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Topo-Geometric Analysis of Variability in Point
Clouds Using Persistence Landscapes

James Matuk ¥, Sebastian Kurtek ©, Senior Member, IEEE, and Karthik Bharath

Abstract—Topological data analysis provides a set of tools to un-
cover low-dimensional structure in noisy point clouds. Prominent
amongst the tools is persistence homology, which summarizes birth-
death times of homological features using data objects known as
persistence diagrams. To better aid statistical analysis, a functional
representation of the diagrams, known as persistence landscapes,
enable use of functional data analysis and machine learning tools.
Topological and geometric variabilities inherent in point clouds
are confounded in both persistence diagrams and landscapes, and
it is important to distinguish topological signal from noise to draw
reliable conclusions on the structure of the point clouds when using
persistence homology. We develop a framework for decomposing
variability in persistence diagrams into topological signal and topo-
logical noise through alignment of persistence landscapes using an
elastic Riemannian metric. Aligned landscapes (amplitude) isolate
the topological signal. Reparameterizations used for landscape
alignment (phase) are linked to a resolution parameter used to
generate persistence diagrams, and capture topological noise in
the form of geometric, global scaling and sampling variabilities.
We illustrate the importance of decoupling topological signal and
topological noise in persistence diagrams (landscapes) using sev-
eral simulated examples. We also demonstrate that our approach
provides novel insights in two real data studies.

Index  Terms—Amplitude-phase
landscapes, topological data analysis.

separation, persistence

1. INTRODUCTION

T IS difficult to draw statistical insights from datasets where

each observation corresponds to an object with rich structure.
Consider the data shown in Fig. 1, where panels (a) and (b)
correspond to three-dimensional brain artery trees of different
subjects, previously studied by [1] to understand how demo-
graphic factors are associated with brain structure; panels (c) and
(d), on the other hand, display two example prostate gland biopsy
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Fig. 1. Left: Brain artery trees for (a) 20 year old and (b) 79 year old subjects
from [1]. Right: Images of a prostate biopsy with (c) benign and (d) malignant
carcinoma from [2].

images, which were studied by [2] to aid prostate cancer progno-
sis. The visual differences between the observations within each
of the two studies are striking. However, formally quantifying the
differences between these objects, to enable statistical analysis,
is a challenging and important problem. Topological Data Anal-
ysis (TDA) focuses on applying tools from (algebraic) topology
to summarize and quantify the structure in complex data objects.
In essence, TDA can be viewed as a general toolbox that enables
discovery of topological and geometric features in complex data
that can be used for subsequent analysis using existing statistical
and machine learning methods.

Persistence homology is a prominent tool within TDA that
provides a multi-resolution view of the topological and geo-
metric features of data represented as point clouds in R, e.g.,
samples of points on the brain artery trees or outlines of prostate
glands shown in Fig. 1. As a resolution parameter changes, so
do the features of the data, and these changes are recorded in
persistence diagrams. Statistical analysis of samples of persis-
tence diagrams are based on distances, such as the Wasserstein
distance or bottleneck distance, which enable computation of
descriptive statistics [3], [4], [5] and confidence regions [6]. Car-
rying out statistical analysis directly on the space of persistence
diagrams is difficult since they are multisets of planar points.
This motivates using functional representations (summaries) of
diagrams that are more amenable for statistical analysis [2]
using tools from functional data analysis [7]. In this paper,
we analyze persistence landscapes [8], although it will become
clear that the proposed methods can be used on other functional
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summaries, e.g., silhouettes [9], density estimates [10], rank
functions [11], persistence entropy functions [12], persistence
intensity functions and images [13], [14], with suitable modifica-
tions. Importantly, features extracted from persistence diagrams
as well as the aforementioned functional summaries of diagrams
have utility in modern machine learning approaches [15].

For point cloud data in R? generated from a distribution
with support on a lower-dimensional manifold M, persistence
diagrams are typically computed by constructing geometric
simplicial complexes based on an open cover of metric balls
centered at data points with respect to the Euclidean distance on
R4, The construction engenders noise in persistence diagrams
that is complementary to topological signal in the point cloud,
since distances between data points in R? are sensitive to,
mainly, three choices: (i) arbitrary (global) scaling of the point
cloud; (ii) geometric configuration of the point cloud in R?
with respect to the manifold M; (iii) sampling variability, or
density, of the points. The choices are linked to an implicit
geometry of M: they imply an embedding M < R9, under
which a diffeomorphism of M, which preserves its topology,
affects distances between points in M when measured using
the Euclidean distance in the image of the embedding in RY.
This results in different persistence diagrams for point clouds
sampled from topologically identical manifolds M. Since the
map that takes a persistence diagram to a persistence landscape is
invertible [8], it is natural to query how such ‘topological noise’
manifests in a persistence landscape, and whether it is possible
to exploit the structure of the space of landscapes to mitigate
noise and amplify topological signal. The resulting amplification
of topological signal has the potential to enhance statistical or
machine learning analyses.

We refer to topological noise as any variation in the data
that is complementary to topological information, although we
emphasize that the terminology does not imply that geometric
features resulting from the above-mentioned choices are of no
use in downstream statistical tasks. The situation is similar in
spirit to Kendall’s definition of landmark shape as all geometric
information that remains after accounting for translation, scale
and rotation variabilities [16]; in this setting, position, global
scale and orientation of a set of landmark points are viewed
as variation complementary to geometric shape. However, in
many applications, these features of an object may be valuable
descriptors [17]. Thus, the main focus in Kendall’s shape anal-
ysis lies in separating geometric shape information from the
other sources of variability, and using them as complementary
features of landmark configurations in downstream analyses.
From this perspective, in the present setting, the only true source
of nuisance variation is measurement error, which in general, is
confounded with geometric and topological information.

A persistence diagram for a point cloud in R? is a multiset
of points on the plane that offers a multi-resolution summary of
the homology of the data, constructed using geometric filtered
complexes on R9 based on balls of radius ¢ > 0 around each
datum; the radius ¢ acts as the resolution parameter in the sense
that as it is increased, births and deaths of topological features
of the point cloud are encoded in the corresponding persistence
diagram. A persistence landscape is a collection of triangular
functions ¢ — A(¢) > 0,and is a bijective multivariate functional
summary of a persistence diagram. As such, how the value of ¢
is increased is a data analytic artefact, and should not affect the
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topological signal in the point cloud. In practice, however, in-
creasing  at different rates will result in different persistence dia-
grams, and hence, persistence landscapes. In particular, we focus
on establishing a relationship between topological signal/noise
and the two main sources of variation in a functional dataset
consisting of persistence landscapes: amplitude or shape,' which
captures y-axis variation, and phase, which tracks variation in
the relative timing of shape features, e.g., extrema. We further
show that phase variation in persistence landscapes is tied to
the rate of increase of the resolution parameter £. In functional
data analysis, the perils of not accounting for both sources
of variation when computing summaries such as the mean or
exploring dominant directions of variation via (functional) prin-
cipal component analysis (PCA) are well-documented (see e.g.,
[18], [197). Evidently, such perils plague analysis of persistence
landscapes, when viewed as points in a Banach space equipped
with the L? norm: the pointwise mean of a sample of persistence
landscapes can fail to be one, and this affects interpretability
of the corresponding persistence diagram. Instead, computing
a mean landscape using only the amplitude components of a
sample of landscapes by registering, or aligning, them will better
preserve shape, and mitigate effects of topological noise. In such
a setting, our main contributions are as follows.

