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Abstract—Tensor decomposition methods are popular tools for
analysis of multi-way datasets from the social media, healthcare,
spatio-temporal domains, and others. Widely adopted models
such as Tucker and canonical polyadic decomposition (CPD)
follow a data-driven philosophy: they decompose a tensor into
factors that approximate the observed data well. In some cases
side information is available about the tensor modes. For exam-
ple, in a temporal user-item purchases tensor a user influence
graph, an item similarity graph, and knowledge about seasonality
or trends in the temporal mode may be available. Such side
information may enable more succinct and interpretable tensor
decomposition models and improved quality in downstream tasks.

We propose a framework for Multi-Dictionary Tensor De-
composition (MDTD) which takes advantage of prior structural
information about tensor modes in the form of coding dictionaries
to obtain sparsely coded tensor factors. We derive a general opti-
mization algorithm for MDTD that handles both complete inputs
and inputs with missing values. MDTD handles large sparse
tensors typical in many real-world application domains. We
experimentally demonstrate its utility in both synthetic and real-
world datasets. It learns more concise models than dictionary-free
counterparts and improves (i) reconstruction quality (up to 60%
smaller models coupled with reduced representation error); (ii)
missing values imputation quality (two-fold MSE reduction with
up to orders of magnitude time savings) and (iii) the estimation
of the tensor rank. MDTD’s quality improvements do not come
with a running time premium: it can decompose 19G B datasets
in less than a minute. It can also impute missing values in sparse
billion-entry tensors more accurately and scalably than state-of-
the-art competitors.

I. INTRODUCTION

Tensors are multi-way arrays that generalize matrix data to
higher number of “dimensions” [26]. The ability of tensors
to accurately model the complex relationships present in
many datasets has rendered them applicable in signal process-
ing [27], machine learning [22], chemometrics [3], and other
fields. Similar to matrices, low rank decomposition models
for tensors are common ways of finding patterns in multi-
way data. Popular approaches like the Canonical polyadic
decomposition (CPD) [3] and Tucker decomposition [29] learn
directly from data without additional modeling assumptions.
In many settings prior knowledge about the data generation
process may also be available, for example, seasonality in a
temporal mode or a network associating individuals in a user
mode. In addition, downstream applications such as data im-
putation, clustering, and anomaly detection may benefit from
imposing structure in the decomposition. Such considerations
have given rise to modifications to the original CPD and
Tucker models that have produced state-of-the-art performance
in missing values imputation within a Bayesian framework [4],
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Fi g. 1: The key idea behind the dictionary-based tensor decomposition model
(MDTD) through a user-item-time example. MDTD can utilize graph-based
dictionaries @ for the user and item modes and a temporal dictionary for the
temporal mode. The decomposition is similar to CPD decomposition in that
it is a sum of rank-one factor tensors, with the key difference that factors are
represented as encodings y;; via the corresponding dictionaries.

[5], improved community detection for on/off [11], peri-
odic [16] or bursty self-exciting behavior [12], and other tasks.

Most methods employ regularization to build prior knowl-
edge into the factorization model imposing different forms
of structure: sparsity, periodicity and others. An alternative
approach is to employ sparse coding for tensor factors via
dictionaries [6]. Such sparse coding techniques utilize fixed
dictionaries and have been widely adopted in signal and graph
signal processing [20], [28], computer vision [9], machine
learning [13] and data analytics [19]. The ubiquitous appli-
cations of such methods have also given rise to some standard
analytical dictionaries for time series (Fourier, Ramanujan,
splines) [28], graphs (graph Fourier and graph wavelets) [20],
and images (wavelets, ridgelets, curvelets) [9]. Employing
such dictionaries for tensor data promises to enable succinct,
interpretable and efficient-to-learn models.

