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Mueller matrices relate the Stokes parameters of the incident and emerging light, providing 

useful information about the radiative properties and other characteristics of the medium. 

Determining all elements of the 4×4 Mueller matrix requires complete polarimetry, which is often 

challenging to perform. Partial polarimetry, on the other hand, uses simpler optical components in 

generating and/or analyzing states of polarization, thereby measuring only a subset of the Mueller 

matrix. However, it may determine the full Mueller matrix under specific symmetry conditions. The 

present study develops a symmetry classification scheme to categorize the Mueller matrix of materials. 

It is shown that the symmetry of the Mueller matrix is directly determined from the information of 

symmetries of the sample’s optical properties. Numerical calculations of various measurement 

scenarios, structures, and materials (with or without Lorentz reciprocity) are carried out to validate 

the methodology. This study offers an insightful understanding of Mueller matrix symmetry and 

practical guidance for simplified ellipsometry measurements. 

Keywords: Ellipsometry, metamaterial, Mueller matrix, partial polarimetry, radiative 

property. 
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Nomenclature 

A transformation matrix  

a period of grating, m   

B  magnetic flux density, Tesla 

b  Weyl nodes separation vector, m−1 

C constitutive matrix 

Cn n-fold rotational symmetry 

c0 speed of light in vacuum, m s−1 

D  electric displacement vector, C m−2 

E  electric field vector, V m−1 

G  dyadic Green’s funtion 

H  magnetic field vector, A m−1 

0H  time-odd bias 

h height of grating, m  

I 3×3 identity matrix 

I inversion 

i  1−  

J Jones matrix 

J  electric source 

k  isotropic amplitude absorption 

L, L', C complex parameters related to linear, 45° linear, and circular dichroism and birefringence, 

respectively 

M mueller matrix 

M  magnetization vector 

M element of the Mueller matrix 

r  position vector in a spherical coordinate 

S Stokes vector, V2 m-2 

0 1 2 3, , ,S S S S  Stokes parameters, V2 m−2 

s,p TE- and TM-polarized  

𝒯  adjoint transform 

V volume of the source current 

w width of grating, m  
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x, y, z Cartesian coordinates 

x', y' axes lying midway between the positive x- and positive y-axes, and negative x- and 

positive y-axes, respectively 

 

Greek symbols 

  relative permittivity 

   relative permittivity matrix 

0  vacuum permittivity, C V−1 m−1 

  electric-magnetic coupling strength matrix 

  isotropic phase retardation 

k isotropic absorption 

Λ Λ = sqrt (L2 + L'2 + C2) 

  relative permeability  

   relative permeability matrix 

0  vacuum permeability, kg m s−2 A−2 

  reletive magnetoelectric coupling strength  

  magnetoelectric coupling strength matrix 

σ mirror symmetry 

, ,r   cylindrical coordinates 

ω angular frequency, rad/s 

 

Operators 

T  transpose 

   Kronecker product 

*  complex conjugate 
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1. Introduction 

Wavelength-selective materials have enormous applications in energy and photonics systems, 

such as solar cells, solar absorbers, infrared emitters, and so on [1]. Micro/nanostructured 

metamaterials open the door of controlling electromagnetic waves over the phase, magnitude, and 

frequency [2]. Spectral, directional, and polarized-dependent infrared absorbers and emitters have 

been proposed based on anisotropic materials such as uniaxial hBN [3,4], biaxial MoO3 [5] , and 

monoclinic Ga2O3 [6]; or constructed by patterned metasurfaces such as zig-zag nanorods [7], twisted 

gratings [8], and F-shape meta-atoms [9]. The radiative properties of micro/nanostructured 

metamaterials have been completely altered from their natural components. Therefore, it is of great 

significance to study and characterize the radiative properties of complex media. 

Ellipsometry, a well-known noninvasive linear-optics technique, characterizes the physical 

and mechanical properties of materials using polarized light by measuring certain components of the 

Mueller matrix [10-13]. The Mueller matrix has a total of 4×4 elements that relate Stokes parameters 

of the incident and emerging (transmitted, reflected, or scattered) light after interaction with an object 

and carry information about the material properties. The information includes (i) dichroism, refers to 

the absorption difference between two polarized lights, (ii) birefringence, refers to the refractive 

indexes difference between two polarizations, and (iii) depolarization, denotes the reduction in the 

degree of polarization [10]. Determining all 16 Mueller matrix elements requires the use of a 

polarization state generator and a polarization state analyzer with 16 (or more) measurements, known 

as complete polarimetry. On the other hand, partial polarimetry uses a simpler generator and/or 

analyzer with a limitation to generate and/or analyze states of polarizations; thus, it measures a subset 

of the Mueller matrix [14]. For instance, circular dichroism spectrometer is a partial polarimeter 

optimized for measuring one of 16 elements of the Mueller matrix [15]. 

