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Micro/nanostructures hold promise for use as emitters to boost the efficiency of 

thermophotovoltaic (TPV) systems. For example, periodic gratings may alter the spectrum of 

irradiation on the photovoltaic cell to better match the spectral response of the cell. Photons with 

energies slightly higher than the bandgap of the semiconductor are the most desired as they 

generate electron-hole pairs with minimal thermalization losses. This prompts the use of gratings 

as selective emitters, and the choice of grating geometry has been an active research topic. Even 

for a one-dimensional (1D) grating, millions of possible geometries exist, and each grating requires 

computationally intensive full-wave simulation, e.g., the rigorous coupled-wave analysis (RCWA), 

to calculate the spectral, directional emissivity. Since optimization algorithm performance is 

problem-dependent, in this work, a hyper-heuristic search enabled by a fully connected neural 

network surrogate of the native RCWA is employed to select an algorithm for a specific grating 

design problem. A comparison with existing untuned algorithms for an ideal emitter problem 

demonstrates that the hyper-heuristically generated algorithm yields superior performance. This 

algorithm is then employed for the optimization of the emitter for a full TPV system comprising a 

heated 1D tungsten binary grating paired with a 300 K InGaSb cell. The system is optimized for 

maximum power or efficiency at 2000 K and 1500 K, respectively, and the grating properties for 

the optimized cases are analyzed. 
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Nomenclature 

0c   speed of light in vacuum 

D   diffusion coefficent of minority carriers 

d grating depth  

e  elementary charge  

( )F s   loss/objective function 

f filling ratio 

h a simple heuristic 

phJ    photocurrent  

sJ    reverse saturation current 

j jth diffraction order 

k   wavevector 

0k  wavevector in vacuum 

Bk   Stefan-Boltzmann constant 

N  number of diffraction orders  

A,DN   acceptor, doner concetrations  

iN   intrinsic carrier concetrations  

"q   heat flux 

Pmax  output power (per unit area) at operating point 

r  Fresnel reflection coefficent  

r   random vector 

DR  rotation matrix  

s a set grating parameters representing a possible solution  

s*  best solution of a given population  

izs   random solution of the population 

T temperature  
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0 0, )(U r r − +  random uniform distribution function, centered around 0r  

OCV   open circuit voltage  

w    grating width  

 

Greek 

   permittivity 

   real part of    

   imaginary part of  

   (thermal) efficiency 

   zenith angle  

( , )T  mean energy of a Planck ocillator 

   wavelength (in vacuum) 

   grating period 

   wavenumber (1/) 

  exchange factor 

    radius of uniform distibution  

  lifetime for minority carriers 

  azmuthal angle  

   angular frequency  

 

Other 

  emissivity 

  reduced Planck constant  

S  parameter space 

 

Superscripts 

p,s p-polarization (TM wave), s-polarization (TE wave) 
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Subscripts 

1 or 2 medium 1 or 2 

e or h electrons or holes 

g bandgap 

 

 

Acronyms  

AAE       adversarial autoencoder  

CNN convolutional neural networks  

FCNN fully connected neural networks 

GA genetic algorithm  

k-NN k-nearest neighbors  

LC inductor capacitor 

MP magnetic polariton  

PSO particle swarm optimization  

PV photovoltaic 

RCWA rigorous coupled-wave analysis  

RMSE root-mean-squared error 

SPP surface plasmon polariton 

TE, TM transverse electric, transverse magnetic 

TPV thermophotovoltaic 
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1. Introduction 

Thermophotovoltaic (TPV) systems are solid-state optical heat engines with few or no 

moving parts that can transform essentially any heat source into electricity [1,2]. In traditional 

photovoltaics, the incident photons on a photovoltaic (PV) cell directly come from the sun. TPVs 

pair low-bandgap (0.1-0.8 eV) PV cells with heated emitters, typically at temperatures from 1300 

K to 2200 K using a variety of sources, such as radioactive isotopes [3], the sun [4,5], biomass in 

microscale energy systems [6], and industrial waste heat [7,8]. The performance of an emitter is 

generally determined by the ability to radiate photons at energies just above the bandgap of the PV 

cell, because photons with energies below the bandgap have little chance to create electron-hole 

pairs and those at energies much greater than the bandgap have large thermalization losses [8,9]. 

Several other technologies have been proposed to improve the performance of TPV systems. Back 

surface reflectors give photons a “second chance” at being absorbed by reflecting unused photons, 

thus increasing the system efficiency [10]. Similarly, spectral filters aim to reflect non-ideal 

photons and are typically located in between the heated body and the cell [7,8,11]. Recently, multi-

junction cells have been combined with back reflectors to achieve efficiencies of 40% [12]. Near-

field micro-TPV can take advantage of evanescent waves and photon tunneling effects to surpass 

the blackbody limit and improve the TPV performance [13-15]. All aforementioned techniques 

can be combined with selective emitters that radiate photons at desirable wavelengths for a 

particular cell.  

A plethora of materials and microstructures have been considered to optimize these metrics 

for different system implementations [16-18]. Dias et al. [19] provided an extensive review and 

outlined a photonic roadmap to achieve high-efficiency TPV systems. Tungsten has been identified 

as a suitable material for TPV emitters [20-25] due to its favorable bulk emissivity [26-28], good 
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chemical stability, and high melting temperature of around 3600 K [29]. These desirable properties 

of tungsten have been combined with different subwavelength features using diffraction gratings 

[13,21], metallodielectric multilayer films [22], microcavities [20], photonic crystals [17], and 

micro/nanostructured metasurfaces [23-25] to enhance the radiative properties. One-dimensional 

(1D) binary gratings serve as building blocks for more complex structures, and they are more 

feasible for manufacturing compared to other intricate designs. The design of these gratings 

exemplifies an inverse problem [30], where the desired spectral emissivity informs the geometric 

parameters. Maximizing or minimizing the performance function can be challenging due to the 

multimodal nature of the problem over a large search space defined by the grating period, width, 

and depth [31]. Parameter sweeping can be extremely computationally expensive or lead to 

information holes based on the resolution of the search [13].  

