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Micro/nanostructures hold promise for use as emitters to boost the efficiency of
thermophotovoltaic (TPV) systems. For example, periodic gratings may alter the spectrum of
irradiation on the photovoltaic cell to better match the spectral response of the cell. Photons with
energies slightly higher than the bandgap of the semiconductor are the most desired as they
generate electron-hole pairs with minimal thermalization losses. This prompts the use of gratings
as selective emitters, and the choice of grating geometry has been an active research topic. Even
for a one-dimensional (1D) grating, millions of possible geometries exist, and each grating requires
computationally intensive full-wave simulation, e.g., the rigorous coupled-wave analysis (RCWA),
to calculate the spectral, directional emissivity. Since optimization algorithm performance is
problem-dependent, in this work, a hyper-heuristic search enabled by a fully connected neural
network surrogate of the native RCWA is employed to select an algorithm for a specific grating
design problem. A comparison with existing untuned algorithms for an ideal emitter problem
demonstrates that the hyper-heuristically generated algorithm yields superior performance. This
algorithm is then employed for the optimization of the emitter for a full TPV system comprising a
heated 1D tungsten binary grating paired with a 300 K InGaSb cell. The system is optimized for
maximum power or efficiency at 2000 K and 1500 K, respectively, and the grating properties for

the optimized cases are analyzed.
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Nomenclature

Co

D

speed of light in vacuum

diffusion coefficent of minority carriers
grating depth

elementary charge

loss/objective function

filling ratio

a simple heuristic

photocurrent

reverse saturation current

jth diffraction order
wavevector

wavevector in vacuum
Stefan-Boltzmann constant
number of diffraction orders
acceptor, doner concetrations
intrinsic carrier concetrations

heat flux

output power (per unit area) at operating point

Fresnel reflection coefficent

random vector

rotation matrix

a set grating parameters representing a possible solution
best solution of a given population

random solution of the population

temperature



U(ry—o,ry+0) random uniform distribution function, centered around r,

Voc open circuit voltage
w grating width
Greek

3 permittivity

&' real part of &

g" imaginary part of &
n (thermal) efficiency
0 zenith angle

O(w,T) mean energy of a Planck ocillator

A wavelength (in vacuum)
grating period
1% wavenumber (1/1)
& exchange factor
o radius of uniform distibution
T lifetime for minority carriers
azmuthal angle
angular frequency
Other
€ emissivity
h reduced Planck constant
S parameter space
Superscripts
.S p-polarization (TM wave), s-polarization (TE wave)



Subscripts

lor2 medium 1 or 2
eorh electrons or holes

g bandgap

Acronyms

AAE adversarial autoencoder

CNN convolutional neural networks
FCNN  fully connected neural networks
GA genetic algorithm

k-NN k-nearest neighbors

LC inductor capacitor

MP magnetic polariton

PSO particle swarm optimization
PV photovoltaic

RCWA rigorous coupled-wave analysis

RMSE  root-mean-squared error

SPP surface plasmon polariton

TE, TM transverse electric, transverse magnetic

TPV thermophotovoltaic



1. Introduction

Thermophotovoltaic (TPV) systems are solid-state optical heat engines with few or no
moving parts that can transform essentially any heat source into electricity [1,2]. In traditional
photovoltaics, the incident photons on a photovoltaic (PV) cell directly come from the sun. TPVs
pair low-bandgap (0.1-0.8 eV) PV cells with heated emitters, typically at temperatures from 1300
K to 2200 K using a variety of sources, such as radioactive isotopes [3], the sun [4,5], biomass in
microscale energy systems [6], and industrial waste heat [7,8]. The performance of an emitter is
generally determined by the ability to radiate photons at energies just above the bandgap of the PV
cell, because photons with energies below the bandgap have little chance to create electron-hole
pairs and those at energies much greater than the bandgap have large thermalization losses [8.9].
Several other technologies have been proposed to improve the performance of TPV systems. Back
surface reflectors give photons a “second chance” at being absorbed by reflecting unused photons,
thus increasing the system efficiency [10]. Similarly, spectral filters aim to reflect non-ideal
photons and are typically located in between the heated body and the cell [7,8,11]. Recently, multi-
junction cells have been combined with back reflectors to achieve efficiencies of 40% [12]. Near-
field micro-TPV can take advantage of evanescent waves and photon tunneling effects to surpass
the blackbody limit and improve the TPV performance [13-15]. All aforementioned techniques
can be combined with selective emitters that radiate photons at desirable wavelengths for a
particular cell.

A plethora of materials and microstructures have been considered to optimize these metrics
for different system implementations [16-18]. Dias et al. [19] provided an extensive review and
outlined a photonic roadmap to achieve high-efficiency TPV systems. Tungsten has been identified

as a suitable material for TPV emitters [20-25] due to its favorable bulk emissivity [26-28], good



chemical stability, and high melting temperature of around 3600 K [29]. These desirable properties
of tungsten have been combined with different subwavelength features using diffraction gratings
[13,21], metallodielectric multilayer films [22], microcavities [20], photonic crystals [17], and
micro/nanostructured metasurfaces [23-25] to enhance the radiative properties. One-dimensional
(1D) binary gratings serve as building blocks for more complex structures, and they are more
feasible for manufacturing compared to other intricate designs. The design of these gratings
exemplifies an inverse problem [30], where the desired spectral emissivity informs the geometric
parameters. Maximizing or minimizing the performance function can be challenging due to the
multimodal nature of the problem over a large search space defined by the grating period, width,
and depth [31]. Parameter sweeping can be extremely computationally expensive or lead to
information holes based on the resolution of the search [13].

Machine learning has been extensively used to inversely design thermal emitters [32-35]
and other energy-related applications [36-38]. These studies used trained neural networks as
surrogates to simplify the complex calculations and then applied inverse solution algorithms to
find the optimized materials, structures, and systems based on the desired performance functions.
For example, Kecebas and Sendur [32] used the adjoint method to facilitate the gradient-based
topological optimization. Kudyshev et al. [33] used adversarial autoencoders (AAEs) for rapid
nanophotonics design and optimization. Sullivan et al. [34] developed an inverse neural network
to invert the forward problem for the identification of the material and microstructure that would
best match the specified optical response. Yang et al. [35] used a normalized flow method, also
known as invertible neural networks, to optimize metasurface emitters for targeted TPV cells.

While heuristic optimization methods, such as the genetic algorithm (GA) and particle

swarm optimization (PSO), have been used in earlier studies of 1D binary grating design [31,39],



advanced metaheuristic optimization and hyper-heuristic search techniques [40] have received
little attention in optical and photonic design. Heuristic methods find approximate solutions that
are good enough for a given problem; the optimization algorithms are stochastic, and their
performance may be highly problem dependent. According to the no free lunch (NFL) theorem,
any given metaheuristic optimization algorithm has equivalent performance compared to any other
algorithm averaged over all possible problems. Methods have been proposed to procedurally build
and optimize algorithms for a specific problem or a set of similar problems; these are referred to
as hyper-heuristics [40]. Hyper-heuristic techniques are similar to parameter tuning meta-
optimization techniques, except that a hyper-heuristic algorithm can combine components of
several different algorithms into a more powerful one. In a recent study, Hu et al. [41] used a
Monte Carlo tree search algorithm to optimize a multilayer emitter, considering the photocurrent
generation and efficiency of the TPV system. In recent years, more and more studies have utilized
metaheuristic optimization for mechanical design and energy system optimization [42-45].

This work applies machine learning techniques, especially deep neural networks, to the
optimization of 1D binary grating design. The objective is to develop an optimization algorithm,
i.e., customer optimizer, using a hyper-heuristic search and apply it to maximize the specific TPV
efficiency or maximum output power. Deep learning is employed to significantly reduce the
computation time requirement for full-wave numerical solutions without much loss of calculation
accuracy. To choose the best surrogate method to replace the native rigorous coupled-wave
analysis (RCWA) calculations, four data-driven models are compared: (1) decision tree, (2) k-
nearest neighbors (k-NN), (3) fully connected neural networks (FCNN), and (4) hybrid ensemble
neural networks (hybrid-NN). A simple grating design problem, i.e., ideal emissivity optimization,

that is solely based on the spectral normal emissivity function is considered. The hyper-heuristic



search is employed using the FCNN surrogate to identify a customer optimizer. Comparison is
made with several untuned heuristic algorithms to demonstrate the advantage of this optimizer,
which is then employed to optimize a TPV system comprising a 1D tungsten grating, heated at
2000 K and 1500 K, that is paired with an InGaSb cell at 300 K. Furthermore, the driving physics

behind the properties of the gratings designed for these cases is elucidated with emissivity contours.

