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ABSTRACT

We use a geometric approach to jointly characterize tumor shape and intensity along the tumor
contour, as captured in magnetic resonance images, in the context of glioblastoma multiforme.
Key properties of the proposed shape -+ intensity representation include invariance to translation,
scale, rotation and reparameterization, which enable objective characterization and comparison of
these crucial tumor features. The representation further allows the user to tune the emphasis of
the shape and intensity components during registration, comparison and statistical summarization
(averaging, computation of overall variance and exploration of variability via principal component
analysis). In addition, we define a composite distance that is able to integrate shape and intensity
information from two imaging modalities. The proposed framework can be integrated with
distance-based clustering for the purpose of discovering groups of subjects with distinct survival
prognosis. When applied to a cohort of subjects with glioblastoma multiforme, we discover groups
with large median survival differences. We further tie the subjects’ cluster memberships to tumor
heterogeneity. Our results suggest that tumor shape variation plays an important role in disease
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prognosis.

1. Introduction

Glioblastoma multiforme (GBM) is a severe type of brain
cancer commonly found in adults (Holland 2000). The
median survival time following diagnosis is approximately
12 months (McLendon et al. 2008), with fewer than 10% of
subjects surviving five years after diagnosis (Tutt 2011).
GBM 1is a morphologically heterogeneous disease that is
often diagnosed and examined using magnetic resonance
imaging (MRI). Imaging features derived from MRI, in par-
ticular the shape and intensity or texture of the brain tumor,
have been recognized as relevant prognostic factors for
GBM (Bharath et al. 2018; Saha et al. 2016). The shape of a
GBM tumor can reveal the extent of infiltration of the
tumor into surrounding tissues, while tumor intensity can
capture properties of these tissues, e.g., edema or infiltrated
tumor cells (Hawkins-Daarud et al. 2013; Zinn et al. 2011).
Thus, both features of imaged GBM tumors are pivotal for
evaluating disease severity.

However, there is a lack of reliable and objective charac-
terization of GBM tumor shape and intensity for the pur-
poses of their comparison and statistical modeling. Domain
experts often represent tumor shape in ways that are only
able to capture its partial geometric complexity, e.g., using
subjective features such as irregularity, circularity, major axis

length, etc. (Chaddad et al. 2016; Krabbe et al. 1997).
Similarly, tumor intensity information is often transformed
into a histogram, which is then used to derive simple fea-
tures that can be incorporated into statistical models as
GBM biomarkers, e.g., skewness, kurtosis, range, mode or
percentiles (Baek et al. 2012; Just 2011; Song et al. 2013).
Moreover, GBM tumor shape and intensity are often studied
separately, potentially overlooking the interdependence
between these two tumor signatures (Gevaert et al. 2014).
To address these deficiencies, we develop a geometric
approach that integrates, and appropriately balances, informa-
tion related to GBM tumor shape and intensity via a unified
mathematical representation. The proposed representation
and associated distance provide reliable characterization and
facilitate objective comparison of GBM tumors. They further
enable joint statistical analysis of shape and intensity features
of MRI-derived GBM tumors. Bharath et al. (2018) defined
and studied variation in GBM tumor shapes based on a para-
meterized curve representation under the elastic shape
analysis framework (Srivastava and Klassen 2016). They
showed that registration of GBM tumor outlines, via removal
of nuisance variation related to translation, scale, orientation
and parameterization from the shape representation space,
resulted in more informative tumor comparisons, quantifica-
tion of tumor shape heterogeneity and associated survival
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analysis. We build on their framework by additionally incor-
porating information about the intensity (texture) along
tumor contours by defining a joint GBM tumor shape-
+ intensity representation. Our approach leads to a distance
between shape and intensity features of GBM tumors that
remains invariant to all shape and intensity preserving trans-
formations. Importantly, it allows for joint registration of
GBM tumor shape and intensity, thus capturing their inter-
dependence. The proposed distance for comparison of GBM
tumor shape + intensity can then be employed for assessing
and visualizing tumor heterogeneity via statistical summariza-
tion (mean computation and principal component analysis),
clustering and survival analysis. We show that joint statistical
analysis of GBM tumor shape + intensity results in enhanced
quantification of tumor heterogeneity by identifying groups
of subjects, via (unsupervised) hierarchical clustering, with
distinct survival profiles. We also present results that relate
other covariates, in particular sex of subjects, to GBM tumor
shape + intensity characteristics.