Partial polarimetry, however, could determine the full Mueller matrix under specific 

conditions. For instance, consider an isotropic medium with mirror symmetry to the plane of 
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incidence. In this scenario, the Jones matrix is diagonal, as the cross-polarization terms are zero, 

resulting in the Mueller matrix having zero off-diagonal blocks. Consequently, an ellipsometer 

equipped with linear generators and analyzers becomes sufficient to measure its complete Mueller 

matrix. Structures exhibiting symmetries can yield specific symmetric relations of Mueller matrices, 

thereby reducing the complexity of required polarimetric measurements. Arteaga et al. [14,16-18] 

have extensively discussed the symmetric relations of the Mueller matrix and explored the feasibility 

of using partial polarimetry to retrieve the complete Mueller matrix, focusing on the 9 and 12-element 

cases. Extensive studies on Mueller matrix symmetries can be found in Ref. [19-21]. Additionally, 

research on Mueller matrix has been carried out based on nonplanar diffraction gratings [22-25]. 

However, existing studies have primarily focused on reciprocal materials, which will lose validity 

when dealing with general bianisotropic media that can break the Lorentz reciprocity. Conversely, 

nonreciprocal metamaterials, such as multilayers and grating structures based on magneto-optical 

materials and magnetic Weyl semimetals, have shown unprecedented potential in polarization 

manipulation and energy transfer applications [26-28]. Therefore, understanding the symmetric 

relations of Mueller matrices without the constraint of reciprocity is imperative.  

This study sheds light on the analysis of symmetric relations of Mueller matrix elements for 

specific measurement scenarios. By considering the symmetries of the structure and the measurement 

conditions, Mueller matrices are categorized into several classes, enabling the direct prediction of 

symmetric relations among their elements. The appropriateness of the theoretical framework is 

validated through numerical simulations involving both anisotropic and bianisotropic materials. 

Furthermore, the Mueller matrices of nonplanar structures, such as diffraction gratings, are examined 

to testify the applicability of the proposed methodology. The usage of symmetries classification 

scheme enables simpler combinations of polarimetry measurements for determining the complete 

Mueller matrix.  
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2. Background and theory 

2.1. Nondepolarizing Mueller matrix 

The Stokes vector S = (S0, S1, S2, S3)
T, where T denotes the transpose operator, and the 

Poincaré sphere are commonly used in the polarimetric analysis of electromagnetic waves [11]. Each 

parameter represents measurable quantities with physical significance, corresponding to overall 

optical intensity, linearly polarized intensity, or circularly polarized intensity. For a medium 

interacting linearly with the incident electromagnetic wave and transforming the polarization state, it 

can be characterized by a 4×4 Mueller matrix M, consisting of 16 real elements denoted as [10,11]: 

 
0 00 01 02 03 0

1 10 11 12 13 1

2 20 21 22 23 2

3 30 31 32 33 3out in

S M M M M S

S M M M M S

S M M M M S

S M M M M S

     
     
     =
     
     
     

 (1) 

Here, the subscripts “in” and “out” refer to the incidence and emergence Stokes vectors, respectively. 

If M preserves the degree of polarization for any totally polarized incidence, it behaves as 

nondepolarizing, also known as the pure Mueller matrix, deterministic Mueller matrix, or Mueller-

Jones Matrix [10]. The nondepolarizing Mueller matrix is derivable from a 2×2 Jones matrix J given 

by:     

 1( ) −= M A J J A  (2) 

where ⨂ is the Kronecker product, and A is given by: 

and the Jones matrix takes the form: 

 
pp ps

sp ss

J J

J J

 
=  
  

J  (4) 

 1 0 0 1

1 0 0 1

0 1 1 0

0 0i i

 
 

−
 =
 
 

− 

A  (3) 
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The subscript p denotes a transverse magnetic (TM) wave and s denotes a transverse electric (TE) 

wave. The first and second indices of the subscript denote the incident and the emerging waves, 

respectively. Consequently, the nondepolarizing M has seven (7) degrees of freedom (DOF), 

corresponding to the eight (8) DOFs of the Jones matrix minus the absolute phase DOF [10,20]. 

Matrix M can be expressed in terms of Jones elements as: 

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2 2 2 2 22 2 * * * *

2 2 2 2 2 22 2 * * * *

* * * * *

1 1
Re Im

2 2

1 1
Re Im

2 2

Re Re Re

pp ss sp ps pp ss sp ps pp sp ss ps pp sp ss ps

pp ss sp ps pp ss sp ps pp sp ss ps pp sp ss ps

pp sp ss ps pp ps ss sp pp ss p

J J J J J J J J J J J J J J J J

J J J J J J J J J J J J J J J J

J J J J J J J J J J J

+ + + − − + + +

− + − + − − − −
=

+ − +

M

( ) ( )

( ) ( ) ( ) ( )

* * *

* * * * * * * *

Im

Im Im Im Re

s sp pp ss ps sp

pp ps ss sp pp ps ss sp pp ss ps sp pp ss ps sp

J J J J J

J J J J J J J J J J J J J J J J

−

− + − − − + −

 
 
 
 
 
 
 
 
  

 