2. Methods
2.1. Ideal emissivity optimization

Consider a TPV system, as schematically shown in Fig. 1(a), that is composed of a binary
tungsten grating and a ternary Ino.18Gao.g2Sb cell, with a band gap of 0.56 eV [8,10]. A common
method for designing such a grating is to choose an ideal emissivity spectrum and then optimize
the grating geometry by minimizing the mean square difference between the grating emissivity at
selected emission angles and the ideal emissivity spectrum [31]. The ideal emissivity function may
be simplified as a step function with a value of one (or zero) at wavelengths shorter (or longer)

than the wavelength corresponding to the bandgap, 4, , as depicted in Fig. 1(b), along with the

normal emissivity of plain tungsten and the blackbody intensities at 2000 K and 1500 K

(normalized to the corresponding peak value). Clearly, the InGaSb cell with 4, around 2 pm

matches well with the blackbody emission spectra and the plain tungsten already has a favorable
spectral selectivity. In this study, the dielectric function of tungsten is assumed to be independent
of the temperature and the values at room temperature are taken from Ref. [26].

The emissivity of the grating is calculated by subtracting the reflectance from one,
according to Kirchhoff’s law, since the grating structure is assumed to be opaque [46,47]. The

reflectance as a function of incidence angle, wavelength, and polarization state may be calculated



by RCWA, as shown in Fig. 2, for specified grating parameters [48,49]. The plane of incidence is
defined by the wavevector k and the z-axis. To obtain the desired optimizer using the hyper-
heuristic search method, only the normal emissivity of the gratings is considered in the spectral
region for wavelength A from 0.6 um to 4.0 um, covering the main region of the blackbody
distribution function. For normal incidence, the azimuthal angle ¢ is set to zero so that the plane

of incidence is the x-z plane. The bandgap wavelength of InGaSb is set to 4, = 2.2 pm in the

present study. The spectral region is expanded in the TPV system optimization, considering the
actual properties of the Ino.18Gaos2Sb cell, and the angular and polarization dependence. The
objective function F is a modified mean square error that gives equal weighting to the emissivity
values above and below the bandgap. The parameter space & for the grating period A, width w
(determined by the filling ratio /= w/A), and depth d are determined by considering common
resonance features associated with the grating as done by Nguyen-Huu and Chen [31]. In general,
metallic gratings support surface plasmon polaritons (SPPs), Wood’s anomaly, cavity modes, and
magnetic polaritons (MPs) [47,49]. A brief discussion of these modes is given in the following
section.

Cavity resonances arise from the interference of the diffracted waves and the resonance
wavelength for the 1D gratings maybe predicted by [20,47]:

Ay = 2 (1)

)8

where m=0,1,2,3...and p=0, 1, 3, 5..., as long as they are not simultaneously zero. Cavity

modes may be excited for both transverse electric (TE) and transverse magnetic (TM) waves. For



deep gratings with a high aspect ratio d /(A —w), MPs may dominate cavity modes, giving a much

longer resonance wavelength than 4d, predicted by Eq. (1) [50].
Wood’s anomaly causes abrupt changes in the optical properties of the grating when a
diffraction order just emerges or submerges the surface of the grating, creating a surface wave.

The resonance wavelength may be predicted according to [49]

A A,
21 422 sinBcosg—cos> O =0 ()
A A

where j signifies the jth diffraction order that satisfies the Bloch-Floquet condition given by [49]
b =k sind 2 3
v,j = kosin COS¢+JT 3)
where £, ; is the x-component of the wavevector for the jth diffraction order and k, =27/ 2 is

the wavevector in vacuum or air. For normal incidence (6= 0°), Eq. (2) gives 4, =A/j (i.e., A,

A2, AJ3, ...
SPPs are electromagnetic waves that travel along the metal-dielectric interface. For SPPs

to occur between the air-tungsten interface, k&, ; must satisfy the following equation [27.47]:

where ¢ is the dielectric function of tungsten. For large absolute ¢ values, Wood’s anomaly and
SPPs are hard to distinguish [27]. However, when ¢ = 0°, SPPs can only be excited by TM waves,
while Wood’s anomaly may be excited by both TE and TM waves. For normal incidence, the
longest wavelength for Wood’s anomaly to occur is A when j = £1. If all incidence angles are

considered, the longest wavelength that Wood’s anomaly could occur is 2A with 8 =90°, ¢=0°,

and j = —1. These criteria apply to SPPs conditions within reasonable approximation. The range of
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the grating width and depth may be chosen based on cavity resonances. To boost the averaged

emissivity for the two polarizations at wavelengths shorter than and close to 4, , following Ref.

[31], the parameter space is chosen as follows:

A €[0.3 um, 2.0 um]
S(A, f,d): < f€[0.1,0.9] (5)
d €[0.3 um, 2.0 um]

While these parameters may be continuously tuned, a practical limitation of 10 nm resolution
associated with available microfabrication techniques is considered. The grating period, width, and
depth are digitalized or rounded to the nearest hundredth of a micrometer. If f'is chosen with an
increment of 0.01, then there are 81 points from 0.1 to 0.9. The total number of grating

configurations is approximately 2.4 million.

2.2. RCWA surrogates with deep learning

Due to the complex non-homogeneous nature of Maxwell’s equations in 1D binary gratings,
several different computational methods have been utilized to handle computing the optical
properties, e.g., finite difference time domain (FDTD) [32-34], RCWA [23,27,31], and effective
medium theory (EMT) [47]. EMT cannot capture the effect of subwavelength features unless the
geometric dimensions are much smaller than the wavelength [49]. While FDTD has advantages
for modeling more complicated microstructures, it is much more computationally intensive than
RCWA for 1D gratings [24]. RCWA allows for the calculation of spectral directional emissivity
by taking advantage of the periodic nature of gratings, and the predicted result approaches the
exact solution by increasing the number of diffraction orders used in the simulation [48,49]. The
emissivity is calculated from the reflectance, which is summed up for all diffraction orders that are

propagating waves, j = 0, =1, £2.... While only a few of them are propagating waves, to obtain
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convergence of RCWA solutions, sufficient diffraction orders need to be employed in the
calculation. In the present study, the number of diffraction orders (N) is set to 81, that is, the highest
positive and negative diffraction orders are 40, which allows the computed emissivity to be
accurate to the third decimal point. The RCWA calculations for 100 discrete wavelengths and both
polarizations take approximately 24 s for normal incidence on a PC with an Intel Core 17-6700 3.4
GHz CPU.

Despite the relatively fast converging speed with the RCWA simulation, it is still too slow
for use in the hyper-heuristic search. The time constraint of RCWA motivates the development of
a surrogate model to approximate RCWA simulation. Therefore, the present work explores a data-
driven bottom-up approach to surrogate models that focuses on the input/output behavior of
RCWA. The input data can be represented as a vector containing the period (A), width (w), depth
(d), zenith angle (0), azimuthal angle (@), a polarization binary (TE), wavelength (1), real part of
dielectric function (&"), and the imaginary part of dielectric function (&"). The output data are the
spectral directional emissivity (e1). Four different classes of surrogate models are explored, namely,
decision tree, k-NN, FCNN, and hybrid-NN. These models are described in the following,
considering their advantages and disadvantages, for use as RCWA surrogates for normal incidence
(6=0° and ¢ = 0°) for the geometric parameter space S given in Eq. (5).

