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Abstract—Automated spectrum analytics inform critical deci-
sions in dynamic spectrum access networks such as (i) how to
allocate network resources to clients, (ii) when to enforce penalties
due to malicious or disruptive activity, and (iii) how to chart poli-
cies for future regulations. The insights gleaned from a spectrum
trace, however, are as objective as the trace itself, and artifacts
introduced by sensor imperfections or improper configuration
will inevitably affect analysis outcomes. Yet, spectrum analytics
have been largely developed in isolation from the underlying data
collection and are oblivious to sensor-induced artifacts.

To address this challenge, we develop VIA, a framework
that attributes sensor properties and configuration to spectrum
data fidelity, and models the relationship between spectrum
analytics performance and data quality. VIA does not require
expert input or intervention and can be used to profile the
fidelity of unknown sensors. VIA takes as an input a spectrum
trace and the sensor configuration, and benchmarks data quality
along three dimensions: (i) Veracity, or how truthfully a scan
captures spectrum activity, (ii) Intermittency, characterizing
the temporal persistence of spectrum scans and (iii) Ambiguity
quantifying the likelihood of false detection. We employ VIA

to measure the data fidelity of five common sensor platforms.
We then predict the outcome of several spectrum analysis tasks
including occupancy and transmitter detection, and modulation
recognition using both controlled and real-world measurements.
We demonstrate high prediction performance with an average
mean squared error of 0.0013 across all tasks using both
regression and neural network models.

I. INTRODUCTION

Spectrum analytics is a cornerstone for future wireless

networking [1; 2]. The true benefit of data, however, is in the

information that can be extracted from it, and its corresponding

support of disparate spectrum applications. Emerging applica-

tions include spectrum enforcement, improved policy and the

design of third-party measurement infrastructures. An enforcer

might ask which among multiple transmitters is rogue, whether

it is mobile or stationary and what is its location; a policy-

maker might be interested in coexistence analysis in a certain

band and identifying patterns of utilization; and a crowd-

sourced sensing platform might be interested in the maximum

attainable accuracy for a new sensor platform. Since these

application pose different analytics questions, data quality

from the spectrum measurement pipeline will affect them

differently. Hence the importance of modeling the effects of

spectrum data fidelity on the quality of downstream analytics.

Spectrum analytic algorithms have been traditionally de-

veloped in isolation from the underlying data collection

principles. This poses a two-fold challenge. First, we lack

methodologies to link sensor properties and configuration with

Fig. 1: VIA overview. A sensor’s capabilities and configuration

affect the quality of collected data. VIA profiles data quality

across three dimensions: veracity, ambiguity and intermittency.

The right pane of this figure color-codes low-level sensor

properties that affect veracity, ambiguity and intermittency.

the quality of collected spectrum data. Second, we lack under-

standing of the effects that data quality has on the accuracy

of spectrum analysis. The importance of coupling spectrum

data with scan metadata is gaining traction, resulting in

several metadata standards: VITA49 [3], CHDR [4] and, most

recently, SigMF [5], which underpins the IEEE 802.22.3–

SCOS [6]. While important, these standards focus on the radio

front-end’s specification and not on the sensors’ computational

resources, environment, connectivity and mobility. However,

the latter aspects, equally impact spectrum data quality. The

relationship between sensor quality and analysis accuracy has

been studied for specific sensor platforms [7; 8; 9; 10; 11].

However, there does not exist a principled approach that

quantifies this relationship in a platform-agnostic manner.

Furthermore, prior work focuses on a subset of sensor configu-

rations, such as sensitivity and frequency resolution, however,

additional properties need to be considered too.

To address these challenges, we develop VIA, a frame-

work that can automatically profile the fidelity of spectrum

traces, and predict the accuracy of spectrum analytic tasks

or inform optimal sensor configuration. Fig. 1 conceptualizes

VIA. Considering an end-to-end data pipeline (left pane)

comprised of spectrum sensors, data storage, analytics engine,

and data consumers, VIA fits as a middle layer between the

sensors and the data storage (right pane). VIA draws on the

collected data (power spectrum density or IQ samples) and

metadata about the sensor’s configuration and environment,

and adds three more metrics to the metadata: veracity, in-

termittency and ambiguity. Veracity is a measure of the

truthfulness with which a sensor captures spectrum activity.
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Intermittency measures the temporal persistence of a

spectrum trace. Ambiguity captures the likelihood that

transmitter values might be confused with noise and vice versa.

Highlighted accordingly are low-level sensor capabilities that

affect the VIA metrics. These three statistics can be used

as predictors for the performance of downstream spectrum

analytics applications, or to inform sensor configurations

to maximize data fidelity or achieve a certain performance

benchmark. We design VIA to lower the barrier for expert

knowledge in sensor configuration and spectrum data quality,

and to support a variety of use cases. For example, a policy-

maker interested in the aggregate interference from a new

ruling might query a set of historic data from relevant other

bands whose data fidelity is above a certain VIA threshold.

She can then use the data along with propagation models to

inform new policies through quality data-driven analysis.

Using real-world traces across all configurations of five

sensor platforms, we demonstrate that VIA quantifies data

fidelity and is a strong predictor for analytics performance.

We collect 1700 traces from a controlled transmitter, and 100
traces of real-world FM radio and Television White Space

(TVWS) networks. We consider three spectrum analytic tasks:

(i) occupancy and (ii) transmitter detection, and (iii) modu-

lation recognition. To showcase VIA, we use two predictive

models: (1) a simple regression and (2) a neural network, to

predict the performance of the above three tasks. For both

models, our input is comprised of the VIA vectors, whereas

the output is the accuracy of the corresponding task. We

demonstrate high prediction accuracy with an average mean

squared error of 0.0013 even with a simple regression model

when training is performed on all five platforms. This accuracy

is retained across all tasks as we reduce the training pool

from five to two platforms, while testing on the remaining

unknown platforms. This demonstrates that VIA can predict

the performance of unseen sensor platforms, making it an ideal

tool for black-box characterization of the data fidelity of any

arbitrary sensor.