(5) 

where * denotes the complex conjugate. This expression provides a straightforward indication of the 

symmetric relation between the Mueller matrix and the Jones elements. For instance, an isotropic 

medium with zero cross-polarization terms in the Jones matrix, i.e., Jps = Jsp = 0, will result in zeroes 

off-diagonal blocks of the Mueller matrix. Furthermore, for light propagating in a continuous 

homogeneous medium, the Jones matrix can be expressed in terms of dichroisms and birefringence 

as [29]: 

 

( )

L C L
cos sin sin

2 2 2 2 2

C L L
sin cos sin

2 2 2 2 2

i ik

i i

e
i i

− −

  −  
− 

=  
− −    +

  

J  (6) 

where η and k are isotropic phase retardation and isotropic amplitude absorption, respectively. L, L', 

and C are complex parameters related to linear dichroism and birefringence, 45° linear dichroism and 

birefringence, and circular dichroism and birefringence, respectively, and Λ = sqrt (L2 + L'2 + C2) 

(See Ref. [29] for more details). The diminishment of L, L', or C will lead to specific patterns of the 

Jones elements, such as L = 0 leading to identical diagonal terms, L' = 0 leading to opposite off-

diagonal terms, and C = 0 leading to identical off-diagonal terms. Note that the Jones matrix provided 

by Eq. (6) is not equivalent to the transmission coefficients since the boundary condition has not been 

considered. However, it can be used to interpret the dichroism and birefringence behavior of 

boundary-induced transmission, and such interpretation is applicable to both transmission and 
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reflection modes. Therefore, for a nondepolarizing medium, the dichroism and birefringence 

parameters, the specific pattern of Jones elements, and the symmetric relation of the Mueller matrix, 

are related. 

 

2.2. Symmetric relations of nondepolarizing Mueller matrix 

The nondepolarizing Mueller matrix is said to exhibit symmetric relations if the off-diagonal 

elements possess the relations of the form Mij = ±Mji. These relations are directly related to dichroism 

and birefringence parameters L, L′, and C. In other words, Mueller matrices with distinctive 

symmetric relations can be obtained by setting L, L′, or C of their corresponding Jones matrix to zero. 

Arteaga [16] provided a categorizing approach by assuming L′ = 0 and/or C = 0, resulting in four (4) 

distinct patterns of the Mueller matrix. Here, all three parameters are considered, and the relationships 

between dichroism and birefringence parameters, Jones matrix, and Mueller matrix are summarized 

in Table 1 [16,20]. Note that Jones and Mueller matrices belong to several classes when multiple 

parameters among L, L', and C are zeros, such that the symmetric relation of the Mueller matrix is a 

superposition of each class. For instance, a Jones matrix with L = C = 0 falls into both classes II and 

III, resulting in the simultaneous satisfaction of Jsp = Jps and Jsp = −Jps, leading to Jsp = Jps = 0 for the 

Jones matrix and zero off-diagonal blocks for the Mueller matrix. If the matrices do not fall into any 

class, no symmetric relation can be established. The combination of these classes yields a total of 

eight (8) distinct patterns of the Mueller matrix.  

Jones or Mueller matrices of any class possess a reduced number of independent Mueller 

matrix elements. Consequently, the full Mueller matrix can be obtained using partial polarimetry. For 

example, a partial polarimeter equipped with a full polarization state generator and a linear 

polarization state analyzer could determine up to 12 of the 16 elements of the Mueller matrix, which 

is adequate for determining the Mueller matrix falling into any of the classes. For matrices belonging 

to both classes II and III, a partial polarimeter with a linear polarization state generator and a linear 
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polarization state analyzer is sufficient. Further details regarding the ellipsometric measurement 

capabilities can be found in Ref. [30]. 

Table 1. Relationships between dichroism and birefringence, equivalence between Jones matrix elements, and 

symmetric relations of the Mueller matrix. 

Class I (L = 0) II (L′ =  0) III (C = 0) 

J Jss = Jpp  

(For transmission) 

 

Jss = −Jpp  

(For reflection) 

 

Jsp = −Jps  

(For both 

transmission and 

reflection) 

 

 Jsp = Jps 

(For both 

transmission and 

reflection) 

 

M 00 01 02 03

01 11 12 13

02 12 22 23

03 13 23 33

M M M M

M M M M

M M M M

M M M M

 
 
−
 
 −
 

− 

(For transmission) 

 

00 01 02 03

01 11 12 13

02 12 22 23

03 13 23 33

M M M M

M M M M

M M M M

M M M M

 
 
−
 
 −
 
− 

 

(For reflection) 

 

00 01 02 03

01 11 12 13

02 12 22 23

03 13 23 33

M M M M

M M M M

M M M M

M M M M

 
 
 
 − −
 

− 

 

(For both 

transmission and 

reflection) 

 

00 01 02 03

01 11 12 13

02 12 22 23

03 13 23 33

M M M M

M M M M

M M M M

M M M M

 
 
 
 
 
− − − 

 

(For both 

transmission and 

reflection) 

 

 

