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Abstract—Tensor decomposition methods are popular tools for
analysis of multi-way datasets from the social media, healthcare,
spatio-temporal domains, and others. Widely adopted models
such as Tucker and canonical polyadic decomposition (CPD)
follow a data-driven philosophy: they decompose a tensor into
factors that approximate the observed data well. In some cases
side information is available about the tensor modes. For exam-
ple, in a temporal user-item purchases tensor a user influence
graph, an item similarity graph, and knowledge about seasonality
or trends in the temporal mode may be available. Such side
information may enable more succinct and interpretable tensor
decomposition models and improved quality in downstream tasks.

We propose a framework for Multi-Dictionary Tensor De-
composition (MDTD) which takes advantage of prior structural
information about tensor modes in the form of coding dictionaries
to obtain sparsely coded tensor factors. We derive a general opti-
mization algorithm for MDTD that handles both complete inputs
and inputs with missing values. MDTD handles large sparse
tensors typical in many real-world application domains. We
experimentally demonstrate its utility in both synthetic and real-
world datasets. It learns more concise models than dictionary-free
counterparts and improves (i) reconstruction quality (up to 60%

smaller models coupled with reduced representation error); (ii)
missing values imputation quality (two-fold MSE reduction with
up to orders of magnitude time savings) and (iii) the estimation
of the tensor rank. MDTD’s quality improvements do not come
with a running time premium: it can decompose 19GB datasets
in less than a minute. It can also impute missing values in sparse
billion-entry tensors more accurately and scalably than state-of-
the-art competitors.

I. INTRODUCTION

Tensors are multi-way arrays that generalize matrix data to

higher number of “dimensions” [26]. The ability of tensors

to accurately model the complex relationships present in

many datasets has rendered them applicable in signal process-

ing [27], machine learning [22], chemometrics [3], and other

fields. Similar to matrices, low rank decomposition models

for tensors are common ways of finding patterns in multi-

way data. Popular approaches like the Canonical polyadic

decomposition (CPD) [3] and Tucker decomposition [29] learn

directly from data without additional modeling assumptions.

In many settings prior knowledge about the data generation

process may also be available, for example, seasonality in a

temporal mode or a network associating individuals in a user

mode. In addition, downstream applications such as data im-

putation, clustering, and anomaly detection may benefit from

imposing structure in the decomposition. Such considerations

have given rise to modifications to the original CPD and

Tucker models that have produced state-of-the-art performance

in missing values imputation within a Bayesian framework [4],

Fig. 1: The key idea behind the dictionary-based tensor decomposition model
(MDTD) through a user-item-time example. MDTD can utilize graph-based
dictionaries Φ for the user and item modes and a temporal dictionary for the
temporal mode. The decomposition is similar to CPD decomposition in that
it is a sum of rank-one factor tensors, with the key difference that factors are
represented as encodings yij via the corresponding dictionaries.

[5], improved community detection for on/off [11], peri-

odic [16] or bursty self-exciting behavior [12], and other tasks.

Most methods employ regularization to build prior knowl-

edge into the factorization model imposing different forms

of structure: sparsity, periodicity and others. An alternative

approach is to employ sparse coding for tensor factors via

dictionaries [6]. Such sparse coding techniques utilize fixed

dictionaries and have been widely adopted in signal and graph

signal processing [20], [28], computer vision [9], machine

learning [13] and data analytics [19]. The ubiquitous appli-

cations of such methods have also given rise to some standard

analytical dictionaries for time series (Fourier, Ramanujan,

splines) [28], graphs (graph Fourier and graph wavelets) [20],

and images (wavelets, ridgelets, curvelets) [9]. Employing

such dictionaries for tensor data promises to enable succinct,

interpretable and efficient-to-learn models.

We introduce a multi-dictionary tensor factorization

(MDTD) framework that employs fixed dictionaries for joint

sparse coding of the tensor factors. The key idea of our model

is illustrated via a user-item-time example tensor in Fig. 1.