This paper makes the following contributions.

• We conceptualize VIA, the first middle layer for spectrum

measurements that can profile the data fidelity of unknown

sensors while accounting for sensor properties, configuration

and the radio environment.

• We evaluate VIA in a comprehensive experimental cam-

paign that included five SDR-based sensors across all their

possible configurations in indoor and outdoor settings, and

with controlled and real-world transmissions.

• Using three spectrum analytic tasks, we demonstrate that

VIA is platform-agnostic and can support data fidelity bench-

marks for unknown sensors.

• VIA is extensible to various tasks (i.e. anomaly detection,

localization, spectrum usage statistics) and across arbitrary

unknown platforms. New data fidelity vectors can also be

incorporated into VIA.

• VIA has the potential to lower the entry barrier into

spectrum research by allowing non-experts to use it as a black-

box tool-set to benchmark sensor capabilities.

II. RELATED WORK

Platforms for spectrum measurement. There exist sev-

eral spectrum measurement systems including the Chicago

Spectrum Observatory [12], Microsoft’s Spectrum Observa-

tory [13], NTIA’s repository [14], CityScape [15] and Elec-

trosense [16]. These systems employ low-/mid-cost spectrum

sensors such as the RTL-SDR [16; 17] or USRP [13], and

perform sweep-based monitoring of the sub-6 GHz bands.

Some of these platforms provide basic spectrum occupancy

analytics, such as spectrograms or idle/occupied fraction of

time. Their primary focus is on sensor integration, data storage

and presentation, however, they do not facilitate deep spectrum

analytics or application-driven measurement. Data is collected

in the form of IQ samples or power spectral density (PSD)

and is usually not coupled with meta-data about the underlying

sensor properties or configuration. NTIA’s repository [14] is

the only one that attempts to collect meta-data with spectrum

traces using the SigMF [18] data schema. However, this

metadata is not being used to aid spectrum analytics. VIA

is orthogonal to these systems as it seeks to establish a

middle layer that ingests side information about the sensor

configuration and the radio environment to quantify the fidelity

of spectrum data. VIA also seeks to further inform spectrum

meta-data formats that will help attribute data fidelity to the

capabilities and configuration of the underlying hardware.

Spectrum data analytics. There exist a plethora of applica-

tions that ingest spectrum data to glean usage insights. These

insights can then feed into resource allocation technologies,

spectrum enforcement engines or policy-making decisions.

Spectrum data analytics tasks include general spectrum aware-

ness [19; 20; 21; 22; 23; 24; 25; 26; 27; 13; 28; 29], transmitter

localization [8; 9; 30] and modulation recognition [31; 32;

33; 34; 35; 36; 37; 38; 39; 40; 41; 42; 43; 44]. All of these

efforts assume that data is readily available and focus on the

design of (often machine learning inspired) spectrum analysis

methodologies. However, analysis efforts are usually oblivious

to the underlying sensor platforms and any data quality issues

they might have created. VIA is orthogonal to these works as it

seeks to establish the relationship between sensor capabilities

and the performance of these analysis algorithms.

Bridging sensor capabilities with spectrum analytics.

Most closely related to our work is research on sensor bench-

marks that establishes direct relationships between sensors’

configuration and the performance of an analysis algorithm [7;

8; 9; 10; 11]. [8] focuses on crowd-sourced RTL-SDR mea-

surements for transmitter identification and localization. [7]

studies noise level, sensitivity and energy consumption of three

realizations of an RTL-SDR sensor. [9] develops a framework

that attributes RTL-based sensor properties (gain and FFT

size) to the detection of idle/occupied bands, driving sensor

selection and configuration. [10] informs spectrum sensing for

narrow-band fleeting signals, while [11] creates benchmarks

for sensor selection in transmitter localization. While these

works break important grounds in attributing sensor properties

to spectrum insights and sensor selection, they require full
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supervision. Each target platform has to be exercised across all

its configurations while collecting controlled spectrum traces.

These traces have to be characterized before one can model

the relationship between algorithm performance and sensor

properties. This quickly becomes prohibitive for new platforms

as each un-profiled sensor has to undergo a rigorous bench-

mark with experts in the loop. In addition, existing approaches

that focus on one sensor type will face practical challenges

in systems with heterogeneous spectrum sensors. Our work

establishes an automated framework with limited supervision

and no expert input that can automatically benchmark the

fidelity of spectrum data for an arbitrary unknown sensor.

III. SENSORS AND DATA QUALITY

Software defined radio (SDR) spectrum measurement plat-

forms are increasingly considered for data collection [13; 16].

A SDR sensor is comprised of (i) an SDR-based radio

frontend, (ii) a host and (iii) the link between the two. The

SDR collects discrete samples from a pre-configured radio

frequency and with a given sampling rate and feeds those

samples through the link to the host for further processing.

Depending on the task, the resulting data can be in the

form of complex IQ samples [42], PSD [13] or otherwise

compressed/pre-processed versions of those data types [45].

1) The host can be either a general purpose computer

(PC/laptop) or an embedded computer (Raspberry Pi/mobile).

The data processing speed, the probability for dropped sam-

ples, and the timeliness of SDR control are all issues intro-

duced by the host capabilities. These may affect the rate at

which a frequency band is revisited by a spectrum sweeping

sensor, and the likelihood of that sensor to miss target activity.

2) The link connecting the SDR with the host can be realized

via different technologies such as USB 2.0/3.0 or Ethernet.

This determines the maximum transfer speed of samples

between the SDR and the host. Samples might be dropped if

the sampling rate of the SDR is higher than the transmission

rate supported by the link. The volume of dropped samples, in

turn, affects a sensor’s ability to truthfully capture the spectrum

activity, even when a frequency band is observed continuously.