A decision tree is a supervised learning method based on a nonparametric hierarchical
model for classification and regression [51]. Tree models often have several orders of magnitude
faster training cycles than other regression models, as tabular data correspond better to the axis-
aligned splits seen in tree models [52]. Therefore, a decision tree model with a depth of 25 is
adopted as a surrogate model and implemented using Scikit-learn in Python [53]. The input data

for this study have relatively few independent dimensions (9 total), of which two collapse (6,¢) as

12



their value is constant for normal incidence. Another widely used regression model is based on the
nearest neighbors, k-NN, which is suitable to the present work as the Euclidean distance between
the geometric input data provides useful information [54]. A 10-nearest-neighbor regression model
is trained using Scikit-learn [53], giving uniform weighting to each neighbor selected. Scikit-learn
is a tool kit in machine learning written in Python and it allows for easy tuning of the model hyper-
parameters.

Neural networks can emulate any function to an arbitrary accuracy given enough training
data [55]. The current trend in machine learning is the extensive utilization of recurrent neural
networks (RNNs) and convolutional neural networks (CNNs). RNN and CNN models have the
outputs of neurons and cycle back to feed into the inputs. The main difference is that RNNs have
infinite impulse response while CNNs have a finite response. RNN and closely related long short-
term memory (LSTM) models are commonly used for physics simulation surrogates [56,57], as
these models typically predict the future states of a system. These models are not applicable to
RCWA surrogate generation, as the input data are non-sequential and lack locality that can be
exploited by convolutions. Therefore, a deep learning model consisting of an FCNN with three
hidden layers of sizes 512, 1024, and 1024 is trained over 200 epochs. A diagram of FCNN model
architecture is shown in Fig. 3. The three hidden layers use a LReLU activation function, while
the output neuron uses sigmoid. This model is explicitly implemented in PyTorch using a Leaky
Rectified Linear Unit (LReLU) activation function and sigmoid neuron as the output [58].

The fourth model used here is a 5-layer stacked ensemble model that is composed of
decision trees, k-NNs, and FCNNs. Ensemble models combine the predictions of multiple
individual models to make more accurate predictions than any single model could achieve alone.

This is because different models may have different strengths and weaknesses, and a wider range
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of patterns and relationships in the data can be captured by combining them. This hybrid model is
implemented through AutoGluon utilizing bagging, stacking, and boosting to further increase the

model performance [52,59].

2.3. Generation of new optimization algorithms

Metaheuristics, within the realm of optimization algorithms, are high-level strategies that
iteratively explore and improve solutions by intelligently navigating complex solution spaces
[42,44]. Unlike exact algorithms that guarantee optimality, metaheuristics do not provide such
guarantees but aim to find near-optimal solutions efficiently. Metaheuristic algorithms can be
broken down into a sequence of “building blocks”, called simple heuristics. An algorithm’s
performance is dependent on the particular application or set of problems. Therefore, a new
purpose-built algorithm can be created by re-arranging these “building blocks” or simple
heuristics. Hyper-heuristic methods are techniques to procedurally build and optimize the simple
heuristics composing a metaheuristic optimization algorithm [60,61]. The building blocks can be
swapped out and rearranged to generate new algorithms. These simple heuristics take in a
population of solutions and output a new population of solutions. The hyper-heuristic search
essentially optimizes different simple heuristics to create a new metaheuristic optimization
algorithm. Then the performance of this algorithm is evaluated, and the information of this
performance is used in the generation of subsequent algorithms.

In the present study, a hyper-heuristic search is applied to develop an algorithm that excels
at designing a binary periodic grating that closely matches an ideal emissivity spectrum. Here, the
objective function is a weighted mean square difference between the spectral normal emissivity

and the ideal emissivity defined in Sec. 2.1 over 100 equally spaced wavelengths averaged for TE
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and TM polarization. The hyper-heuristic search technique is illustrated in Fig. 4 through a block
diagram and implemented with CUSTOMHyS [61]. An algorithm cardinality of two is chosen to
limit possible algorithms to being composed of 2 simple heuristics. To begin, two randomly chosen
simple heuristics, hl(o) and héo) , are chosen from the simple heuristic algorithm library [61]. These
simple heuristics make up the first metaheuristic algorithm. The performance of this algorithm is
evaluated and then the simulated annealing optimization is used to generate new heuristics, which

is then evaluated and annealed for 1000 times until a total of 1001 metaheuristics are generated,

ie., h1(1000) and h§1000) , each having its own performance indicator. The heuristic algorithm with

the best performance value is chosen as the output customized optimizer composed of #; and 4,
for later use to optimize a similar problem of designing gratings for optimal efficiency or maximum
power of the TPV systems to be discussed in Sec. 3. The specifics of this procedure are explained
in the following steps:

1. Initialize the procedure and generate a metaheuristic algorithm composed of two simple
heuristics, hl(m) , hém). Here, m is an index from 0 to 1000, representing the step in
hyper heuristic procedure.

2. Evaluate performance of algorithm

a. Use algorithm to optimize a grating to minimize the objective function
1. Initialize a population of eight (8) solutions, each solution is represented
by prescribed grating parameters (A, f, d) that are randomly picked from

the parameter space given in Eq. (5).

ii. Apply the given heuristic hl(m) to the population to get a new

population; then, apply hém) to the new population to get another one.
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4.

5.

iii. Repeat Step 2.a.ii for 10 times, and then output the best solution from
the 10 populations (i.e., 80 solutions) based on the objective function

(the smaller the better).

. Run the optimization algorithm (Step 2.a), 100 times to collect a set of 100

optimal gratings. For each metaheuristic algorithm specified by 4™ and A™

, it takes 8x2x10x100 = 16,000 calculations of the emissivity spectra for both
polarizations in order to obtain a set of 100 optimal gratings with their
associated objective functions.

Take the 75th percentile of the objective function values from the set of
optimized gratings obtained in step 2.b. This sampling represents the minimum
expected performance for 75% of optimization runs. In other words, 25 out of
the 100 data have a higher objective function value, (i.e., 25% of the gratings

are worse). Use this 75th percentile value as the performance indicator (the

smaller the better) of the particular metaheuristic algorithm defined by hl(m)

and 4™ .

Use the algorithms performance and simulated annealing optimization to generate a
new metaheuristic algorithm.
Repeat steps 2 and 3, until 1000 metaheuristic algorithms are generated.

Output the best metaheuristic algorithm from the set of 1000 algorithms.

The total process requires approximately 16 million grating spectra for each polarization. The

grating emissivity calculations use the FCNN model, which is orders of magnitude faster than the

native RCWA simulation. It would not be feasible to do the hyper-heuristic search without the

deep learning surrogate.
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3. Thermophotovoltaic modeling

While it is instructive to use an ideal emissivity spectrum to optimize the grating, the result
may not be the best choice for actual system performance. Hence it is imperative to directly
optimize the TPV system using the performance parameters (i.e., the efficiency and maximum
output power), even though such optimization will significantly increase the complexity and
computational demand. As shown in Fig. 1(a), the system is modeled as two semi-infinite plates
separated by a distance much longer than the wavelength such that the thermal radiation between
them is in the far-field regime, meaning no evanescent waves contribute to the heat flux between
the two surfaces. The net flux from the emitter to the cell is then calculated by integrating over all

frequencies as follows [47]:

¢ = [ dn(@do=—— e 5 ] 0. 1)) 0. @) dw ©6)

where o is the angular frequency, ¢;, is the spectral heat flux, co is the speed of light in vacuum,

h h
O(w,T) = @ +22 s the mean energy of Planck’s oscillator at temperature 7' (with
exp(hw/ kgT)—-1 2

kg and 7 being the Boltzmann constant and reduced Planck’s constant), and subscripts 1 and 2

denote the emitter and the cell, respectively. In Eq. (6), (@) is an exchange factor that takes into

consideration of the emissivity of both bodies by a hemispherical integration considering

individual polarization states [47],

7l2 p7/2 1 1 .
E(w) = 4j j + cos Osin OdOd ¢ (7)
0 1/62),14‘1/62)’2—1 l/€£1+1/€£2—1
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Here, € is the spectral directional emissivity, and superscript s and p signify TE and TM waves,
respectively. Due to symmetry, the integration over the azimuthal angle is taken to be 4 times the
value integrated from 0 to /2.