Machine learning has been extensively used to inversely design thermal emitters [32-35] 

and other energy-related applications [36-38]. These studies used trained neural networks as 

surrogates to simplify the complex calculations and then applied inverse solution algorithms to 

find the optimized materials, structures, and systems based on the desired performance functions. 

For example, Kecebas and Sendur [32] used the adjoint method to facilitate the gradient-based 

topological optimization. Kudyshev et al. [33] used adversarial autoencoders (AAEs) for rapid 

nanophotonics design and optimization. Sullivan et al. [34] developed an inverse neural network 

to invert the forward problem for the identification of the material and microstructure that would 

best match the specified optical response. Yang et al. [35] used a normalized flow method, also 

known as invertible neural networks, to optimize metasurface emitters for targeted TPV cells.  

While heuristic optimization methods, such as the genetic algorithm (GA) and particle 

swarm optimization (PSO), have been used in earlier studies of 1D binary grating design [31,39], 
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advanced metaheuristic optimization and hyper-heuristic search techniques [40] have received 

little attention in optical and photonic design. Heuristic methods find approximate solutions that 

are good enough for a given problem; the optimization algorithms are stochastic, and their 

performance may be highly problem dependent. According to the no free lunch (NFL) theorem, 

any given metaheuristic optimization algorithm has equivalent performance compared to any other 

algorithm averaged over all possible problems. Methods have been proposed to procedurally build 

and optimize algorithms for a specific problem or a set of similar problems; these are referred to 

as hyper-heuristics [40]. Hyper-heuristic techniques are similar to parameter tuning meta-

optimization techniques, except that a hyper-heuristic algorithm can combine components of 

several different algorithms into a more powerful one. In a recent study, Hu et al. [41] used a 

Monte Carlo tree search algorithm to optimize a multilayer emitter, considering the photocurrent 

generation and efficiency of the TPV system. In recent years, more and more studies have utilized 

metaheuristic optimization for mechanical design and energy system optimization [42-45]. 

This work applies machine learning techniques, especially deep neural networks, to the 

optimization of 1D binary grating design. The objective is to develop an optimization algorithm, 

i.e., customer optimizer, using a hyper-heuristic search and apply it to maximize the specific TPV 

efficiency or maximum output power. Deep learning is employed to significantly reduce the 

computation time requirement for full-wave numerical solutions without much loss of calculation 

accuracy. To choose the best surrogate method to replace the native rigorous coupled-wave 

analysis (RCWA) calculations, four data-driven models are compared: (1) decision tree, (2) k-

nearest neighbors (k-NN), (3) fully connected neural networks (FCNN), and (4) hybrid ensemble 

neural networks (hybrid-NN). A simple grating design problem, i.e., ideal emissivity optimization, 

that is solely based on the spectral normal emissivity function is considered. The hyper-heuristic 
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search is employed using the FCNN surrogate to identify a customer optimizer. Comparison is 

made with several untuned heuristic algorithms to demonstrate the advantage of this optimizer, 

which is then employed to optimize a TPV system comprising a 1D tungsten grating, heated at 

2000 K and 1500 K, that is paired with an InGaSb cell at 300 K. Furthermore, the driving physics 

behind the properties of the gratings designed for these cases is elucidated with emissivity contours. 

 

2. Methods 

2.1.  Ideal emissivity optimization  

 Consider a TPV system, as schematically shown in Fig. 1(a), that is composed of a binary 

tungsten grating and a ternary In0.18Ga0.82Sb cell, with a band gap of 0.56 eV [8,10]. A common 

method for designing such a grating is to choose an ideal emissivity spectrum and then optimize 

the grating geometry by minimizing the mean square difference between the grating emissivity at 

selected emission angles and the ideal emissivity spectrum [31]. The ideal emissivity function may 

be simplified as a step function with a value of one (or zero) at wavelengths shorter (or longer) 

than the wavelength corresponding to the bandgap, g , as depicted in Fig. 1(b), along with the 

normal emissivity of plain tungsten and the blackbody intensities at 2000 K and 1500 K 

(normalized to the corresponding peak value). Clearly, the InGaSb cell with g  around 2 m 

matches well with the blackbody emission spectra and the plain tungsten already has a favorable 

spectral selectivity. In this study, the dielectric function of tungsten is assumed to be independent 

of the temperature and the values at room temperature are taken from Ref. [26]. 

The emissivity of the grating is calculated by subtracting the reflectance from one, 

according to Kirchhoff’s law, since the grating structure is assumed to be opaque [46,47]. The 

reflectance as a function of incidence angle, wavelength, and polarization state may be calculated 
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by RCWA, as shown in Fig. 2, for specified grating parameters [48,49]. The plane of incidence is 

defined by the wavevector k and the z-axis. To obtain the desired optimizer using the hyper-

heuristic search method, only the normal emissivity of the gratings is considered in the spectral 

region for wavelength   from 0.6 m to 4.0 m, covering the main region of the blackbody 

distribution function. For normal incidence, the azimuthal angle  is set to zero so that the plane 

of incidence is the x-z plane. The bandgap wavelength of InGaSb is set to g  = 2.2 m in the 

present study. The spectral region is expanded in the TPV system optimization, considering the 

actual properties of the In0.18Ga0.82Sb cell, and the angular and polarization dependence. The 

objective function F is a modified mean square error that gives equal weighting to the emissivity 

values above and below the bandgap. The parameter space S  for the grating period , width w 

(determined by the filling ratio f = w/), and depth d are determined by considering common 

resonance features associated with the grating as done by Nguyen-Huu and Chen [31]. In general, 

metallic gratings support surface plasmon polaritons (SPPs), Wood’s anomaly, cavity modes, and 

magnetic polaritons (MPs) [47,49]. A brief discussion of these modes is given in the following 

section.  

Cavity resonances arise from the interference of the diffracted waves and the resonance 

wavelength for the 1D gratings maybe predicted by [20,47]: 

                                                ,
2 2

2

2

m p

m p

w d

 =

   
+   

 −   

      (1) 

where m = 0, 1, 2, 3… and p = 0, 1, 3, 5…, as long as they are not simultaneously zero. Cavity 

modes may be excited for both transverse electric (TE) and transverse magnetic (TM) waves. For 
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deep gratings with a high aspect ratio / ( )d w− , MPs may dominate cavity modes, giving a much 

longer resonance wavelength than 4d, predicted by Eq. (1) [50]. 