2.3. Symmetry of the medium 

Reciprocity plays an important role in determining the symmetric relations of the Mueller 

matrix based solely on the symmetry of the medium and the measurement scenario. The concept of 

reciprocity has a long history, and the most renowned electromagnetic reciprocity theorem was 

introduced by Lorentz in 1896 [31], stating the equivalence in the interchange of the source and the 

observer. Subsequently, in 1931, Onsager derived the general reciprocal relations based on statistical 

mechanics, which aligns with Lorentz reciprocity under time reversibility [32]. Considering 

electromagnetic radiation from fluctuating electric current, the electric field E  at location r  radiated 

by the electric source J  at location r  is linearly related by the dyadic Greens function G  as [33]: 
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 ( ) ( , ) ( )

V

E G r r J r dV



  = r  
(7) 

where V′ is the volume of the source current. For reciprocal participating media, the following relation 

can be obtained based on the Onsager relation: 

 ( , ) ( , )TG r r G r r =  (8) 

However, if there exists the external time-odd bias, reciprocity is broken and Eq. (8) is invalid. 

Examples include magneto-optical materials subjected to an external magnetic field or ferromagnetic 

materials after magnetization. On the other hand, Casimir introduced the Onsager-Casimir relations 

in 1945 to include nonreciprocal behaviors [34]. The dyadic Greens function derived from the 

Onsager-Casimir relations remains valid for both reciprocal and nonreciprocal media: 

 
0 0( , , ) ( , , )TG r r H G r r H = −  (9) 

where 0H  denotes a signal parameter representing all time-odd bias fields of the system, and 0H−  

indicates the reversal of all fields. This equality applies to any linear, casual, time-reversible, and 

thermodynamic quasi-equilibrium system [33]. In the case when 0 0H = , Eq. (9) reduces to Eq. (8). 

For a general linear metamaterial with time-odd bias 0H , both electric and magnetic currents 

can be induced by incident electric and magnetic fields. The inhomogeneous constitutive relation can 

be described by the 6×6 matrix C, as given in [35,36], that relates the electric displacement vector D  

and magnetic flux density B  with the electric field vector E  and magnetic field vector H  according 

to 

 

( )
( ) ( )

( ) ( )

1
0 0

0 1
0 0

, ,
, ,

, ,

cD E E
r H

B H Hc

    


    

−

−

      
 = =     
       

r r
C

r r
 (10) 

Here,  ,  ,  , and   are 3×3 matrices representing dimensionless electric permittivity, magnetic 

permeability, and the cross-coupling between the electric and magnetic fields, respectively, ε0, μ0, and 

c0 denotes the vacuum permittivity, permeability, and speed of light, respectively, and ω is the angular 

frequency. The medium with C encompasses different types of materials ranging from isotropic to 
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bianisotropic. For instance, C represents: (i) isotropic material when  and   are reduced to scalar 

and    =    = 0, (ii) bi-isotropic material when all four 3×3 matrices   ,   ,   , and    reduce to 

scalars, (iii) anisotropic material if   =   = 0, or (iv) bianisotropic material with the full 6×6 matrix. 

An example of a bianisotropic material is an artificial composite metamaterial made of split-ring 

resonators [37,38], where such material has an effective 6×6 constitutive matrix despite each 

composite material being isotropic. Reversing the time-odd bias fields alters the constitutive relation 

as [36]: 

 ( ) ( )

( ) ( )

1
0 0

0 0 1
0 0

, ,
( , , ) ( , , )

, ,

T T

T T

c
r H r H

c

    
 

    

−

−

 −
 = − =
 − 

r r
C C

r r
 (11) 

where 𝒯 denotes the adjoint transform [36] that reverses the time-odd bias fields, and the system with 

reversed time-odd bias fields is referred to the adjoint system. The adjoint transform is well-defined 

and physically realizable. For instance, 𝒯 applied to nonreciprocal magneto-optical materials is 

equivalent to reversing the external magnetic field, while 𝒯 applied to reciprocal materials will not 

alter the material properties (see Ref. [36] for more details), thus being 𝒯-invariant. With the help of 

𝒯, one can rewrite Eq. (9) to include the constitutive relations as 

 ( , , ) ( , , )TG r r G r r =C C  (12) 

The relation between two Jones elements can be derived with the help of Eq. (12). Consider 

a planar structure with a constitutive matrix C as shown in Figure 1a. The system is subject to a s-

polarized incidence at a zenith angle θ in the x-z plane through port 1, and a p-polarized specular 

reflection through port 2. The reflection Fresnel coefficient is written as r1s2p(C). According to Eq. 

(12), its adjoint system with an opposite propagation direction (as shown in Figure 1b) must yield the 

same Fresnel reflection coefficient as  

 1 2 2 1( ) ( )s p p sr r= −C C  (13) 
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Note that there is a negative sign on the right-hand side of the equation because of the reversed 

direction of incidence, which requires altering the positive direction of either p or s when defining 

the Fresnel coefficient.    