While the proposed GBM tumor shape + intensity repre-
sentation was introduced in Chen and Kurtek (2023) and is
similar in spirit to the representation defined in Liu et al.
(2008), this manuscript presents significant extensions as
well as a more comprehensive statistical analysis of a GBM
tumor dataset. Our contributions, beyond Chen and Kurtek
(2023); Liu et al. (2008), are as follows.

e We define methods for joint statistical summarization of
GBM tumor shape and intensity heterogeneity via a mean,
measure of overall variance and exploration of dominant
modes of variability using principal component analysis.

e We define a composite distance that is able to integrate
GBM tumor shape + intensity information from two
MRI modalities.

e We use the defined distances for partitioning of subjects
with GBM into groups with distinct survival profiles. We
then quantify and visualize GBM tumor shape + intensity
heterogeneity within these clusters. We discover a con-
sistent trend wherein clusters with shorter median sur-
vival contain GBM tumors that are more heterogeneous.

1.1. Dataset Description and Pre-Processing

We obtained magnetic resonance images and associated cova-
riates, including age, gender, tumor volume (in voxels), sur-
vival status and survival time (in months), for 63 subjects
diagnosed with GBM who consented under the Cancer
Genome Atlas protocols', from the Cancer Imaging Archive’.
Table 1 shows summary statistics for different subject charac-
teristics. In this study, we consider MRI data from two
modalities: T1-weighted post contrast, henceforth referred to
as T1, and T2-FLAIR, henceforth referred to as FLAIR. Pre-
processing of the data, e.g., segmentation of tumors from
MRI images, followed a standard pipeline for structural MRI
and is described in detail in Saha et al. (2016). In brief, pre-
processing involved (i) registration of FLAIR images to corre-
sponding T1 images, (ii) inhomogeneity correction of FLAIR
and TI1 images, (iii) semi-automatic segmentation of the

Table 1. Summary statistics of GBM subject characteristics.

Survival time (med (IQR))
FLAIR volume (mean (SD))
T1 volume (mean (SD))

13.6 (6.87, 26.40)
135,953.38 (88,272.70)
128,692.81 (90,581.05)

We use SD for standard deviation, n for sample size, med for median and IQR
for interquartile range.

Variable Categorical level Numerical summary
Age (mean (SD)) 56.33 (15.44)
Gender (n (%)) Female 21 (33.3)
Male 42 (66.7)
Survival status (n (%)) Deceased 57 (90.5)
Living 6 (9.5)
(
(

tumors using the Medical Image Interaction Toolkit
MITK3M3 Image Analysis (v1.1.0) and the NIFTI toolbox in
MATLAB. In TI, the segmented region corresponds to the
contrast enhancing tumor. In FLAIR, the segmented region
corresponds to the solid tumor, and regions of edema and
infiltrating tumor (Saha et al. 2016). In similar fashion to
Bharath et al. (2018) and Saha et al. (2016), our study focuses
on the analysis of GBM tumor shape + intensity captured in
the axial image slice with the largest tumor area in the T1
modality, and the corresponding slice in the FLAIR modality
that has the same anatomical vertical position. Figure 1(a)
shows an example of such a T1 axial slice for one subject
with GBM, while Figure 1(b) shows the corresponding FLAIR
axial slice. The segmented tumor outlines are illustrated as
red contours that are overlaid on the images. Noticeably, the
appearance of the tumor outlines differs across the two MRI
modalities even though the images are for the same subject.
This is because different MRI modalities highlight different
tissue properties: T1 highlights fat tissues while FLAIR high-
lights not only fat tissues, but also structures with high water
content. Consequently, the tumor contour in the T1 image
captures the solid tumor area, whereas the tumor contour in
the FLAIR image captures the solid tumor area as well as
regions of edema in the surrounding tissues.

