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Mueller matrix symmetry for both reciprocal and nonreciprocal metamaterials
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Mueller matrices relate the Stokes parameters of the incident and emerging light, providing
useful information about the radiative properties and other characteristics of the medium.
Determining all elements of the 4x4 Mueller matrix requires complete polarimetry, which is often
challenging to perform. Partial polarimetry, on the other hand, uses simpler optical components in
generating and/or analyzing states of polarization, thereby measuring only a subset of the Mueller
matrix. However, it may determine the full Mueller matrix under specific symmetry conditions. The
present study develops a symmetry classification scheme to categorize the Mueller matrix of materials.
It is shown that the symmetry of the Mueller matrix is directly determined from the information of
symmetries of the sample’s optical properties. Numerical calculations of various measurement
scenarios, structures, and materials (with or without Lorentz reciprocity) are carried out to validate
the methodology. This study offers an insightful understanding of Mueller matrix symmetry and

practical guidance for simplified ellipsometry measurements.
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Nomenclature

A transformation matrix

a period of grating, pm

B magnetic flux density, Tesla

b Weyl nodes separation vector, m™ !
C constitutive matrix

Ca n-fold rotational symmetry

co speed of light in vacuum, m s

D electric displacement vector, C m >
E electric field vector, Vm™!

G dyadic Green’s funtion

H magnetic field vector, A m™!

IEIO time-odd bias

h height of grating, um

I 3%3 identity matrix

1 inversion

i J-1

J Jones matrix

J electric source

k isotropic amplitude absorption

L, L',C complex parameters related to linear, 45° linear, and circular dichroism and birefringence,

respectively

M mueller matrix

M magnetization vector

M element of the Mueller matrix

r position vector in a spherical coordinate
S Stokes vector, V> m™

So>51,5,,8; Stokes parameters, V2 m 2

s,p TE- and TM-polarized

T adjoint transform

V volume of the source current
w width of grating, um



X, )z Cartesian coordinates
x,y' axes lying midway between the positive x- and positive y-axes, and negative x- and

positive y-axes, respectively

Greek symbols

& relative permittivity

g relative permittivity matrix

£ vacuum permittivity, C V' m™!

I electric-magnetic coupling strength matrix
n isotropic phase retardation

k isotropic absorption

A A =sqrt (L? + L%+ C?)

U relative permeability

L relative permeability matrix

m vacuum permeability, kg m s 2 A2

£ reletive magnetoelectric coupling strength
f magnetoelectric coupling strength matrix
o mirror symmetry

?,0,r cylindrical coordinates

) angular frequency, rad/s

Operators

T transpose

® Kronecker product

* complex conjugate



1. Introduction

Wavelength-selective materials have enormous applications in energy and photonics systems,
such as solar cells, solar absorbers, infrared emitters, and so on [l]. Micro/nanostructured
metamaterials open the door of controlling electromagnetic waves over the phase, magnitude, and
frequency [2]. Spectral, directional, and polarized-dependent infrared absorbers and emitters have
been proposed based on anisotropic materials such as uniaxial hBN [3.4], biaxial MoOs [5] , and
monoclinic Ga>O3 [6]; or constructed by patterned metasurfaces such as zig-zag nanorods [ 7], twisted
gratings [8], and F-shape meta-atoms [9]. The radiative properties of micro/nanostructured
metamaterials have been completely altered from their natural components. Therefore, it is of great

significance to study and characterize the radiative properties of complex media.

Ellipsometry, a well-known noninvasive linear-optics technique, characterizes the physical
and mechanical properties of materials using polarized light by measuring certain components of the
Mueller matrix [10-13]. The Mueller matrix has a total of 4x4 elements that relate Stokes parameters
of the incident and emerging (transmitted, reflected, or scattered) light after interaction with an object
and carry information about the material properties. The information includes (i) dichroism, refers to
the absorption difference between two polarized lights, (ii) birefringence, refers to the refractive
indexes difference between two polarizations, and (iii) depolarization, denotes the reduction in the
degree of polarization [10]. Determining all 16 Mueller matrix elements requires the use of a
polarization state generator and a polarization state analyzer with 16 (or more) measurements, known
as complete polarimetry. On the other hand, partial polarimetry uses a simpler generator and/or
analyzer with a limitation to generate and/or analyze states of polarizations; thus, it measures a subset
of the Mueller matrix [14]. For instance, circular dichroism spectrometer is a partial polarimeter

optimized for measuring one of 16 elements of the Mueller matrix [15].