Integrating over all possible frequencies is not feasible, and therefore a characteristic subset
is used. Here, the cutoff wavelengths are set to 0.4 um and 10 um, and 200 logarithmically spaced
frequencies are used with trapezoidal numerical integration. Similarly, the zenith and azimuthal
angle values are calculated every 5° for their trapezoidal numerical integration.

A scenario occurs when the polarization of the incident wavevector is not perpendicular to
the gratings (i.e., the azimuthal angle ¢+ 0 or 7), as illustrated in Fig. 2 where the plane of incidence
is not parallel to the x-z plane. In this case, the majority of the diffracted beams (j # 0) do not lie
in the plane of incidence; instead, they form a cone centered around the grating grooves [49]. When
the azimuthal angle ¢ = 0, RCWA calculations require 4N, where N is the number of diffraction
orders, unknowns to be solved for [48]. These unknowns are the coefficients of exponential terms
that represent the forward and backward coupled diffracted waves in the grating region. The
conical diffraction case is more computationally intense and has 10N unknowns to be solved [49].
No surrogate is used for the TPV performance evaluation. The use of a custom optimizer can
significantly reduce the number of iterations needed in the inverse problem to optimize the
objective function, i.e., the efficiency or maximum power of the TPV system as described in the
following.

The spectral directional emissivity of the PV cell, Ino 18Gaos2Sb, is calculated from the

reflectance, which is the square of the modulus of the Fresnel reflection coefficients calculated by

[46,47],

18



L5 _ Mcos 6, —n, cos 6, P ncos6, —n,cosf,

and
1y cos @) + n, cos 6, mcosB, + n,cos 6,

®)

where n1 is the refractive index of the incident medium (»; =1 for air or vacuum), nz is the
complex refractive index of the PV cell, and 6, and @, are the incidence and refraction angles,

respectively. To simplify the calculation, it is assumed that the dielectric function of the PV cell
is independent of the doping as done in the previous studies [10,13].
Once the radiative flux on the cell is determined, the photocurrent from photons is

calculated from [14]
[e 0] e ”
Ion =, (@) 9)

where e is the element charge, and wq is the frequency associated with the bandgap of the cell. It
is assumed that the internal quantum efficiency is 100%, i.e., each absorbed photon above the
bandgap generates exactly one electron-hole pair. Furthermore, non-radiative recombination losses
are not considered. These assumptions provide an upper limit of the TPV performance and the
inclusion of nonidealities should not significantly affect the emitter design. Such a detailed balance
approach has been used previously [ 13,41]. The reverse saturation current may be calculated based

on the diffusion process as [62]

2 2
“ D Z D
P L Y 10
Noa\7z. Np\7

where N; =2x 10" cm™ , Ny =1x 10" cm™ ,and Np =1x 10" cm™ are the intrinsic, acceptor,

! are the

and donor concentrations, respectively; D, =125 em®s™! and D, =313 cm? s
diffusion coefficients for electrons and holes, and 7z, =9.75 ns and 7}, =30.8 ns are the lifetime

of electrons and holes, respectively.
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The open-circuit may be determined from the dark current curve, yielding [62]

_kgT
e

7

oC

In(Jyy, / Jg +1) (11)

The output power depends on the operating voltage, and the maximum power generated at the ideal

voltage is given by [62]

Finax :JphVoc (l_lJ{l_m} (12)
y Y

where y =In(Jy, /J5) . The efficiency of the TPV system is the ratio of the maximum power to

the net heat flux [10,14]:

77 — Pmax (13)

The tungsten grating is optimized using the custom-optimization algorithm generated by
the hyper-heuristic search discussed in the previous section for maximum power and separately

for efficiency at two operating temperatures, 2000 K and 1500 K.

4. Results and discussion
4.1. Comparison of RCWA surrogate models

Each surrogate model is allotted about one day of computational time for training. The
decision tree and k-NN models can be completed. The FCNN converges to a point, where accuracy
improvements were no longer being obtained with subsequent training epochs. The hybrid-NN
model does not reach a converging point. The Autogluon implementation allows for training time
budgets to be set; this is a great feature for machine learning. However, if a new model feature is
estimated to take more time than what is left in the budget, the training will prematurely stop before

expending the entire computational budget. The hybrid-NN model would continue to get accuracy
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improvements if more training time was allotted. The main downside of these hybrid models is the
long training and/or prediction time. The longer prediction time associated with these hybrid
models can be overcome with teacher-student deep leaning methods [63]. That is, the output of
the complex hybrid model is used to train a simpler model like FCNN. This often drastically
improves prediction time while slightly decreasing accuracy. Teacher-student methods further
increase training time, reiterating the fact that hybrid neural net models are viable when large
training computational resources are present.

A commonly used training-to-test split ratio is 80:20. However, other splitting ratios such
as 70:30, 60:40; and even 50:50 have also been used in the literature [64]. In the present study, the
splitting ratio of 2:1 is used to ensure the fidelity of the surrogates. The training uses a tabular data
set composed of 16 million individual RCWA calculations (or 80,000 RCWA spectra for each
polarization). Each of the RCWA surrogates is tested on a data set of 8 million RCWA calculations.
The combined training and testing use about 5% of the total parameter space defined in Eq. (5).
Using the deep learning enabled surrogate models are much faster than the brutal force
optimization if the whole grating parameter space is considered.

Table 1 presents the training time, prediction time for each calculation, and accuracy for
the surrogate models explored in this study. For RCWA, the prediction time is the average time
needed to compute the emissivity for a single wavelength at a given polarization. The accuracy is
based on the root-mean-squared error (RMSE) for 200 data as compared with the native RCWA
calculations. Each of the models varies quite significantly in their training (or generation) time.
The decision tree results in the quickest training of just 110 s and a prediction time of 4.15E-07 s.
On the other end, it takes 20 hours for the FCNN model to be trained, while the prediction time of

the hybrid-NN is 5.09E-04 s, which is the longest among these surrogate models. Generally, the
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trend of increases in model complexity translates to longer training times and slower prediction
speed. However, the most complex model of the hybrid-NN has a slightly shorter training time but
a higher RMSE than the hybrid-NN model. The FCNN model is the most accurate with an RMSE
of 0.0045.

To illustrate the accuracy of the surrogate model, Fig. 5 compares the emissivity spectra
predicted by the surrogate models with that of RCWA calculations for an example emitter with A
= 1.5 ym, w = 0.5 um, and d = 1.0 um. The common stair step behavior often associated with
decision trees and k-NN is seen in Figs. 5(a,b). The neural network methods generally produce
smoother curves as shown in Figs. 5(c,d). As expected, the differences are the largest near the
narrow peaks and resonances. While the FCNN model closely agrees with the RCWA calculations,
the hybrid-NN model exhibits some deviations. Therefore, the FCNN surrogate model is used for

hyper-heuristic custom optimizer generation as discussed in the subsequent section.

4.2. Generated custom algorithm
Using the hyper-heuristic search described in Sec. 2.3, the resulting custom optimized
algorithm for the grating problem is obtained that is composed of two simple heuristics /1 and A>.

These algorithms are described in the following [60].

Iy(s)=5 —TRp(®)(s—s") (14)
This heuristic takes in a set of solutions, s = (A, f, d)x8, called a population, and manipulates them
with a spiral dynamic heuristic. In Eq. (14), R, (®=22.5") is the rotation matrix determined by

the product of all the combinations of two-dimensional rotation matrices by utilizing the Euler-
Rodrigues rotation formula, s* is the best solution of the population, and 7 is a uniformly

distributed random vector. The elements, 7;, of 7 are given by [60]
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r=rn~U(y—0,1)+0) (15)
where U represent a uniformly chosen random number in a given range, this range is centered
around 7, = 0.9 with size 0 =0.1. The heuristic /; is followed by a differential mutation simple

heuristic [60,61],

M
hy(s)=s, +F-(s =5, )+ F-Y (s

m=1

) (16)

—S
Zam+1 Z2m+2

where F' =1 is the “strength” of the mutation, M = 1 is the number of mutations, and z; (i = 1, 2)
represents a random solution from the population of solutions. This heuristic essentially randomly
mutates a random solution toward the best solution. Detailed discussion of the heuristics can be
found from Cruz et al. [60,61].