Given prior knowledge in the form of user and item graphs

as well as expectation about periodic behavior in time, we

propose to employ corresponding dictionaries Φ to sparsely

encode factors in a CPD-like model. For the example in the

figure, we can employ a Graph Fourier Transform (GFT)

dictionary for the modes with graph side information and

a periodic dictionary for the temporal mode. The model is

applicable to higher order tensors with any subset of modes

endowed with side information, as well as to other kinds of

side information and corresponding dictionaries. We propose

a general optimization solution for MDTD and evaluate it

on multiple tensor datasets. We demonstrate that when the
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side information captured by the dictionaries is well aligned

with the data in the tensor, our approach enables i) orders

of magnitude reduction in the model size compared to CPD

and Tucker, while running in comparable time and ii) enables

improved quality in several downstream tasks.

Our contributions in this paper are as follows:

• Generality and Novelty: We propose the first multi-

dictionary tensor decomposition framework MDTD which can

leverage arbitrary dictionaries for each tensor mode.

• Parsimony and Scalability: MDTD produces interpretable

and concise representations of both real-world and synthetic

tensors scaling similar to simple decomposition models and

better than more complex ones. MDTD decomposes a 19GB

tensors in 1 min and can impute missing values in tensors with

billions more entries than what competitors can handle.

• Applicability and Accuracy: We demonstrate MDTD’s

utility for succinct tensor representation, and missing value

imputation. Its quality dominates baselines across applications

and datasets. In some cases MDTD achieves higher accuracy

and a 100x speed-up compared to the fastest baseline.

II. PRELIMINARIES

Before we define our problem of dictionary-based tensor

decomposition (MDTD), we first introduce necessary prelim-

inaries and notation. The input to our problem is a tensor

X , which is a multi-dimensional array of real numbers. We

present the problem and our solutions in the context of

three-way tensors for simplicity, however, both generalize

seamlessly to higher order tensors. We will work with tensors

of the following shape X ∈ R
(I×J×T ), where I , J and T are

the dimensions of the modes.

CPD decomposition. MDTD can be viewed as a dictionary-

based extension of the CPD decomposition of the form:

X =
k∑

i=1

Hi =

k∑

i=1

ai � bi � ci, (1)

where � denotes the tensor outer product and Hi are rank-

one tensors obtained from outer tensor products of individual

factors ai ∈ R
I , bi ∈ R

J , and ci ∈ R
T . If we stack k factor

vectors ai, bi, and ci into matrices A ∈ R
I×k, B ∈ R

J×k,

and C ∈ R
T×k respectively, we can express this relationship

concisely as: X = [[A,B,C]]. An in-depth introduction of

CPD and other tensor models is available in [26].

Sparse dictionary coding or sparse representation model-

ing [24] assumes that the data can be represented via a linear

combination of a few atoms from an appropriately-chosen pre-

specified dictionary Φ, where both analytical and dictionaries

learned from data can be employed. In its general form sparse

coding solves the following problem:

min
y

f(y) s.t. x = Φy,

where x is an input signal, y is its encoding and f(y) is a

sparsity promoting function often instantiated as an L1 norm.

III. PROBLEM FORMULATION AND SOLUTION

In many real-world application there is a structural infor-

mation associated with tensor modes. Consider, for example,

users (mode 1) watching streams (mode 2) over time (mode

3) on a stream service such as Twitch. Such data can be

represented by a binary tensor X ∈ R
(I×J×T ). It is easy

to imagine that users may be associated within a friendship

network and streams within a topical similarity network. More

over the communities within those networks (friendship groups

interested in streams featuring similar games) will likely

stream based on regular daily/weakly patterns. How can we

leverage this rich structural information to learn a succinct,

interpretable, and meaningful representation of the data?

We propose to represent a tensor with structural side infor-

mation through a CPD-like dictionary-based decomposition:

X =
k∑

n=1

Φ1yn1 � Φ2yn2 � Φ3yn3 = [[Φ1Y1,Φ2Y2,Φ3Y3]],

where prior knowledge in each mode is incorporated as a

model-specific dictionary Φi and the sparse encoding of the

input data through dictionaries is in matrices Yi. Fitting the

input data to such a model results in the following problem:

min
Y1,Y2,Y3

1

2
||X − [[Φ1Y1,Φ2Y2,Φ3Y3]]||

2
F +

3∑

i=1

λi ‖Yi‖1 ,

where the first term is the data fit and the second term

encourages sparsity in encodings Yi in the form of an L1

regularization. This form of sparsity is typical when using

dictionaries to avoid overfitting and ill-posed problems. In-

creasing the sparsity balance parameters λi encourages sparser

solutions for corresponding modes and allows us to control the

complexity/size of the learned model. To prevent the model

from fitting missing/unobserved values we also introduce a

zero-one mask Ω which is a tensor of the same size as X .