The rest of this paper is organized as follows. Section 2
presents details of the statistical framework for shape-
+ intensity analysis of GBM tumors. First, in Section 2.1,
we introduce the mathematical representation and distance
for comparison of shape + intensity based on a single MRI
modality. In Section 2.2, these are further used to define
tools for (i) averaging, (ii) quantification of overall variation,
and (iii) exploration of dominant modes of variability
of GBM tumor shape + intensity features. Finally, in Section
2.3, we specify a composite distance that is able to integrate
shape + intensity information from two MRI modalities.
Section 3 describes a comprehensive application of the pro-
posed statistical analysis tools on the GBM tumor dataset
described in Section 1.1. Our focus in this section is on
assessment of GBM tumor shape + intensity heterogeneity
and how it relates to other covariates, e.g., sex (Section 3.2)
and survival time (Section 3.3). We close with a brief discus-
sion and directions for future work in Section 4.

The Supplementary Materials contain (i) a study to deter-
mine an appropriate sampling density for shape + intensity
in each modality (Section S1), (ii) software implementation
details (Section S2), (iii) description of algorithms (Section
S3), (iv) description of the data generating process for



simulated shape + intensity (Section S4), (v) a procedure for
bootstrap estimation of variance for average shape + inten-
sity (Section S5), (vi) a procedure for distance-based outlier
detection (Section S6), (vii) additional details of comparative
analyses (Section S7), (viii) distance-based classification
studies using shape + intensity (Section S8), and (ix) alterna-
tive displays of shape + intensity principal directions of vari-
ation (Section S9).

2. Methodology

We begin by defining a mathematical representation of
image-derived GBM tumors, which captures their shape and
intensity information. We refer to this representation as
shape + intensity for simplicity of presentation. We then
specify an elastic distance for comparison of GBM tumor
shape + intensity, which allows for registration of these fea-
tures with respect to rotation and reparameterization. The
distance is used to further define procedures for averaging
of and assessing variability in a sample of GBM tumor
shape + intensity. Finally, we define a composite elastic dis-
tance that allows for integration of shape + intensity infor-
mation from two imaging modalities. The proposed
framework builds on tools from elastic shape analysis (Chen
and Kurtek 2023; Liu et al. 2008; Srivastava and Klassen
2016). Throughout this manuscript, we use |- | and || - || to
denote the Euclidean norm in R*® and the L? norm,
respectively.

2.1. GBM Tumor Shape + Intensity Representation and
Distance

We first construct a coordinate function that consists of (i)
the x and y coordinate functions of the tumor outline, and
(ii) the intensity function along the tumor outline. Let f. :
S' — R? denote the 2D closed curve representing the tumor
outline, and B; : S' — R denote the intensity function along

(a)
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the tumor outline. As seen in Figure 1, segmented GBM
tumor contours, as well as the associated intensity functions,
form closed curves, making the unit circle domain S'a natu-
ral choice in this application. Motivated by the discrete
nature of MRI data, we take the following pre-processing
steps to construct . and f; from segmented images. To
obtain ., we smooth each tumor outline, which is origin-
ally represented by discrete x and y image coordinates, using
a five-point moving average smoother. Then, the intensity
value at each point on f, is obtained by taking the average
of the five intensity values at the discrete x and y image
coordinates that are closest (with respect to the Euclidean
distance) to the x and y coordinate on f.. This averaging
step serves two purposes: (i) it mitigates effects of potential
noise in the intensity values, and (ii) it allows us to incorp-
orate intensity information from tissues that surround the
tumor outline. We then additionally smooth the intensity
function using cubic splines to obtain f;.