 Wood’s anomaly causes abrupt changes in the optical properties of the grating when a 

diffraction order just emerges or submerges the surface of the grating, creating a surface wave. 

The resonance wavelength may be predicted according to [49] 

    

2

22 sin cos cos 0
j jj j




 
 

− = 
 

+
 

   (2) 

where j signifies the jth diffraction order that satisfies the Bloch-Floquet condition given by [49] 

    , 0

2
sin cosx jk k j


 = +


     (3) 

where ,x jk  is the x-component of the wavevector for the jth diffraction order and 0 2 /k  =  is 

the wavevector in vacuum or air. For normal incidence ( = 0), Eq. (2) gives /j j =   (i.e.,  , 

 /2,  /3, …).  

 SPPs are electromagnetic waves that travel along the metal-dielectric interface. For SPPs 

to occur between the air-tungsten interface, ,x jk  must satisfy the following equation [27,47]:  

    , 0
1

x jk k



= 

+
      (4) 

where  is the dielectric function of tungsten. For large absolute  values, Wood’s anomaly and 

SPPs are hard to distinguish [27]. However, when  = 0, SPPs can only be excited by TM waves, 

while Wood’s anomaly may be excited by both TE and TM waves. For normal incidence, the 

longest wavelength for Wood’s anomaly to occur is  when j = 1. If all incidence angles are 

considered, the longest wavelength that Wood’s anomaly could occur is 2 with 90 =  , 0 =  , 

and j = −1. These criteria apply to SPPs conditions within reasonable approximation. The range of 
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the grating width and depth may be chosen based on cavity resonances. To boost the averaged 

emissivity for the two polarizations at wavelengths shorter than and close to g , following Ref. 

[31], the parameter space is chosen as follows: 

     

[0.3 μm, 2.0 μm]

( , , ) :  [0.1, 0.9]

[0.3 μm, 2.0 μm]

f d f

d




 
 

S     (5) 

While these parameters may be continuously tuned, a practical limitation of 10 nm resolution 

associated with available microfabrication techniques is considered. The grating period, width, and 

depth are digitalized or rounded to the nearest hundredth of a micrometer. If f is chosen with an 

increment of 0.01, then there are 81 points from 0.1 to 0.9. The total number of grating 

configurations is approximately 2.4 million.  

       

2.2.  RCWA surrogates with deep learning 

Due to the complex non-homogeneous nature of Maxwell’s equations in 1D binary gratings, 

several different computational methods have been utilized to handle computing the optical 

properties, e.g., finite difference time domain (FDTD) [32-34], RCWA [23,27,31], and effective 

medium theory (EMT) [47]. EMT cannot capture the effect of subwavelength features unless the 

geometric dimensions are much smaller than the wavelength [49]. While FDTD has advantages 

for modeling more complicated microstructures, it is much more computationally intensive than 

RCWA for 1D gratings [24]. RCWA allows for the calculation of spectral directional emissivity 

by taking advantage of the periodic nature of gratings, and the predicted result approaches the 

exact solution by increasing the number of diffraction orders used in the simulation [48,49]. The 

emissivity is calculated from the reflectance, which is summed up for all diffraction orders that are 

propagating waves, j = 0, 1, 2…. While only a few of them are propagating waves, to obtain 
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convergence of RCWA solutions, sufficient diffraction orders need to be employed in the 

calculation. In the present study, the number of diffraction orders (N) is set to 81, that is, the highest 

positive and negative diffraction orders are 40, which allows the computed emissivity to be 

accurate to the third decimal point. The RCWA calculations for 100 discrete wavelengths and both 

polarizations take approximately 24 s for normal incidence on a PC with an Intel Core i7-6700 3.4 

GHz CPU. 

Despite the relatively fast converging speed with the RCWA simulation, it is still too slow 

for use in the hyper-heuristic search. The time constraint of RCWA motivates the development of 

a surrogate model to approximate RCWA simulation. Therefore, the present work explores a data-

driven bottom-up approach to surrogate models that focuses on the input/output behavior of 

RCWA. The input data can be represented as a vector containing the period (Λ), width (w), depth 

(d), zenith angle (θ), azimuthal angle (), a polarization binary (TE), wavelength (λ), real part of 

dielectric function (  ), and the imaginary part of dielectric function (  ). The output data are the 

spectral directional emissivity (ϵ). Four different classes of surrogate models are explored, namely, 

decision tree, k-NN, FCNN, and hybrid-NN. These models are described in the following, 

considering their advantages and disadvantages, for use as RCWA surrogates for normal incidence 

(θ = 0 and  = 0) for the geometric parameter space S  given in Eq. (5).  

A decision tree is a supervised learning method based on a nonparametric hierarchical 

model for classification and regression [51].  Tree models often have several orders of magnitude 

faster training cycles than other regression models, as tabular data correspond better to the axis-

aligned splits seen in tree models [52]. Therefore, a decision tree model with a depth of 25 is 

adopted as a surrogate model and implemented using Scikit-learn in Python [53]. The input data 

for this study have relatively few independent dimensions (9 total), of which two collapse (θ,) as 
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their value is constant for normal incidence. Another widely used regression model is based on the 

nearest neighbors, k-NN, which is suitable to the present work as the Euclidean distance between 

the geometric input data provides useful information [54]. A 10-nearest-neighbor regression model 

is trained using Scikit-learn [53], giving uniform weighting to each neighbor selected. Scikit-learn 

is a tool kit in machine learning written in Python and it allows for easy tuning of the model hyper-

parameters. 