We introduce a multi-dictionary tensor factorization
(MDTD) framework that employs fixed dictionaries for joint
sparse coding of the tensor factors. The key idea of our model
is illustrated via a user-item-time example tensor in Fig. 1.
Given prior knowledge in the form of user and item graphs
as well as expectation about periodic behavior in time, we
propose to employ corresponding dictionaries ¢ to sparsely
encode factors in a CPD-like model. For the example in the
figure, we can employ a Graph Fourier Transform (GFT)
dictionary for the modes with graph side information and
a periodic dictionary for the temporal mode. The model is
applicable to higher order tensors with any subset of modes
endowed with side information, as well as to other kinds of
side information and corresponding dictionaries. We propose
a general optimization solution for MDTD and evaluate it
on multiple tensor datasets. We demonstrate that when the
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side information captured by the dictionaries is well aligned
with the data in the tensor, our approach enables i) orders
of magnitude reduction in the model size compared to CPD
and Tucker, while running in comparable time and ii) enables
improved quality in several downstream tasks.

Our contributions in this paper are as follows:
e Generality and Novelty: We propose the first multi-
dictionary tensor decomposition framework MDTD which can
leverage arbitrary dictionaries for each tensor mode.
e Parsimony and Scalability: MDTD produces interpretable
and concise representations of both real-world and synthetic
tensors scaling similar to simple decomposition models and
better than more complex ones. MDTD decomposes a 19GB
tensors in 1 min and can impute missing values in tensors with
billions more entries than what competitors can handle.
e Applicability and Accuracy: We demonstrate MDTD’s
utility for succinct tensor representation, and missing value
imputation. Its quality dominates baselines across applications
and datasets. In some cases MDTD achieves higher accuracy
and a 100x speed-up compared to the fastest baseline.

II. PRELIMINARIES

Before we define our problem of dictionary-based tensor
decomposition (MDTD), we first introduce necessary prelim-
inaries and notation. The input to our problem is a tensor
X, which is a multi-dimensional array of real numbers. We
present the problem and our solutions in the context of
three-way tensors for simplicity, however, both generalize
seamlessly to higher order tensors. We will work with tensors
of the following shape X € RU*/*T) where I, J and T are
the dimensions of the modes.

CPD decomposition. MDTD can be viewed as a dictionary-
based extension of the CPD decomposition of the form:

k
Zai &bz &Ci, (1)
i=1

k
X=> Hi=
=1 i=

where X denotes the tensor outer product and #; are rank-
one tensors obtained from outer tensor products of individual
factors a; € RY,b; € R7, and ¢; € R”. If we stack k factor
vectors a;,b;, and ¢; into matrices A € RI*F B ¢ RI*k,
and C' € RT** respectively, we can express this relationship
concisely as: X = [[A, B,C]]. An in-depth introduction of
CPD and other tensor models is available in [26].

Sparse dictionary coding or sparse representation model-
ing [24] assumes that the data can be represented via a linear
combination of a few atoms from an appropriately-chosen pre-
specified dictionary ®, where both analytical and dictionaries
learned from data can be employed. In its general form sparse
coding solves the following problem:

min f(y) s.t. = Py,
y

where « is an input signal, y is its encoding and f(y) is a
sparsity promoting function often instantiated as an L; norm.

III. PROBLEM FORMULATION AND SOLUTION

In many real-world application there is a structural infor-
mation associated with tensor modes. Consider, for example,
users (mode 1) watching streams (mode 2) over time (mode
3) on a stream service such as Twitch. Such data can be
represented by a binary tensor X € RUX7*T) Tt is easy
to imagine that users may be associated within a friendship
network and streams within a topical similarity network. More
over the communities within those networks (friendship groups
interested in streams featuring similar games) will likely
stream based on regular daily/weakly patterns. How can we
leverage this rich structural information to learn a succinct,
interpretable, and meaningful representation of the data?

We propose to represent a tensor with structural side infor-
mation through a CPD-like dictionary-based decomposition:

k
X = Z D1yn1 M Poypo X Ogypz = [[@1Y1, PaYs, 3V3]],
n=1
where prior knowledge in each mode is incorporated as a
model-specific dictionary ®; and the sparse encoding of the
input data through dictionaries is in matrices Y;. Fitting the
input data to such a model results in the followmg problem:
yin o *HX — [[@1Y1, 2Ya, B3Y3]]| |7 + Z)\ %3l ,

where the first term is the data fit and the second term
encourages sparsity in encodings Y; in the form of an L;
regularization. This form of sparsity is typical when using
dictionaries to avoid overfitting and ill-posed problems. In-
creasing the sparsity balance parameters \; encourages sparser
solutions for corresponding modes and allows us to control the
complexity/size of the learned model. To prevent the model
from fitting missing/unobserved values we also introduce a
zero-one mask 2 which is a tensor of the same size as X.
Our overall MDTD objective is:

3
— [[@1Y1, @Y, DaYa]))|[7 + D N Vil

i=1
2
where [-] denotes the element-wise product. It is important to
note that if a dictionary (or side information) is not available
for some of the modes in a given application, a trivial identity
dictionary ®; = I and a corresponding 0 sparsity cost (\; = 0)
will allow that mode to be fit as in a regular CPD model.

min f||Q O(x
Y1,Ys,Ys 2

A. MDTD optimization algorithm and complexity

We present the overall optimization algorithm in the case
of tensors with missing values in Alg. 1. Detailed derivations
are available in [18]. We first initialize all variables (Step
1) and pre-compute eigenvalue decompositions of ®7® for
non-orthogonal dictionaries (Steps 2-6). In the main loop of
the algorithm (Steps 7-28) we iteratively update each mode’s
factors (Steps 8-24) and update the missing value imputation
matrix (Step 25) until convergence. In Steps 9-11 we compute
the factors for modes that are not currently being updated
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Algorithm 1 MDTD (with missing values)

Input: Input X', mask €2, dictionaries ®;, k, A;, p;
1: Initialize Y; = Z; uniformly random, and I'; = 0 for all modes, set
D=X

2: for i= I to #modes do

3: if @7 ®; # I then

4: Edﬂ-Ad,iE?;’i =oTo,

5: end if

6: end for

7: while not converged do

8: for i= 1 to #modes do

9: setj#lF#dand 57 <l

10: A=Y

11: B = %Y

12: if ®7'®; = I then

13: Y; = (@7 DI (BOA)+pi Z;~T7)(BT BOAT A+ p; 1)1
14: else

15: EwpoET = BTBEH AT A

16: C=0TDT(B®A) +pi2; — T

17: Y; = Ed,i[(E‘f,iCEv) @ (Pg; *P7 + p)EF

18: end if

19: Sy = max(Y; ), for f from 1 to k

20: Yi=Y,0S _

21: HO =y, - %

22: Z; 1 = sign (H;?) X max ( H;ll) — %, 0)

23: CTH =17 +pi (Z; = Y5)

24: end for

25: D= ([SH®1Y1,P2Y2, P3Y3]] + \gQ2 O X) @ (Z + Xa)
26: T+ T17+1

27: Convergence condition: |ft*1 — f*| < e, where f*+! and f* are

the objective values of Eq. 2 at iterations ¢ + 1 and ¢.
28: end while

through their respected dictionaries ¢ and coding matrices
Y. The updates for the factor of a given Y; depend on
whether the corresponding dictionary ®; is orthonormal. If ®;
is orthonormal, we have a direct update (Step 13). The update
for non-orthonormal dictionaries ®; employ the pre-computed
eigendecompositions of their dictionaries and require three
steps (15-17) based on our derivations in [18].

We normalize learned factors in Steps 19 — 20 by dividing
each factor by its maximum value. Similar normalization is
commonly used in CPD algorithms to ensure that the scale of
each factor is bounded [14]. Finally, we update proxy variables
and Lagrangian coefficients following the ADMM updates in
Steps (19-23). When the input tensor does not have missing
values, or their imputation is not necessary (i.e., we simply
need a decomposition), we omit step 25 and simply replace
all unfoldings D; with the unfolding of the input tensor X;
elsewhere in the algoithm. The three steps of Alg. 1 which
dominate the computational complexity are (i) the matrix
inversion in step 13, which runs in O(k®) (ii) the tensor
reconstruction in step 25 [[S 0 @Y7, PoYs, P3Y3]] involving
the Khatri—Rao product of three matrices of sizes I x k,J x k
and J x k with complexity O(IJTk) and (iii) the product
®TDI'(B® A) in steps 13 and 16. Let 7 be p; x m;, DI be
of size m; x m;m; and (B ® A) be m;m; x k, then the com-
plexity of the latter step is O(pymimjmy + pymjmyk) if one
performs ®7 DT first or O(p;m;k+m;m;mik) if DI (B® A)
is performed first. The model rank k£ and the number of
dictionary atoms p; are the two hyperparameters that directly

1219

affect the overall complexity. The typical motivation behind
tensor decomposition is that real-world tensors are often of
low rank, i.e., (k < p;). Assuming also that the number of
atoms is of the same order as the size of the associate tensor
mode (p; = O(m;)) leads to an asymptotic running time
similar to dictionary-free updates such as ALS-based CPD.
Reconstructing the full tensor D with missing values in Step
25, requires materializing a potentially dense large tensor even
if the input and the number of missing values are relatively
sparse. We discuss an alternative scalable solution for this step
for the case of large sparse tensors in [18].