Again, the heuristics are paired with a uniform random initializer to generate the first
population of solutions. Due to the nature of the cost function evaluating the utility of the
algorithms, the combination of these heuristics balances exploitation and exploration. This custom
optimization algorithm should outperform most unoptimized algorithms. To verify this, this
algorithm is compared to several untuned search algorithms with a random set of parameters: (1)
the random search, (2) differential evolution, (3) PSO, (4) single crossover GA, and (5) firefly
optimization algorithms for the optimization of an emitter according to the ideal emissivity
function described previously. All of which have their simple heuristic explicitly defined by Cruz
etal. [60]. The same algorithm objective function used in the hyper-heuristic search was used for
this comparison. Figure 6 shows the 75th percentile of the optimization runs performed with each
algorithm and shows the custom algorithm has a much better performance than the other
algorithms. The custom algorithm exhibits extreme consistency as there is a much lower

interquartile range at almost all algorithm iterations than the other algorithms. As discussed before,
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each of the comparison algorithms can have their defining parameters tuned to improve their
performance. The hyper-heuristic optimization essentially has already tried different parameters
of each algorithm to generate the custom optimizer. Even if each of the comparison algorithms are
meta-optimized to have their parameters tuned, the custom algorithm should still outperform the

rest albeit the advantage may be less dramatic.

4.3. Optimized gratings and TPV performance

The emitter temperature of 2000 K is studied first. The figures of merit of a TPV system
are the maximum power and the conversion efficiency, defined in Eq. (12) or Eq. (13), respectively.
However, due to the change of spectral distribution, an optimal output power does not necessarily
correspond to an optimal efficiency. Hence, the customer optimizer is used to optimize the TPV
performance based on either the efficiency or the maximum power. The RCWA simulation
considering conical cases is used for these calculations. Using the generated custom algorithm, the
number of iterations needed is approximately 50 for a population of eight, making it feasible to
use the native RCWA calculations. While it is possible to use a surrogate model for the RCWA
for various incidence angles, the training would take a longer time than directly optimizing the
system. The optimized grating geometries and their associated TPV efficiency and maximum
power are listed in Table 2. The results for a planar tungsten emitter and the grating A optimized
according to the ideal emissivity spectrum are also shown for comparison. The grating geometrics
are identical for both optimal efficiency (grating B) and optimal output power (grating C), in the
case with an emitter temperature of 2000 K. Note that grating A already has a fairly good
performance compared with a planar tungsten emitter. The maximum power is more than doubled,

though the absolute value of the efficiency is increased by 2.66% only. This is because the choice
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of the ideal emitter spectrum is to match with the bandgap of the cell. Grating B differs from
grating A only by a smaller filling ratio (or width). When the whole system is optimized, the
performance further improves, resulting in an efficiency of 27.06% with an output power density
of 7.19 W/ecm?,

When the emitter temperature is 1500 K, the geometric parameters of grating D for optimal
efficiency are very different from those of grating E for optimal output power, as shown in Table
3. In this case, the overall efficiency and output power are lower than for a 2000 K emitter.
Nevertheless, the enhancement over planar tungsten emitter is still significant. Furthermore,
gratings D and E have quite different parameters than grating A. However, grating A seems to
perform between gratings D and E in terms of either efficiency or maximum power. It is interesting
to look at the emissivity spectra considering different polarizations to understand what features are
the most important for TPV performance.

The spectral emissivity is plotted in Fig. 7 for the four gratings. Except in a few spectral
regions, the hemispherical emissivity generally falls between the values of the TE and TM waves
at normal incidence. Gratings A and B have similar emissivity with a slight shift of the peaks for

TE waves. Cavity resonance with 4 =2A(1— /) results in a peak for TE wave at 1.9 um for grating

A and 2.0 pum for grating B. Towards shorter wavelengths, TM waves exhibit a higher emissivity
due to SPPs. Both gratings yield a low emissivity at wavelengths longer than 2.2 um and thus
enhance the TPV efficiency.

However, gratings C and D behave very differently. For grating D, the broader peak near
2 um for TM waves is due to MPs that can be predicted using the LC circuit model but cannot be
explained by the cavity mode of A =4d [50]. Due to the small emissivity for TE waves with

grating D, the output power is lower than those of gratings A and E. For grating E, there is a MP
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mode in the infrared near 11 pum (not shown). The MPs may couple with the cavity modes to give
multiple oscillations including those at 3.3 um, 2.15 um, and 1.55 um. Hence, even though the
output power is optimized, the efficiency is lower than those with gratings A and D and even lower
than that of planar tungsten emitter. Since the heuristic optimization is based on the objective
function only, the outcome may be partially or completely unexpected. To shed light on the
directional emissivity and resonance modes, the emissivity contours are plotted and discussed in

the next section.

4.4. Emissivity contours

The directional emissivity of the four gratings at A = 2 pm are shown in polar contour plots
for both TE and TM waves in Fig. 8. Grating A and B are similar while grating B has a higher
emissivity since the selected wavelength is closer to its resonance peak. Cavity resonances form
standing waves and result in several zones with high emissivity values, especially for TE waves
as shown in Fig. 8(b). It should be mentioned that due to conical diffraction, the effects of TE and
TM waves are somehow mixed when ¢ = 0° [49]. Hence, it is difficult to associate them with any
particular resonances. This is especially true for gratings D as shown in Fig. 8(c,g) and grating E
as shown in Fig. 8(d,h), where high emissivity occurs for both TE and TM waves in different
regions. It should be noted that the reflectance of the cell increases toward higher zenith angles
according to the Fresnel formulas given in Eq. (8). Therefore, the emitted photons at > 60° have
a much lower probability to be absorbed.

Typically, resonances can be analyzed via dispersion relations for ¢ = 0°. Figure 9 plots

the emissivity contours for gratings A and B in terms of the wavenumber v and the parallel

wavevector k, for both TE and TM waves. The horizontal bright stripes near v = 5000 cm™!
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(A=2.0 um) for TE waves are due to cavity modes as mentioned previously. Higher order

resonances can also be seen. The Wood’s anomaly can barely be seen only for TE waves as a
diamond in Fig. 9(a,c). The corners of the diamond are located at (4500,4200), (0,9000),
(4500,13000), and (9000,9000), which is extrapolated. For TM waves, there are multiple cavity
resonances at large wavenumbers (or short wavelengths) that are consistent with the high
emissivity spectral region shown in Fig. 7.

As shown in Fig. 10(a,c), gratings D and E are essentially featureless for TE wave, except

that the values are higher at v> 7000 cm~! and much lower at v< 6000 cm~'. For TM waves, the

! results in a horizontal band seen in Fig. 10(b). At high

MP resonance at v near 5000 cm™
wavenumbers, the bright line from (5750,6000) to (0,11400) is due to SPPs. This can also be seen
in Fig. 7(c) by the spike near 1.5 um. As shown in Fig. 10(d), there are several horizontal bands
for grating E due to MPs and cavity resonances. On the other hand, due to the small grating period,
SPPs cannot be excited in the considered spectral region. While the resonance features can be

understood. In general, the algorithm’s solutions can neither be designed intuitively nor based on

fundamental mechanisms.

5. Conclusions

This study demonstrates that hyper-heuristic techniques allow the creation of effective
optimization algorithms for the design of microscale TPV emitters. The new algorithm generation
is facilitated by FCNN serving as RCWA surrogates for calculation of the normal emissivity of
1D tungsten gratings. The custom optimizer is then used in the full system evaluation to further
optimize the grating parameters for specific TPV parameters and performance metrics, considering

the spectral and directional emissivity of the gratings and TPV cells. The grating behavior can be
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explained according to the resonance phenomena associated with cavity resonance, Wood’s
anomaly, SPPs, and MPs. Nevertheless, it is hard to draw any conclusions in terms of how to
optimize the gratings simply based solely on these resonance mechanisms. Fortunately, the
heuristic optimization is merely based on the objective function to identify the best solution.