3) The SDR frontend effects on data quality stem from

the SDR’s instantaneous bandwidth (which is determined by

its supported sampling rates), tuning range, analog-to-digital

resolution and sensitivity. First, as a target observable range

might be orders of magnitude larger than the instantaneous

bandwidth of a sensor, measurement infrastructures [16] utilize

sequential sweeping of consecutive bands. As a result, any

given band is scanned intermittently, which may lead to

omission of spectrum activity. To increase the instantaneous

bandwidth and reduce scan intermittency, sweeping sensors

are often configured to scan with high sampling rates. This,

however, may lead to buffer overflows, especially in sensors

where lower-rate host-SDR links present a bottleneck [17].

Dropped samples caused by buffer overflows affect a sensor’s

capability to accurately capture spectrum activity, especially

with short-lived or narrow-band transmissions. The analog-

to-digital converter resolution and the sensitivity of the SDR

affect the degree to which a sensor can pick out faint signals.

The combination of effects introduced by the SDR, the host

and the link affect the quality of data collected by a sensor, the

truthfulness with which this data represents spectrum activity

and the accuracy with which spectrum insights can be drawn.

Thus, understanding and quantifying the effects of sensor

properties on data quality is essential for trustworthy spectrum

measurement. To this end, we design VIA, detailed next.

IV. METHODOLOGY

We now present VIA, which quantifies the fidelity of IQ

and PSD data collected by a spectrum sensor across three di-

mensions: Veracity, Intermittency and Ambiguity.

Veracity, is a measure of how truthfully the data represents

spectrum activity. In terms of lower-level sensor configuration,

veracity is expressed as the amount of spectrum samples a sen-

sor is actually able to retain using a particular configuration.

Intuitively a large volume of dropped samples leads to lower

accuracy in spectrum characterization. Sensor properties that

affect veracity (Fig. 1 right pane) include the set sampling

rate, buffer spaces and the speed of sample transmission

from the sensor’s front-end to the host. Intermittency

captures the non-contiguous nature of sweep-based spectrum

traces. Intuitively, if a sensor is set on a particular frequency

at a given location for continuous amount of time, this

sensor will capture all occurring spectrum activity. However,

emerging systems [12; 13; 14; 16; 15] target wide bands

and perform sweep-based sensing with stationary or mobile

sensors. Thus, spectrum activity in a given band may only

be captured intermittently. Underlying sensor properties that

affect intermittency include the set instantaneous bandwidth,

dwell time, target frequency range and the amount of time it

takes for a sensor to tune to a particular frequency. Finally, the

Ambiguity, captures the likelihood that data samples arising

from transmitters are confused with noise and vice versa.

Ambiguity is most affected by the sensor’s noise floor and

the set receiver gain. VIA can be used as a black box toolset

to benchmark sensor capabilities by non-experts. Next, we

describe our testbed and data, and detail the VIA framework.

A. Testbed and Data Collection

Our testbed consists of a transmitter and five sensors. The

transmitter is set with a USRP B210 [46] SDR and a PC (Intel

i74770 CPU and 16GB RAM). For the sensors, we use two

SDRs–an RTL-SDR [47] and a USRP B210, and three host

platforms, a PC, a Laptop, and a Raspberry Pi (Table I). All

hosts run Ubuntu 16 with GNURadio3.7 [48]. All sensors are

equipped with a wide-band multi-polarized antenna [49]. Our

testbed stores data as IQ samples, which are then converted to

PSD for some analytics tasks (§VI). We make a best effort to

control for ambient interference by selecting unoccupied spec-

trum for our controlled transmissions. We note that controlled

measurements are only necessary for our experimentation and

will not be required for using VIA in the wild.
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TABLE I: Evaluated sensor platforms an dtheir corresponding configurations.

Platform SDR Host SDR-HOST Link Sample Rates (Msps) RX Gain (dB)

RTL-Pi RTL2832U Raspberry Pi (quad-core, RAM 1GB) USB2.0 1,2,3 24,30,40,50,56

RTL-Laptop RTL2832U Lenovo X201 Laptop (i7-5600, RAM 8GB) USB3.0 1,2,3 24,30,40,50,56

RTL-PC RTL2832U Dell Desktop (i7-4770, RAM 16GB) USB3.0 1,2,3 24,30,40,50,56

USRP-Laptop USRP-B210 Lenovo X201 Laptop (i7-5600, RAM 8GB) USB3.0 1,2,4,8,12,16,20,24,28,32 38,40,50,60,70,76

USRP-PC USRP-B210 Dell Desktop (i7-4770, RAM 16GB) USB3.0 1,2,4,8,12,16,20,24,28,32 38,40,50,60,70,76

We set up two controlled transmitter configurations for data

collection. First, we collect samples to demonstrate VIA with

occupancy and transmitter detection. Thus, we setup a con-

trolled transmitter within an unoccupied TV channel at 572-

578MHz [50], emitting periodic and broadcast patterns with a

signal modulated with BPSK. For broadcast, we transmit 1200
bytes at a bandwidth of 1MHz and vary the gain from 30-80dB

in increments of 10dB. For periodic patterns, we transmit 1200
bytes every second at a 1MHz bandwidth and 60dB gain. Both

the transmitter and sensors are in line of sight at a distance

varied between 5 and 25 ft. For the second setup, we configure

our testbed to collect IQ samples across four modulations

to demonstrate VIA with modulation recognition. We set the

transmitter gain at 60dB to generate signals modulated with

BPSK, QPSK, 8PSK, and QAM16. The transmitter emits a

broadcast pattern by continuously transmitting 1200 bytes. The

instantaneous bandwidth of the transmitter is set to 1-3MHz

and the center frequency of the transmitter is set to 1.2GHz.

