days. High resolution demand data from emerging technologies such as mobile
phone sensors or connected vehicles data can be used to overcome this issue. A comparison
between traditional demand data and emerging data might give us more insights on model
performance.

Moreover, in this study, we only explore the two variants of graph neural networks Graph
Convolutional LSM and Graph Convolutional Encoder Decoder. However, future research should
explore more variants of graph neural network such as Graph Attention Networks (Veli¢kovi¢ et
al., 2018)and GraphSage (Hamilton et al., 2017) based neural networks to improve the overall
accuracy of network-wide traffic movement volume prediction.
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