A major takeaway from this study is that it demonstrates a pathway towards fast and
reliable optimization of a complex system using a custom algorithm, which is developed from a
hyper-heuristic search on a much simpler yet similar problem. Furthermore, the hyper-heuristic
search is enabled by deep learning surrogates with only a subset of the input data obtained from
rigorous calculations. This custom optimizer obtained from this work is recommended for emitter
design of future TPV systems based on binary gratings with various emitter and cell materials. The
procedure outlined here may also be adopted for optimizing other microscale energy conversion
devices and systems based on advanced heuristic algorithms.

Future studies include modeling and optimization of gratings based on metals other than
tungsten, TPV cells with different semiconductors and bandgaps, as well as two-dimensional

gratings and other nanostructures for selective emitter designs.

Acknowledgements
This work was mainly supported by the U.S. Department of Energy (DOE), Office of
Science, Basic Energy Sciences (Grant No. DE-SC0018369). C.Y. would like to the support of the

National Science Foundation (Grant No. CBET-2029892).

28



Author credit statement

P. Bohm: Conceptualization, Investigation, Methodology, Validation, Writing-original
draft, Review and editing. C. Yang: Methodology, Validation, Review and editing. A.K. Menon:
Supervision, Review and editing. Z.M. Zhang: Conceptualization, Funding acquisition,

Supervision, Writing-original draft, Review and editing.

Declaration of competing interest

The authors declare no conflicts of interest.

Data availability

Data will be made available on request.

29



References

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Daneshvar H, Prinja R, Kherani NP. Thermophotovoltaics: Fundamentals, challenges
and prospects. Appl Energy 2015;159:560-75.
https://doi.org/10.1016/j.apenergy.2015.08.064

Burger T, Sempere C, Roy-Layinde B, Lenert A. Present efficiencies and future
opportunities in thermophotovoltaics. Joule 2020;4;1660—80.
https://doi.org/10.1016/].joule.2020.06.021

Wang X, Liang R, Fisher P, Chan W, Xu J. Radioisotope thermophotovoltaic generator
design methods and performance estimates for space missions. J Propul Power
2020;36:593-603. https://doi.org/10.2514/1.B37623

Lenert A, Bierman DM, Nam, Y, Chan WR, Celanovi¢ I, Soljaci¢ M, et al. A
nanophotonic solar thermophotovoltaic device. Nat Nanotechnol 2014;9:126-30.
https://www.nature.com/articles/nnano.2013.286

Datas A, Ramos A, Marti A, del Canizo C, Luque A. Ultra high temperature latent heat
energy storage and thermophotovoltaic energy conversion. Energy 2016;107:542-9.
http://dx.doi.org/10.1016/j.energy.2016.04.048

Chen W-L, Currao G, Li Y-H, Kao C-C. Employing Taguchi method to optimize the
performance of a microscale combined heat and power system with Stirling engine and
thermophotovoltaic array. Energy 2023;270:126897.
https://doi.org/10.1016/j.energy.2023.126897

Zhang C, Tang L, Liu Y, Liu Z, Liu W, Qiu K. A novel thermophotovoltaic optical
cavity for improved irradiance uniformity and system performance. Energy
2020;195:116962. https://doi.org/10.1016/j.energy.2020.116962

Basu S, Chen Y-B, Zhang ZM. Microscale radiation in thermophotovoltaic devices—a
review. Int J Energy Res 2007;31(6-7):689—-716. https://doi.org/10.1002/er.1286

Zhou Z, Jiang C, Huang H, Lijiang Liang L, Zhu G. Three-junction tandem photovoltaic
cell for a wide temperature range based on a multilayer circular truncated cone
metamaterial emitter. Energy 2020;210;118503.
https://doi.org/10.1016/j.energy.2020.118503

Bright TJ, Wang LP, Zhang ZM. Performance of near-field thermophotovoltaic cells
enhanced with a backside reflector. J Heat Transfer 2014;136(6):062701.
https://doi.org/10.1115/1.4026455

Mao L, Ye H. New development of one-dimensional Si/SiO2 photonic crystals filter for
thermophotovoltaic applications, Renew Energy 2010;35:249-56.
https://doi.org/10.1016/j.renene.2009.06.013

30


https://doi.org/10.1016/j.apenergy.2015.08.064
https://doi.org/10.1016/j.joule.2020.06.021
https://doi.org/10.2514/1.B37623
https://www.nature.com/articles/nnano.2013.286
http://dx.doi.org/10.1016/j.energy.2016.04.048
https://doi.org/10.1016/j.energy.2023.126897
https://doi.org/10.1016/j.energy.2020.116962
https://doi.org/10.1002/er.1286
https://doi.org/10.1016/j.energy.2020.118503
https://doi.org/10.1115/1.4026455
https://doi.org/10.1016/j.renene.2009.06.013

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

LaPotin A, Schulte KL, Steiner MA, Buznitsky K, Kelsall CC, Friedman D]J, et al.
Thermophotovoltaic efficiency of 40%. Nature 2022;604(7905):287-91.
https://www.nature.com/articles/s41586-022-04473-y

Watjen JI, Liu XL, Zhao B, Zhang ZM. A computational simulation of using tungsten
gratings in near-field thermophotovoltaic devices. J Heat Transfer 2017;139(5):052704.
https://doi.org/10.1115/1.4035356

Feng D, Yee SK, Zhang ZM. Improved performance of a near-field thermophotovoltaic
device by a back gapped reflector. Sol Energy Mater Sol Cell 2021;237:111562.
https://doi.org/10.1016/j.s0lmat.2021.111562

Song J, Han J, Choi M, Lee BJ. Modeling and experiments of near-field
thermophotovoltaic conversion: A review. Sol Energy Mater Sol Cell 2022;238:
111556. https://doi.org/10.1016/j.s0lmat.2021.111556

Wang Z, Kortge D, He Z, Song J, Zhu J, Lee C, et al., Selective emitter materials and
designs for high temperature thermophotovoltaic applications. Sol Energy Mater Sol
Cell 2022;238:111554. https://doi.org/10.1016/j.solmat.2021.111554

Sakakibara R, Stelmakh V, Chan WR, Ghebrebrhan M, Joannopoulos JD, Soljaci¢ M, et
al. Practical emitters for thermophotovoltaics: a review. J Photon Energy
2019;9(3):032713. https://doi.org/10.1117/1.JPE.9.032713

Meng C, Liu Y, Xu Z, Wang H, Tang X. Selective emitter with core—shell nanosphere
structure for thermophotovoltaic systems. Energy 2022;239:121884.
https://doi.org/10.1016/j.energy.2021.121884

Dias MRS, Gong T, Duncan MA, Stuart C. Ness SC, McCormack SJ, et al. Photonics
roadmap for ultra-high-temperature thermophotovoltaics, Joule 2023;7: 2209-2227.
https://doi.org/10.1016/].joule.2023.08.015

Shi H, Yugami H. Thermophotovoltaic generation with selective radiators based on
tungsten surface gratings. Appl Phys Lett 2004;85(16):3399-3401.
https://doi.org/10.1063/1.1807031

Laroche M, Arnold C, Marquier F, Carminati R, Greffet J-J, Collin S, et al. Highly
directional radiation generated by a tungsten thermal source. Opt Lett
2005;30(19):2623-5. https://doi.org/10.1364/0L.30.002623

Narayanaswamy A, Chen G. Thermal emission control with one-dimensional
metallodielectric photonic crystals. Phys Rev B 2004;70(12):125101.
https://doi.org/10.1103/PhysRevB.70.125101

Wang LP, Zhang ZM. Wavelength-selective and diffuse emitter enhanced by magnetic
polaritons for thermophotovoltaics. Appl Phys Lett 2012;100 (6):063902.
https://doi.org/10.1063/1.3684874

31


https://www.nature.com/articles/s41586-022-04473-y
https://doi.org/10.1115/1.4035356
https://doi.org/10.1016/j.solmat.2021.111562
https://doi.org/10.1016/j.solmat.2021.111556
https://doi.org/10.1016/j.solmat.2021.111554
https://doi.org/10.1117/1.JPE.9.032713
https://doi.org/10.1016/j.energy.2021.121884
https://doi.org/10.1016/j.joule.2023.08.015
https://doi.org/10.1063/1.1807031
https://doi.org/10.1364/OL.30.002623
https://doi.org/10.1103/PhysRevB.70.125101
https://doi.org/10.1063/1.3684874

[24] Zhao B, Wang LP, Shuai Y, Zhang ZM. Thermophotovoltaic emitters based on a two-

dimensional grating/thin-film nanostructure. Int J] Heat Mass Transfer 2013;67:637—45.
https://doi.org/10.1016/].ijheatmasstransfer.2013.08.047

[25] Liu XJ, Zhao CY, Wang BX, Xu JM. Tailorable bandgap-dependent selective emitters
for thermophotovoltaic systems. Int J] Heat Mass Transfer 2023;200:123504.
https://doi.org/10.1016/].ijheatmasstransfer.2022.123504

[26] Palik ED, Handbook of Optical Constants of Solids II. San Diego: Academic Press;
1998.