Our overall MDTD objective is:

min
Y1,Y2,Y3

1

2
||Ω� (X − [[Φ1Y1,Φ2Y2,Φ3Y3]])||

2
F +

3∑

i=1

λi ‖Yi‖1 ,

(2)

where � denotes the element-wise product. It is important to

note that if a dictionary (or side information) is not available

for some of the modes in a given application, a trivial identity

dictionary Φi = I and a corresponding 0 sparsity cost (λi = 0)

will allow that mode to be fit as in a regular CPD model.

A. MDTD optimization algorithm and complexity

We present the overall optimization algorithm in the case

of tensors with missing values in Alg. 1. Detailed derivations

are available in [18]. We first initialize all variables (Step

1) and pre-compute eigenvalue decompositions of ΦTΦ for

non-orthogonal dictionaries (Steps 2-6). In the main loop of

the algorithm (Steps 7-28) we iteratively update each mode’s

factors (Steps 8-24) and update the missing value imputation

matrix (Step 25) until convergence. In Steps 9-11 we compute

the factors for modes that are not currently being updated
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Algorithm 1 MDTD (with missing values)

Input: Input X , mask Ω, dictionaries Φi, k, λi, ρi
1: Initialize Yi = Zi uniformly random, and Γi = 0 for all modes, set

D = X
2: for i= 1 to #modes do
3: if ΦT

i Φi �= I then

4: Ed,iΛd,iE
T
d,i

= ΦT
i Φi

5: end if
6: end for
7: while not converged do
8: for i= 1 to #modes do
9: set j �= l �= i and j < l

10: A = ΦjYj

11: B = ΦlYl

12: if ΦT
i Φi = I then

13: Yi = (ΦT
i DT

i (B�A)+ρiZi−Γτ
i )(B

TB�ATA+ρiI)
−1

14: else
15: EvpvE

T
v = BTB �ATA

16: C = ΦT
i DT

i (B �A) + ρiZi − Γτ
i

17: Yi = Ed,i[(E
T
d,i

CEv)� (pd,i ∗ pT
v + ρi)]E

T
v

18: end if
19: Sf = max(Yi,f ), for f from 1 to k
20: Yi = Yi � S

21: H(i) = Yi −
Γτ

i

ρi
.

22: Zi,jl = sign
(

H
(i)
jl

)

×max
(∣

∣

∣
H

(i)
jl

∣

∣

∣
−

λi

ρi
, 0

)

23: Γτ+1
i = Γτ

i + ρi (Zi − Yi)
24: end for

25: D = ([[S � Φ1Y1,Φ2Y2,Φ3Y3]] + λdΩ�X )� (I + λdΩ)
26: τ ← τ + 1
27: Convergence condition:

∣

∣f t+1 − f t
∣

∣ ≤ ε, where f t+1 and f t are
the objective values of Eq. 2 at iterations t+ 1 and t.

28: end while

through their respected dictionaries Φ and coding matrices

Y . The updates for the factor of a given Yi depend on

whether the corresponding dictionary Φi is orthonormal. If Φi

is orthonormal, we have a direct update (Step 13). The update

for non-orthonormal dictionaries Φi employ the pre-computed

eigendecompositions of their dictionaries and require three

steps (15-17) based on our derivations in [18].