Partial polarimetry, however, could determine the full Mueller matrix under specific

conditions. For instance, consider an isotropic medium with mirror symmetry to the plane of
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incidence. In this scenario, the Jones matrix is diagonal, as the cross-polarization terms are zero,
resulting in the Mueller matrix having zero off-diagonal blocks. Consequently, an ellipsometer
equipped with linear generators and analyzers becomes sufficient to measure its complete Mueller
matrix. Structures exhibiting symmetries can yield specific symmetric relations of Mueller matrices,
thereby reducing the complexity of required polarimetric measurements. Arteaga et al. [14,16-18]
have extensively discussed the symmetric relations of the Mueller matrix and explored the feasibility
of using partial polarimetry to retrieve the complete Mueller matrix, focusing on the 9 and 12-element
cases. Extensive studies on Mueller matrix symmetries can be found in Ref. [19-21]. Additionally,
research on Mueller matrix has been carried out based on nonplanar diffraction gratings [22-25].
However, existing studies have primarily focused on reciprocal materials, which will lose validity
when dealing with general bianisotropic media that can break the Lorentz reciprocity. Conversely,
nonreciprocal metamaterials, such as multilayers and grating structures based on magneto-optical
materials and magnetic Weyl semimetals, have shown unprecedented potential in polarization
manipulation and energy transfer applications [26-28]. Therefore, understanding the symmetric

relations of Mueller matrices without the constraint of reciprocity is imperative.

This study sheds light on the analysis of symmetric relations of Mueller matrix elements for
specific measurement scenarios. By considering the symmetries of the structure and the measurement
conditions, Mueller matrices are categorized into several classes, enabling the direct prediction of
symmetric relations among their elements. The appropriateness of the theoretical framework is
validated through numerical simulations involving both anisotropic and bianisotropic materials.
Furthermore, the Mueller matrices of nonplanar structures, such as diffraction gratings, are examined
to testify the applicability of the proposed methodology. The usage of symmetries classification
scheme enables simpler combinations of polarimetry measurements for determining the complete

Mueller matrix.



2. Background and theory

2.1. Nondepolarizing Mueller matrix

The Stokes vector S = (So, S1, S2, S3)7, where T denotes the transpose operator, and the
Poincaré sphere are commonly used in the polarimetric analysis of electromagnetic waves [11]. Each
parameter represents measurable quantities with physical significance, corresponding to overall
optical intensity, linearly polarized intensity, or circularly polarized intensity. For a medium
interacting linearly with the incident electromagnetic wave and transforming the polarization state, it

can be characterized by a 4x4 Mueller matrix M, consisting of 16 real elements denoted as [10,11]:

So My My My My || S
Si| | Mo My My My s )
S Myy My My My || S,

Msy My Msy My || Ss ]

3 Jout
Here, the subscripts “in” and “out” refer to the incidence and emergence Stokes vectors, respectively.
If M preserves the degree of polarization for any totally polarized incidence, it behaves as
nondepolarizing, also known as the pure Mueller matrix, deterministic Mueller matrix, or Mueller-
Jones Matrix [ 10]. The nondepolarizing Mueller matrix is derivable from a 2x2 Jones matrix J given
by:
M=AJ®JHA™' 2

where ® is the Kronecker product, and A is given by:

1 0 1
A 1 0 -1 3
o1 1 o0 )
0 7 =i O
and the Jones matrix takes the form:
J= Jpp JPS (4)
Jsp Jss



The subscript p denotes a transverse magnetic (TM) wave and s denotes a transverse electric (TE)
wave. The first and second indices of the subscript denote the incident and the emerging waves,
respectively. Consequently, the nondepolarizing M has seven (7) degrees of freedom (DOF),
corresponding to the eight (8) DOFs of the Jones matrix minus the absolute phase DOF [10,20].

Matrix M can be expressed in terms of Jones elements as:

1 2 P 2 2 1 2 P 2 2
3 L+l W) 5 Vol =P = + ) Re(v05 + 00, ) (1,0, +JMJP3)
1 2 ) 2 2 1 2 2 2 2 " ¥
M = E |Jpp| _l‘]ml +|‘]sp| - Jp.? 5 |Jpp| +|J.vs| _|J.vp| - Jps Re(‘]pp‘/sp _st‘]px) lm(‘]pp‘lvp Jvr‘]pv) (5)
Re(,, 5, + 0l ) Re(,, 5~ o]y, ) Re(,, /0 + 3ty ) W (J, 00 =50, )
(0, ) (5, =0T, ) (i, 05 4500, ) Re(J,05 =00, )|

where * denotes the complex conjugate. This expression provides a straightforward indication of the
symmetric relation between the Mueller matrix and the Jones elements. For instance, an isotropic
medium with zero cross-polarization terms in the Jones matrix, i.e., Jps = Jsp = 0, will result in zeroes
off-diagonal blocks of the Mueller matrix. Furthermore, for light propagating in a continuous

homogeneous medium, the Jones matrix can be expressed in terms of dichroisms and birefringence

as [29]:
A L . A C—il" . A
COs ———sin— sin —
J = o k) 2 2 2 2 2 ©)
—-C—il' . A A iL . A
Tsm— oS —+—sin—