[27] Chen Y-B, Zhang ZM. Design of tungsten complex gratings for thermophotovoltaic
radiators. Opt Commun 2007;269(2):411-7.
https://doi.org/10.1016/j.0ptcom.2006.08.040

[28] Watjen JI, Bright TJ, Zhang ZM, Muratore C, Voevodin AA. Spectral radiative
properties of tungsten thin films in the infrared. Int J] Heat Mass Transfer 2013;61:106-
13. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.063

[29] Lassner E, Schubert W-D. Tungsten—Properties, chemistry, technology of the
elements, alloys and chemical compounds. New York: Kluwer Academic; 1999.

[30] Ertiirk H, Daun K, Franca FHR, Hajimirza S, Howell JR. Inverse methods in thermal
radiation analysis and experiment. J Heat Transfer 2023;145:050801.
https://doi.org/10.1115/1.4056371

[31] Nguyen-Huu N, Chen Y-B, Lo, Y-L. Development of a polarization-insensitive
thermophotovoltaic emitter with a binary grating. Opt Express 2012;20(6):5882-90.
https://doi.org/10.1364/0OE.20.005882

[32] Kecebas MA, Sendur K. Broadband high-temperature thermal emitter/absorber designed
by the adjoint method. J Opt Soc Am B 2021;38(10):3189-98.
https://opg.optica.org/josab/abstract.cfm?uri=josab-38-10-3189

[33] Kudyshev ZA, Kildishev AV, Shalaev VM, Boltasseva A. Machine-learning-assisted
metasurface design for high-efficiency thermal emitter optimization. Appl Phys Rev
2020;7:021407. https://doi.org/10.1063/1.5134792

[34] Sullivan J, Mirhashemi A, Lee J. Deep learning-based inverse design of microstructured
materials for optical optimization and thermal radiation control. Sci Rep 2023;13:7382.
https://doi.org/10.1038/s41598-023-34332-3

[35] Yang J-Q, Xu YC, Fan K, Wu J, Zhang C, Zhan D-C. Normalizing flows for efficient
inverse design of thermophotovoltaic emitters. ACS Photon 2023;10:1001-11.
https://doi.org/10.1021/acsphotonics.2¢01803

32


https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.047
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123504
https://doi.org/10.1016/j.optcom.2006.08.040
https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.063
https://doi.org/10.1115/1.4056371
https://doi.org/10.1364/OE.20.005882
https://opg.optica.org/josab/abstract.cfm?uri=josab-38-10-3189
https://doi.org/10.1063/1.5134792
https://doi.org/10.1038/s41598-023-34332-3
https://doi.org/10.1021/acsphotonics.2c01803

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Afzal S, Ziapour BM, Shokri A, Shakibi H, Sobhani B. Building energy consumption
prediction using multilayer perceptron neural network-assisted models; comparison of
different optimization algorithms, Energy 2023;282:128446.
https://doi.org/10.1016/j.energy.2023.128446

Ye Y, Wang H, Xu B, Zhang J. An imitation learning-based energy management
strategy for electric vehicles considering battery aging, Energy 2023;283:128537.
https://doi.org/10.1016/j.energy.2023.128537

Toopshekan A, Abedian A, Azizi A, Ahmadi E, Vaziri Rad MA. Optimization of a CHP
system using a forecasting dispatch and teaching-learning-based optimization algorithm,
Energy 2023; 285:128671. https://doi.org/10.1016/j.energy.2023.128671

Shokooh-Saremi M, Magnusson R. Particle swarm optimization and its application to
the design of diffraction grating filters. Opt Lett 2007;32(8):894—-6.
https://doi.org/10.1364/0L.32.000894

Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Ozcan E, et al. Hyper-
heuristics: a survey of the state of the art. J Oper Res Soc 2013;64:1695-1724.
https://link.springer.com/article/10.1057/jors.2013.71

HuR, Song J, Liu Y, Xi W, Zhao Y, Yu X, et al., Machine learning-optimized Tamm
emitter for high-performance thermophotovoltaic system with detailed balance analysis.
Nano Energy 2020;72:104687. https://doi.org/10.1016/j.nanoen.2020.104687

Elaziz MA, Elsheikh AH, Oliva D, Abualigah L, Lu S, Ewees AA. Advanced
metaheuristic techniques for mechanical design problems: Review, Arch Computat
Methods Eng 2022;29:695-716. https://doi.org/10.1007/s11831-021-09589-4

Elsheikh AH, El-Said EMS, Elaziz MA, Fujii M, El-Tahan HR. Water distillation tower:
Experimental investigation, economic assessment, and performance prediction using
optimized machine-learning model, J. Cleaner Production 2023;388:135896.
https://doi.org/10.1016/].jclepro.2023.135896

Khajavi H, Rastgoo A. Improving the prediction of heating energy consumed at
residential buildings using a combination of support vector regression and meta-
heuristic algorithms, Energy 2023;272:127069.
https://doi.org/10.1016/j.energy.2023.127069

Hasanien HM, Alsaleh I, Tostado-Véliz M, Zhang M, Alateeq A, Francisco Jurado F, et
al. Hybrid particle swarm and sea horse optimization algorithm-based optimal reactive
power dispatch of power systems comprising electric vehicles, Energy
2024;286:129583. https://doi.org/10.1016/j.energy.2023.129583

Modest MF, Mazumder S. Radiative Heat Transfer. 4th ed. Amsterdam: Academic
Press/Elsevier; 2021.

Zhang ZM, Nano/Microscale Heat Transfer. 2nd ed. Cham: Springer; 2020.

33


https://doi.org/10.1016/j.energy.2023.128446
https://doi.org/10.1016/j.energy.2023.128537
https://doi.org/10.1016/j.energy.2023.128671
https://doi.org/10.1364/OL.32.000894
https://link.springer.com/article/10.1057/jors.2013.71
https://doi.org/10.1016/j.nanoen.2020.104687
https://doi.org/10.1007/s11831-021-09589-4
https://doi.org/10.1016/j.jclepro.2023.135896
https://doi.org/10.1016/j.energy.2023.127069
https://doi.org/10.1016/j.energy.2023.129583

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Moharam MG, Grann EB, Pommet DA, Gaylord TK. Formulation for stable and
efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt
Soc Am A 1995;12(5):1068-76. https://doi.org/10.1364/JOSAA.12.001068

Lee BJ, Chen Y-C, Zhang ZM. Transmission enhancement through nanoscale metallic
slit arrays from the visible to mid-infrared. J Comput Theor Nanosci 2008;5:201-13.
https://doi.org/10.1166/jctn.2008.2461

Zhao B, Zhang ZM. Study of magnetic polaritons in deep gratings for thermal emission
control. J Quant Spectrosc Radiat Transf 2014;135:81-9.
https://doi.org/10.1016/5.jgsrt.2013.11.016

Quinlan JR. Introduction of decision trees. Machine Learning 1986;1:81—-106.
https://doi.org/10.1007/BF00116251

Erickson N, Mueller J, Shirkov A, Zhang H, Larroy P, Li M, et al., AutoGluon-Tabular:
Robust and accurate AutoML for structured data. Preprint arXiv:2003.06505, 2020.
https://doi.org/10.48550/arXiv.2003.06505