We normalize learned factors in Steps 19− 20 by dividing

each factor by its maximum value. Similar normalization is

commonly used in CPD algorithms to ensure that the scale of

each factor is bounded [14]. Finally, we update proxy variables

and Lagrangian coefficients following the ADMM updates in

Steps (19-23). When the input tensor does not have missing

values, or their imputation is not necessary (i.e., we simply

need a decomposition), we omit step 25 and simply replace

all unfoldings Di with the unfolding of the input tensor Xi

elsewhere in the algoithm. The three steps of Alg. 1 which

dominate the computational complexity are (i) the matrix

inversion in step 13, which runs in O(k3) (ii) the tensor

reconstruction in step 25 [[S � Φ1Y1,Φ2Y2,Φ3Y3]] involving

the Khatri–Rao product of three matrices of sizes I × k,J × k

and J × k with complexity O(IJTk) and (iii) the product

ΦT
i D

T
i (B�A) in steps 13 and 16. Let ΦT

i be pi×mi, D
T
i be

of size mi×mjml and (B�A) be mjml× k, then the com-

plexity of the latter step is O(pimimjml + pimjmlk) if one

performs ΦT
i D

T
i first or O(pimik+mimjmlk) if DT

i (B�A)
is performed first. The model rank k and the number of

dictionary atoms pi are the two hyperparameters that directly

affect the overall complexity. The typical motivation behind

tensor decomposition is that real-world tensors are often of

low rank, i.e., (k < pi). Assuming also that the number of

atoms is of the same order as the size of the associate tensor

mode (pi = O(mi)) leads to an asymptotic running time

similar to dictionary-free updates such as ALS-based CPD.

Reconstructing the full tensor D with missing values in Step

25, requires materializing a potentially dense large tensor even

if the input and the number of missing values are relatively

sparse. We discuss an alternative scalable solution for this step

for the case of large sparse tensors in [18].

IV. EXPERIMENTAL EVALUATION

We compare MDTD to baselines on (i) model quality, (ii) size,

and (iii) missing value imputation. We preform and task and

data specific grid search for all methods when appropriate. To

facilitate reproducibility we include a document detailing the

parameters selected, how they were set for each method, and

additional material such as dictionary construction formulas

with our code at http://cs.albany.edu/∼petko/lab/code.html. For

MDTD and TGSD We utilize commonly adopted dictionaries

for graph (GFT [25]) and temporal (Ramanujan [28] and

Spline [10]) modes in our experimental evaluation. A concise

summary of these bases can be found in [19]. We add the time

cost of dictionary creation to the total running time of MDTD

in all tables. Different variations of our method are denoted by

MDTD followed by the dictionary abbreviations. For example,

MDTD with a Spline dictionary on the first mode, GFT on

the second, and no dictionary for the third would be denoted

as MDTD SG. We denote variations of the matrix dictionary

decomposition baselines TGSD [19] similarly. In [18], we also

evaluate the ability of MDTD to perform rank estimation.

A. Experimental Setup

Datasets. We employ synthetic data and three real world

datasets for evaluation, including a spatial dataset (Crime),

social interactions from Reality Mining (RM), and data from

content exchange (Twitch). We provide their statistics in Tbl. I

and describe each dataset in what follows.

• Synthetic Data. We generate 3-way synthetic datasets

according to 2 distinct GFT dictionaries generated from two

stochastic block model (SBM) graphs and a Ramanujan peri-

odic dictionary (max period 10 and 400 time steps). Com-

munities in both SBM graphs contain half of all possible

internal edges and an equal number of external edges. The

first (smallest eigenvalue) 50 and 30 Laplacian eigenvectors

respectively are used as dictionaries. We generate 10 sparsely

encoded factors for each mode with 75% nonzero atom

loadings set to uniformly random values in [0, 1]. We form a

tensor product of dictionary-encoded factors and add Gaussian

noise at SNR=20 to the tensor. Synthetic samples and code

to generate them can be found within our implementation

available at https://www.cs.albany.edu/∼petko/lab/code.html

• Twitch [23] consists of followers viewing the content of

streamers. An entry represents a follower watching a stream

during a given hour. We select the top 5000, 8000, and 8000
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Dataset statistics MDTD TGSD CPD Tucker TT

Dataset m1 m2 Prior m3 Prior SSE NNZ time SSE NNZ time SSE NNZ time SSE NNZ time SSE NNZ time

Syn 200 300 Graph 400 Period 500 1045 2 522 508K 35 605 8829 2.4 681 8100 .5 607 80K 1.5

RM 94 94 Graph 719 Hours 7M 44K .38 8M 267K 12 7M 64K .49 7M 100K .31 7M 180K 1.2

Crime 77 24 Hours 6186 Days 2.19K 3794 .23 2.32K 7k 89 2.20K 6K .04 2.20K 6K .69 3.08K 14M 3.6

Twitch-S 5000 300 Graph 200 Hours 1.7M 9K 17* 16M 8M 9K 1.8M 55K 1* 1.8M 56K 6* 16M 225M 90