Data Collection. We collect 1700 traces with a controlled

transmitter and 100 real-world traces of commercial technolo-

gies. For the controlled traces, we first collect 1400 traces

using all possible scan configurations across the five platforms

(Table I), in an indoor and outdoor setting with a dwell time

of 20 seconds. We use these traces for our transmitter and

occupancy detection applications. We next collect 300 traces

for the modulation recognition task using all the possible scan

configurations across the three RTL platforms (Table I) indoors

with a dwell time of 5 seconds. Section VI justifies the use

of RTL sensors alone to collect modulation recognition traces.

For the real-world traces, we collect samples at 99.3MHz (FM

radio) and in a TVWS testbed at 563MHz. All FM traces are

collected indoors with all five sensors with a sampling rate of

1MHz, gain of 30dB (RTL), 40dB (USRP), and a dwell time of

20 seconds. The TVWS traces are collected outdoors using the

battery-powered RTL-Laptop and USRP-Laptop sensors with

a sampling rate of 2MHz (RTL) and 8MHz (USRP), a gain of

30dB (RTL), 40dB (USRP) and a dwell time of 20 seconds.

We use iPerf to generate UDP traffic in the TVWS network

by injecting 4 Mbits at 1 second intervals. For each trace, we

calculate PSDs from the stored IQ data using a Python script.

B. Veracity

1) Definition: Veracity quantifies the retention of IQ sam-

ples. We define veracity (V) as the ratio between the number

of expected samples N , and the actual collected samples N ′:

V =
N ′

N
(1)

The number of expected samples N depends on the sensor

configuration as follows: N = ∆t ∗ fs, where ∆t is the dwell

time and fs is the sampling rate of the sensor measured in

samples per second (sps). A sensor dwelling for 1 second at

a sampling rate of 1 Msps will collect 1M samples.

In reality, however, spectrum sensors may fail to obtain the

number of expected samples N due to hardware limitations

(§III), which results in the actual obtained sample count

N ′ being smaller than the expected N . As the number of

actual collected samples decreases, so does the quality of the

collected spectrum scan, as its ability to capture all spectrum

activity diminishes. The measure of veracity varies between 0
and 1, where 0 is an extreme (and arguably unrealistic) case

where no samples are saved, whereas with 1, all samples are

saved. While veracity is computed on IQ samples it quantifies

the fidelity of both IQ and PSD data, as demonstrated in §VI.

2) Effects of sensor properties and configuration on verac-

ity: Sensor properties such as the ADC/DAC resolution, buffer

size, and the SDR-Host link speed impact veracity. The used

sampling rate, which determines the volume of data transferred

between the radio and the host, also affects veracity. We

study the effects of these properties on IQ samples stored

as binary files. Each sample is stored as an 8-byte number

[48]. To calculate the number of collected IQ samples in

a file, we measure the size of the file in bytes and divide

by 8. We calculate the veracity of the trace as per Eqn.

(1). Fig. 2 presents results across sensors. As the sample

rate increases, the veracity declines for all platforms. This is

due to buffer overflows resulting from the increased rate of

symbols transmitted from the SDR to the host. Platforms that

use low-capability hosts (RTL-Pi and USRP-Laptop) suffer

significant deterioration in veracity compared to their higher-

speed counterparts. 27% of the sample rates fall below 0.8
veracity, of which 66% are due to RTL-Pi and USRP-Laptop.

C. Ambiguity

An arbitrary spectrum trace in a frequency band with active

transmitters might capture some samples that represent noise

and others that represent transmitter activity. An example

trace is presented in Fig. 3 (left), where lighter values repre-

sent transmitter activity, while darker values represent noise.

Transmitters whose signal is low and close to the sensor’s

noise floor, can be ambiguously interpreted as noise. This

relationship between the noise floor of a sensor and the level

of a transmitter’s signal will affect transmitter detection.

1) Definition: We develop a metric, dubbed ambiguity (A),

which quantifies the likelihood that transmitter samples in a

scan are confused with noise. Given a spectrum trace p(f, t)
with N = T ∗ F samples we model the data as a Gaussian

Mixture Model (GMM) [51] with two components: one for

noise GN (µN , σN ) and one for non-noise values GT (µT , σT ).
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right pane. Noise floor across platforms as a function of the receiver

gain of the sensor (middle). Ambiguity of the collected traces as a

function of the receiver gain (right).
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Given these two distributions, for each measured sample ptf
we can calculate the posterior probability that ptf is associated

with each of the two components, as follows: pN (ptf ) =

1

σN

√
(2π)

e(
(pt

f−µN )2

2σ2

N

) and pT (p
t
f ) = 1

σT

√
(2π)

e(
pt
f−µT )2

2σ2

T

).

Intuitively, these two probabilities quantify the likelihood that

a sample arises from noise/transmitter activity. We label a

sample as ambiguous if both its association probabilities are

non-zero, i.e. if pN (ptf ) > 0 and pT (p
t
f ) > 0. Thus, the

ambiguity of a trace p(f, t) is defined as the fraction of

ambiguous samples N̂ from all collected samples N :

A =
N̂

N
(2)

A varies between 0 and 1. A trace with ambiguity of 0
will have a clear separation between noise and non-noise

values such as in high SNR settings, and should, be easy to

characterize. A trace with ambiguity close to 1, will have a

small margin between noise and non-noise samples (i.e. low

SNR), and will be hard to characterize. Ambuguity can be

calculated either directly with PDS data or with the amplutude

of IQ samples, and is thus applicable to both data streams.

Fig. 3 (left) illustrates the overlap between sample distributions

that model noise and non-noise signals for an example PSD

trace. The blue bars represent the distribution of the empirical

PSDs, the red line presents the fitted GMM GN (µN , σN ) and

GT (µT , σT ). Highlighted red are the ambiguous PSD values.