Therefore, if the planar layer C is invariant to the combination of adjoint transform and a 180° 

rotation transform with respect to z axis, the planar layer C is said to possess compound symmetry 

𝒯C2(z) and its reflection coefficients have rsp = −rps. Such that the symmetric relation of the 

corresponding Mueller matrix can be categorized into class II. The symmetries of a given sample C 

may include both geometric symmetries such as mirror symmetry σ and n-fold rotational symmetry 

Cn, and compound symmetries such as 𝒯σ and 𝒯Cn, which represent the invariance of the system by 

combining the adjoint transform 𝒯 with geometric transform [39,40]. Therefore, a comprehensive 

search is needed to relate the symmetries to the reflection coefficients.  

 
 

Figure 1. The original system and the adjoint transformed system. The original system has constitutive tensor 

C with s-polarized incidence at angle θ in the x-z plane through port 1 and a p-polarized specular reflection 

through port 2; the adjoint system has the constitutive tensor 𝒯C with reversed propagation waves from port 2 

to port 1. 

 

To illustrate the symmetries searching process, Figure 2 is used as an example to demonstrate 

the required transformation and the corresponding symmetry for class III (Jsp = Jps) at normal 

reflection. The initial step is to look for transformations capable of converting the wave vector 

configuration from s-polarized incidence p-polarized reflectance to p-polarized incidence s-polarized 
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reflectance. There will be two unique paths through geometric transformation noted as path A and B, 

and two unique paths through compound transformation noted as path C and D. If the sample is 

invariant under these transformations, the sample is said to possess the corresponding symmetries 

and the reflection coefficients have rsp = rps. Therefore, these symmetries lead to the Mueller matrix 

exhibiting specific patterns as categorized in class III. Here, paths A and B correspond to the medium 

exhibiting 4-fold rotational symmetry C4(z) with respect to the z-axis, while paths C and D indicate 

compound mirror symmetries 𝒯σ(yz) and 𝒯σ(xz),  

 

Figure 2. Symmetries searching process for class III (Jsp = Jps) at normal reflection. A total of two geometric 

transform paths (A and B) plus two compound transform paths (C and D) were found to convert the wave 

system of rsp to rps. If the sample is invariant under the transform paths, signifying class III, the sample is said 

to possess the corresponding symmetry. 

respectively. A unique instance not attainable through these transformations but still leading to class 

III is when the sample consistently has Jsp = 0 and Jps = 0. It means the relation of Jsp = Jps is always 

satisfied. This condition is achieved by a medium exhibiting mirror symmetry with respect to the 

plane of incidence, σ(yz), yielding zero off-diagonal Jones elements. Consequently, four symmetries, 

C4(z), 𝒯σ(yz), 𝒯σ(xz), and σ(yz), can lead to the class III symmetric relations of Mueller matrix. A 
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similar procedure can be applied to identify the symmetries of classes I or II for various measurement 

scenarios including reflection or transmission measurement at normal or oblique incidence. Notably, 

for oblique incidence, no symmetry can yield Jss = Jpp, resulting in an empty class I. The symmetries 

for each class under various measurement scenario are summarized in Table 2. Here, x' denotes the 

axis lying midway between the positive x- and positive y-axes, y' represents the axis lying midway 

between the negative x- and positive y-axes, and I denotes inversion. Note that an object with high 

symmetry inherently includes lower symmetries; for example, C4(z) includes C2(z), and 𝒯C6(z) 

includes both C3(z) and 𝒯C2(z). The symmetries tabulated in this classification scheme represent the 

lowest symmetries that will result in a particular class.   

Table 2. Symmetries for each measurement scenario. 

Class Jones matrix Symmetries 

Oblique incidence Normal incidence 

Transmission Reflection Transmission Reflection 

I Jss = Jpp 

(For 

transmission) 

 

Jss = −Jpp 

(For reflection) 

 

N/A N/A σ(x'z) 

σ(y'z) 

C4(z) 

𝒯σ(xy)σ(x'z) 

𝒯σ(xy)σ(y'z) 

𝒯σ(xy)C4(z) 

σ(x'z) 

σ(y'z) 

C4(z) 

𝒯σ(x'z) 

𝒯σ(y'z) 

𝒯C4(z) 

II Jsp = −Jps 

(For both 

transmission and 

reflection) 

𝒯C2(y) 

σ(xz) 

𝒯C2(z) 

σ(xz) 

C4(z) 

𝒯C2(x) 

𝒯C2(y) 

σ(xz) 

σ(x'z) 

σ(y'z) 

𝒯C2(z) 

𝒯 

σ(xz) 

III Jsp =Jps 

(For both 

transmission and 

reflection) 

𝒯I 

σ(xz) 

 

𝒯σ(yz) 

σ(xz) 

σ(x'z) 

σ(y'z) 

𝒯σ(xy) 

𝒯C2(x) 

σ(xz) 

C4(z) 

𝒯σ(yz) 

𝒯σ(xz) 

σ(xz) 

 

Unlike the nondepolarizing Mueller matrix, which preserves the degree of polarization, the 

depolarizing Mueller matrix transforms some or all totally polarized incident states into partially 

polarized or unpolarized emerging states. This transformation is caused by scattering, spatial 

inhomogeneity, or the inherent spatial, spectral, or temporal averaging nature of measurement devices 
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[10,20]. For instance, a film sample has no interference effect due to its thickness is greater than the 

coherence length. Detailed formulations for calculating the radiative properties of thick films using 

the ray-tracking method without the interference effect can be found in Ref. [1].  