® We establish an explicit link between the rate of increase of
the resolution parameter ¢ in a simplicial filtration that gen-
erates a persistence diagram and magnitude of phase vari-
ation present in the component functions A, as captured
through a reparameterization s — ~y(s) of the landscape
A(s) = (A1(s),...,Ak(s)). Specifically, we show how ~
is related to variation in persistence diagrams induced by
(i) (global) scaling of the data (Fig. 3), and (ii) sampling
variability of data (Fig. 4).

* We show that alignment of landscapes {A;}! ; by de-
termining optimal reparameterizations {v;}! ; leads to
an average landscape that better preserves the structure
of the sample of landscapes. This induces a separation
of variability in persistence landscapes into amplitude or
shape, which captures the topological information in a
dataset, and phase, which captures leftover variation due
to geometric, global scaling and sampling variabilities.
A key consequence is the ‘denoising’ of points in the
corresponding persistence diagrams by transforming them
using {~; }; therefore, computing persistence diagrams for
datasets {X;} using simplicial filtrations with balls of
transformed radii {t — ~;(¢)} enhances topological infor-
mation in persistence diagrams (Fig. 6).

®* We demonstrate that the proposed approach for statisti-
cal analysis of landscapes offers new insight, and adds
substantially, to the analyses of the brain artery tree
data in [1] (Section IV) and prostate cancer data in [2]
(Section V).

To the best of our knowledge, this is the first work in the
literature to establish a concrete link between misalignment of
persistence landscapes, and topological noise in persistence dia-
grams. However, in a certain sense, our approach in determining

I'The mathematical definitions of amplitude and shape are different in func-
tional data analysis and shape analysis literatures. However, the two notions
are very closely related for persistence landscapes, and we hence use them
interchangeably.
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Fig.2. Example of topological noise: Point clouds X, X5, X3 (with different
sampling) from topologically identical spaces (differing only in scale) lead to
different persistence diagrams D1, D2, D3 and hence landscapes A1, A2, As.
Our approach: Construct aligned landscapes A}, A3, AS and use alignment
information to get transformed/denoised diagrams D{, D3, Dg: use aligned
landscapes for statistical analysis.

Data

an optimal rate of increase of ¢, given by ~(%), falls between the
standard approach of fixing a ¢ for each z; and having ¢ change
with x;, as with a multiscale approach that allows each ball
B;, (t;) to have a possibly different radius ¢; [20].

The remainder of the paper is organized as follows. In Sec-
tion II, we further motivate alignment of persistence landscapes
and provide technical details of our approach. In Section III, we
use simulation studies to illustrate the importance of amplitude-
phase separation in persistence landscapes for topological de-
noising. In Sections IV and V, we analyze the brain artery
tree [1] and prostate cancer [2] datasets, respectively. In both
cases, we focus on the scientific questions that motivated the
two studies, and illustrate the benefits and novel insights gained
from separate statistical analysis of the amplitude and phase
components of persistence landscapes. In Section VI, we provide
a short discussion. Appendices A-C in the supplement contain
additional simulated examples and real data analysis results.

II. ELASTIC FUNCTIONAL DATA ANALYSIS OF PERSISTENCE
LANDSCAPES

Before providing the technical details of our approach, we
provide a summary of the proposed analysis pipeline in Fig. 2
using three point clouds X;, Xa, X3 with degree-1 (loops),
one-dimensional persistence landscapes Aj, Aa, A3. Topolog-
ical noise is induced purely through scale (radii of circles)
and sampling variability. Notice how transforming the diagrams
{D;} using {~;} from alignment of {A;} collapses the three
points to a single one (denoising), as it should be since spaces
from which {X;} are sampled are topologically identical. In
this setting, it is evident that the global scale and sampling
variability are captured purely in the phase component of the
persistence landscapes. The aligned landscapes, in turn, capture
the topological information about the underlying spaces from
which the data was sampled: they all contain a single maximum
corresponding to a single cycle, a topological feature that arises
at the same exact time across the three point clouds. Further, the
aligned landscapes are identical to each other up to a uniform
scaling of the function values, i.e., they have the same shape. In
the remainder of this section, we review the basics of persistence
diagrams and landscapes, discuss distinct sources of variability
in persistence landscapes, and specify a statistical framework
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to analyze these sources of variability using tools from elastic
functional data analysis.

A. Persistence Diagram and Landscape

For a point cloud X = {xy,...,zx} in R%, equipped with
the standard Euclidean norm, generated from a distribution with
support on alower-dimensional manifold M, persistence homol-
ogy is a tool that tracks homological features, such as connected
components (degree-0), loops (degree-1), voids (degree-2), etc.,
of the point cloud at different resolutions [21]. Homology is
computed using geometric filtered complexes constructed from
the union of balls UY_, B,, (¢) around each point, each with the
same radius ¢ > 0. The Cech complex, Cech(X,t), consists
of k-simplices whose nodes have &+ 1 many balls with a
non-empty intersection. In contrast, the Vietoris-Rips complex,
or just Rips complex, Rips(X,¢), is easier to compute and
consists of k-simplices whose nodes have k£ + 1 many balls
with a non-empty pairwise intersection. At each fixed radius
t, the homology of the simplicial complex is a snapshot of the
features of the point cloud. Considering all radii, £ > 0, provides
a multi-resolution view of the features of the point cloud where
features are born and die at different values of £. Persistence
homology tracks the features with a persistence diagram, a func-
tion from a countable set to {(x,y) € R?|x < y}, consisting of
birth-death pairs, (b;, d;), the times at which the j feature was
born and its corresponding death time. A persistence diagram
is thus a multiset consisting of these points and represents a
multi-resolution summary of the homology of the point cloud;
see [21] for more general treatments of persistence homology
and persistence diagrams.

A persistence landscape is an invertible functional represen-
tation of persistence homology computed from a persistence
diagram [8]. For X = {xy,...,zx}, let DP(X) denote its
degree-p persistence diagram consisting of m birth-death pairs
{(bj,d;)}2,. The basic units of persistence landscapes are
triangular functions computed using coordinates of points in a
persistence diagram, £ (t) = (t — bj) Ly, <e<1(v,44,)) T (45 —

i1 (b, 4a,)<t<a; ) FOrk € N, the k'™ landscape function is de-
finedas A} () = Ec‘hlma.x £ (t), which is the k" maximum of the
=L...m

triangular functions with A, (¢) = O for all k > m by definition.
Each function 11: thus begins and ends at zero. In practice, we
truncate the number of landscape functions used for data analysis
to the K many that have some positive values along their domain.
The degree-p persistence landscape for X is defined as the
collection of landscape functions A% (t) = {A}(t) }1_, . In this
work, we consider degree-p persistence landscapes of samples of
point clouds X, ..., X, simply denoted by A, (%),...,A,(2);
we explicitly specify the degree p under consideration in all
simulated and real data examples.