GMM is a general unsupervised clustering approach, which

has been used to mine the number of transmitters in a spectrum

trace [52; 53]. In our work, we apply it to discern between

transmitter and non-transmitter measurements in real-world

traces with no ground truth. This allows us to identify data

points that are ambiguous and determine the likelihood of a

false detection in a trace. Additionally, we emphasise that our

ambiguity measure is different than the classical SNR. SNR is

defined as a comparison of the level of a desired signal to the

level of background noise. In contrast, ambiguity determines

the likelihood that a measured signal will be misclassified.

2) How we use GMM: GMM takes as an input (i) the data

p(f, t) to be modeled, (ii) a number of distributions K to be

fitted over the data and (iii) a guess of the mean, standard

deviation and weight (µ, σ, w) of each of the distributions.

GMM then uses an Expectation Maximization algorithm (EM)

to refine this guess, by maximizing the likelihood that the

outputted model (µ̂, σ̂, ŵ) represents the data correctly. While

the above approach is fully unsupervised, and thus, does

not require prior knowledge of the noise and transmitter

distributions, the goodness of the GMM fit often depends on

the setting of the initial guess. We study the effects of the

initial guess on ambiguity in Fig. 5. Fig. 5 (top) explores the

effects of the noise guess. The x-axis represents the difference

∆µN
between the means of the empirical and the guessed noise

component. We fix the non-noise guess to be 20dB higher than

the empirical noise mean. ∆µN
is negative when the guess is

lower than the empirical mean, and positive when the guess is

higher than the empirical mean. Red and blue represent USRP-

and RTL-based sensors, respectively. The ambiguity measure

is nearly zero and stable for a wide range of offsets from

the empirical noise mean for both platforms: -8dB to 20dB

for RTL and -5dB to 20dB for USRP. Similar trends can be

observed on the counterpart graph that studies ambiguity as a

function of the transmitter guess (Fig. 5 (bottom)). We fix the

noise guess to be equal to the empirical noise mean and vary

the difference between the empirical transmitter mean and the

guessed mean. The ambiguity measure is stable for a wide

range of guesses for both RTL and USRP: -7 to 20dB for

RTL and -1 to 20dB for the USRP. These results emphasize

the robustness of ambiguity to GMM’s initialization.
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Fig. 5: Ambiguity across different noise (top) and transmitter

(bottom) offsets is stable within a wide range for both SDRs.

To refine our GMM noise guess we profile a sensor’s

noise floor in the wild. Traditionally, noise floor is profiled

in an anechoic chamber to ensure that measurements are not

tainted by interference. Since our goal is to automatically

profile sensors without expert input or facilities, we propose

an alternative approach that utilizes spectrum white spaces for

coarse noise floor profiling. Various spectrum bands can be

used for this purpose, including TVWS, which are documented
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in a public database [50], or protected spectrum used by

radio astronomy and passive remote sensing [54]. For a noise

benchmark trace pN (f, t) collected in one of these bands, µN

and σN are calculated as the mean and standard deviation of

pN (f, t). The so obtained µN and σN can then be supplied

as domain-informed input to GMM.

Having profiled a sensor’s noise floor, we use GMM as

follows. We model a collected trace p(f, t) as two distributions

(i.e. K = 2): one arising from noise and one arising from

transmitter values. Our initial guess for the noise distribution

(µN , σN , wN ) is set as per the noise floor profiling method

discussed in the previous paragraph. The non-noise guess

(µT , σT , wN ) is set as µT = µN + 20dB and σT = σN .

The weights wN and wT are each set to 0.5.

3) Effects of sensor properties and configuration on ambi-

guity: Ambiguity is affected by a sensor’s noise floor, the

noise floor stability across the sensor’s tunable range, the

receiver gain and the transmitter signal strength. We explore

these factors in turn. We start with the variance of the noise

floor of RTL and USRP radios across their entire tunable

range in indoor and outdoor settings and in different parts

of the day and days of the week (figure omitted for space).

The noise fluctuations do not exceed 2dB across both sensors.

At the same time ambiguity is robust within a much larger

range of deviation of the input guess Fig. 5. We also study the

effects of the sensor’s receiver gain on the noise floor (Fig. 3

(middle)) and ambiguity (Fig. 3 (right)). As the receiver gain

increases, so do the noise floor and ambiguity. This highlights

the importance of operating within a safe gain regime.

D. Intermittency

Sweep-based spectrum sensing (§III) introduces intermit-

tency in spectrum scans, which in turn, may affect data quality.

Thus, we propose a metric to quantify the intermittency

of a spectrum scan as a function of the sensor’s sweeping

configuration. We define intermittency as the revisit time (∆T )

elapsed between consecutive revisits of a given band:

∆T =

N−1
∑

i=1

(τ +∆ti) (3)

Here N is the number of sweep steps ∆fi, [Hz] that

a sensor must complete in order to scan the entire target

frequency range ∆F, [Hz]. ∆ti is the amount of time a sensor

dwells on a given sweep step ∆fi (also known as dwell time).

Finally, τ is the hop delay defined as the time from the start

of the radio reconfiguration until it records the first sample. τ

factors in the time it takes to configure the hardware, the local

oscillator to settle, the operating system scheduling, and the

time taken at the application level to start producing data.

1) Effects of sensor properties and configuration on inter-

mittency: While N and ∆ti are apriori known configuration

parameters, the hop delay τ is not deterministic, because

the time to configure, schedule and produce samples will

vary depending on the SDR-Host platform. Fig. 4 presents

the hop delay over 1000 runs for the five platforms. It is

different across platforms, owning to the different hardware

configuration, processors, and USB link speeds. In addition,

the hop delay varies from run to run for the same platform,

as indicated by the deviation of measured values for each

platform. All RTL sensors had lower deviation of their hop

delays compared to the USRP-based sensors. Finally, all RTL-

based platforms were faster to re-initialize compared to their

USRP-based counterparts, due to their simpler hardware.