IV. EXPERIMENTAL EVALUATION

We compare MDTD to baselines on (i) model quality, (ii) size,
and (iii) missing value imputation. We preform and task and
data specific grid search for all methods when appropriate. To
facilitate reproducibility we include a document detailing the
parameters selected, how they were set for each method, and
additional material such as dictionary construction formulas
with our code at http://cs.albany.edu/~petko/lab/code.html. For
MDTD and TGSD We utilize commonly adopted dictionaries
for graph (GFT [25]) and temporal (Ramanujan [28] and
Spline [10]) modes in our experimental evaluation. A concise
summary of these bases can be found in [19]. We add the time
cost of dictionary creation to the total running time of MDTD
in all tables. Different variations of our method are denoted by
MDTD followed by the dictionary abbreviations. For example,
MDTD with a Spline dictionary on the first mode, GFT on
the second, and no dictionary for the third would be denoted
as MDTD SG. We denote variations of the matrix dictionary
decomposition baselines TGSD [19] similarly. In [18], we also
evaluate the ability of MDTD to perform rank estimation.

A. Experimental Setup

Datasets. We employ synthetic data and three real world
datasets for evaluation, including a spatial dataset (Crime),
social interactions from Reality Mining (RM), and data from
content exchange (Twitch). We provide their statistics in Tbl. I
and describe each dataset in what follows.

e Synthetic Data. We generate 3-way synthetic datasets
according to 2 distinct GFT dictionaries generated from two
stochastic block model (SBM) graphs and a Ramanujan peri-
odic dictionary (max period 10 and 400 time steps). Com-
munities in both SBM graphs contain half of all possible
internal edges and an equal number of external edges. The
first (smallest eigenvalue) 50 and 30 Laplacian eigenvectors
respectively are used as dictionaries. We generate 10 sparsely
encoded factors for each mode with 75% nonzero atom
loadings set to uniformly random values in [0, 1]. We form a
tensor product of dictionary-encoded factors and add Gaussian
noise at SNR=20 to the tensor. Synthetic samples and code
to generate them can be found within our implementation
available at https://www.cs.albany.edu/~petko/lab/code.html

e Twitch [23] consists of followers viewing the content of
streamers. An entry represents a follower watching a stream
during a given hour. We select the top 5000, 8000, and 8000
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Dataset statistics MDTD TGSD CPD Tucker TT
Dataset | m1 | mo | Prior | m3 | Prior | SSE |NNZ |time| SSE | NNZ [time| SSE | NNZ |time | SSE | NNZ [time | SSE | NNZ | time
Syn 200 | 300 | Graph | 400 |Period| 500 |1045| 2 522 |508K | 35 | 605 [8829 | 24 | 681 |[8100| .5 | 607 | 80K | 1.5
RM 94 | 94 |Graph| 719 [Hours | 7M |[44K | 38 | 8M [267K| 12 | 7M | 64K | 49 [ 7M [100K| .31 | 7M | 180K | 1.2
Crime 77 24 | Hours | 6186 | Days |2.19K 3794 | .23 |[2.32K| 7k | 89 |220K| 6K | .04 |2.20K| 6K | .69 [3.08K| 14M | 3.6
Twitch-S | 5000 | 300 | Graph | 200 | Hours | 1.7M | 9K | 17* | 16M | 8M | 9K | [.8M | 55K | 1* | 1.8M | 56K | 6* | 16M |225M| 90
Twitch-M | 8000 | 500 | Graph | 200 | Hours | 5SM | 14K | 36* | 5M |455K |76K | 5M | 87K | 3* | 5M | 88K | 9% | 5M | 700K | 178*
Twitch-L | 8000 | 3000 | Graph | 500 | Hours | 20M | 10K | 71* / / /| 20M | 115K | 8* | 20M | 116K | 22* / / /