Depolarizing Mueller matrix has a total of 16 degrees of freedom due to the depolarizing 

contributions. It cannot be converted into a single Jones matrix. However, the depolarizing Mueller 

matrix can be linearly decomposed into up to four nondepolarizing Mueller matrices [10]. Therefore, 

if a depolarizing and inhomogeneous medium satisfies the symmetries tabulated in Table 2, one can 

still categorize its Mueller matrix into specific classes in Table 1, since the matrix is the sum of all 

nondepolarizing Mueller matrix components. 

For measurement scenario based on a diffraction medium where the emergence angle is not 

equal to the incidence angle, the relations outlined in Table 2 will not hold, as the symmetries are 

determined under the assumption of specular reflection and transmission. However, if the wave 

interaction remains specular, the symmetry classification scheme remains applicable. An example is 

the zeroth-order diffraction of a grating structure. 

 

3. Numerical verification 

Two sets of structures are used to validate the methodology. The first set includes planar slab 

and multilayer structures with specular reflection and/or transmission. The second set consists of 

grating structures with multiple propagation diffractions.  

 

3.1. Planar structures  

The 4×4 transfer matrix method, originally put forward by Teitler and Henvis [41,42], has 

been extensively used to compute the Fresnel coefficients of anisotropic slabs and multilayer 
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structures. This method can be extended to calculate bianisotropic multilayer structures with a full 

constitutive tensor [43]. Five types of metamaterials, including biaxial, gyroelectric, gyromagnetic, 

magnetoelectric, and multilayer structures, are utilized to demonstrate the appropriateness of the 

methodology. Symmetries can be either determined via performing transformations to the structure 

schematics, or by applying an equivalent mathematical transform on the constitutive tensors. With 

the help of symmetry analysis, Mueller matrices of each example are categorized into classes. In the 

following examples, a consistent wavelength of 5 μm, layer thickness of 1 μm, and an incidence angle 

of θ = 45° for oblique incidence are chosen for all slabs and multilayer structures. 

The first type of structure is planar slab made of biaxial crystal, characterized by three 

principal axes corresponding to the crystalline directions [100], [001], and [010]. Biaxial materials 

are reciprocal, thus being 𝒯-invariant. Calculations are carried out based on the dielectric function of 

the α-phase MoO3 [44]. Figures 3a – 3c depict three scenarios of reflectance measurement for the 

biaxial slab with different principal axis orientations. The constitutive tensors and the resulting 

Mueller matrices are provided on the right side of the schematics. In the first scenario depicted in 

Figures 3a with oblique incidence, the [100] principal axis of the medium is aligned with the z-axis 

direction, while the rest are arbitrarily oriented. Predicted from the methodology, the structure 

corresponds to class II due to the 𝒯C2(z) symmetry. This is confirmed by the resultant Mueller matrix 

having Jsp = −Jps. In the second scenario as shown in Figure 3b, the [001] principal axis is aligned 

with the x-axis direction. 𝒯σ(yz) symmetry is identified, and the corresponding class is III according 

to both prediction and calculation. Figure 3c illustrates a scenario with normal light incidence and all 

principal axes arbitrarily oriented. The symmetry obtained is 𝒯, and the corresponding class is II. 
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Figure 3. Scenarios of reflectance measurement for the biaxial slab with different principal axis orientations. 

Biaxial crystal at θ = 45° incidence with (a) [100] principal axis in z-axis direction while the rest are arbitrarily 

oriented and (b) [001] principal axis in x-axis direction, (c) and at normal incidence with all principal optics 

axes arbitrarily oriented. 

The second set of scenarios as depicted in Figures 4a-4c are reflectance measurements for 

gyroelectric slabs. These slabs are characterized by a tensorial   with opposite off-diagonal elements, 

a scalar  , and 0 = =  [43,45]. Examples include magneto-optical materials  [46,47], magnetic 

Weyl semimetals [48], and topological insulators [49]. The off-diagonal terms are induced by the 

external magnetic field B   for magneto-optical materials or due to Weyl node separation b   in 

momentum space for magnetic Weyl semimetals. These vectors are pseudovectors and comply with 

pseudovector rules when transformed by reflection or inversion [50]. For simplicity, they are 

uniformly denoted as B  in the schematics. It is assumed that the material is isotropic with diagonal  
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Figure 4. Scenarios of reflectance measurement for gyroelectric slabs with different magnetic field orientations. 