B. Effects of Global Scaling, Sampling and Geometric
Variabilities

The construction of geometric simplicial complexes on X
engenders noise in a persistence diagram that is complementary
to the topological signal in the point cloud, since distances
between points in R are sensitive to (i) (global) scaling, (ii)
geometric configuration, and (iii) sampling variability of the
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Fig.3. Same topology with scale variability only: Construction of Rips filtra-

tion for two point clouds on circles with radii 0.5 (red) and 1 (blue) at resolutions
(a) t =.1545, (b) t = .3090, (c) t = .5, and (d) ¢t = 1. (e) Corresponding
persistence diagrams and (f) landscapes.

point cloud. Our interest lies in studying how changes in (i)-(iii)
result in different persistence diagrams constructed using Rips
or Cech simplicial filtrations.

Consider the simple setting where the manifold M is a circle
ofradiust > 0, embedded into R? as § + (¢ cos 6, t sin #). Note
that all circles with radius ¢ > 0 are topologically identical.
However, changing the radius ¢ changes the metric dt? + t2d§?
on R2, and hence its restriction to the circle; this amounts
to changing the embedding that provides coordinates for the
observed points (geometric configuration), which ultimately
changes the distance between points, as measured in R?, used to
construct the filtration. Fig. 3 illustrates this by considering two
point clouds consisting of ten equidistant points along circles
withradii 1 (blue) and 0.5 (red), respectively. We consider degree
p = 1 persistence homology (loops) with K = 1-dimensional
landscapes when topological noise is entirely due to scale ef-
fects. In Fig. 3(a)—(d), balls of different radii ¢ are drawn around
the points in the point clouds. In (a), when £ = .1545, a loop
forms for the red point cloud, while there is no loop present
for the blue point cloud. In (b), when ¢ = .3090, a loop forms
for the blue point cloud, and the loop persists for the red point
cloud. In (c), when ¢ = .5, the loop closes for the red point
cloud, and persists for the blue point cloud. Finally, in (d), when
t = 1, the loop closes for the blue point cloud. The loops can
be summarized by the birth-death pairs (.1545,.5) and (.3090,1)
for the red and blue point clouds, respectively. Panel (e) shows
them in the persistence diagram, while panel (f) displays the
corresponding misaligned persistence landscapes.

In the persistence diagram, (b, d) coordinates of the red point
are half of those for the blue, and this matches the ratio of the
radii of the two circles; this implies that the persistence landscape
for the red point cloud is shorter and shifted to the left by a
commensurate amount as compared to the landscape for the blue
point cloud. This scale-induced topological noise thus arises by
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Fig. 4. Same tn%o]ogy with scale and sampling variabilities: (a) Persistence

landscapes {A;}2%; of 20 point clouds of the type in Fig. 2. (b) Aligned per-
sistence landscapes {A; (')'1;)}?21. (c) Mean landscape after (blue) and without
(red) alignment. (d) Noisy persistence diagrams {(b;, d;)}22, from 20 point
clouds. (e) Estimated reparameterizations {v;}22,. (f) Denoised persistence
diagrams {(v; ' (B:),7; *(di))}22,.

a common scaling of the triangular function £1, given by

E% (t)=(t—- ab)“{abgtg%(b-‘,—d)} + (ad — t)I[{%(Hd)ggad}:
(1)

where a = 2 (when blue point cloud is derived from red). If
a < 1, the triangular function will be shifted to the left along
the domain and will be shorter relative to o« = 1; if @ > 1, the
function will be shifted to the right and taller.

In this example based on the circle, we are able to explicitly
link topological noise to a single parameter, the radius ¢ of the
circle, which governs the magnitude of both scale and geometric
configuration of points. In essence, when topological noise is
due to scaling, alignment of peaks of the persistence landscapes
will move points in a persistence diagram foward each other,
and thus amplify the topological signal. In other words, such
topological noise manifests entirely through phase variation
in the landscapes. In higher dimensions, it is not possible in
general to carry out this program since the restriction of the
metric on R? induced by the embedding of the manifold M
is more complicated. Nevertheless, we demonstrate through
numerical examples in Section IIT and Appendices A and B
in the supplement that alignment of persistence landscapes acts
as a denoising mechanism for the corresponding diagrams, even
when topological noise is not only due to scaling.

From the discussion above, it is clear that changing the em-
bedding (e.g., z — (z, vt — £2)) would have generated similar
topological noise in the persistence diagram. This of course
amounts to a change in the metric which ultimately results in a
change in the simplicial filtration. When sampling variability is
present (e.g., non-equispaced points on the circle), the situation
can be viewed as one involving local scaling of the point cloud,
and alignment of peaks of the landscapes will again induce
points on the persistence diagrams to move toward each other
(Section III-B, Figs. 4 and 6); similar comments apply to the
situation involving measurement error (points do not lie exactly
on M; Appendix A in the supplement, Figs. 1-3).
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C. Reparameterizing a Landscape and Denoising a Diagram

The discussion in the previous subsection suggests alignment
of persistence landscapes, by lining up peaks and valleys of
the component functions, as a viable denoising mechanism for
persistence diagrams. We propose to do this through shape
analysis of landscapes, viewed as parameterized curves. Our
approach is based on the elastic metric to compare shapes
of curves [19], based on a convenient transform of the land-
scape curves. Specifically, the transformation maps landscapes
into a Hilbert space, where geometric computations become
simplified; this stands in contrast to the Banach space setting
typically used for persistence landscapes. An important conse-
quence of this is that we are able to compute a mean landscape
based on its amplitude which, in contrast to the pointwise
landscape currently computed in a Banach space setting, better
preserves the shape of a landscape; moreover, the Hilbert space
structure provides an inner product to carry out PCA on the
amplitude or shape component of landscapes, which enables
one to study dominant modes of variation in samples of point
clouds.

By virtue of its definition, a landscape is parameterized by
the resolution (filtration) parameter £, used to construct the Rips
or the Cech simplicial filtrations, which in principle can be any
positive real. In order to choose a closed interval of R as a pa-
rameter domain, note that, given n persistence landscapes, there
always exists an 0 < s < cosuch that A;(¢) =0, Vi > s, i =
1,...,n. Given this, one can assume, without loss of generality,
the parameter domain to be the unit interval obtained through
rescaling by 1/s. Then, for each i =1,...,n, landscape A; is
a K-dimensional piecewise linear parameterized closed curve
[0,1] > ¢+ A;(t) € R with A;(0) = A;(1) = 0. This in turn
results in scaled persistence diagrams {(b; ; /s, di,;/s) }i2} =1
so that the birth-death pairs are in [0, 1]2.