where 7 and k are isotropic phase retardation and isotropic amplitude absorption, respectively. L, L',
and C are complex parameters related to linear dichroism and birefringence, 45° linear dichroism and
birefringence, and circular dichroism and birefringence, respectively, and A = sqrt (L> + L? + C?)
(See Ref. [29] for more details). The diminishment of L, L', or C will lead to specific patterns of the
Jones elements, such as L = 0 leading to identical diagonal terms, L' = 0 leading to opposite off-
diagonal terms, and C = 0 leading to identical off-diagonal terms. Note that the Jones matrix provided
by Eq. (6) is not equivalent to the transmission coefficients since the boundary condition has not been
considered. However, it can be used to interpret the dichroism and birefringence behavior of
boundary-induced transmission, and such interpretation is applicable to both transmission and
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reflection modes. Therefore, for a nondepolarizing medium, the dichroism and birefringence
parameters, the specific pattern of Jones elements, and the symmetric relation of the Mueller matrix,

are related.

2.2. Symmetric relations of nondepolarizing Mueller matrix

The nondepolarizing Mueller matrix is said to exhibit symmetric relations if the off-diagonal
elements possess the relations of the form M;;=+M;;. These relations are directly related to dichroism
and birefringence parameters L, L', and C. In other words, Mueller matrices with distinctive
symmetric relations can be obtained by setting L, L', or C of their corresponding Jones matrix to zero.
Arteaga [16] provided a categorizing approach by assuming L’ = 0 and/or C = 0, resulting in four (4)
distinct patterns of the Mueller matrix. Here, all three parameters are considered, and the relationships
between dichroism and birefringence parameters, Jones matrix, and Mueller matrix are summarized
in Table 1 [16,20]. Note that Jones and Mueller matrices belong to several classes when multiple
parameters among L, L', and C are zeros, such that the symmetric relation of the Mueller matrix is a
superposition of each class. For instance, a Jones matrix with L = C = 0 falls into both classes II and
III, resulting in the simultaneous satisfaction of Jy, = J,,s and Js, = —Jps, leading to Jy, = Jps = 0 for the
Jones matrix and zero off-diagonal blocks for the Mueller matrix. If the matrices do not fall into any
class, no symmetric relation can be established. The combination of these classes yields a total of

eight (8) distinct patterns of the Mueller matrix.

Jones or Mueller matrices of any class possess a reduced number of independent Mueller
matrix elements. Consequently, the full Mueller matrix can be obtained using partial polarimetry. For
example, a partial polarimeter equipped with a full polarization state generator and a linear
polarization state analyzer could determine up to 12 of the 16 elements of the Mueller matrix, which
is adequate for determining the Mueller matrix falling into any of the classes. For matrices belonging

to both classes II and III, a partial polarimeter with a linear polarization state generator and a linear
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polarization state analyzer is sufficient. Further details regarding the ellipsometric measurement

capabilities can be found in Ref. [30].

Table 1. Relationships between dichroism and birefringence, equivalence between Jones matrix elements, and

symmetric relations of the Mueller matrix.

Class I(L=0) II(L'= 0) 11 (C=0)
J Jss = Jpp Jsp =—J s Jsp =J, s
(For transmission) (For both (For both
transmission and transmission and
Jss = —J, reflection reflection
174
(For reflection)
M My My My My My My My Mg My My My My
My My My M My My My, My My My My, My
My, My, My My My, My, My My My My My My
My Mz My My My Mz —My My My Mz My Ms;
(For transmission) (For both (For both
transmission and transmission and
My My My My reflection) reflection)

My My My, M
My, My, My My
Moz Mz My My

(For reflection)

2.3. Symmetry of the medium

Reciprocity plays an important role in determining the symmetric relations of the Mueller
matrix based solely on the symmetry of the medium and the measurement scenario. The concept of
reciprocity has a long history, and the most renowned electromagnetic reciprocity theorem was
introduced by Lorentz in 1896 [31], stating the equivalence in the interchange of the source and the
observer. Subsequently, in 1931, Onsager derived the general reciprocal relations based on statistical

mechanics, which aligns with Lorentz reciprocity under time reversibility [32]. Considering
electromagnetic radiation from fluctuating electric current, the electric field E at location 7 radiated

by the electric source J at location 7 is linearly related by the dyadic Greens function G as [33]:



E(r)= j G, 7y J(F)dV'
>

(7)
where V' is the volume of the source current. For reciprocal participating media, the following relation
can be obtained based on the Onsager relation:

G(F#,7) =G (7,7) (8)
However, if there exists the external time-odd bias, reciprocity is broken and Eq. (8) is invalid.
Examples include magneto-optical materials subjected to an external magnetic field or ferromagnetic
materials after magnetization. On the other hand, Casimir introduced the Onsager-Casimir relations

in 1945 to include nonreciprocal behaviors [34]. The dyadic Greens function derived from the

Onsager-Casimir relations remains valid for both reciprocal and nonreciprocal media:
G(#,7,Hy) =G (7,7,—H,) )
where 1:10 denotes a signal parameter representing all time-odd bias fields of the system, and —Ho

indicates the reversal of all fields. This equality applies to any linear, casual, time-reversible, and

thermodynamic quasi-equilibrium system [33]. In the case when I:IO =0, Eq. (9) reduces to Eq. (8).