We rescale . to unit length to remove scaling variability
in the eventual shape component of the proposed
representation. We denote the rescaled f, by fI, where
Jst | ffj(t)|dt =1 ([f: denotes the coordinatewise derivative of
B2). In case the size of GBM tumors is also of interest, one
may choose to not normalize the scale of their outlines,
leading to size-and-shape analysis (Kurtek et al. 2012). In
our analyses, we remove this source of variation since there
exist significant tumor size differences across GBM subjects.
Such scale differences can result in tumor comparisons that
are primarily driven by their size, consequently overlooking
important geometric differences in shape, e.g., regions of
protrusion. Furthermore, tumor volume, one of the variables
in the dataset, can be incorporated separately into any statis-
tical analysis task of interest. The intensity function f; is
also standardized by subtracting its average and dividing by
its standard deviation (Ellingson et al. 2012). This is moti-
vated by a well-known issue that arises in MRI studies,
where intensity values corresponding to the same or similar

Figure 1. (a) T1 axial image slice with largest tumor area and (b) corresponding FLAIR slice for a GBM subject in the dataset with survival time of 12.2 months.

The tumor outline is highlighted as a red contour and overlaid on each image.
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tissues can vary across images/subjects, making them not
directly comparable (Nyul and Udupa 1999). The standar-

dized f; is denoted by f;. We then define f; = [fﬁ‘;} :
S' — R?, where f; is additionally scaled by a parameter
A€ Ry, which controls the emphasis of intensity informa-
tion in the proposed representation. Thus, we model each
tumor outline, and the intensity along the outline, as a
three-dimensional parameterized closed curve. A pictorial
illustration of the construction of f; (for 4 = 1) based on a
segmented MRI image of a GBM tumor is presented in
Figure 2.

The defined tumor representation, f3;, contains two add-
itional sources of nuisance variation: (i) orientation or rota-
tion of the tumor contour in the image, and (ii)
parameterization of the tumor contour and intensity func-
tion. In order to define a shape + intensity representation
based on f3;, we must thus account for these two additional
sources of variability. For rotations, our focus is on a sub-
SO(2) 0

0 1
which rotate the first two (tumor contour) coordinates of
f;, but not the third (intensity) coordinate. The rotation of
B by O € R is then given by the left group action of matrix
multiplication: Of;. Different parameterizations of the
closed curve f3] involve (i) different seeds or starting points

group of SO(3), R= [ } C SO(3), elements of

on the domain S', and (ii) different speeds of traversal
along the curve. Let I' = {y:S' — S'|y is an orientation
preserving diffeomorphism} denote the group of reparame-
terization functions. Then, a reparameterization of f§; by y €
I' is given by the value-preserving group action of compos-
ition: (f},y) = f;o7. In the applied context of capturing
GBM tumor shape + intensity heterogeneity, the actions of R

Extraction of contour

and I' do not change the shape of the tumor outline, and
must be appropriately removed from the representation
space. At the same time, allowing flexible rotations and rep-
arameterizations of 5 results in optimal registration of geo-
metric features of the tumor outline (eg regions of
protrusion) and intensity function (eg local extrema) across
GBM tumors. This results in more natural shape + intensity
comparisons that preserve such features. We demonstrate
this later in Section 3.

To remove the rotation and parameterization variabilities,
we seek a rotation- and parameterization-invariant distance
d(-,-) between two closed curves £, and f8; ,, which must
satisfy the isometry property:

d(ﬁﬁ,l’ﬁiz) = d(o(ﬁil © V)>O(ﬁjt,2 07)). (1

While convenient because of computational efficiency, it
is well-known that the standard IL* distance does not satisfy
this property (Srivastava and Klassen 2016). Instead, we use
an elastic Riemannian metric, which is known to be (rota-
tion- and) parameterization-invariant (Mio et al. 2007). The
metric is called elastic as it measures the amount of bending
and stretching/compression needed to deform one shape
into another. The resulting Riemmanian distance can be
computed efficiently using a convenient transformation
called the square-root velocity function (SRVF), which flat-
tens the elastic Riemannian metric to the L* metric’
(Kurtek et al. 2012; Srivastava et al. 2011). The SRVF of a
curve f3; is also a curve in R® and is given by.
ok
ﬁ?* St — R3, )
A

where again /3; denotes the coordinate wise derivative of f3;.
If the curve f3) is absolutely continuous, then its SRVF g} is

q, =

Smoothing of contour

Rescaling and centering 6*

Tumor mask data 1 1 (&
’ 0.2
70 70
80 80 0.1
90+ 90 0
100 - 100
0.1+
110+ 110
120 120 0.2
80 100 140 80 100 120 140 02 01 0 01 02
MRI grayscale data l *
B B
2000+
1800 2
1600 ¢
_—
1400 0.
1200 ¢
1000 2
0 f 0.5 1 0 ; 0.5 1