Definition II.1: A persistence landscape (diagram) A
({(b;,d;)}) obtained by rescaling in the above manner is referred
to as a scaled persistence landscape (diagram).

We will simply henceforth refer to a scaled persistence land-
scape (diagram) as a persistence landscape (diagram), unless
explicitly mentioned to the contrary.

Since a reparameterization of a landscape A preserves its
image, its shape, modulo scale, is preserved. As the set of
reparameterizations, consider

['={y:[0,1] = [0,1] : 4 > 0, 7(0) =0, (1) =1},

the set of orientation-preserving diffeomorphisms of [0,1],
which forms a group under composition (- is the derivative of
7). The group I' acts on the set of landscapes from the right as
function composition: (A, v) — A(~). Alignment of landscapes
{A;} thus amounts to establishing correspondence between
(K -dimensional) points in the images ¢ — A;(¢), achieved by
determining optimal -; € I" such that the collection {A;(;)} is
‘optimally’ aligned, where optimality is defined with respect to a
metric-based matching functional. For each ¢, ; represents com-
mon phase variation in the component functions (A1,,...,Ak,)
of ﬁi.

Since the resolution/filtration parameter £ is the parameter
for a landscape when viewed as a closed curve, we observe the
following.
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Proposition 1: The map A — ®(A) := {(b;,d;)} that takes
a scaled persistence landscape A to a unique scaled persistence
diagram {(b;, d;)} is equivariant with respect to the action of
I" on the set of scaled persistence landscapes, i.e., ®(A(v)) =
v H(bs,ds)} = {(v " (B5), v (dy))}-

A useful way to think of the induced transform
{(v~1(b;),7%(d;))} on a persistence diagram is as a nonlinear
local scale change of the multiset of points that generalizes the
global scale change described in (1). This attempts to reverse the
effects of (i) working with rescaled persistence landscapes, and
(ii) potential topological noise induced through the geometric
construction of simplicial filtrations. Indeed, this is tantamount
to considering a geometric Cechor Rips filtration with parameter
~(t): for a point cloud X, the corresponding Rips simplicial
complex is defined as

o =[z1,...,zx] €Rips(X,7(t)) <= |zi — ;| < ()
= Uzl <t, Vi,j
since 7 is strictly increasing. Equivalently, the equivariant action
on ® implies that the metric induced by the Euclidean norm | - |
on RY is deformed by a differmorphism ! to track local scale
changes needed to preserve the integrity of topological signal in
the presence of topological noise.

However, some care is needed with this interpretation since
47 Y(|-|) fails to be a metric on R? if the function v~ ! is
not concave, since the triangle inequality will otherwise not be
satisfied. Moreover, the chain of inclusions

Rips(X,t') c Cech(X,t) C Rips(X,t), when

to [ 2d
v = Va+1

that characterize Rips and Cech complexes with parameter ¢
[22] need not be preserved under ~(¢) for all v € I'; since
preservation would depend on the magnitude of the derivative of
7, itis difficult to provide a lower bound for ~(¢) /~(¢') that holds
for all v € T'. In principle, it is possible to restrict attention to a
subset of diffeomorphsims y with a concave inverse that preserve
the chain of inclusions, but this may restrict how well one is
able to denoise persistence diagrams by aligning persistence
landscapes.

We can summarize the practical consequence of the above
discussion in the following manner: on point clouds { X}, the
equivariant action of I' ensures that, in the optimally aligned
landscapes {A;(~;)}, the extrema (mainly peaks) of the com-
ponent functions (A1,(7:), ..., Ak, (7:)) line up, and the trans-
formed points {(7; *(bi;),7; *(dij))}, consequently, will tend
to cluster, the number of which will depend on the topology of
the underlying manifold. As a consequence, if a Cech or Rips
filtration for X; is constructed with balls of radius +;(t), the
corresponding persistence diagram will be ‘denoised’.

D. Optimal Reparameterizations, Mean Amplitude Landscape
and PCA

The program described above rests on determining the optimal
reparameterizations {~;} from observed landscapes {A;}. In
principle, any registration or alignment procedure for curves
in RX can be used. Our choice is based on the highly suc-
cessful Elastic Functional Data Analysis (EFDA) framework, a
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Riemannian-geometric approach that utilizes the elastic metric
for curves in R¥. This framework is characterized by two impor-
tant theoretical considerations for the curve alignment problem:
(i) isometry, i.e., invariance to simultaneous reparameterization
of curves, and (ii) invariance of optimal reparameterizations to
rescaling of curves. These are addressed through the use of the
elastic Riemannian metric for comparing absolutely continuous
curves, which is difficult to compute in practice. For ease of
exposition, we refrain from providing the definition of the metric
and its properties; see Chapter 10 in [19] for details.

Let F denote the space of absolutely continuous curves in
RE equipped with the elastic metric. Practical use of the metric
is greatly simplified through use of the square-root velocity
function (SRVF) representation. For any curve § € F, its SRVF
is defined as

B Q(B) =q:=B(IBN 2

where 3 is the componentwise derivative and | - | is the Eu-
clidean norm on RX. The map Q : F — L?([0, 1], R¥) is
a homeomorphism [23] with inverse 3(t) = fg g(u)|g(w)|du,
and effectively ‘flattens’ the complicated elastic metric: the
distance d(/31, B2) between two absolutely continuous curves
with respect to the elastic metric equals ||Q(81) — Q(B2)|]2 =
llgr — gall2 = [, la1(£) — ga(#)|?dt]*/2, and the standard L2
metric on SRVFs of curves possesses desiderata (i) and (ii)
mentioned above.

Absolute continuity of a curve in R¥ is defined via absolute
continuity of its one-dimensional component functions. Ab-
solutely continuous functions in one dimension have constant
speed parameterization [24]. In the present setting, persistence
landscapes A : [0,1] — R¥ are piecewise linear curves. It is
known that the set of piecewise linear curves in R¥ is dense
in JF [25], and continuity of the map @) ensures that its image
under (), consisting of piecewise constant SRVFs, is dense in
L2%(]o, 1], RK).

Our definition of the amplitude (shape) of a curve and sub-
sequent statistical analysis approach are analogous to the defi-
nitions presented in [26] for univariate functions. The group I’
acts on F through composition, and since the map Q : F —
L2([0,1],R¥) is bijective, the action (g,7) = Q(A(y)) =
(g(7))/7 of T can be defined on L2([0, 1], R¥), under which,
the amplitude of alandscape A isits orbit [¢] := {(q,7) |y € T'}-
Since ||(g,7)||2 = ||g||2 forevery ¢ € L2([0,1],R*)and~ € T,
we note that I" acts by isometries on L2([0, 1], R¥). Under this
definition, two curves, A1, Ay, have the same amplitude if their
corresponding SRVFs are in the same orbit, i.e., there exists
a v €I such that g; = (gz,). The set of all orbits forms a
partition of Q@ and is the quotient space Q/I'. Hence, Q/I" defines
the amplitude space of persistence landscapes.