For a general linear metamaterial with time-odd bias H, o> both electric and magnetic currents
can be induced by incident electric and magnetic fields. The inhomogeneous constitutive relation can
be described by the 6x6 matrix C, as given in [35,36], that relates the electric displacement vector D

and magnetic flux density B with the electric field vector £ and magnetic field vector H according

to
— . - -1z .
D -\l E gélmo,r) ¢y (o)l E
{#}zc((o,r,Ho){a}: _01“( ) < “( ) [ﬁ} (10)
B H]| ¢y ¢(or) pji(or)| H
Here, ¢, ji, (f , and 5 are 3x3 matrices representing dimensionless electric permittivity, magnetic

permeability, and the cross-coupling between the electric and magnetic fields, respectively, €o, o, and
co denotes the vacuum permittivity, permeability, and speed of light, respectively, and w is the angular

frequency. The medium with C encompasses different types of materials ranging from isotropic to
10



bianisotropic. For instance, C represents: (i) isotropic material when & and i are reduced to scalar
and & = £ = 0, (ii) bi-isotropic material when all four 3x3 matrices &, ji, &, and ¢ reduce to

scalars, (ii1) anisotropic material if 5 = f =0, or (iv) bianisotropic material with the full 6x6 matrix.
An example of a bianisotropic material is an artificial composite metamaterial made of split-ring
resonators [37,38], where such material has an effective 6x6 constitutive matrix despite each

composite material being isotropic. Reversing the time-odd bias fields alters the constitutive relation

as [36]:

goé (o,r)  —g'CT (o,r)

TC(CO,?,I:I()):C(G)ai;o_I:IO): 1= -
—Colfr(a),r) ﬂ()/uT (G),r)

(11)

where T denotes the adjoint transform [36] that reverses the time-odd bias fields, and the system with
reversed time-odd bias fields is referred to the adjoint system. The adjoint transform is well-defined
and physically realizable. For instance, " applied to nonreciprocal magneto-optical materials is
equivalent to reversing the external magnetic field, while T applied to reciprocal materials will not
alter the material properties (see Ref. [36] for more details), thus being T-invariant. With the help of

T, one can rewrite Eq. (9) to include the constitutive relations as

G(#,7,C) =G (#,7,1C) (12)

The relation between two Jones elements can be derived with the help of Eq. (12). Consider
a planar structure with a constitutive matrix C as shown in Figure la. The system is subject to a s-
polarized incidence at a zenith angle 6 in the x-z plane through port 1, and a p-polarized specular
reflection through port 2. The reflection Fresnel coefficient is written as r15,(C). According to Eq.
(12), its adjoint system with an opposite propagation direction (as shown in Figure 1b) must yield the

same Fresnel reflection coefficient as

lig2p(C€) = =73, (TC) (13)
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Note that there is a negative sign on the right-hand side of the equation because of the reversed
direction of incidence, which requires altering the positive direction of either p or s when defining

the Fresnel coefficient.

Therefore, if the planar layer C is invariant to the combination of adjoint transform and a 180°
rotation transform with respect to z axis, the planar layer C is said to possess compound symmetry
TC>(z) and its reflection coefficients have r;, = —rp. Such that the symmetric relation of the
corresponding Mueller matrix can be categorized into class II. The symmetries of a given sample C
may include both geometric symmetries such as mirror symmetry ¢ and n-fold rotational symmetry
Ch, and compound symmetries such as T'o and 7'Cy, which represent the invariance of the system by
combining the adjoint transform T with geometric transform [39,40]. Therefore, a comprehensive

search is needed to relate the symmetries to the reflection coefficients.

Figure 1. The original system and the adjoint transformed system. The original system has constitutive tensor
C with s-polarized incidence at angle 6 in the x-z plane through port 1 and a p-polarized specular reflection
through port 2; the adjoint system has the constitutive tensor 'C with reversed propagation waves from port 2

to port 1.