TABLE I: Summary of datasets and comparison to baselines on decomposition quality, size and running time in seconds. Column m; show the size of the
i-th tensor mode, while Prior specifies the type of side information available which in turn informs the choice of dictionary for MDTD and TGSD. All datasets
have a graph prior for m1. We explicitly denote the dictionaries used each dataset in Fig.2. *Method time was recorded using sparse tensor representation.

most active users and the top 300, 500 and 3000 most active
streamers from this dataset to form three versions of increasing
size from this dataset: Twitch-S, Twitch-M, and Twitch-L
respectively. The follower graph is based on co-viewing of the
same stream with edge weights proportional to the number of
hours the users co-viewed any stream. Similarly, we create a
streamer graph based on shared viewership.

e Reality Mining (RM) [8] tracks the 94 users at MIT. Each
entry represents the number of messages exchanged between
a pair within a 12 hour time-span. We create a weighted graph
based on the number of messages exchanged and employ its
GFT as a dictionary for the first two modes.

e Crime [7] tracks the number of crimes that occurred
in Chicago over 17 years starting in 2001. The first mode
corresponds to 77 community areas of Chicago. Each entry in
the tensor represents the number of crimes that took place in
a particular community during a one hour period hour on a
particular day (day slices are stacked to form the tensor). We
utilized a map of Chicago to create an associated network by
connecting neighboring communities.

Decomposition baselines. We compare MDTD to CPD [3]
and Tucker decomposition [29], both implemented in Matlab’s
tensor toolbox [2]. We also compare to tensor train decompo-
sition (TT) [21], utilizing the authors implementation. These
approaches represent the state-of-the-art for low-rank tensor
representation. We also compare to TGSD [19], a dictionary-
based decomposition method for matrices by independetly
applying it to graph-time or graph-graph tensor slices.

Missing value imputation baselines. We compare the qual-
ity of MDTD for missing value imputation to that of CP-
WOPT [1] which employs CPD factorization by fitting only
known values. We also compare to two Bayesian factorization
approaches designed for imputation of missing values in road
traffic datasets: BATF [4] and BCGP [5]. These methods
also employ a CPD-like decomposition, but regularize the
factor matrix to align to Bayesian priors. We also compare
to TRLRF [30] which learns a low-rank latent space to fill in
missing values; CoSTCo [17] which utilizes a convolutional
neural network to learn nonlinear dependencies among fac-
tors to impute missing values; and SOFIA [15], an outlier-
, seasonality-, and trend-aware tensor factorization technique
for missing value imputation in temporal tensors. Finally, we
also compare to TGSD [19] which can impute missing matrix
values and thus apply it to one tensor slice at a time.

Metrics: We measure quality of representation as the sum of
squared error (SSE) and the quality of missing value impu-
tation in terms of mean squared error (MSE). We quantify a

model’s size by the number of its non-zero (NNZ) coefficients.
We also measure running times for each method in seconds.
COSTCO as a deep learning model was run on a Tesla V100
PCIe GPU with 16GB of RAM. All other baselines were run
on a Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz with 251G
of RAM.

B. Succinct decomposition

We compare the accuracy of representation versus the size
of the models when decomposing a tensor. We vary the
decomposition rank for all methods but TT as well as the
level of sparsity enforced in MDTD and TGSD (through the
A; parameters). Since Tensor-Train (TT) is capable of tuning
its optimal rank for a given error level we vary the error
level to obtain decompositions of varying sparsity and quality.
We report the Pareto-optimal models for all methods in terms
of reconstruction error (SSE) versus model size measured as
NNZ. We do not count the fixed dictionary entries towards
the NNZ. These dictionaries are results of preset analytical
functions and can be generated efficiently on demand as
discussed in [18]. Tbl. I (right-most columns) summarizes
the SSE and NNZ for one specific setting on all datasets.
We select this setting by fixing a SSE level for MTDM and
reporting the closest SSE regime of baselines. This allows
us to compare methods in terms of model size (NNZ) for
approximately similar SSE. MDTD produces the most succinct
representations and its running time is comparable to the fast
baselines CPD and Tucker. TT decomposes a tensor into a
series of smaller tensors, leading to a typically large number
of representation parameters. While TGSD also employs dic-
tionaries, its model sizes and running time are both larger as it
is a matrix (non-tensor) baseline and cannot take advantage of
3-way dependencies in the data. TGSD and TT were not able
to scale to Twitch-L due to time (running time exceed 24 hrs)
and memory constraints (memory exceed 64 GB) respectively.