The amplitude distance between two landscapes A1, Ay € F
is defined as the distance between their corresponding SRVF
orbits [q1], [g2] € Q/T":

da(A1, Az) = d([q1]; [ge]) = min lr — (g2, )2- @
Key to the definition of the above distance is the invariance of

the L2 metric, under the SRVF representation, to simultaneous
reparameterization of curves. The function

7" = argmin ||q1 — (g2,7)ll2
~yer
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is then the optimal reparameterization of Ay to register or
align it to A;. Furthermore, 7" = argmin,,r [lg1 — (g2,7)l2 =
argmin,.r [le1q1 — (e2g2,7)|l2, ¢1,¢2 € Ry, ie., rescaling of
the curves does not alter the optimal reparameterization.

Denoising persistence diagrams from point clouds
Xi,...,X, requires determining optimal reparameterizations
1, - - - , Yn that jointly align persistence landscapes A1, ..., A,.
This requires a template landscape to align the individual ones
to. We use a data-driven template given by the mean amplitude
landscape. Denote by g¢1,...,q, the SRVFs of Ay,... A,
This mean is defined as the quantity that minimizes the sum of
squared amplitude distances:

n
15] = argmin min ||g — (g 2 3
o] = argmin 3 min la — ()l 3)
An orbit representative [fi,] is found by iteratively aligning
q1, - - - , gn to the current estimate of the mean and averaging the
aligned SRVFs to produce a new mean estimate; this is repeated
until convergence. For identifiability, we use the center of the
orbit of [fiq] as the representative element of the elastic mean;
henceforth, we simply refer to this element of the mean orbit
as fiy. For additional algorithmic details and the orbit center-
ing step, we refer to [26]. The corresponding mean amplitude
landscape /i € F is defined as Q (i)

The joint alignment of A4, ..., A, can then be achieved via
pairwise alignment of each A;, ¢ = 1,..., nto the mean /i using
(2) by determining the optimal reparameterizations

/S argm1n||;1q - (Qi: ’7)“21 1= 1: L
yer

which can be used to study phase variability. Details of methods
for statistical analysis of reparameterization functions, including
computation of a distance, averaging and PCA are available
in [27], and are omitted here for brevity.

Since the aligned landscapes A;(y;:), ¢ = 1,...,n,orequiva-
lently their SRVFs, (g;,:), describe amplitude variability in the
sample, a sample amplitude covariance function can be defined
as

———

Caltrw) = —= > (a0 9)(0) — fag(t)) (g6, 70)(w)
i=1

— fig(u))". @)
Amplitude-based PCA is carried out via eigendecomposition of
Cy(t, u),

Calt,u) = Y 7odu(t)do(w) .

b=1

&)

where ng, b € N are the primary directions of amplitude vari-
ability (amplitude PCs) and 73, b € N are variances in the corre-
sponding directions. Typically, one selects a finite number, B, of
principal components that describe a large portion of amplitude
variability. The aligned SRVFs can then be projected onto the B
directions of amplitude variability with largest variance, j3; , :=

S i(aisw)(#) — fig(t), do(e)dt, b=1,...,B, i=1,...,n,
where (-, -) is the Euclidean inner product in R . The PC scores,
Bi = (Bi,--- ,Bi,B)T, i =1,...,nserve as alow dimensional
Euclidean representation of the amplitude of landscapes. To
visualize the primary directions of amplitude variability, we

Authonzed licensed use limited to: The Ohio State University. Downloaded on December 27,2024 at 16:15:45 UTC from IEEE Xplore. Restrictions apply.



MATUK et al.: TOPO-GEOMETRIC ANALYSIS OF VARIABILITY IN POINT CLOUDS USING PERSISTENCE LANDSCAPES

compute F 5 Q1 (fig + v\/'?_bng), i.e., a landscape that is v
standard deviations from /i in the direction of ¢.

ITI. SIMULATION STUDIES

In this section, we present simulation examples which demon-
strate (i) denoising of persistence diagrams, obtained under scale
and sampling variabilities in point clouds, through alignment of
landscapes, and (ii) benefits of computing the mean landscape
and PC directions on the set of aligned landscapes as opposed to
computing a pointwise mean with unaligned ones, as currently
done in practice. The supplement contains additional examples
that (i) consider data sampled with additive noise (Appendix A),
and (ii) illustrate mean estimation (Appendix B).

For these examples, we use the ripsDiag function to com-
pute persistence diagrams using the Vietoris-Rips simplicial
complex for point clouds, and the landscape function to
compute landscapes from persistence diagrams; both functions
are part of the TDA R package [28]. In the EFDA framework,
registration, mean estimation and PCA for a sample of land-
scapes are implemented in MATLAB. Code and data to repro-
duce simulated examples are available here: https://github.com/
jamesmatuk/EFDA -of-Persistence-Landscapes.

A. Examples 1 and 2: Mean From Aligned Landscapes

Example 1: We consider 20 point clouds, where each
point cloud is generated by (i) sampling M from a
Discrete-Uniform(10, 30), (ii) sampling r from |N(1,0.32)|,
and (iii) generating M points uniformly on a circle with radius
7. Fig. 2 shows three (from 20) point clouds along with the
corresponding degree p = 1, K = 1-dimensional landscapes.
Fig. 4(a) shows all 20 landscapes {A;}22,. The amplitude and
phase variations in the landscapes are related to variability in
the radii, sample size and dispersion. Panels (b)-(f) demonstrate
the benefit of alignment of landscapes {A;}: a visually better
mean (c) is obtained by using the aligned landscapes {A;(7;)}
(b); transforming points in the persistence diagrams (d) using
reparameterizations {~;} (e) results in denoising (f) by collaps-
ing all points to a single one, since the topology of the 20 point
clouds is the same.

Example 2: InFig. 5, we consider mean estimation based on
degree p = 0, K = 1-dimensional persistence landscapes com-
puted from 20 point clouds that consist of 2000 points uniformly
sampled along two interwoven spirals. The tightness of the
spirals is random, so that the spirals complete Uniform(2, 5) rev-
olutions. Panels (a) and (c) show two examples of point clouds
generated in such a manner with the corresponding landscapes
shown in panels (b) and (d). The tighter spirals in (a) have points
closer together, and the resulting landscape is smaller and shifted
to the left as compared to the spirals in (c). When computing
landscapes, we only considered the point in persistence diagrams
that corresponded to the death time that coincided with the
intersection of the two spirals present in each point cloud.
Panels (e)-(g) show landscapes for all 20 point clouds, their
alignment, and a comparison of the mean before (red) and after
(blue) alignment. The mean based on aligned landscapes appears
to have sharper features that are consistent with the observed
landscapes. Based on the denoised persistence diagrams in (j),
in contrast to the noisy persistence diagrams in (h), it is evident
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Fig.5. Same topology with scale variability: (a) and (c) Two examples, from
20, of randomly generated point clouds. (b) and (d) Corresponding persistence
landscapes. (e) Persistence landscapes {A;}22; of 20 point clouds. (f) Aligned
persistence landscapes {A; (')'1;)}30 1- (2) Mean landscape after (blue) and with-
out (red) alignment. (h) Noisy persistence diagrams {(b;, d,;)}?gl from 20 point
clouds. (i) Estimated reparameterizations {;}22,. (j) Denoised persistence

diagrams { (v, (b:),7; *(d:))}22,.

that reparameterization of landscapes completely accounts for
the scale variability associated with the tightness of the spirals,
i.e., all points collapse to a single point in the denoised diagrams.