To illustrate the symmetries searching process, Figure 2 is used as an example to demonstrate
the required transformation and the corresponding symmetry for class III (Js» = Jps) at normal
reflection. The initial step is to look for transformations capable of converting the wave vector
configuration from s-polarized incidence p-polarized reflectance to p-polarized incidence s-polarized
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reflectance. There will be two unique paths through geometric transformation noted as path A and B,
and two unique paths through compound transformation noted as path C and D. If the sample is
invariant under these transformations, the sample is said to possess the corresponding symmetries
and the reflection coefficients have rs, = rs. Therefore, these symmetries lead to the Mueller matrix
exhibiting specific patterns as categorized in class III. Here, paths A and B correspond to the medium

exhibiting 4-fold rotational symmetry Ca(z) with respect to the z-axis, while paths C and D indicate

compound mirror symmetries Ta(yz) and To(xz),

Path A . y Tps

y|l—|—=x

¥4 z ¥ X

> 1 2
, i 1 =0 T €a(2)

Path B

X -y

-]

z z b/ x

o=
=
I-i
k)
b~
v
N‘_?
-—
@
I
o
—
N

Ci(2)

Y =01 Path C

X

—X
x y J’]
X Zz ¥4 ¥ X

T
z?_' II =0 12 -_— ?_’ 219=01T To(yz)

—

Path D

X

— :TH I R ] P B e

Figure 2. Symmetries searching process for class III (Jy, = J)) at normal reflection. A total of two geometric
transform paths (A and B) plus two compound transform paths (C and D) were found to convert the wave
system of g, to . If the sample is invariant under the transform paths, signifying class III, the sample is said

to possess the corresponding symmetry.

respectively. A unique instance not attainable through these transformations but still leading to class
IIT is when the sample consistently has Jy, = 0 and J,s = 0. It means the relation of Jy, = Jps 1s always
satisfied. This condition is achieved by a medium exhibiting mirror symmetry with respect to the
plane of incidence, a(yz), yielding zero off-diagonal Jones elements. Consequently, four symmetries,

Ca(2), To(yz), To(xz), and o(yz), can lead to the class Il symmetric relations of Mueller matrix. A
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similar procedure can be applied to identify the symmetries of classes I or II for various measurement
scenarios including reflection or transmission measurement at normal or oblique incidence. Notably,
for oblique incidence, no symmetry can yield Jss = Jpp, resulting in an empty class 1. The symmetries
for each class under various measurement scenario are summarized in Table 2. Here, x’ denotes the
axis lying midway between the positive x- and positive y-axes, y' represents the axis lying midway
between the negative x- and positive y-axes, and / denotes inversion. Note that an object with high
symmetry inherently includes lower symmetries; for example, C4(z) includes Cx(z), and T Ce(z)
includes both C3(z) and TC>(z). The symmetries tabulated in this classification scheme represent the

lowest symmetries that will result in a particular class.

Table 2. Symmetries for each measurement scenario.

Class Jones matrix Symmetries
Oblique incidence Normal incidence
Transmission Reflection Transmission Reflection
I Jss =JIpp N/A N/A a(x'z) a(x'z)
(For a(y'z) o(y'z)
transmission) Cu(2) Cu(2)
Tao(xy)o(x'z) To(x'z)
Jss = _Jpp .‘Ta(xy)a(y 'Z) TO'()/ 'Z)
(For reflection) To(xy)Ca(z) TCy(2)
II Jsp = —Jps TCy(y) TCa(z) Cu(2) o(x'z)
(For both o(xz) o(xz) TCa(x) a(y'z)
transmission and TC(y) TCx(2)
reflection) o(xz) T
o(xz)
I Jsp =Jps TI Ta(yz) o(x'z) Ca(2)
(For both o(xz) o(xz) a(y'z) To(yz)
transmission and Ta(xy) To(xz)
reflection) TCa(x) o(xz)
o(xz)

Unlike the nondepolarizing Mueller matrix, which preserves the degree of polarization, the
depolarizing Mueller matrix transforms some or all totally polarized incident states into partially
polarized or unpolarized emerging states. This transformation is caused by scattering, spatial

inhomogeneity, or the inherent spatial, spectral, or temporal averaging nature of measurement devices
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[10,20]. For instance, a film sample has no interference effect due to its thickness is greater than the
coherence length. Detailed formulations for calculating the radiative properties of thick films using

the ray-tracking method without the interference effect can be found in Ref. [1].

Depolarizing Mueller matrix has a total of 16 degrees of freedom due to the depolarizing
contributions. It cannot be converted into a single Jones matrix. However, the depolarizing Mueller
matrix can be linearly decomposed into up to four nondepolarizing Mueller matrices [ 10]. Therefore,
if a depolarizing and inhomogeneous medium satisfies the symmetries tabulated in Table 2, one can
still categorize its Mueller matrix into specific classes in Table 1, since the matrix is the sum of all

nondepolarizing Mueller matrix components.

For measurement scenario based on a diffraction medium where the emergence angle is not
equal to the incidence angle, the relations outlined in Table 2 will not hold, as the symmetries are
determined under the assumption of specular reflection and transmission. However, if the wave
interaction remains specular, the symmetry classification scheme remains applicable. An example is

the zeroth-order diffraction of a grating structure.

3. Numerical verification

Two sets of structures are used to validate the methodology. The first set includes planar slab
and multilayer structures with specular reflection and/or transmission. The second set consists of

grating structures with multiple propagation diffractions.