Neural networks can emulate any function to an arbitrary accuracy given enough training 

data [55]. The current trend in machine learning is the extensive utilization of recurrent neural 

networks (RNNs) and convolutional neural networks (CNNs). RNN and CNN models have the 

outputs of neurons and cycle back to feed into the inputs. The main difference is that RNNs have 

infinite impulse response while CNNs have a finite response. RNN and closely related long short-

term memory (LSTM) models are commonly used for physics simulation surrogates [56,57], as 

these models typically predict the future states of a system. These models are not applicable to 

RCWA surrogate generation, as the input data are non-sequential and lack locality that can be 

exploited by convolutions. Therefore, a deep learning model consisting of an FCNN with three 

hidden layers of sizes 512, 1024, and 1024 is trained over 200 epochs. A diagram of FCNN model 

architecture is shown in Fig. 3. The three hidden layers use a LReLU activation function, while 

the output neuron uses sigmoid. This model is explicitly implemented in PyTorch using a Leaky 

Rectified Linear Unit (LReLU) activation function and sigmoid neuron as the output [58]. 

The fourth model used here is a 5-layer stacked ensemble model that is composed of 

decision trees, k-NNs, and FCNNs. Ensemble models combine the predictions of multiple 

individual models to make more accurate predictions than any single model could achieve alone. 

This is because different models may have different strengths and weaknesses, and a wider range 
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of patterns and relationships in the data can be captured by combining them. This hybrid model is 

implemented through AutoGluon utilizing bagging, stacking, and boosting to further increase the 

model performance [52,59]. 

 

2.3. Generation of new optimization algorithms   

Metaheuristics, within the realm of optimization algorithms, are high-level strategies that 

iteratively explore and improve solutions by intelligently navigating complex solution spaces 

[42,44]. Unlike exact algorithms that guarantee optimality, metaheuristics do not provide such 

guarantees but aim to find near-optimal solutions efficiently. Metaheuristic algorithms can be 

broken down into a sequence of “building blocks”, called simple heuristics. An algorithm’s 

performance is dependent on the particular application or set of problems. Therefore, a new 

purpose-built algorithm can be created by re-arranging these “building blocks” or simple 

heuristics. Hyper-heuristic methods are techniques to procedurally build and optimize the simple 

heuristics composing a metaheuristic optimization algorithm [60,61]. The building blocks can be 

swapped out and rearranged to generate new algorithms. These simple heuristics take in a 

population of solutions and output a new population of solutions. The hyper-heuristic search 

essentially optimizes different simple heuristics to create a new metaheuristic optimization 

algorithm. Then the performance of this algorithm is evaluated, and the information of this 

performance is used in the generation of subsequent algorithms.  

In the present study, a hyper-heuristic search is applied to develop an algorithm that excels 

at designing a binary periodic grating that closely matches an ideal emissivity spectrum. Here, the 

objective function is a weighted mean square difference between the spectral normal emissivity 

and the ideal emissivity defined in Sec. 2.1 over 100 equally spaced wavelengths averaged for TE 
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and TM polarization. The hyper-heuristic search technique is illustrated in Fig. 4 through a block 

diagram and implemented with CUSTOMHyS [61]. An algorithm cardinality of two is chosen to 

limit possible algorithms to being composed of 2 simple heuristics. To begin, two randomly chosen 

simple heuristics, 
(0) (0)
1 2 and h h , are chosen from the simple heuristic algorithm library [61]. These 

simple heuristics make up the first metaheuristic algorithm. The performance of this algorithm is 

evaluated and then the simulated annealing optimization is used to generate new heuristics, which 

is then evaluated and annealed for 1000 times until a total of 1001 metaheuristics are generated, 

i.e., 
(1000) (1000)
1 2 and h h , each having its own performance indicator. The heuristic algorithm with 

the best performance value is chosen as the output customized optimizer composed of 1 2 and h h  

for later use to optimize a similar problem of designing gratings for optimal efficiency or maximum 

power of the TPV systems to be discussed in Sec. 3. The specifics of this procedure are explained 

in the following steps: 

1. Initialize the procedure and generate a metaheuristic algorithm composed of two simple 

heuristics, 
( )
1

m
h , 

( )
2
m

h . Here, m is an index from 0 to 1000, representing the step in 

hyper heuristic procedure. 

2. Evaluate performance of algorithm 

a. Use algorithm to optimize a grating to minimize the objective function 

i. Initialize a population of eight (8) solutions, each solution is represented 

by prescribed grating parameters (, f, d) that are randomly picked from 

the parameter space given in Eq. (5). 

ii. Apply the given heuristic 
( )
1

m
h  to the population to get a new 

population; then, apply 
( )
2
m

h  to the new population to get another one.  
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iii. Repeat Step 2.a.ii for 10 times, and then output the best solution from 

the 10 populations (i.e., 80 solutions) based on the objective function 

(the smaller the better). 

b. Run the optimization algorithm (Step 2.a), 100 times to collect a set of 100 

optimal gratings. For each metaheuristic algorithm specified by 
( )
1

m
h  and 

( )
2
m

h

, it takes 8210100 = 16,000 calculations of the emissivity spectra for both 

polarizations in order to obtain a set of 100 optimal gratings with their 

associated objective functions.   

c. Take the 75th percentile of the objective function values from the set of 

optimized gratings obtained in step 2.b. This sampling represents the minimum 

expected performance for 75% of optimization runs. In other words, 25 out of 

the 100 data have a higher objective function value, (i.e., 25% of the gratings 

are worse). Use this 75th percentile value as the performance indicator (the 

smaller the better) of the particular metaheuristic algorithm defined by 
( )
1

m
h  

and 
( )
2
m

h . 

3. Use the algorithms performance and simulated annealing optimization to generate a 

new metaheuristic algorithm.  