We note that our traces were collected without sweeping,

as our sensors dwelled for 20 seconds per run. Thus no hop

delays were experienced. In order to study the effects of hop

delay, we excised portions of each trace at a random location,

according to the measured platform hop delays in Fig. 4.

V. VIA AS APPLICATION ACCURACY PREDICTOR

VIA quantifies the quality of spectrum data and thus, can

be used as a performance predictor for a variety of spectrum

analysis tasks. We explore VIA’s predictive capabilities with

three such applications (i) transmitter detection, (ii) occupancy

detection, and (iii) modulation recognition as detailed below.

A. Target Applications

1) Transmitter Detection (TD). We employ a recent unsu-

pervised transmitter detection algorithm from the literature

called AirVIEW [28] that is robust in low SNR regimes.

It takes as an input an array of PSD measurements over

time for a set of frequencies (sweep). It finds the sweep’s

wavelet decomposition represented as a binary tree and then

calculates the multiscale product of lossy reconstructions of

the underlying PSD. It then thresholds the multiscale product

to determine idle and occupied frequency ranges. Finally,

occupied ranges are reconciled into a single transmitter over

time based on the alignment across consecutive sweeps. Given

groundtruth for transmitter activity, the accuracy of transmitter

detection is calculated as the bidirectional Jaccard similarity

between actual and detected active time-frequency blocks [28].

2) Occupancy Detection (OD). We employ edge detection in

order to identify idle and occupied bands [55]. The method

takes as input an array of PSD measurements over time. A

threshold is applied to detect the rising and falling edges

of the occupied bins for each PSD sweep. To calculate the

threshold, we obtain the max frequency hold over time. We

find the minimum and maximum value, take the difference and

divide in half. We calculate accuracy as the overlap between

expected and detected active frequency bins. We average the

so-calculated overlaps across all sweeps with detected activity.

3) Modulation Recognition (MR). For this application, we

employ the methodology from [41] assuming 100% overlap

between the transmitter’s and the sensor’s bandwidths. The

methodology employs dictionary learning with local sequential

patterns in IQ timeseries to determine the modulation of a

signal. We calculate the accuracy of this application as the

fraction of total samples with a correctly identified modulation.

B. VIA as a Performance Predictor

To demonstrate VIA’s potential as a performance predictor,

we model the relationship between VIA and the accuracy of
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Fig. 6: Demonstration of VIA as a performance predictor. (left) TD accuracy as a function of observed data veracity (middle)

TD accuracy as a function of observed data ambiguity. (right) TD accuracy as a function of hop delay time.

the above applications. We use two prediction models: ridge

regression [56] and a neural network [57]. Ridge regression

is an extension of linear regression and is highly effective in

eliminating multicollinearity. The neural network is a feedfor-

ward network which consists of an input layer with a fully

connected hidden layer (five neurons), and the output layer.

For each trace, we calculate veracity, intermittency and

ambiguity (VIA vector). Veracity is calculated using Eqn 1.

Intermittency is represented by the hop delay time described

in §IV-D. Ambiguity is calculated using the methodology

described in §IV-C and using Eqn 2. The dataset captures a

full range of VIA values. Finally, we employ TD, OD and MR

applications to all traces and calculate the respective accuracy

as described in §V-A. The input to our models is the VIA

vector (i.e. the model inputs) and the output of the model is

accuracy (i.e. the model output) of the targeted application.

Our prototype framework is implemented in MATLAB (VIA

vector calculation) and Python (prediction models).

C. Case Study

To showcase VIA’s relationship with application accuracy,

we study the relationship between the VIA vectors and the

performance of transmitter detection (TD). We seek to demon-

strate two core VIA characteristics: (i) its predictive power for

spectrum tasks and (ii) the fact that it is sensor-agnostic. Fig. 6

plots TD accuracy vs. each of the three indicators.

Fig. 6 (left) shows accuracy as a function of veracity.

For this result, we consider all traces with ambiguity of 0
and no hop delay in order to isolate the effects of veracity.

As a reminder, lower veracity means more dropped samples,

which adversely affects the accuracy. We see a clear trend of

decreasing accuracy as the veracity decreases, regardless of

the sensor platform. Thus, veracity is a strong predictor for

accuracy regardless of the platform.

Fig. 6 (middle) shows the relationship between ambiguity

and TD accuracy. For this result, we consider all traces

with veracity of 1 and no hop delay in order to isolate the

effects of ambiguity. As a reminder, higher ambiguity makes

transmitters harder to detect, thus leading to reduced accuracy.

Accordingly, we see that as the ambiguity grows, the accuracy

decreases across all sensor platforms.

Finally, we showcase the effects of intermittency on TD

accuracy (Fig. 6 (right)). For this result, we consider all the

traces with ambiguity of 0 and veracity of 1 in order to

isolate the effects of intermittency. The x-axis presents the

five platforms in increasing order of average intermittency.

Boxplots present the accuracy distribution for each platform.

Lower intermittency results in higher overall accuracy, thus

the intermittency, can serve as a predictor for accuracy.

VI. EVALUATION

To evaluate VIA’s ability to predict application perfor-

mance, we utilize the regression and neural network mod-

els described in §V-B. Furthermore, we focus on the three

applications–transmitter detection (TD), occupancy detection

(OD) and modulation recognition (MR) detailed in §V-A.

We first explore VIA’s predicting performance for known

platforms then study the transferability of VIA models across

unknown platforms and propagation environments. Finally, we

explore the predictive power of individual VIA vectors and

analyze the effects of the training data size.

Evaluation metrics and implementation. For TD and OD,

which draw on PSD data, the models are trained with 150
samples of controlled traces and tested with 25 samples of

controlled or real-world traces, all from the five platforms with

10-fold validation. For MR, which uses IQ data from the RTL-

based platforms, we train on 150 samples of controlled traces

and tested with 25 of controlled traces. In all experiments, we

report the mean squared error (MSE), which is the average

squared error between the model’s prediction and the target

value. We select MSE as it is a common standard metric for

both prediction models. As a reminder, our predicted and target

value is TD/OD/MR accuracy, which varies between 0 and 1.