B. Example 3: PCA on Aligned Landscapes

We consider a more involved setting involving 20 point clouds
from two topologically different spaces: (i) one circle, and (ii)
two connected circles. Point clouds from (i) are drawn in the
same manner as in Example 1, but for the fact that the sample
size M is drawn from a Discrete-Uniform(20, 30). For point
clouds from (ii), the radius of the larger circle is drawn from a
|N(1,0.32%)|, while the radius of the smaller circle is a random
proportion of the larger circle, drawn from a Beta(10, 10). Panels
(a) and (c) in Fig. 6 show one point cloud each from (i) and
(ii). We consider degree p = 1, K = 2-dimensional landscapes
{A; = (Ai1,242)}22,. For point clouds from (i), A;; will have
one peak and A;3 = 0 for all £; for point clouds from (ii), A;;
will have two peaks and A;» will have a single peak.

The top and bottom rows in Fig. 6(e)—(g) show the primary PC
direction of variability within one standard deviation of the mean
following alignment and without alignment, respectively. Panel
(h) highlights the benefits of alignment of landscapes through
better separation of the two settings, (i) and (ii), when projected
along the first two PC directions. Specifically, in the top row,
when PCA is carried out on aligned landscapes, all of the point
clouds that have two loops have a negative first PC score, while
all of the point clouds with only one loop have a positive first
PC score. There is no such clear separation of the two groups
when PCA is performed on unaligned landscapes, as seen in the
bottom row of (h). The separation in PC scores after alignment
is directly related to the improved interpretability of the primary
PC direction shown in the top row in (e)-(g): the landscape in
(e) corresponding to —1 standard deviation from the mean in
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Fig. 6. Different topology with scale and sampling variabilities: (a) and (c)
Two examples, from 20, of randomly generated point clouds from topologically
different spaces (blue and red, respectively, in all relevant panels). (b) and (d)
Corresponding degree p = 1, K = 2-dimensional persistence landscapes. (e)
—1, (f) 0, (g) +1 standard deviation from the mean landscape in the first PC
direction, and (h) projection of landscapes onto the first two PC directions:
following alignment (top) and without alignment (bottom). (i) Noisy and (k)
denoised persistence diagrams. (j) Estimated reparameterizations.

(f) exhibits features of a landscape for a point cloud with two
loops, while the landscape in (g) corresponding to +1 standard
deviation exhibits features of a landscape for a point cloud with
one loop.

Following results from previous simulations, we expect to see
two clear clusters in the denoised persistence diagrams, using
reparameterizations {+;} shown in (j), corresponding to two
distinct topological features; this is indeed the case as seen in
(k). This is explained as follows: points concentrated around
(b, d) =~ (0.25,0.6) correspond to the single circle in the blue
point clouds and the large circle in the red ones. This is consistent
with the data generating process where the large circles across
the two groups correspond to each other. The points associated
with the second feature for the red point clouds are concentrated
around (b,d) =~ (0.1,0.25) and correspond to the additional
significant homological feature (smaller circle) that generally
has smaller persistence than the larger circle. It is very difficult
to discern such topological information from the noisy diagrams
in (i).

IV. ANALYSIS OF BRAIN ARTERY TREES

We now demonstrate the utility of the proposed approach on
3D point clouds representing brain artery trees. These data were
collected to understand population attributes of brain arteries and
how these attributes vary with demographic covariates. For a de-
scription of the experiment and data generation, see [29]. Infor-
mation regarding human subjects in the experiment is available
at http://insight-journal.org/midas/community/view/21. Chap-
ter 10.1 in [30] provides an overview and comparison of past
approaches used to analyze this data.
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The approach of Bendich et al. [1] computed persistence
diagrams from artery trees for 98 healthy human subjects, and
used persistence diagrams to extract the 100 largest birth-death
differences, {d; ; — b; ; }?2’113.0:1, for each subject. Restricting
focus to the largest differences serves as a denoising step, since
points close to the line b = d in a persistence diagram can be
thought of as noise [6].

This dataset is apt to demonstrate our approach for three
reasons, one a priori and the other two a posteriori: (i) since
each point cloud contains alarge number (order of 10°) of points,
in order to be able to compute the diagrams, [1] subsampled
3000 points from each point cloud, thus creating large sampling
variability; (ii) we uncover a significant scale effect between
the two sex groups of subjects (males versus females); and
(iii) we confirm the finding of [1] that there exists a significant
correlation between the topological structure of the brain artery
trees (as captured by PCs) and age. We note that these findings
are exploratory and serve as a proof of concept for the proposed
approach.

A. Exploration of Sex Differences Among Subjects

The starting point for our analysis are the persistence diagrams
available at https://marron.web.unc.edu/brain-artery-tree-data/,
and not the original 3D point clouds. From these, we compute
degree p =1, K = 100-dimensional persistence landscapes.
Information on the sex of each subject is also available along with
the tree data. We investigate differences between mean persis-
tence landscapes grouped by sex. One major finding of [1] is the
existence of sex differences in their mean degree p = 1 feature
vectors {d; ; — b; ; }?2’113-0:1- For convenience, we denote the
mean landscape for the male (female) group following alignment
(within each group) by /i™ (ji{), and pointwise mean computed
without alignment for the males (females) by 4™ (7).

The means /i™ and /i{ are shown in the top row of Fig. 7(a)
and (b), respectively. The difference between the means is
obtained by first aligning the group means to the common
pooled mean (computed with alignment) and then taking their
difference, where all operations are carried out under the SRVF
representation; this difference is shown in the top row of panel
(c). The bottom row of Fig. 7(a)—(c) shows the pointwise means
f™ and /if, and the corresponding (™ — fi/), when no align-
ment is carried out. The difference between the pointwise means
has very large features indicating topological and geometric
structural differences across males and females. However, these
features are essentially non-existent in the difference of the
aligned means. This indicates that the large difference in the
pointwise means is potentially due to misalignment, and can be
construed as topological noise.