3.1. Planar structures

The 4x4 transfer matrix method, originally put forward by Teitler and Henvis [41,42], has
been extensively used to compute the Fresnel coefficients of anisotropic slabs and multilayer
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structures. This method can be extended to calculate bianisotropic multilayer structures with a full
constitutive tensor [43]. Five types of metamaterials, including biaxial, gyroelectric, gyromagnetic,
magnetoelectric, and multilayer structures, are utilized to demonstrate the appropriateness of the
methodology. Symmetries can be either determined via performing transformations to the structure
schematics, or by applying an equivalent mathematical transform on the constitutive tensors. With
the help of symmetry analysis, Mueller matrices of each example are categorized into classes. In the
following examples, a consistent wavelength of 5 um, layer thickness of 1 um, and an incidence angle

of @ = 45° for oblique incidence are chosen for all slabs and multilayer structures.

The first type of structure is planar slab made of biaxial crystal, characterized by three
principal axes corresponding to the crystalline directions [100], [001], and [010]. Biaxial materials
are reciprocal, thus being T'-invariant. Calculations are carried out based on the dielectric function of
the a-phase MoQOs3 [44]. Figures 3a — 3¢ depict three scenarios of reflectance measurement for the
biaxial slab with different principal axis orientations. The constitutive tensors and the resulting
Mueller matrices are provided on the right side of the schematics. In the first scenario depicted in
Figures 3a with oblique incidence, the [100] principal axis of the medium is aligned with the z-axis
direction, while the rest are arbitrarily oriented. Predicted from the methodology, the structure
corresponds to class II due to the T'C>(z) symmetry. This is confirmed by the resultant Mueller matrix
having Js, = —Jps. In the second scenario as shown in Figure 3b, the [001] principal axis is aligned
with the x-axis direction. T'a(yz) symmetry is identified, and the corresponding class is III according
to both prediction and calculation. Figure 3c illustrates a scenario with normal light incidence and all

principal axes arbitrarily oriented. The symmetry obtained is 7', and the corresponding class is II.
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Figure 3. Scenarios of reflectance measurement for the biaxial slab with different principal axis orientations.
Biaxial crystal at 8 = 45° incidence with (a) [100] principal axis in z-axis direction while the rest are arbitrarily
oriented and (b) [001] principal axis in x-axis direction, (c) and at normal incidence with all principal optics

axes arbitrarily oriented.

The second set of scenarios as depicted in Figures 4a-4c are reflectance measurements for
gyroelectric slabs. These slabs are characterized by a tensorial & with opposite off-diagonal elements,
a scalar 7, and f = f =0 [43,45]. Examples include magneto-optical materials [46,47], magnetic

Weyl semimetals [48], and topological insulators [49]. The off-diagonal terms are induced by the

external magnetic field B for magneto-optical materials or due to Weyl node separation b in
momentum space for magnetic Weyl semimetals. These vectors are pseudovectors and comply with

pseudovector rules when transformed by reflection or inversion [50]. For simplicity, they are

uniformly denoted as B in the schematics. It is assumed that the material is isotropic with diagonal
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Figure 4. Scenarios of reflectance measurement for gyroelectric slabs with different magnetic field orientations.
At 6 = 45° incidence with magnetic field B arbitrarily oriented (a) in x-y plane and (b) in y-z plane, and (c) at

normal incidence with B lies in x"-z plane.

permittivity, 1.e., & = &, = &. Calculations are based on the dielectric function of magnetic Weyl

semimetals [27]. Gyroelectric materials are nonreciprocal, and J° will result in the reversal of vector

B. In the scenario depicted in Figure 4a, the gyroelectric slab with the magnetic field arbitrarily
oriented in the x-y plane is illuminated by light at an oblique incidence angle. Through a combination
of the adjoint transform and a 2-fold rotation transform with respect to the z-axis, an invariant
structure is obtained, resulting in the 7'C>(z) symmetry of the structure. The corresponding Mueller
matrix affiliates with class I1. Figure 4b depicts a scenario with the magnetic field arbitrarily oriented

in the y-z plane. Here, the symmetry obtained is Ta(yz) and the resultant Mueller matrix is within

class III. Figure 4c illustrates normal light incidence on the structure with the magnetic field B
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arbitrarily oriented in the x"-z plane. In this case, the structure shows T'o(x’z) symmetry, leading to

class I for the corresponding Mueller matrix.

The example depicted in Figure 5 is for the transmitted Mueller matrix of a gyromagnetic slab
under oblique light incidence. Typically, gyromagnetic materials, such as ferromagnets and ferrites
[43,45], are characterized by a scalar &, a tensorial i with opposite off-diagonal elements, and
f = .f =0. Calculations are based on a constant constitutive tensor as provided by Ref. [43]. When
magnetized to saturation by an external DC magnetic field, gyromagnetic materials acquire a tensorial
magnetic permeability with the magnetization pseudovector denoted by M , which conforms to the

same rules as the magnetic field B follows. In the schematic, the magnetization vector M lies in the
x-z plane. Therefore, the 7 C»(y) symmetry within the structure results in class II for the corresponding

Mueller matrix.