Thus, MSE close to 0 corresponds to a good predictive model.

A. VIA Performance for Known Platforms

We begin by exploring VIA’s ability to predict TD and

OD accuracy across known platforms. A platform is “known”

if it was included in the model training process. For this

experiment we train on a mix of all platforms. Our results

are presented in Fig. 7 (left) across six testing scenarios,

comparing both applications and models. “All” includes equal

representation of testing samples from the five platforms. For
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Fig. 7: MSE for known platforms. Testing on controlled traces

(left) and testing on real-world traces (right).

the remaining five cases, all test samples are drawn from

a single platform. All six cases achieve high and stable

performance regardless of the target sensor, application and

prediction model, as indicated by the consistently low MSE.

With a mix of testing samples our average MSE is 0.0013
across all testing scenarios.

We next evaluate, VIA’s prediction performance on real-

world traces. For this experiment, we train on the controlled

traces with all five platforms and test using the FM radio and

TVWS real-world collected traces. Unlike the controlled traces

collected with our testbed, for which we have groundtruth

for both bandwidth and temporal duration, for the real-world

FM/TVWS traces we only know their bandwidth (based on

transmitter specification) but not duration. Thus, for real-world

data we report accuracy in bandwidth detection. Our results are

presented in Fig. 7 (right) with testing on a mix of all platforms

(“All”) and individual platforms. All six cases achieve high

and stable performance as indicated by the low MSE scores.

With the real-world testing samples our average MSE score

is less than 0.0015 across all testing scenarios. These results

show that VIA models transfer across transmitter settings and

do not require training on different technologies, as we were

able to train on indoor controlled traces and test on wide-area

outdoor traces.

B. Transferability of VIA Models

Next, we explore VIA’s ability to predict TD and OD

performance for unknown platforms and unseen multipath

environments. A platform is unknown if it was not included in

training. We generate all possible combinations
(

n
k

)

, where n

is the number of training platforms, k is the number of testing

platforms and n+ k = 5. Fig. 8 (left) represents MSE across

all combinations. In “All” both the training and the testing

pool are comprised of samples from all five platforms. For

the remaining four cases, we exclude an increasing number

of platforms from the training set, i.e. “1-4” trains on 4

platforms and uses the fifth for testing, “2-3” trains on three

and tests on the remaining two and so on. The presented results

are average over all possible combinations for a given train-

test ratio. Overall, the first 4 combinations have a low and

consistent MSE (an average of 0.0014 or better with a small

variance). The rightmost combination “4-1” scores just below

0.004 with increased variance, which indicates that as we limit

the amount of training platforms and increase the unknown

testing platforms, VIA’s performance declines. Upon closer
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Fig. 8: MSE for unknown platforms (left) and for

known/unknown propagation environments (right).

examination of the individual “4-1” combinations, we found

that training on a single RTL sensor, while testing on a mix

of RTL and USRP, gains bad performance. This is due to the

limited set of sensor configurations that can be explored with

an RTL compared to a USRP. As a result, we see much fewer

realizations of the VIA vectors than we would with a sensor

with many more possible configurations such as the USRP.

Thus, in order to be a good training candidate, a platform

should provide a full range of VIA realizations.

We also evaluate VIA’s transferability across multipath

propagation environments. Fig. 8 (right) presents results for

three cases: Indoor, for which training and testing is on the

indoor data, Outdoor, with training and testing on the outdoor

data and Mix, with training on the indoor and testing on

the outdoor data. All three scenarios maintain a low MSE

score (less than 0.0015) with low variance. These results

hold for both known (Indoor/Outdoor) and unknown (Mixed)

propagation environments, across spectrum tasks and predic-

tion models. Particularly noteworthy is the Mixed scenario,

showing that VIA performs well even when sensors are only

profiled in indoor settings. This can lower the barrier in data

collection by allowing sensor profiling in indoor environments.

Our evaluation so far demonstrates that VIA is platform-

agnostic, can successfully be transferred from one platform to

another and from indoor to outdoor scenarios. Furthermore,

VIA can predict application accuracy even when the training

dataset contains fewer platforms than the testing data.

C. VIA with IQ Data for Modulation Recognition

We next explore VIA’s predictive capabilities for MR ap-

plications using IQ data. We limit this experiment to data

collected on the RTL-based sensors for two reasons. First,

existing MR algorithms require that a transmitter’s bandwidth

be scanned alone and at 100% or less overlap between the

bandwidth of the sensor and the transmitter. Thus, modu-

lation recognition cannot be performed on spectrum scans

that encompass sideband noise. Additionally, our USRP-based

transmitter can reliably run with a bandwidth up to 4Mhz,

after which it starts dropping samples. Since we want to avoid

transmitter-induced imperfections in our scans, we only run

our transmitter with a bandwidth up to 3Mhz. This inherently

limited the bandwidths we could use on the sensor side to

3MHz as well. USRP platforms do not suffer performance

deterioration at 3MHz bandwidth, while RTLs begin to drop

samples at that bandwidth (§IV). Thus, to ensure 100% overlap
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Fig. 9: MSE for known platforms (left) and unknown platforms

(right) for MR task.

between the sensor and the transmitter bandwidths, while

allowing for some imperfections in the spectrum scan to occur,

we limit this experiment to the RTL-based sensors.