4. Repeat steps 2 and 3, until 1000 metaheuristic algorithms are generated. 

5. Output the best metaheuristic algorithm from the set of 1000 algorithms.  

The total process requires approximately 16 million grating spectra for each polarization. The 

grating emissivity calculations use the FCNN model, which is orders of magnitude faster than the 

native RCWA simulation. It would not be feasible to do the hyper-heuristic search without the 

deep learning surrogate. 
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3. Thermophotovoltaic modeling 

While it is instructive to use an ideal emissivity spectrum to optimize the grating, the result 

may not be the best choice for actual system performance. Hence it is imperative to directly 

optimize the TPV system using the performance parameters (i.e., the efficiency and maximum 

output power), even though such optimization will significantly increase the complexity and 

computational demand. As shown in Fig. 1(a), the system is modeled as two semi-infinite plates 

separated by a distance much longer than the wavelength such that the thermal radiation between 

them is in the far-field regime, meaning no evanescent waves contribute to the heat flux between 

the two surfaces. The net flux from the emitter to the cell is then calculated by integrating over all 

frequencies as follows [47]: 

2
2 13 20 0

0

1
( ) [ ( , )] ( , )] ( )

8
q d T T d

c
q        



 
  = =  −    (6) 

where ω is the angular frequency, q  is the spectral heat flux, c0 is the speed of light in vacuum, 

B

( , )
exp( / ) 1 2

T
k T

 



 = +

−
 is the mean energy of Planck’s oscillator at temperature T (with 

Bk  and  being the Boltzmann constant and reduced Planck’s constant), and subscripts 1 and 2 

denote the emitter and the cell, respectively. In Eq. (6), ( )   is an exchange factor that takes into 

consideration of the emissivity of both bodies by a hemispherical integration considering 

individual polarization states [47], 

/2 /2

0 0
,1 ,2 ,1 ,2

1 1
( ) 4 cos sin

1/ 1/ 1 1/ 1/ 1
s s p p

d d
 

   

     
 
 = +
 + − + − 

    (7) 
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Here, ϵ is the spectral directional emissivity, and superscript s and p signify TE and TM waves, 

respectively. Due to symmetry, the integration over the azimuthal angle is taken to be 4 times the 

value integrated from 0 to /2. 

Integrating over all possible frequencies is not feasible, and therefore a characteristic subset 

is used. Here, the cutoff wavelengths are set to 0.4 µm and 10 µm, and 200 logarithmically spaced 

frequencies are used with trapezoidal numerical integration. Similarly, the zenith and azimuthal 

angle values are calculated every 5 for their trapezoidal numerical integration.  

A scenario occurs when the polarization of the incident wavevector is not perpendicular to 

the gratings (i.e., the azimuthal angle  ≠ 0 or π), as illustrated in Fig. 2 where the plane of incidence 

is not parallel to the x-z plane. In this case, the majority of the diffracted beams (j ≠ 0) do not lie 

in the plane of incidence; instead, they form a cone centered around the grating grooves [49]. When 

the azimuthal angle  = 0, RCWA calculations require 4N, where N is the number of diffraction 

orders, unknowns to be solved for [48]. These unknowns are the coefficients of exponential terms 

that represent the forward and backward coupled diffracted waves in the grating region. The 

conical diffraction case is more computationally intense and has 10N unknowns to be solved [49]. 

No surrogate is used for the TPV performance evaluation. The use of a custom optimizer can 

significantly reduce the number of iterations needed in the inverse problem to optimize the 

objective function, i.e., the efficiency or maximum power of the TPV system as described in the 

following. 

The spectral directional emissivity of the PV cell, In0.18Ga0.82Sb, is calculated from the 

reflectance, which is the square of the modulus of the Fresnel reflection coefficients calculated by 

[46,47], 
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where n1 is the refractive index of the incident medium ( 1 1n =  for air or vacuum), n2 is the 

complex refractive index of the PV cell, and 1   and 2  are the incidence and refraction angles, 

respectively. To simplify the calculation, it is assumed that the dielectric function of the PV cell 

is independent of the doping as done in the previous studies [10,13]. 

   Once the radiative flux on the cell is determined, the photocurrent from photons is 

calculated from [14] 

g
ph ( )

e
J q d

 



=      (9) 

where e is the element charge, and ωg is the frequency associated with the bandgap of the cell. It 

is assumed that the internal quantum efficiency is 100%, i.e., each absorbed photon above the 

bandgap generates exactly one electron-hole pair. Furthermore, non-radiative recombination losses 

are not considered. These assumptions provide an upper limit of the TPV performance and the 

inclusion of nonidealities should not significantly affect the emitter design. Such a detailed balance 

approach has been used previously [13,41]. The reverse saturation current may be calculated based 

on the diffusion process as [62] 

2 2
ei i h

s
A e D h

DN N D
J e

N N 

 
 +  

 
    (10) 

where 
13 3

i 2 10  cmN −=  , 
19 3

A 1 10  cmN −=  , and 
19 3

D 1 10  cmN −=   are the intrinsic, acceptor, 

and donor concentrations, respectively; 
2 1

e 125 cm sD −=  and 
2 1

h 31.3 cm sD −=  are the 

diffusion coefficients for electrons and holes, and e 9.75 ns =  and h 30.8 ns =  are the lifetime 

of electrons and holes, respectively.  
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 The open-circuit may be determined from the dark current curve, yielding [62] 

B
oc ph sln( / 1)

k T
V J J

e
= +      (11) 

The output power depends on the operating voltage, and the maximum power generated at the ideal 

voltage is given by [62] 

ph oax cm

1 ln( )
1 1

y
P J V

y y

   
= − −   

   
    (12) 

where ph sln( / )y J J= . The efficiency of the TPV system is the ratio of the maximum power to 

the net heat flux [10,14]: 

maxP

q
 =


      (13) 

 The tungsten grating is optimized using the custom-optimization algorithm generated by 

the hyper-heuristic search discussed in the previous section for maximum power and separately 

for efficiency at two operating temperatures, 2000 K and 1500 K.  

 

4. Results and discussion 

4.1. Comparison of RCWA surrogate models 

 

Each surrogate model is allotted about one day of computational time for training. The 

decision tree and k-NN models can be completed. The FCNN converges to a point, where accuracy 

improvements were no longer being obtained with subsequent training epochs. The hybrid-NN 

model does not reach a converging point. The Autogluon implementation allows for training time 

budgets to be set; this is a great feature for machine learning. However, if a new model feature is 

estimated to take more time than what is left in the budget, the training will prematurely stop before 

expending the entire computational budget. The hybrid-NN model would continue to get accuracy 
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improvements if more training time was allotted. The main downside of these hybrid models is the 

long training and/or prediction time. The longer prediction time associated with these hybrid 

models can be overcome with teacher-student deep leaning methods [63]. That is, the output of 

the complex hybrid model is used to train a simpler model like FCNN. This often drastically 

improves prediction time while slightly decreasing accuracy. Teacher-student methods further 

increase training time, reiterating the fact that hybrid neural net models are viable when large 

training computational resources are present.  