At θ = 45° incidence with magnetic field B  arbitrarily oriented (a) in x-y plane and (b) in y-z plane, and (c) at 

normal incidence with B  lies in x'-z plane. 

permittivity, i.e., εx = εy = εz. Calculations are based on the dielectric function of magnetic Weyl 

semimetals [27]. Gyroelectric materials are nonreciprocal, and 𝒯 will result in the reversal of vector 

B . In the scenario depicted in Figure 4a, the gyroelectric slab with the magnetic field arbitrarily 

oriented in the x-y plane is illuminated by light at an oblique incidence angle. Through a combination 

of the adjoint transform and a 2-fold rotation transform with respect to the z-axis, an invariant 

structure is obtained, resulting in the 𝒯C2(z) symmetry of the structure. The corresponding Mueller 

matrix affiliates with class II. Figure 4b depicts a scenario with the magnetic field arbitrarily oriented 

in the y-z plane. Here, the symmetry obtained is 𝒯σ(yz) and the resultant Mueller matrix is within 

class III. Figure 4c illustrates normal light incidence on the structure with the magnetic field B  
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arbitrarily oriented in the x'-z plane. In this case, the structure shows 𝒯σ(x'z) symmetry, leading to 

class I for the corresponding Mueller matrix. 

The example depicted in Figure 5 is for the transmitted Mueller matrix of a gyromagnetic slab 

under oblique light incidence. Typically, gyromagnetic materials, such as ferromagnets and ferrites 

[43,45], are characterized by a scalar   , a tensorial    with opposite off-diagonal elements, and 

0 = = . Calculations are based on a constant constitutive tensor as provided by Ref. [43]. When 

magnetized to saturation by an external DC magnetic field, gyromagnetic materials acquire a tensorial 

magnetic permeability with the magnetization pseudovector denoted by M , which conforms to the 

same rules as the magnetic field B  follows. In the schematic, the magnetization vector M  lies in the 

x-z plane. Therefore, the 𝒯C2(y) symmetry within the structure results in class II for the corresponding 

Mueller matrix.  

 

Figure 5. Scenarios of transmittance measurement for a gyroelectric slab at an incidence angle of θ = 45° and 

the magnetization M  oriented in the x-z plane. 

In magnetoelectric materials, such as the natural materials like Cr2O3 and TbPO4 [51], the 

magnetic field induces electric dipoles and electric field induces magnetic dipoles. Additionally, the 

magnetoelectric effect has been observed in nano/microstructures such as split-ring resonators [52,53]. 

Figures 6a and 6b illustrate scenarios of reflectance measurements of split-ring resonator-based 

metasurfaces with oblique incidence. The pattern of the metasurface is in the subwavelength range, 
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allowing the material to be considered homogeneous with a constitutive tensor approximated by 

effective medium theory [37,38]. In Figure 6a, the unit cell of split ring resonator-based structure is 

depicted with the ring split facing toward the negative y-axis. Here, magnetic field in the z-direction 

will induce electric dipoles in the x-direction due to the asymmetry of the split-ring structure. 

Likewise, electric field in the x-direction generates unbalanced currents, leading to magnetic dipoles 

in the z-direction. Consequently, the effective electric-magnetic cross-coupling  

 

Figure 6. Scenarios of reflectance measurement for effective magnetoelectric materials based on split ring 

resonator with the ring split facing toward (a) negative y-axis and (b) negative x-axis direction. 

tensors have nonzero elements 13 i = −  and 31 i = . The permittivity   and permeability   are 

diagonal. Such split-ring-based metasurface is reciprocal and 𝒯-invariant. A representative constant 

constitutive tensor is used for calculation. With 𝒯σ(yz) symmetry, the Mueller matrix of the structure 

belongs to class III. In contrast, the ring split of structure shown in Figure 6b is facing toward the 

negative x-axis direction, leading to nonzero electric-magnetic cross-coupling terms 23 i = −  and 



21 

32 i = . Since this structure exhibits mirror symmetry σ(xz), the resultant Mueller matrix is within 

both classes II and III simultaneously. This results in zero off-diagonal blocks in the Mueller matrix. 

The last scenario as depicted in Figure 7 involves transmittance measurement of a multilayer 

structure with oblique light incidence. Here, a gyroelectric layer with a magnetic field oriented in the 

negative x-axis is placed on the top of an isotropic slab. The calculation is based on magnetic Weyl 

semimetal for gyroelectric material and glass for isotropic material. Although each single slab holds 

𝒯C2(y) symmetry, their combination shows no symmetry, and the resultant Mueller matrix does not 

attach to any of the classes.  

 

Figure 7. Oblique incidence on a multilayer structure without exhibiting any symmetry. The top layer is a 

gyroelectric slab with B  oriented in negative x-axis, and the bottom layer is isotropic.  

The calculated Mueller matrices for planar structures as described above validate the 

prediction from symmetry classification scheme. Moreover, other scenarios as given in Ref. [16] also 

find consistency with the proposed methodology.  

 

3.2. Grating structures 

In this section, examples of nonplanar structures are studied with both reciprocal and 

nonreciprocal diffraction gratings are considered. The first example is an aluminum grating subjected 
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to conical light incidence as shown in Figure 8. This grating has a period a = 4 m, width w = 3.6 m, 

and height h = 1.2 m. At the chosen wavelength λ = 4 m, the dielectric function ε = −1405+521i. 

The zenith angle and azimuthal angle of incidence are set to θ = 80° and ϕ = 45°, respectively. Given 

that a is comparable to λ, multiple propagation diffraction orders are presented.  