We surmise that global scale differences and sampling vari-
ability in observed data between the male and female groups may
be responsible for this phenomenon. To confirm this, we use the
total artery length for each subject as a measure of global scale,
which is also available as part of the tree data [31]. For each
group, we estimate a cumulative distribution function (CDF)
of total artery length using a kernel density estimate using the
ksdensity function in MATLAB (default bandwidth). From
the estimated CDFs shown in Fig. 7(d), it appears that total artery
length is stochastically ordered by sex, with females having
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Fig. 7. Top. Mean persistence landscapes and their differences for males and
females in the brain artery example with (top row) and without (bottom row)
alignment: (a) Male mean, (b) female mean, and (c) difference between (a) and
(b). Bottom. Relationship between groupwise total artery length and relative
phase of groupwise means following alignment, across sexes: (d) Estimated
groupwise CDFs of total artery length, and (e) reparameterizations that align
groupwise aligned means to a mean computed from alignment of the pooled
data. The identity parameterization (black) is shown for reference.

stochastically longer brain artery trees. Given this global scale
disparity and sampling variability, we would expect /i to be
shifted to the right relative to /. This behavior can be extracted
from the phase difference between /]* and ﬁ{ after alignment
to the pooled sample mean, as shown in Fig. 7(e). The blue
reparameterization (female) shifts ,&{ to the left while the red
(male) shifts 47" to the right. Thus, the misalignment caused by
differences in global scale and sampling between the two groups
appear to explain the reason behind the large difference between
the groupwise pointwise means. In summary, the above analysis
suggests that the sex effect detected via pointwise analysis
without alignment of the landscapes, corresponding to some
of the results presented in Table 10.1 in [30], is due to global
scale and/or sampling differences of the observed data rather
than differences in homology, and thus makes a compelling
case study of the perils in ignoring the distinction between, and
confounding of, amplitude and phase in landscapes.

B. Correlation Between Age and Topological Structure of
Brain Artery Trees

Bendich etal. [1] show that age is significantly correlated with
the dominant PCs estimated using degree p = 0 persistence dia-
grams. One potential confounding variable for this relationship
is total artery length, since this quantity is also significantly
correlated with age (correlation of —0.63; see Fig. 6(a) in Ap-
pendix C in supplement). To account for this, they first rescaled
each subject’s persistence diagram by their total artery length
and then measured correlation between age and the dominant
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Fig. 8. Correlations and scatterplots of PC 1 (top) and PC 2 (bottom) esti-
mated using (a) aligned and (b) unaligned landscapes, computed from rescaled
persistence diagrams, versus age.

PCs estimated using rescaled diagrams. Even after rescaling,
the relationship holds.

Here, we reanalyze the data using K = 100-dimensional per-
sistence landscapes from rescaled degree p = 0 persistence dia-
grams. We estimate PCs using aligned and unaligned landscapes,
and project onto the first two PC directions to explore whether
there is a correlation between either of the first two PCs and age.
Fig. 8(a) and (b) shows the relationship between age and the first
two PCs for aligned and unaligned landscapes, respectively. In
both panels, age appears to be strongly associated with the first
PC. Thus, our findings are consistent with [1] and the results
presented in Table 10.1 in [30]. We further note that alignment of
the persistence landscapes computed using rescaled persistence
diagrams decreases the correlation slightly from 0.58 to 0.45
(note that the sign of the correlation coefficient is irrelevant
here due to lack of directionality in the PCs); this is likely due fo
residual scale effects (and sampling variability) affer accounting
for the total artery length. Correlations computed using PCs
from both unaligned and aligned persistence landscapes are
similar to the correlation of 0.53 reported under TDA Hj in Table
10.1in [30]. Appendix C in the supplement reports results of this
analysis when original persistence diagrams (without rescaling
by total artery length) are used to derive persistence landscapes;
there, we show that scale is confounded with topo-geometric
structure when unaligned landscapes are used to carry out PCA.

V. CLASSIFICATION OF GLEASON DATA

As described in [2], the Gleason grading system is a prognos-
tic tool to help understand severity of prostate cancer. Grading
groups are assigned based on features of a prostate gland biopsy.
In more benign biopsies, carcinoma walls are well-defined as
seen in Fig. 1(a). On the other hand, malignant carcinoma
lose their structure and have very irregular shapes as shown in
Fig. 1(d). Using a variety of functional summaries of persistence
diagrams, [2] classified simulated point clouds representing
four different Gleason grade groups that ranged from benign
to unhealthy. A representative from each of the four classes
used in their study is shown in the left of Fig. 9(a)(d), from
benign to most severe. The middle and right columns show the
corresponding degree p = 1 persistence diagrams and K =5
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Fig. 9. Point clouds (left), persistence diagrams (middle) and landscapes

(right) from each of the four Gleason grading scales: (a)—(d) benign to most
severe.

Fig. 10. Multidimensional scaling plots for the training dataset: (a) L2 dis-
tance, (b) phase distance, and (c) amplitude distance. Each point is colored
according to class membership with benign = red, grade 2 = green, grade 3 =
orange, and grade 4 = blue.

-dimensional landscapes, respectively. As the prognostic grade
worsens, the cycle in the point clouds, corresponding to the
carcinoma outline, becomes less pronounced. This is accom-
panied by significant changes in geometry and scale. Thus,
the benign class is characterized by a persistence landscape
with a large maximum in the first component function, and
negligible maxima in subsequent component functions. On the
other hand, the most severe class is characterized by a landscape
with multiple small maxima along several component functions.
Clearly, the landscapes contain significant amplitude and phase
variation, and our aim is to classify the point clouds (landscapes)
into the four Gleason grades based on these two components.
The data consists of 2400 point clouds with 600 in each of the
four Gleason grades.

In particular, using this data, we study k-nearest neigh-
bor (KNN) classification accuracy using the amplitude and
phase features of the landscapes. We also compare to
one of the approaches taken in [2], which applied KNN
classification to the landscapes without alignment. KNN
classification is a distance-based approach, and we com-
pare performance based on the following three distances:
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(i) L% distance: dpz(A1,As) =||A1 — Ag||2; (ii) ampli-
tude distance: da (A1, A2) = mincr||g1 — (g2,7)||2; (iii) phase
distance: dp(A1,Az) = arccos(f, \/3*(s)ds), where v* =
argmin.,.r (/g1 — (g2,7)|2- The KNN classification procedure
is implemented as follows. For a test observation (unknown
class), we first compute its distance from each observation in
the training data (known class). Then, we find the & nearest
neighbors in the training set to the test observation, and predict
its class as the one that is most frequent among the &k nearest
training neighbors. In case of a tie, we use the class of the nearest
training neighbor. The classification accuracy is then computed
as the percentage of correctly predicted classes in the test set.
Using the same training and testing split as [2], data are split into
83% training (2000 landscapes, 500 in each of the four severity
classes) and 17% testing (400 landscapes, 100 in each of the
four severity classes).