Twitch-M 8000 500 Graph 200 Hours 5M 14K 36* 5M 455K 76K 5M 87K 3* 5M 88K 9* 5M 700K 178*

Twitch-L 8000 3000 Graph 500 Hours 20M 10K 71* / / / 20M 115K 8* 20M 116K 22* / / /

TABLE I: Summary of datasets and comparison to baselines on decomposition quality, size and running time in seconds. Column mi show the size of the
i-th tensor mode, while Prior specifies the type of side information available which in turn informs the choice of dictionary for MDTD and TGSD. All datasets
have a graph prior for m1. We explicitly denote the dictionaries used each dataset in Fig.2. *Method time was recorded using sparse tensor representation.

most active users and the top 300, 500 and 3000 most active

streamers from this dataset to form three versions of increasing

size from this dataset: Twitch-S, Twitch-M, and Twitch-L

respectively. The follower graph is based on co-viewing of the

same stream with edge weights proportional to the number of

hours the users co-viewed any stream. Similarly, we create a

streamer graph based on shared viewership.

• Reality Mining (RM) [8] tracks the 94 users at MIT. Each

entry represents the number of messages exchanged between

a pair within a 12 hour time-span. We create a weighted graph

based on the number of messages exchanged and employ its

GFT as a dictionary for the first two modes.

• Crime [7] tracks the number of crimes that occurred

in Chicago over 17 years starting in 2001. The first mode

corresponds to 77 community areas of Chicago. Each entry in

the tensor represents the number of crimes that took place in

a particular community during a one hour period hour on a

particular day (day slices are stacked to form the tensor). We

utilized a map of Chicago to create an associated network by

connecting neighboring communities.

Decomposition baselines. We compare MDTD to CPD [3]

and Tucker decomposition [29], both implemented in Matlab’s

tensor toolbox [2]. We also compare to tensor train decompo-

sition (TT) [21], utilizing the authors implementation. These

approaches represent the state-of-the-art for low-rank tensor

representation. We also compare to TGSD [19], a dictionary-

based decomposition method for matrices by independetly

applying it to graph-time or graph-graph tensor slices.

Missing value imputation baselines. We compare the qual-

ity of MDTD for missing value imputation to that of CP-

WOPT [1] which employs CPD factorization by fitting only

known values. We also compare to two Bayesian factorization

approaches designed for imputation of missing values in road

traffic datasets: BATF [4] and BCGP [5]. These methods

also employ a CPD-like decomposition, but regularize the

factor matrix to align to Bayesian priors. We also compare

to TRLRF [30] which learns a low-rank latent space to fill in

missing values; CoSTCo [17] which utilizes a convolutional

neural network to learn nonlinear dependencies among fac-

tors to impute missing values; and SOFIA [15], an outlier-

, seasonality-, and trend-aware tensor factorization technique

for missing value imputation in temporal tensors. Finally, we

also compare to TGSD [19] which can impute missing matrix

values and thus apply it to one tensor slice at a time.

Metrics: We measure quality of representation as the sum of

squared error (SSE) and the quality of missing value impu-

tation in terms of mean squared error (MSE). We quantify a

model’s size by the number of its non-zero (NNZ) coefficients.

We also measure running times for each method in seconds.

COSTCO as a deep learning model was run on a Tesla V100

PCIe GPU with 16GB of RAM. All other baselines were run

on a Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz with 251G

of RAM.

B. Succinct decomposition

We compare the accuracy of representation versus the size

of the models when decomposing a tensor. We vary the

decomposition rank for all methods but TT as well as the

level of sparsity enforced in MDTD and TGSD (through the

λi parameters). Since Tensor-Train (TT) is capable of tuning

its optimal rank for a given error level we vary the error

level to obtain decompositions of varying sparsity and quality.

We report the Pareto-optimal models for all methods in terms

of reconstruction error (SSE) versus model size measured as

NNZ. We do not count the fixed dictionary entries towards

the NNZ. These dictionaries are results of preset analytical

functions and can be generated efficiently on demand as

discussed in [18]. Tbl. I (right-most columns) summarizes

the SSE and NNZ for one specific setting on all datasets.