A commonly used training-to-test split ratio is 80:20. However, other splitting ratios such 

as 70:30, 60:40; and even 50:50 have also been used in the literature [64]. In the present study, the 

splitting ratio of 2:1 is used to ensure the fidelity of the surrogates. The training uses a tabular data 

set composed of 16 million individual RCWA calculations (or 80,000 RCWA spectra for each 

polarization). Each of the RCWA surrogates is tested on a data set of 8 million RCWA calculations. 

The combined training and testing use about 5% of the total parameter space defined in Eq. (5). 

Using the deep learning enabled surrogate models are much faster than the brutal force 

optimization if the whole grating parameter space is considered. 

Table 1 presents the training time, prediction time for each calculation, and accuracy for 

the surrogate models explored in this study. For RCWA, the prediction time is the average time 

needed to compute the emissivity for a single wavelength at a given polarization. The accuracy is 

based on the root-mean-squared error (RMSE) for 200 data as compared with the native RCWA 

calculations. Each of the models varies quite significantly in their training (or generation) time. 

The decision tree results in the quickest training of just 110 s and a prediction time of 4.15E-07 s. 

On the other end, it takes 20 hours for the FCNN model to be trained, while the prediction time of 

the hybrid-NN is 5.09E-04 s, which is the longest among these surrogate models. Generally, the 
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trend of increases in model complexity translates to longer training times and slower prediction 

speed. However, the most complex model of the hybrid-NN has a slightly shorter training time but 

a higher RMSE than the hybrid-NN model. The FCNN model is the most accurate with an RMSE 

of 0.0045.  

To illustrate the accuracy of the surrogate model, Fig. 5 compares the emissivity spectra 

predicted by the surrogate models with that of RCWA calculations for an example emitter with Λ 

= 1.5 μm, w = 0.5 μm, and d = 1.0 μm. The common stair step behavior often associated with 

decision trees and k-NN is seen in Figs. 5(a,b). The neural network methods generally produce 

smoother curves as shown in Figs. 5(c,d). As expected, the differences are the largest near the 

narrow peaks and resonances. While the FCNN model closely agrees with the RCWA calculations, 

the hybrid-NN model exhibits some deviations. Therefore, the FCNN surrogate model is used for 

hyper-heuristic custom optimizer generation as discussed in the subsequent section. 

 

4.2. Generated custom algorithm  

 

Using the hyper-heuristic search described in Sec. 2.3, the resulting custom optimized 

algorithm for the grating problem is obtained that is composed of two simple heuristics h1 and h2. 

These algorithms are described in the following [60]. 

   * *
1 ) ( )( )( Dh s s r s s= −  −R      (14) 

This heuristic takes in a set of solutions, s = (, f, d)8, called a population, and manipulates them 

with a spiral dynamic heuristic. In Eq. (14), ( 22.5 )o

D =R  is the rotation matrix determined by 

the product of all the combinations of two-dimensional rotation matrices by utilizing the Euler-

Rodrigues rotation formula, *s  is the best solution of the population, and r  is a uniformly 

distributed random vector. The elements, ir , of r  are given by [60] 
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     0 0, )~ (i U rr r r = − +      (15) 

where U represent a uniformly chosen random number in a given range, this range is centered 

around 0 0.9r =   with size 0.1 = . The heuristic h1 is followed by a differential mutation simple 

heuristic [60,61], 
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where F = 1 is the “strength” of the mutation, M = 1 is the number of mutations, and 𝑧𝑖 (i = 1, 2) 

represents a random solution from the population of solutions. This heuristic essentially randomly 

mutates a random solution toward the best solution. Detailed discussion of the heuristics can be 

found from Cruz et al. [60,61]. 

Again, the heuristics are paired with a uniform random initializer to generate the first 

population of solutions. Due to the nature of the cost function evaluating the utility of the 

algorithms, the combination of these heuristics balances exploitation and exploration. This custom 

optimization algorithm should outperform most unoptimized algorithms. To verify this, this 

algorithm is compared to several untuned search algorithms with a random set of parameters: (1) 

the random search, (2) differential evolution, (3) PSO, (4) single crossover GA, and (5) firefly 

optimization algorithms for the optimization of an emitter according to the ideal emissivity 

function described previously. All of which have their simple heuristic explicitly defined by Cruz 

et al. [60].  The same algorithm objective function used in the hyper-heuristic search was used for 

this comparison. Figure 6 shows the 75th percentile of the optimization runs performed with each 

algorithm and shows the custom algorithm has a much better performance than the other 

algorithms. The custom algorithm exhibits extreme consistency as there is a much lower 

interquartile range at almost all algorithm iterations than the other algorithms. As discussed before, 
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each of the comparison algorithms can have their defining parameters tuned to improve their 

performance. The hyper-heuristic optimization essentially has already tried different parameters 

of each algorithm to generate the custom optimizer. Even if each of the comparison algorithms are 

meta-optimized to have their parameters tuned, the custom algorithm should still outperform the 

rest albeit the advantage may be less dramatic. 

  

4.3. Optimized gratings and TPV performance   

 

The emitter temperature of 2000 K is studied first. The figures of merit of a TPV system 

are the maximum power and the conversion efficiency, defined in Eq. (12) or Eq. (13), respectively. 