We begin by displaying the 2D multidimensional scaling
(MDS) plots, computed using the three different distances, for
the training dataset. In short, MDS uses pairwise distances
to compute lower-dimensional Euclidean coordinates of the
data such that interpoint Euclidean distances based on these
coordinates are as similar as possible to the original distances.
It is evident that there is good separation between the benign
(red) and Gleason grade 2 (green) classes for each of the three
distances. The L2 and phase distances also provide good sepa-
ration between the grade 2, grade 3 (orange) and grade 4 (blue)
classes, with phase appearing more discriminative between the
grade 3 and grade 4 classes. However, the amplitude distance
is ineffective at separating the grade 2, grade 3 and grade 4
classes. This result is not surprising. The amplitude (shape)
of persistence landscapes is effective in capturing whether and
how many cycles exist in the point clouds. Thus, while it is
very effective in discriminating between the benign and severe
classes, it does not provide effective finer classification into the
four Gleason grades. On the other hand, the signal captured in
the phase component is related to the size and geometry of the
homological features. Visually inspecting the four point clouds
inFig. 9, itis clear that these are the most discriminative features
in the data. Finally, the L% distance uses both amplitude and
phase information of the landscapes without explicit control
of the contribution of each component. We expect that these
observations will lead to very good KNN classification rate
based on the phase distance. On the other hand, the amplitude
distance will only be effective at classifying benign versus severe
classes.

A key question that has not yet been addressed is the choice
of the number of nearest neighbors k. While we could fix
this number a priori to some small number of neighbors, say
1 or 3, this approach will not result in optimal classification
performance. Instead, we will learn an optimal k, for each of the
three distances, based on training data and then apply the KNN
classifier with the optimal k to testing data. We allowed values
of k=1,...,20. Based on KNN classification applied to the
training data, we determined the optimal values of % to be 11
for the 1.2 distance, 19 for the amplitude distance, and 9 for the
phase distance, using leave-one-out cross-validation.

We report the overall classification rate on the testing data
in Table I(a). The phase-based KNN classifier provides highest
classification accuracy with the I.? distance-based approach in
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TABLE1
(A) TEST CLASSIFICATION ACCURACY, BASED ON THE KNN CLASSIFIER,
UsING THE L2 (k = 11), PHASE (k = 9) AND AMPLITUDE (k = 19)
DISTANCES. (B) CORRESPONDING CONFUSION MATRICES

L* [ Phase || Amplitude
(a) Overall Accuracy
91% I 9275% 1 0%
Confusion Tables
(b) True True True
112[3]4 1[12[3]4 1[12[3]4
2|1 wof2(o|ojfool3]J0|0]jJlo0[4|0O]0O
C[2] O |8/[9]5 O[89 5 [10]] O J91[23] 2
”% 3] 0O [ 8]8] 4 O 1492 015]7/]86
AlAT O [3[5 (oo [4[T (8]0 [0[0][12

close second; the phase distance results in correct classification
of 7 more cases than the .2 distance. Finally, the amplitude
distance provides the lowest classification accuracy. We further
report confusion matrices in Table I(b). Overall, the phase dis-
tance is more effective than the other two distances in discrim-
inating between neighboring classes, e.g., class 2 versus class
3. The amplitude distance is only effective in discriminating
between the benign and severe classes. These observations are
very similar to those reported earlier based on the MDS plots.

VI. DISCUSSION

In the analysis of the brain artery tree data, alignment of
persistence landscapes adds substantially to the findings of [1],
[30] by uncovering that the apparent differences in the unaligned
mean landscapes of the two sex groups can be partially attributed
to adifference in scale and sampling variability, and confirms this
finding by comparing the distributions of the total artery lengths
of males and females. In the analysis of the Gleason dataset [2],
we show that the amplitude of landscapes (topological informa-
tion) is most effective in discriminating between benign and
severe cancer, while the phase (geometry and scale) is very
effective in discriminating between all four grades. In particular,
phase-based classification outperforms the standard L.2-based
approach. In both settings, we demonstrate the need to consider
amplitude and phase variability in persistence landscapes to
address the scientific questions of interest.

The novel approach presented in this paper can be viewed as
a first step toward understanding how geometry of the manifold
on which point clouds are sampled influences TDA. To see
this, suppose e : M <+ RP is an equivariant embedding of a
d-dimensional manifold M into R”, D > d. Then, adiffeomor-
phism ¢ : RP — RY acts on the embedding as ¢ o (M ). The
map ¢ does not change the topology of M, but constructing sim-
plicial filtrations for point clouds under the embedding in R? us-
ing balls will transform according to ¢ since the metric is accord-
ingly transformed,; that is, for a fixed =z € e(M), {y € e(M) :
||z — y|lmp < t} will transform to ¢(z) € poe(M), {d(y) €
poe(M): |¢(z) — d(y)|lgrp < t}.Inthespecial case where ¢
corresponds to a (constant) scale change, the radius ¢ changes
nonlinearly as ¢ +— (t), for a reparameterization -, since t is
forced to lie within [0,1]. This phenomenon also relates to when
points are sampled with variability on M, since by judiciously
changing the metric depending on the locations of points, balls of
different (or differently changing) radii can be used to construct
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the simplicial filtration, not dissimilar to the multiscale approach
considered by [20]. Much remains to be done in this direction.

The limitations of this work inspire directions for future work.
First, using scaled persistence diagrams by rescaling to [0, 1]?
is also a source of topological noise, but is entirely driven by
practical considerations. In principle, we could instead consider
the group of diffeomorphisms of [0, oc) to align the persistence
landscapes, although there would be very little phase variation
for parameter values exceeding the maximum across different
point clouds. A compromise would be to consider the subgroup
of diffeomorphisms of [0, oc) based on scaling and translating
diffeomorphisms of [0,1], considered in [32], to perform
alignment that better reflects phase variability in the landscapes.
Second, notwithstanding the promising results for the noisy
simulations presented in Appendix A in the supplement,
robustness of the alignment-based approach to measurement
error will strongly depend on the geometry of the manifold
M, sampling density and magnitude of noise in observed point
clouds on R, especially if data have been sampled from a
distribution with support only on M. One possible approach
would constitute of first estimating M (and its dimension) using
amanifold fitting method, and using this information to construct
tailored simplicial filtrations; however, additional noise induced
by the fitting procedure would have to be accounted for in
downstream tasks. Another option for the large noise setting is
to use explicit statistical models to align persistence landscapes
that account for all sources of uncertainty. For example,
Bayesian models based on shape constraints to infer the
pattern and number of extrema in landscapes may be profitably
used [33].

While the focus of this paper is on persistence landscapes,
we expect our approach to be fruitful with silhouettes [9], since
similar triangular functions are used in their definition. How-
ever, feasibility of the alignment method for other functional
summaries mentioned in Section I is not clear, and is worthy
of further investigation. Finally, for denoising a persistence dia-
gram directly without using landscapes, it is possible to consider
generalizations of the one-dimensional transforms + of points
on diagrams to the group of diffeomorphisms of R?, along the
lines of what is done in the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) framework [34].
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