We select this setting by fixing a SSE level for MTDM and

reporting the closest SSE regime of baselines. This allows

us to compare methods in terms of model size (NNZ) for

approximately similar SSE. MDTD produces the most succinct

representations and its running time is comparable to the fast

baselines CPD and Tucker. TT decomposes a tensor into a

series of smaller tensors, leading to a typically large number

of representation parameters. While TGSD also employs dic-

tionaries, its model sizes and running time are both larger as it

is a matrix (non-tensor) baseline and cannot take advantage of

3-way dependencies in the data. TGSD and TT were not able

to scale to Twitch-L due to time (running time exceed 24 hrs)

and memory constraints (memory exceed 64 GB) respectively.

We present the full spectrum of regimes for competing

techniques in Fig. 2. For our Synthetic graph-graph-time

dataset we include versions of MDTD that utilize increasing

set of dictionaries to serve as an ablation study evaluating the

advantage of multi-dictionary decomposition 2(a). Specifically,

MDTD GGR employs all three dictionaries, MDTD GG

employs only the graph dictionaries, while MDTD G employs

a graph dictionary only for the first mode. The joint benefit of

using multiple dictionaries for encoding is evident from this

comparison. The reduction in model size is super-linear with

the number of dictionaries employed at the same level of SSE.

For almost perfect fit (SSE ≈ 0), the single dictionary version
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Fig. 2: Comparison of the quality and model size of MDTD and baselines CPD and Tucker on the synthetic (a), RM (b) and Twitch-S (c) datasets. In
synthetic, we experiment with versions of our models with increasing number of dictionaries, while for real datasets we report the best models (MDTD GG).
Different models are obtained by varying the model rank of the competing techniques and the sparsity parameters for MDTD. Only Pareto-optimal models
are shown in each of these figures. (d) Scalability comparison of MDTD, CPD, and Tucker for increasing number of nodes in a synthetic dataset

% 15 45 75 15 45 75 15 45 75

MDTD
MSE 4.1 4.3 4.1 .43 .43 .43 .006 .006 .006

time 39 13 115 .8 .7 .7 1K 3K 18K

TGSD
MSE 4.1 4.3 4.3 .47 .47 .47 .007 .008 /
time 1K 3K 2K 166 247 301 22K 40K /

CP-WOPT
MSE 17K 20K 47K .42 .49 211 3 40 40
time 1K 1K 1K 1K 251 284 7K 15K 14K

BGCP
MSE 8.7 9.2 10.4 .51 .55 .64 .009 .008 .012
time 42K 55K 58K 7K 5K 6K 27K 26K 26K

BATF
MSE 250 50.9 1K .41 .42 .43 / / /
time 3K 4K 6K 775 622 668 / / /

TRFL
MSE 5.4 7.0 7.3 .83 .86 1.18 / / /
time 1K 1K 1K 1K 1K 1K / / /

CoSTCo
MSE 5.4 5.1 5.0 .43 .43 .43 / / /
time 6K 5K 2K 55K 33K 15K / / /

SOFIA
MSE 4.7 5.2 5.2 .50 .45 .45 .006 .006 .006

time 1K 1K 1K 36 39 33 20K 16K 17K

TABLE II: Comparison of the quality (MSE) and running time (seconds) for
dense missing value imputation between MDTD and baselines on the real-
world datasets. MDTD utilizes GGS for RM and Twitch and GSS for Crime.
For TGSD we report results employing the best performing GFT+spline (GS)
dictionary combination across datasets. Settings in which baselines did not
complete within 24 hours are marked by the symbol ”/”.

MDTD G requires 75% of Tucker’s (CPD’s) coefficients, the

two-dictionary version MDTD GG requires less than 50%
of those coefficients, while the 3-dictionary version MDTD

GGR requires only 10% of the coefficients. This super-linear

improvement is due to the interaction of the dictionaries in

the multi-way data and is also observed for sparser models

of higher SSE. TGSD GR is employed on graph-time slices

and is unable to utilize dependencies among all three modes

leading to a huge gap in model size compared to alternatives.

We also compare the representation quality and model size

of MDTD to that of CPD, Tucker, TT and TGSD on the RM

and Twitch-S datasets in Figs. 2(b),2(c). In both experiments

we employ GFT dictionaries for two modes for MDTD.