However, due to the change of spectral distribution, an optimal output power does not necessarily 

correspond to an optimal efficiency. Hence, the customer optimizer is used to optimize the TPV 

performance based on either the efficiency or the maximum power. The RCWA simulation 

considering conical cases is used for these calculations. Using the generated custom algorithm, the 

number of iterations needed is approximately 50 for a population of eight, making it feasible to 

use the native RCWA calculations. While it is possible to use a surrogate model for the RCWA 

for various incidence angles, the training would take a longer time than directly optimizing the 

system. The optimized grating geometries and their associated TPV efficiency and maximum 

power are listed in Table 2. The results for a planar tungsten emitter and the grating A optimized 

according to the ideal emissivity spectrum are also shown for comparison. The grating geometrics 

are identical for both optimal efficiency (grating B) and optimal output power (grating C), in the 

case with an emitter temperature of 2000 K. Note that grating A already has a fairly good 

performance compared with a planar tungsten emitter. The maximum power is more than doubled, 

though the absolute value of the efficiency is increased by 2.66% only. This is because the choice 
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of the ideal emitter spectrum is to match with the bandgap of the cell. Grating B differs from 

grating A only by a smaller filling ratio (or width). When the whole system is optimized, the 

performance further improves, resulting in an efficiency of 27.06% with an output power density 

of 7.19 W/cm2. 

When the emitter temperature is 1500 K, the geometric parameters of grating D for optimal 

efficiency are very different from those of grating E for optimal output power, as shown in Table 

3. In this case, the overall efficiency and output power are lower than for a 2000 K emitter. 

Nevertheless, the enhancement over planar tungsten emitter is still significant. Furthermore, 

gratings D and E have quite different parameters than grating A. However, grating A seems to 

perform between gratings D and E in terms of either efficiency or maximum power. It is interesting 

to look at the emissivity spectra considering different polarizations to understand what features are 

the most important for TPV performance. 

The spectral emissivity is plotted in Fig. 7 for the four gratings. Except in a few spectral 

regions, the hemispherical emissivity generally falls between the values of the TE and TM waves 

at normal incidence.  Gratings A and B have similar emissivity with a slight shift of the peaks for 

TE waves. Cavity resonance with 2 (1 )f =  −  results in a peak for TE wave at 1.9 m for grating 

A and 2.0 m for grating B. Towards shorter wavelengths, TM waves exhibit a higher emissivity 

due to SPPs. Both gratings yield a low emissivity at wavelengths longer than 2.2 m and thus 

enhance the TPV efficiency. 

However, gratings C and D behave very differently. For grating D, the broader peak near 

2 m for TM waves is due to MPs that can be predicted using the LC circuit model but cannot be 

explained by the cavity mode of 4d =  [50]. Due to the small emissivity for TE waves with 

grating D, the output power is lower than those of gratings A and E. For grating E, there is a MP 
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mode in the infrared near 11 m (not shown). The MPs may couple with the cavity modes to give 

multiple oscillations including those at 3.3 m, 2.15 m, and 1.55 m. Hence, even though the 

output power is optimized, the efficiency is lower than those with gratings A and D and even lower 

than that of planar tungsten emitter. Since the heuristic optimization is based on the objective 

function only, the outcome may be partially or completely unexpected. To shed light on the 

directional emissivity and resonance modes, the emissivity contours are plotted and discussed in 

the next section. 

 

4.4. Emissivity contours    

The directional emissivity of the four gratings at λ = 2 μm are shown in polar contour plots 

for both TE and TM waves in Fig. 8. Grating A and B are similar while grating B has a higher 

emissivity since the selected wavelength is closer to its resonance peak. Cavity resonances form 

standing waves and result in several zones with high emissivity values, especially for TE waves 

as shown in Fig. 8(b). It should be mentioned that due to conical diffraction, the effects of TE and 

TM waves are somehow mixed when   0 [49]. Hence, it is difficult to associate them with any 

particular resonances. This is especially true for gratings D as shown in Fig. 8(c,g) and grating E 

as shown in Fig. 8(d,h), where high emissivity occurs for both TE and TM waves in different 

regions. It should be noted that the reflectance of the cell increases toward higher zenith angles 

according to the Fresnel formulas given in Eq. (8). Therefore, the emitted photons at  > 60 have 

a much lower probability to be absorbed.   

Typically, resonances can be analyzed via dispersion relations for  = 0. Figure 9 plots 

the emissivity contours for gratings A and B in terms of the wavenumber  and the parallel 

wavevector xk  for both TE and TM waves. The horizontal bright stripes near  = 5000 cm−1 
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( 2.0 μm = ) for TE waves are due to cavity modes as mentioned previously. Higher order 

resonances can also be seen. The Wood’s anomaly can barely be seen only for TE waves as a 

diamond in Fig. 9(a,c). The corners of the diamond are located at (4500,4200), (0,9000), 

(4500,13000), and (9000,9000), which is extrapolated. For TM waves, there are multiple cavity 

resonances at large wavenumbers (or short wavelengths) that are consistent with the high 

emissivity spectral region shown in Fig. 7. 

As shown in Fig. 10(a,c), gratings D and E are essentially featureless for TE wave, except 

that the values are higher at  > 7000 cm−1 and much lower at  < 6000 cm−1. For TM waves, the 

MP resonance at  near 5000 cm−1 results in a horizontal band seen in Fig. 10(b). At high 

wavenumbers, the bright line from (5750,6000) to (0,11400) is due to SPPs. This can also be seen 

in Fig. 7(c) by the spike near 1.5 m. As shown in Fig. 10(d), there are several horizontal bands 

for grating E due to MPs and cavity resonances. On the other hand, due to the small grating period, 

SPPs cannot be excited in the considered spectral region. While the resonance features can be 

understood. In general, the algorithm’s solutions can neither be designed intuitively nor based on 

fundamental mechanisms.  

 

5. Conclusions 

This study demonstrates that hyper-heuristic techniques allow the creation of effective 

optimization algorithms for the design of microscale TPV emitters. The new algorithm generation 

is facilitated by FCNN serving as RCWA surrogates for calculation of the normal emissivity of 

1D tungsten gratings. The custom optimizer is then used in the full system evaluation to further 

optimize the grating parameters for specific TPV parameters and performance metrics, considering 

the spectral and directional emissivity of the gratings and TPV cells. The grating behavior can be 
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explained according to the resonance phenomena associated with cavity resonance, Wood’s 

anomaly, SPPs, and MPs. Nevertheless, it is hard to draw any conclusions in terms of how to 

optimize the gratings simply based solely on these resonance mechanisms. Fortunately, the 

heuristic optimization is merely based on the objective function to identify the best solution.   