 
 

Figure 8. A diffraction grating with a conical incidence with two propagating diffraction orders. The aluminum 

grating with relative permittivity ε = −1405+521i and geometrical parameters a = 1 µm, w = 0.54 µm, and h = 

0.39 µm, is placed on the substrate of the same material. Operation wavelength is selected at λ = 4 µm with a 

zenith angle of incidence θ = 80° and tilted plane of incidence at ϕ = 45°. Propagating diffracted waves are 

marked by solid arrows with −1st and 0th represent the diffraction orders. 

Rigorous coupled-wave analysis (RCWA) [3] is employed for the calculations. The analysis reveals 

that the −1st and 0th orders are propagating, with their reflection Jones matrix given as: 

 
1 0.21 0.004    0.04 0.009

0.32 0.006   0.06 0.007

st i i

i i

− − + − 
=  

− − + 
J  

(14) 

For the −1st diffraction order, and 

 
0th 0.35 0.320   0.24 0.076

0.24 0.076 0.95 0.006

i i

i i

− − + 
=  

− − − − 
J  

(15) 

For the 0th diffraction order. Note that the elements of J0th satisfy relation Jsp = −Jps, which corresponds 

to symmetry class II. This is because the specular reflectance condition is met for the 0th diffraction 

order and the structure exhibits 𝒯C2(z) symmetry. However, for J−1st, no relation is found among 

Jones elements since the −1st diffraction order violates the specular reflection condition.  
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The second set of nonplanar structures as depicted in Figure 9a and 9b consist of two 

nonreciprocal diffraction gratings based on magnetic Weyl semimetals. Both gratings have a period 

a = 7 m, width w = 3.5 m, and height h = 1.2 m. For the calculations, an operational wavelength 

λ = 9 m, incidence zenith angle θ = 45°, and incidence azimuthal angle ϕ = 45° are selected. Though 

multiple propagation diffraction orders exist, only the 0th order reflection is discussed. These two 

gratings exhibit different symmetries. The permittivity tensor of the first grating and its substrate is 

given by 

 
1.41 0.476 0 9.41

0 1.4 0.476 9.41

9.41 9.41 1.4 0.476

i i

i i

i i i



− + − 
 

= − +
 
 − − + 

 
(16) 

It describes a Weyl node separation b  = 2 nm−1 aligns with the grating stripe direction [54]. The 

grating exhibits 𝒯C2(z) symmetry and the calculated Mueller matrix should be within class II. The 

Jones matrix becomes 

 
0th 0.31 0.488   0.38 0.331

0.38 0.331    0.56 0.410

i i

i i

+ − 
=  

− + − − 
J  

(17) 

has Jsp = −Jps that aligns with the prediction. In contrast, the latter structure has b  = 2 nm−1 along the 

negative z-axis direction, with the permittivity tensor: 

 
1.41 0.476 13.3 0

13.3 1.4 0.476 0

0 0 1.4 0.476

i i

i i

i



− + − 
 

= − +
 
 − + 

 
(18) 

Unlike the former scenario, rotation with respect to the z-axis has no effect on the pseudovector b

while 𝒯 will reverse its direction. Consequently, 𝒯C2(z) symmetry is broken, and no symmetry can 

be identified for this structure. The corresponding Mueller matrix, calculated using RCWA, is given 

as: 

 
0th 0.40 0.360   0.10 0.110

0.29 0.095    0.73 0.320

i i

i i

+ − + 
=  

− + − − 
J  

(19) 
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which does not belong to any of the symmetry classes. Note that according to the incomprehensive 

classification criteria as given in Refs. [17,18], the structure has rotational symmetry, and the Mueller 

matrix should fall within class II. In this study, the classification scheme provides accurate prediction 

with the help of symmetries. Thus, the proposed methodology demonstrates its applicability in 

analyzing nonplanar diffraction structures. 

 

Figure 9. Scenarios of reflectance measurement for nonreciprocal diffraction gratings based on magnetic Weyl 

semimetals with (a) Weyl node separation b  along the grating stripe direction, and (b) along the grating stripe 

direction, and along the direction of negative z-axis. Both gratings have a period a = 7 m, width w = 3.5 m, 

and height h = 1.2 m. Operation wavelength is selected at λ = 9 µm with a zenith angle of incidence θ = 45° 

and tilted plane of incidence at ϕ = 45°. 

 

Conclusion 

This study sheds light on the relationships between the Mueller matrix and the symmetries of 

structures, proposing a symmetry classification scheme to predict the pattern of Mueller matrix, that 

is applicable to both reciprocal and nonreciprocal materials. The symmetries of measured sample and 

the measurement conditions will result in specific symmetric relations among the Mueller matrix 

elements. This allows the reduction of independent elements of Mueller matrix. Numerical 

simulations of various structures including biaxial, gyroelectric, gyromagnetic, and magnetoelectric 

materials, are carried out to validate the appropriateness of the methodology. Multilayer structures 

and nonplanar diffraction gratings, with or without reciprocity, are analyzed to illustrate the capability 
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and limitation. This work offers an analytical framework for understanding the symmetric relations 

of Mueller matrices, with practical implications for easier ellipsometry measurements. 
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