F=(4+0.1)I
2+0.1 0.2 0
B=| -02i 2+01i 03i
0 =03 2+0.1
Gyromagnetic F=7=0

= 0.64+0.73i  —0.035 - 0.037i]

~ 10.035 + 0.037i 0.49 + 0.71i

TC()
Group I

Figure 5. Scenarios of transmittance measurement for a gyroelectric slab at an incidence angle of 8 = 45° and

the magnetization M oriented in the x-z plane.

In magnetoelectric materials, such as the natural materials like Cr,O3 and TbPO4 [51], the
magnetic field induces electric dipoles and electric field induces magnetic dipoles. Additionally, the
magnetoelectric effect has been observed in nano/microstructures such as split-ring resonators [52,53].
Figures 6a and 6b illustrate scenarios of reflectance measurements of split-ring resonator-based

metasurfaces with oblique incidence. The pattern of the metasurface is in the subwavelength range,
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allowing the material to be considered homogeneous with a constitutive tensor approximated by

effective medium theory [37,38]. In Figure 6a, the unit cell of split ring resonator-based structure is

depicted with the ring split facing toward the negative y-axis. Here, magnetic field in the z-direction

will induce electric dipoles in the x-direction due to the asymmetry of the split-ring structure.

Likewise, electric field in the x-direction generates unbalanced currents, leading to magnetic dipoles

in the z-direction. Consequently, the effective electric-magnetic cross-coupling

To(yz)
Group Il

Eppp = diag(2 +0.1i,4 + 0.1,6 + 0.1i)

~ 0 0 —02i
{gff=[0 0 0 :|

0o 0 0
ﬁeff =diag(3 + 0.1i,6 + 0.1i,9 + 0.11)
- 0 0 0
(eff = l 0 0 0]
02i 0 O

—0.0011 — 0.0015i

J = [ —0.61 + 0.23i
—0.36+0.17i

—0.0011 — 0.0015i

o(xz)
Group Il and I

Er = diag(4+ 0.13,2 + 0.1i,6 + 0.10)

- 00 0
feff =10 0 —021]
00 0
Horp = diag(6 + 0.1i,3 + 0.1i,9 + 0.1i)
. 0 0 0
ceff = [0 0 0]
0 02 0
J= [—0.14 + 0.069i 0 ]
- 0 0.16 — 0.096i

Figure 6. Scenarios of reflectance measurement for effective magnetoelectric materials based on split ring

resonator with the ring split facing toward (a) negative y-axis and (b) negative x-axis direction.

tensors have nonzero elements é?13 =—i& and 5 31 =i& . The permittivity & and permeability /i are

diagonal. Such split-ring-based metasurface is reciprocal and T-invariant. A representative constant

constitutive tensor is used for calculation. With T'a(yz) symmetry, the Mueller matrix of the structure

belongs to class III. In contrast, the ring split of structure shown in Figure 6b is facing toward the

negative x-axis direction, leading to nonzero electric-magnetic cross-coupling terms &,3 =—i& and
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f 3, =i . Since this structure exhibits mirror symmetry o(xz), the resultant Mueller matrix is within

both classes II and III simultaneously. This results in zero off-diagonal blocks in the Mueller matrix.

The last scenario as depicted in Figure 7 involves transmittance measurement of a multilayer
structure with oblique light incidence. Here, a gyroelectric layer with a magnetic field oriented in the
negative x-axis is placed on the top of an isotropic slab. The calculation is based on magnetic Weyl
semimetal for gyroelectric material and glass for isotropic material. Although each single slab holds
T Cx(y) symmetry, their combination shows no symmetry, and the resultant Mueller matrix does not

attach to any of the classes.

8.8+ 24i 0 0
= 0 88 + 24i —7.4i
0 7.4i 8.8 + 2.4il,,
=1 and ?: ?: 0
4—
=
. B
F=(@8+001101 Gyroelectric
5 Isotropic

f=land §={=0 \

J= [ 0.18 + 0.68i 0.049 + 0.0431]
—0.059 — 0.042{ 0.37 + 0.38{

Figure 7. Oblique incidence on a multilayer structure without exhibiting any symmetry. The top layer is a

gyroelectric slab with B oriented in negative x-axis, and the bottom layer is isotropic.

The calculated Mueller matrices for planar structures as described above validate the
prediction from symmetry classification scheme. Moreover, other scenarios as given in Ref. [16] also

find consistency with the proposed methodology.

3.2. Grating structures

In this section, examples of nonplanar structures are studied with both reciprocal and

nonreciprocal diffraction gratings are considered. The first example is an aluminum grating subjected
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to conical light incidence as shown in Figure 8. This grating has a period a =4 um, width w =3.6 um,
and height 2 = 1.2 um. At the chosen wavelength 4 = 4 um, the dielectric function ¢ = —1405+521i.
The zenith angle and azimuthal angle of incidence are set to & = 80° and ¢ = 45°, respectively. Given

that a 1is comparable to 4, multiple propagation diffraction orders are presented.