A major takeaway from this study is that it demonstrates a pathway towards fast and 

reliable optimization of a complex system using a custom algorithm, which is developed from a 

hyper-heuristic search on a much simpler yet similar problem. Furthermore, the hyper-heuristic 

search is enabled by deep learning surrogates with only a subset of the input data obtained from 

rigorous calculations. This custom optimizer obtained from this work is recommended for emitter 

design of future TPV systems based on binary gratings with various emitter and cell materials. The 

procedure outlined here may also be adopted for optimizing other microscale energy conversion 

devices and systems based on advanced heuristic algorithms. 

Future studies include modeling and optimization of gratings based on metals other than 

tungsten, TPV cells with different semiconductors and bandgaps, as well as two-dimensional 

gratings and other nanostructures for selective emitter designs.  
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Table 1 

Comparison of the four surrogate models in terms of the training time, prediction time, and 

their RMSE on the test data set. All models are trained on a set of 16 million individual data points. 

The RCWA prediction/computation time is listed for comparison. 

 

 

 

Surrogate model Training time (s) Prediction Time (s) RMSE 

RCWA N/A 0.12 0 

Decision tree 110 4.15E−07  0.0319 

k-NN 31800 5.06E−06 0.0575 

FCNN 72000 2.10E−05 0.0045 

hybrid-NN 54000 5.09E−04 0.0062 
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Table 2 

Grating parameters optimized for the TPV system with an emitter at 2000 K. The 

performance of planar tungsten and the grating optimized based on the ideal emissivity function 

are also included. These gratings are identified as A (ideal emissivity), B (optimal efficiency), and 

C (optimal power). However, the geometric parameters for B and C are coincidently identical.  

 

 

Optimization  

Objective 

Period       

(m) 

Depth              

(m) 

Filling ratio  

(-) 

Efficiency     

(%) 

Maximum power  

(W/cm2) 

Ideal emissivity (A) 1.11 2.00 0.14 26.90  7.16 

Optimal efficiency (B) 1.11 2.00 0.10 27.06 7.19 

Optimal power (C) 1.11 2.00 0.10 27.06 7.19 

Planar tungsten - - - 24.24 3.38 

 

 

 

 

 

 

Table 3 

Grating parameters optimized for the TPV system with an emitter at 1500 K. The efficiency 

and maximum power with the planar tungsten and grating A are also listed. The grating with 

optimized efficiency is identified as D and that with optimal power is identified as E. 

 

 

Optimization  

Objective 

Period       

(m) 

Depth              

(m) 

Filling ratio  

(-) 

Efficiency     

(%) 

Maximum power  

(W/cm2) 

Ideal emissivity (A) 1.11 2.00 0.14 21.60  1.21 

Optimal efficiency (D) 0.87 0.30 0.85 22.10 1.07 

Optimal power (E) 0.30 2.00 0.63 16.89 1.25 

Planar tungsten - - - 19.11 0.51 
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Figure 1.  (a) Schematic of the thermophotovoltaic system composed of a binary 1D tungsten 

grating paired with an InGaSb cell. (b) The spectra for the ideal emissivity function, 

the normalized spectral intensities for blackbodies at 1500 K and 2000 K, and the 

normal emissivity of a planar tungsten surface. 
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Figure 2. Schematic of a 1D binary grating characterized by three parameters: the period (Λ), 

the depth (d), and the width (w) or filling ratio (f = w/Λ). The emissivity is obtained 

from the calculated reflectance for given incident wavevector (k) whose direction is 

defined by a zenith angle () and an azimuthal angle (). 
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Figure 3. FCNN model architecture for RCWA surrogating. The three hidden layers use a 

LReLU activation function, while the output neuron uses sigmoid. 
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Figure 4.  Hyper-heuristic framework for the creation of new or custom optimization 

algorithms. The stimulated annealing optimization generates new algorithms and is 

run 1000 times. The performance of the best grating is based on the 75th percentile of 

the objective function from 100 optimization runs. Each run takes 10 iterations from a 

random starting point. The data are then used to generate the algorithm’s minimum 

expected performance 75% of the time. This information is then fed back into a 

simulated annealing algorithm to help the subsequent generation of new algorithms. 
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Figure 5.  Comparison of the normal emissivity spectra between the surrogate model and 

RCWA calculations for an example grating with Λ = 1.5 m, f = 0.33, and d = 

1.0 m. (a) decision tree model with a depth of 25, (b) k-NN model with k = 10 

with uniform weighting, (c) FCNN surrogate model with three hidden layers, 

and (d) hybrid-NN model. 
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Figure 6. Comparison of the newly generated custom algorithm using the hyper-heuristic 

search to common optimization algorithms. Each iteration represents a population of 

eight solutions. 
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Figure 7.  Normal and hemispherical spectral emissivity of the optimized gratings whose 

parameters are described in Tables 2 and 3. (a) Grating A optimized base on the 

ideal emissivity spectrum; (b) Grating B or C optimized for TPV performance with 

an emitter at 2000 K; (c) Grating D optmized for TPV efficiency for an emitter at 

1500 K; (d) Grating E optimized for TPV output power for an emitter at 1500 K.   
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Figure 8. Calculated directional emissivity contour at λ = 2 μm: (a,b,c,d) TE waves for gratings 

A, B, D, and E, respectively; (e,f,g,h) TM waves for gratings A, B, D, and E, 

respectively. 
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Figure 9.  Spectral emissivity contour for gratings A and B for  = 0. Note that   is the 

wavenumber and kx = k0sin is the x-component of the wavevector in vacuum.         

(a) grating A for TE wave; (b) grating A for TM wave; (c) grating B for TE wave;    

(d) grating B for TM wave. 
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Figure 10.  Spectral emissivity contour for gratings D and E for  = 0. Note that   is the 

wavenumber and kx = k0sin is the x-component of the wavevector in vacuum.         

(a) grating D for TE wave; (b) grating D for TM wave; (c) grating E for TE wave;    

(d) grating E for TM wave. 

 

 

  