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-
learn: Machine learning in Python. J] Machine Learning Res 2011;12:2825-30.
https://www.jmlr.org/papers/volumel2/pedregosal 1a/pedregosal 1a.pdf

Cover, T, Hart, P. Nearest neighbor pattern classification. IEEE Trans Inform Theory
1967;13(1):21-7. http://doi.org/10.1109/TIT.1967.1053964

Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal
approximators. Neural Networks 1989;2(5):359—-66. https://doi.org/10.1016/0893-
6080(89)90020-8

Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H. State-of-the-
art in artificial neural network applications: A survey. Heliyon 2018;4(11):e00938.
https://doi.org/10.1016/1.heliyon.2018.¢00938

Clark K, Luong M-T, Manning CD, Le QV. Semi-supervised sequence modeling with
cross-view training. Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, Brussels, Belgium, Oct 31 — Nov 4, 2018, pp. 1914-25.
https://aclanthology.org/D18-1217/

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An
imperative style, high-performance deep learning library. Advances in Neural
Information Processing Systems 32 (NeurIPS 2019), edited by H. Wallach et al. Preprint
arXiv:1912.01703, 2019. https://arxiv.org/pdf/1912.01703.pdf

Dietterich TG. Ensemble methods in machine learning. International Workshop on
Multiple Classifier Systems, Lecture Notes in Computer Science 1857, edited by J.

34


https://doi.org/10.1364/JOSAA.12.001068
https://doi.org/10.1166/jctn.2008.2461
https://doi.org/10.1016/j.jqsrt.2013.11.016
https://doi.org/10.1007/BF00116251
https://doi.org/10.48550/arXiv.2003.06505
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
http://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/j.heliyon.2018.e00938
https://aclanthology.org/D18-1217/
https://arxiv.org/pdf/1912.01703.pdf

[60]

[61]

[62]

[63]

[64]

Kittler and F. Roli, Springer, 2000, pp. 1-15.
https://link.springer.com/chapter/10.1007/3-540-45014-9 1

Cruz-Duarte JM, Amaya I, Ortiz-Bayliss JC, Conant-Pablos SE, Terashima-Marin H. A
primary study on hyper-heuristics to customise meta heuristics for continuous
optimization. 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK,
2020, pp. 1-8, doi: 10.1109/CEC48606.2020.9185591.

Cruz-Duarte JM, Amaya I, Ortiz-Bayliss JC, Terashima-Marin H, Shi Y.
CUSTOMHYyS: Customising optimisation metaheuristics via hyper-heuristic search.
SoftwareX 2020;12:100628. https://doi.org/10.1016/j.s0ftx.2020.100628

Nelson J. The Physics of Solar Cells. London: Imperial College Press; 2003.

Watanabe S, Hori T, Le Roux J, Hershey JR. Student-teacher network learning with
enhanced features. 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), New Orleans, LA, USA, 2017, pp. 5275-79,
10.1109/ICASSP.2017.7953163

Joseph VR., Optimal ratio for data splitting. Stat Anal Data Min 2022;15(4):531-8.
https://doi.org/10.1002/sam.11583

35


https://link.springer.com/chapter/10.1007/3-540-45014-9_1
https://ieeexplore.ieee.org/document/9185591
https://doi.org/10.1016/j.softx.2020.100628
https://ieeexplore.ieee.org/document/7953163
https://doi.org/10.1002/sam.11583

Table 1

Comparison of the four surrogate models in terms of the training time, prediction time, and
their RMSE on the test data set. All models are trained on a set of 16 million individual data points.
The RCWA prediction/computation time is listed for comparison.

Surrogate model Training time (s) Prediction Time (s) RMSE
RCWA N/A 0.12 0
Decision tree 110 4.15E-07 0.0319
k-NN 31800 5.06E-06 0.0575
FCNN 72000 2.10E-05 0.0045
hybrid-NN 54000 5.09E-04 0.0062
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Table 2

Grating parameters optimized for the TPV system with an emitter at 2000 K. The
performance of planar tungsten and the grating optimized based on the ideal emissivity function
are also included. These gratings are identified as A (ideal emissivity), B (optimal efficiency), and
C (optimal power). However, the geometric parameters for B and C are coincidently identical.

Optimization Period Depth  Filling ratio Efficiency = Maximum power
Objective (um) (um) (-) (%) (W/ecm?)
Ideal emissivity (A) 1.11 2.00 0.14 26.90 7.16
Optimal efficiency (B) 1.11 2.00 0.10 27.06 7.19
Optimal power (C) 1.11 2.00 0.10 27.06 7.19
Planar tungsten - - - 24.24 3.38
Table 3

Grating parameters optimized for the TPV system with an emitter at 1500 K. The efficiency
and maximum power with the planar tungsten and grating A are also listed. The grating with
optimized efficiency is identified as D and that with optimal power is identified as E.

Optimization Period Depth  Filling ratio Efficiency = Maximum power
Objective (um)  (um) (-) (%) (W/cm?)
Ideal emissivity (A) 1.11 2.00 0.14 21.60 1.21
Optimal efficiency (D)  0.87 0.30 0.85 22.10 1.07
Optimal power (E) 0.30 2.00 0.63 16.89 1.25
Planar tungsten - - - 19.11 0.51
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Figure 1. (a) Schematic of the thermophotovoltaic system composed of a binary 1D tungsten
grating paired with an InGaSb cell. (b) The spectra for the ideal emissivity function,
the normalized spectral intensities for blackbodies at 1500 K and 2000 K, and the
normal emissivity of a planar tungsten surface.
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Figure 2. Schematic of a 1D binary grating characterized by three parameters: the period (A),
the depth (d), and the width (w) or filling ratio (= w/A). The emissivity is obtained
from the calculated reflectance for given incident wavevector (k) whose direction is

defined by a zenith angle () and an azimuthal angle ().
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Figure 3. FCNN model architecture for RCWA surrogating. The three hidden layers use a
LReLU activation function, while the output neuron uses sigmoid.
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Figure 4. Hyper-heuristic framework for the creation of new or custom optimization
algorithms. The stimulated annealing optimization generates new algorithms and is
run 1000 times. The performance of the best grating is based on the 75th percentile of
the objective function from 100 optimization runs. Each run takes 10 iterations from a
random starting point. The data are then used to generate the algorithm’s minimum
expected performance 75% of the time. This information is then fed back into a
simulated annealing algorithm to help the subsequent generation of new algorithms.
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Figure 5. Comparison of the normal emissivity spectra between the surrogate model and
RCWA calculations for an example grating with A =1.5 um, f=0.33, and d =
1.0 um. (a) decision tree model with a depth of 25, (b) k-NN model with k = 10
with uniform weighting, (c) FCNN surrogate model with three hidden layers,
and (d) hybrid-NN model.
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Figure 7. Normal and hemispherical spectral emissivity of the optimized gratings whose
parameters are described in Tables 2 and 3. (a) Grating A optimized base on the
ideal emissivity spectrum; (b) Grating B or C optimized for TPV performance with
an emitter at 2000 K (c) Grating D optmized for TPV efficiency for an emitter at
1500 K; (d) Grating E optimized for TPV output power for an emitter at 1500 K.
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Figure 8. Calculated directional emissivity contour at A =2 um: (a,b,c,d) TE waves for gratings
A, B, D, and E, respectively; (e,f,g,h) TM waves for gratings A, B, D, and E,
respectively.
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Figure 9. Spectral emissivity contour for gratings A and B for ¢ = 0°. Note that v is the
wavenumber and k. = kosin@ is the x-component of the wavevector in vacuum.

(a) grating A for TE wave; (b) grating A for TM wave; (c) grating B for TE wave;
(d) grating B for TM wave.
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Figure 10. Spectral emissivity contour for gratings D and E for ¢ = 0°. Note that v is the
wavenumber and . = kosin&is the x-component of the wavevector in vacuum.
(a) grating D for TE wave; (b) grating D for TM wave; (c¢) grating E for TE wave;

(d) grating E for TM wave.
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