Our results are presented in Fig. 9. On the left we have

MSE across known platforms. Here, the training set includes

all RTL-based sensor platforms. “All” includes equal repre-

sentation of testing samples from the three platforms. For

the remaining three cases, all test samples are drawn from a

single platform. All cases achieve high and stable performance

as indicated by the low MSE (under 0.0015). On the right,

we have MSE across unknown platforms. Once again, “All”

includes equal representation of testing samples from the

three platforms. For the remaining 2 cases, we exclude an

increasing number of platforms from the training set. Overall,

all combinations have a low and consistent MSE (0.0015
or under). These results demonstrate that VIA can reliably

predict application accuracy for a variety of applications and

data types, including modulation recognition from IQ traces.

D. Analysis of Input Importance and Input Size Requirements

We now evaluate the importance of the three VIA vectors

in predicting the performance of the PSD-based transmitter

detection task. Our goal is to determine whether some VIA

vectors hold higher predictive power than others, and justify

the use of all three vectors in combination as opposed to indi-

vidually. To that end, we modify the inputs to our models to

be (i) the individual VIA vectors, (ii) pairs of VIA vectors and

(iii) the combination of all three and evaluate the performance

of TD with both models. Our results are presented in Fig. 10

(left). Veracity and intermittency alone achieve an MSE score

just under 0.009. The combination of these exacerbates the

performance (over 0.012). The two combinations that include

ambiguity achieve an MSE score of 0.0022, which is better

than ambiguity alone (0.0027). However, neither of these two

combinations reach the VIA score of 0.0013. Thus, all of the

VIA vectors are important predictors for application accuracy.

Finally, we study the effects of the training data size on

VIA’s performance. This will inform the amount of required

traces and characterizations. For this experiment, we increase

the size of the training samples from 20 to 180 in increments

of 20. The training and testing samples are taken from all five

platforms. Fig. 10 (right) shows our results across all training

sizes for both models and the transmitter detection task. We

observe that with a training pool of 20-60 samples, the LR
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Fig. 10: Analysis of VIA input importance (left) and training

data size (right).

model performs better, likely due to the higher training data

requirement of neural network based models. As the training

pool increases, the MSE score improves for the NN model

and converges with the LR model. These results inform our

choice of 150 training samples for the previously presented re-

sults. They also have important practical implications, as they

demonstrate that VIA can reliably predict application accuracy

with as few as 100 controlled spectrum characterizations.

VII. DISCUSSION AND CONCLUSION

Understanding and modeling the effects of spectrum sensors

on data quality is instrumental to measurements that can

objectively capture spectrum activity. The state-of-the-art in

spectrum measurement, however, lacks methods to catalogue

sensor properties and attribute them to data quality and appli-

cation performance.

To address this issue we develop VIA, a framework that

can profile the fidelity of spectrum traces while account-

ing for the sensor configuration and radio environment, and

link data quality with the performance of spectrum analyt-

ics. VIA benchmarks data across three vectors: veracity,

intermittency and ambiguity. Using an extensive ex-

perimental campaign with five RTL- and USRP-based sensor

platforms we demonstrate that VIA is a strong predictor for

spectrum analytics’ performance. We consider a variety of

applications — transmitter and occupancy detection, and mod-

ulation recognition — that use both power spectrum density

traces and raw IQ data. VIA can benchmark data fidelity

for arbitrary and unknown platforms with limited supervision.

VIA has the potential to lower the entry barrier into spectrum

research and measurements for non-experts by providing an

automated approach to sensor and data quality benchmarks.

While our current efforts focus on VIA’s ability for spec-

trum analytics prediction, an extension of this framework for

sensor selection is worth exploring. Furthermore, expanding

our dataset to include data from new sensor platforms, NLOS

scenarios, and testing in real-world environments will also be

a priority. Finally, the current VIA design accounts for the

impact on data quality of the most influential sensor capabil-

ities. Further exploration of sensor imperfections such as I/Q

imbalances, automatic gain control, front end saturation, and

RF nonlinearity may inform additional VIA fidelity vectors.

2237Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on December 24,2024 at 02:25:47 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] “The Importance of Artificial Intelligence and Data for the Telecommu-
nicationsIndustryand the FCC.” https://www.fcc.gov/sites/default/files/
fcc aiwg 2020 whitepaper final.pdf.

[2] Illinos Institute of Technology, “NSF Workshop on Spectrum Mea-
surement Infrastructures, Chicago, IL, USA.” http://www.cs.albany.edu/
∼mariya/nsf smsmw/, April 6-7 2016.

[3] T. Cooklev, R. Normoyle, and D. Clendenen, “The VITA 49 Analog
RF-Digital Interface,” IEEE Circuits and Systems Magazine, vol. 12,
pp. 21–32, Fourthquarter 2012.

[4] “Ettus research. compressed header (chdr) radio transport protocol..”
https://files.ettus.com/manual/page rtp.html.

[5] “Signal Metadata Format (SigMF).” https://github.com/gnuradio/SigMF.
[6] “IEEE 802.22.3 - Standard for Spectrum Characterization and Occu-

pancy Sensing.” https://standards.ieee.org/develop/project/802.22.3.html.
[7] A. Nika, Z. Zhang, X. Zhou, B. Y. Zhao, and H. Zheng, “Towards

commoditized real-time spectrum monitoring,” HotWireless’14, (Maui,
Hawaii, USA), 2014.

[8] A. Nika, Z. Li, Y. Zhu, Y. Zhu, B. Y. Zhao, X. Zhou, and H. Zheng,
“Empirical validation of commodity spectrum monitoring,” SenSys’16,
(New York, NY, USA), 2016.

[9] A. Chakraborty, M. S. Rahman, H. Gupta, and S. R. Das, “Specsense:
Crowdsensing for efficient querying of spectrum occupancy,” INFO-
COM’17, (Atlanta, GA, USA), 2017.

[10] M. Dasari, M. B. Atique, A. Bhattacharya, and S. R. Das, “Spectrum pro-
tection from micro-transmissions using distributed spectrum patrolling,”
PAM’19, 2019.

[11] A. Bhattacharya, C. Zhan, A. Maji, H. Gupta, S. R. Das, and P. M.
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