Figure 8. A diffraction grating with a conical incidence with two propagating diffraction orders. The aluminum
grating with relative permittivity ¢ = —1405+521; and geometrical parameters ¢ = 1 pm, w =0.54 um, and 4 =
0.39 um, is placed on the substrate of the same material. Operation wavelength is selected at A = 4 um with a
zenith angle of incidence § = 80° and tilted plane of incidence at ¢ = 45°. Propagating diffracted waves are

marked by solid arrows with —1% and 0" represent the diffraction orders.

Rigorous coupled-wave analysis (RCWA) [3] is employed for the calculations. The analysis reveals
that the —1%' and 0 orders are propagating, with their reflection Jones matrix given as:

J-lst _{—0.21+0.004i 0.04-0.009i }

0.32-0.006i  —0.06+0.007; (14)
For the —1°% diffraction order, and
J0t _ ~0.35-0.320i  0.24+0.076i
| —024-0.076i —0.95-0.006i (15)

For the 0 diffraction order. Note that the elements of J" satisfy relation J;, = —J,s, which corresponds
to symmetry class II. This is because the specular reflectance condition is met for the 0™ diffraction
order and the structure exhibits TCa(z) symmetry. However, for J™'*, no relation is found among

Jones elements since the —1%" diffraction order violates the specular reflection condition.
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The second set of nonplanar structures as depicted in Figure 9a and 9b consist of two
nonreciprocal diffraction gratings based on magnetic Weyl semimetals. Both gratings have a period
a =" um, width w = 3.5 um, and height # = 1.2 um. For the calculations, an operational wavelength
A=9 um, incidence zenith angle 8 = 45°, and incidence azimuthal angle ¢ = 45° are selected. Though
multiple propagation diffraction orders exist, only the 0™ order reflection is discussed. These two

gratings exhibit different symmetries. The permittivity tensor of the first grating and its substrate is

given by
-1.41+0.476i 0 -9.41i
E= 0 —1.4+0.476i 9.41i (16)
9.41i -9.41i -1.4+0.476i

It describes a Weyl node separation b =2nm" aligns with the grating stripe direction [54]. The
grating exhibits 7'C>(z) symmetry and the calculated Mueller matrix should be within class II. The
Jones matrix becomes

J0th {0.31+O.488i 0.38—0.3311}

T 203840331  —0.56—0.410i (17)

has Jy, = —Jps that aligns with the prediction. In contrast, the latter structure has b =2nm’! along the

negative z-axis direction, with the permittivity tensor:

—-1.41+0.476i —-13.3i 0
E= 13.3i -1.4+0.476i 0 (18)
0 0 -1.4+0.476i

Unlike the former scenario, rotation with respect to the z-axis has no effect on the pseudovector b
while T will reverse its direction. Consequently, 7'C>(z) symmetry is broken, and no symmetry can
be identified for this structure. The corresponding Mueller matrix, calculated using RCWA, is given
as:

Jom { 0.40+0.360i —0.10+0.1101}

T 1-0.294+0.0951  —0.73-0.320i (19)
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which does not belong to any of the symmetry classes. Note that according to the incomprehensive
classification criteria as given in Refs. [17,18], the structure has rotational symmetry, and the Mueller
matrix should fall within class II. In this study, the classification scheme provides accurate prediction
with the help of symmetries. Thus, the proposed methodology demonstrates its applicability in

analyzing nonplanar diffraction structures.

Figure 9. Scenarios of reflectance measurement for nonreciprocal diffraction gratings based on magnetic Weyl
semimetals with (a) Weyl node separation b along the grating stripe direction, and (b) along the grating stripe
direction, and along the direction of negative z-axis. Both gratings have a period @ = 7 um, width w = 3.5 pum,
and height # = 1.2 um. Operation wavelength is selected at A = 9 pm with a zenith angle of incidence 6 = 45°

and tilted plane of incidence at ¢ = 45°.

Conclusion

This study sheds light on the relationships between the Mueller matrix and the symmetries of
structures, proposing a symmetry classification scheme to predict the pattern of Mueller matrix, that
is applicable to both reciprocal and nonreciprocal materials. The symmetries of measured sample and
the measurement conditions will result in specific symmetric relations among the Mueller matrix
elements. This allows the reduction of independent elements of Mueller matrix. Numerical
simulations of various structures including biaxial, gyroelectric, gyromagnetic, and magnetoelectric
materials, are carried out to validate the appropriateness of the methodology. Multilayer structures

and nonplanar diffraction gratings, with or without reciprocity, are analyzed to illustrate the capability
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and limitation. This work offers an analytical framework for understanding the symmetric relations

of Mueller matrices, with practical implications for easier ellipsometry measurements.
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