Adding a temporal dictionary for the third mode in these

datasets did not enable improvements on this task, indicating

that the temporal behavior does not allow a significantly

sparser encoding via the (Spline and Ramanujan) dictionaries

we considered. It is important to note, however, that for the ap-

plication of missing value imputation (Sec. IV-C), the Twitch

dataset benefits from a spline dictionary. MDTD dominates

all baselines at all levels of SSE and enables up to 5-fold

reduction of the model size compared to TGSD on the RM

and Twitch datasets.

C. Missing values imputation

We next evaluate the utility of MDTD for predicting missing

values and compare it against baselines specifically designed

for this task. We remove a set percentage (from 15% to

75%) of values at random from a given tensor and then

compare the accuracy of competing imputations on these held-

out values measured in terms of mean squared error (MSE)

and running time measured in seconds. To tune all methods we

perform a grid search over their hyper-parameters and select

the configurations which produced the smallest MSE on a

validation set for all datasets with the exception of Twitch-

S. We found that this dataset is too large for some competing

methods to grid search their hyper-parameters extensively. To

ensure a fair comparison despite this, we set the rank of all

models to 50, set MDTD’s and TGSD’s λi = .0001 for all i,

and use the default parameters for other competitors.

All results from this experiment are presented in Tbl.II. Our

method is consistently the best or close to the best method in

terms of MSE and almost always much faster than alternatives.

In RM MDTD is tied for the overall best performance with

TGSD in terms of MSE, however, it is an order of magnitude

faster. On the largest dataset in this experiment Twitch-S,

MDTD’s performance is the best in terms of both MSE and

running time with the exception of when 75% of the values

are missing. In that regime CP-WOPT is 22% faster, however,

its MSE is more than 3 orders of magnitude worse. In Crime,

MDTD is a very close second to BATF in terms MSE, but

has up to 10 orders of magnitude speed-up against the latter.

Notably, for this task of missing value imputation (unlike the

decomposition task) dictionary encoding for all modes resulted

in optimal MDTD models. In particular, we employed a spline

dictionary for the temporal mode in, RM, Twitch-S, and the

Crime datasets, effectively enforcing smoothness in time to

help impute missing values in addition to smoothness on the

respective graphs associated with non-temporal modes.

Real world tensors are often sparse. Thus, in the extended

version [18] we introduce and experiment with a sparse

imputation scheme for MDTD which allows us to impute

missing values in larger sparse tensors (up to 12 billion

entries). We demonstrate that MDTD scales to such large

inputs, performs faster imputation and achieves lower MSE

than all competitors.
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D. Scalability

We also compare the scalability of MDTD to that of CPD

and Tucker models on Synthetic data. We exclude TGSD and

TT from this comparison since they are both significantly

slower as demonstrated in all experiments above (See Tbl. I).

We record the time it takes for CPD, Tucker and MDTD

algorithms converge under the same convergence criteria (ε =
10−4). In Fig. 2(d) we vary the number of nodes in the first

mode while holding other modes fixed to their default sizes.

We utilize MDTD GGR in all settings. We also annotate the

size of the input tensor in GB to illustrate the scale of the

inputs considered. While Tucker is the fastest among the three

competitors for small sizes, MDTD is a close second. As the

size of the tensors grows, MDTD closes the gap to Tucker. For

example, at 20k nodes their running times are on par. MDTD

method is highly scalable regardless of its more complex ob-

jective and relatively less-optimized implementation (note that

Tucker’s and CPD’s implementations well optimized library).

In particular MDTD is able to decompose 19 gigabyte tensors

in under 1 minute, making it applicable to large real-world

datasets. Additional scalability and convergence experiments

demonstrating similar trends can be found in [18].

V. CONCLUSION

In this paper we introduced a flexible and general framework

for dictionary decomposition of tensors, named MDTD. Our

framework produced succinct low-rank representations for

both synthetic and real-world tensors by jointly employing

dictionaries for multiple modes in the data. We demonstrated

that our proposed ADMM optimization for MDTD converges

to a high quality solution on par with CPD and Tucker in many

settings. Moreover, the resulting factors were shown to be

advantageous through their utility for succinct representation,

their capability of estimating the ground truth rank, and their

ability to accurately model the underlying patterns in the

data in the presence of missing values. Our code and sample

synthetic datasets are available at https://cs.albany.edu/∼petko/

lab/code.html.
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