We present the full spectrum of regimes for competing
techniques in Fig. 2. For our Synthetic graph-graph-time
dataset we include versions of MDTD that utilize increasing
set of dictionaries to serve as an ablation study evaluating the
advantage of multi-dictionary decomposition 2(a). Specifically,
MDTD GGR employs all three dictionaries, MDTD GG
employs only the graph dictionaries, while MDTD G employs
a graph dictionary only for the first mode. The joint benefit of
using multiple dictionaries for encoding is evident from this
comparison. The reduction in model size is super-linear with
the number of dictionaries employed at the same level of SSE.
For almost perfect fit (SSE ~ 0), the single dictionary version
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Fig. 2: Comparison of the quality and model size of MDTD and baselines CPD and Tucker on the synthetic (a), RM (b) and Twitch-S (c) datasets. In
synthetic, we experiment with versions of our models with increasing number of dictionaries, while for real datasets we report the best models (MDTD GG).
Different models are obtained by varying the model rank of the competing techniques and the sparsity parameters for MDTD. Only Pareto-optimal models
are shown in each of these figures. (d) Scalability comparison of MDTD, CPD, and Tucker for increasing number of nodes in a synthetic dataset

A B I B B R B B R
MDTD |MSE[4I[43[4.1[43[ 43| .43 |.006].006]-006
time | 39 | 13 [115| 8 | 7 | .7 | 1K | 3K | 18K
TGS |MSE[41[43[43 | 47 47| 47007 008 | /
time | 1K | 3K | 2K | 166 | 247|301 | 22K | 40K | 7
MSE 17K 20K [47K| 42 [ 49 [211] 3 | 40 | 40
CP-WOPT | \ie | 1K | 1K | 1K | 1K | 251|284 | 7K | 15K | 14K
socp |MSE|[ 8792 [104] 51( 55 | 64| 009| 008|012
time |42K | 55K |58K | 7K | 5K | 6K | 27K | 26K | 26K
sATe |MSE[230[S09[ 1K [ 41 42 [43[ 7 | / | 7/
time | 3K | 4K | 6K |775|622|668| 1 | 1 | 1
MSE[ 54 [ 7.0 (73 83 86 (118 7 | 7 | 7
TREL e | 1K | 1K | 1K [ 1K IR | 1K| 7 | /| 7
CoSTCo |MSE[54 (515043 43 (43| 7 | 7 | 7
time | 6K | SK | 2K |55K|33K|15K| / | / | 7
Soria |MSE[47 (525250 45 | 45| 006 | 006 | 006
dime | 1K | 1K | 1K | 36 | 39 | 33 [ 20K | 16K | 17K

TABLE II: Comparison of the quality (MSE) and running time (seconds) for
dense missing value imputation between MDTD and baselines on the real-
world datasets. MDTD utilizes GGS for RM and Twitch and GSS for Crime.
For TGSD we report results employing the best performing GFT+spline (GS)
dictionary combination across datasets. Settings in which baselines did not
complete within 24 hours are marked by the symbol ”/”.

MDTD G requires 75% of Tucker’s (CPD’s) coefficients, the
two-dictionary version MDTD GG requires less than 50%
of those coefficients, while the 3-dictionary version MDTD
GGR requires only 10% of the coefficients. This super-linear
improvement is due to the interaction of the dictionaries in
the multi-way data and is also observed for sparser models
of higher SSE. TGSD GR is employed on graph-time slices
and is unable to utilize dependencies among all three modes
leading to a huge gap in model size compared to alternatives.

We also compare the representation quality and model size
of MDTD to that of CPD, Tucker, TT and TGSD on the RM
and Twitch-S datasets in Figs. 2(b),2(c). In both experiments
we employ GFT dictionaries for two modes for MDTD.
Adding a temporal dictionary for the third mode in these
datasets did not enable improvements on this task, indicating
that the temporal behavior does not allow a significantly
sparser encoding via the (Spline and Ramanujan) dictionaries
we considered. It is important to note, however, that for the ap-
plication of missing value imputation (Sec. IV-C), the Twitch
dataset benefits from a spline dictionary. MDTD dominates
all baselines at all levels of SSE and enables up to 5-fold
reduction of the model size compared to TGSD on the RM
and Twitch datasets.
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C. Missing values imputation

We next evaluate the utility of MDTD for predicting missing
values and compare it against baselines specifically designed
for this task. We remove a set percentage (from 15% to
75%) of values at random from a given tensor and then
compare the accuracy of competing imputations on these held-
out values measured in terms of mean squared error (MSE)
and running time measured in seconds. To tune all methods we
perform a grid search over their hyper-parameters and select
the configurations which produced the smallest MSE on a
validation set for all datasets with the exception of Twitch-
S. We found that this dataset is too large for some competing
methods to grid search their hyper-parameters extensively. To
ensure a fair comparison despite this, we set the rank of all
models to 50, set MDTD’s and TGSD’s \; = .0001 for all 7,
and use the default parameters for other competitors.

All results from this experiment are presented in TbLII. Our
method is consistently the best or close to the best method in
terms of MSE and almost always much faster than alternatives.
In RM MDTD is tied for the overall best performance with
TGSD in terms of MSE, however, it is an order of magnitude
faster. On the largest dataset in this experiment Twitch-S,
MDTD’s performance is the best in terms of both MSE and
running time with the exception of when 75% of the values
are missing. In that regime CP-WOPT is 22% faster, however,
its MSE is more than 3 orders of magnitude worse. In Crime,
MDTD is a very close second to BATF in terms MSE, but
has up to 10 orders of magnitude speed-up against the latter.
Notably, for this task of missing value imputation (unlike the
decomposition task) dictionary encoding for all modes resulted
in optimal MDTD models. In particular, we employed a spline
dictionary for the temporal mode in, RM, Twitch-S, and the
Crime datasets, effectively enforcing smoothness in time to
help impute missing values in addition to smoothness on the
respective graphs associated with non-temporal modes.

Real world tensors are often sparse. Thus, in the extended
version [18] we introduce and experiment with a sparse
imputation scheme for MDTD which allows us to impute
missing values in larger sparse tensors (up to 12 billion
entries). We demonstrate that MDTD scales to such large
inputs, performs faster imputation and achieves lower MSE
than all competitors.
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D. Scalability

We also compare the scalability of MDTD to that of CPD
and Tucker models on Synthetic data. We exclude TGSD and
TT from this comparison since they are both significantly
slower as demonstrated in all experiments above (See Tbl. I).
We record the time it takes for CPD, Tucker and MDTD
algorithms converge under the same convergence criteria (¢ =
10~%). In Fig. 2(d) we vary the number of nodes in the first
mode while holding other modes fixed to their default sizes.
We utilize MDTD GGR in all settings. We also annotate the
size of the input tensor in GB to illustrate the scale of the
inputs considered. While Tucker is the fastest among the three
competitors for small sizes, MDTD is a close second. As the
size of the tensors grows, MDTD closes the gap to Tucker. For
example, at 20k nodes their running times are on par. MDTD
method is highly scalable regardless of its more complex ob-
jective and relatively less-optimized implementation (note that
Tucker’s and CPD’s implementations well optimized library).
In particular MDTD is able to decompose 19 gigabyte tensors
in under 1 minute, making it applicable to large real-world
datasets. Additional scalability and convergence experiments
demonstrating similar trends can be found in [18].

V. CONCLUSION

In this paper we introduced a flexible and general framework
for dictionary decomposition of tensors, named MDTD. Our
framework produced succinct low-rank representations for
both synthetic and real-world tensors by jointly employing
dictionaries for multiple modes in the data. We demonstrated
that our proposed ADMM optimization for MDTD converges
to a high quality solution on par with CPD and Tucker in many
settings. Moreover, the resulting factors were shown to be
advantageous through their utility for succinct representation,
their capability of estimating the ground truth rank, and their
ability to accurately model the underlying patterns in the
data in the presence of missing values. Our code and sample
synthetic datasets are available at https://cs.albany.edu/~petko/
lab/code.html.
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