Averaging of pixel values
from 5 nearest neighbors

Smoothing and
standardization

Figure 2. Flowchart illustrating construction of f3; using a segmented MRI image of a GBM tumor.



an element of L*(S',R?) (Robinson 2012). Note that the
SRVF representation is automatically invariant to translation
as its definition only involves the derivative of ;. While the
location of the tumor in the brain can potentially carry
information about severity of GBM, our focus is on tumor
shape + intensity heterogeneity and we thus remove this
source of variation from the representation. As in the case
of the size of the tumor, this information can be incorpo-
rated separately into statistical analyses. This leads to the
definition of the pre-shape + intensity space of GBM tumors
as the space of SRVFs of closed 3D curves: C = {q} : S' —
R3Hglqj(t)|qj(t)|dt = 0}. Because of the closure condition
Js1q;(t)|q;(t)|dt = 0, C is non-linear leading to an intrinsic
distance, induced from the L? distance on L*(S',R?), that
cannot be computed in closed form. Thus, for computa-
tional efficiency, we instead use the extrinsic > distance on
the pre-shape +intensity ~space C given by (for
G0 45, €0)

dC(‘ﬁ,qu,z) = ||‘ﬁ,1 - Qj2|| (3)

Importantly, as stated earlier, for a y € I' and O € R, the
> distance between two SRVFs g} |, q;, € C is isometric
under the actions of I" and R:

de(q;, 1, q5,,) = 145, — 45,11 = 110(q5, 1, 7) = O(q;, > )]
= dC(O(qz,1’7)> O(‘ﬁ,z’ 7))

Here, we use the following two facts. First, a rotation of a
curve f; by O € R, Of;, corresponds to a rotation of its
SRVF gq;, Ogqj. Second, a reparameterization of a curve f3;
by y €I, p;oy, corresponds to the following transform-
ation of its SRVF ¢ : (q5,7) = (q; o »)V7-

Since dc(-,-) satisfies the isometry property with respect
to rotations and reparameterizations, we use it to remove
rotation and reparameterization variabilities from the repre-
sentation space. Formally, we account for rotation and rep-
arameterization variabilities in the representation g} (f}) via
the definition of an orbit

[4;] = {O(q; o y)\/7ly €T, O€R}, (5)

which unifies all SRVFs within a rotation and reparameteri-
zation of each other. In other words, the entire orbit (set)
[q5] associated with g} represents the unique shape + inten-
sity for a GBM tumor. The set of all such orbits is denoted
by S={[q}llqg; €C} =C/(RxT) and forms the shape-
+ intensity quotient space. The shape + intensity space S is
formed by partitioning the pre-shape + intensity space C via
the orbits. The resulting distance between two shape + inten-
sity orbits, [q},], [q},] €S, is defined via the L* distance
on C as follows:

dS([qj,l}’ [qu])

(4)

inf  de(q” ., 0(q" '
odnf _ de(d1,0d} °)V/7)

= inf T1—0(q;,0 . (6
St Nl =00, o Vil ©

The optimization problems over R and I' are solved using
Procrustes analysis, i.e., singular value decomposition (opti-
mal rotation) (Dryden and Mardia 2016, Chapter 4), and
the dynamic programming algorithm (Bertsekas 1995;
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Robinson 2012, Chapter 3) with an additional seed search
(optimal reparameterization), respectively. A detailed algo-
rithm for solving the optimization problem in Equation (6)
is provided in Section S3.1 in the Supplementary Materials.
This process aligns or registers the shape + intensity repre-
sentations of GBM tumors such that the L? distance
between them is minimized. This, in turn, results in
improved comparisons of GBM tumor shape + intensity fea-
tures. Since similar geometric structure of tumor contours as
well as similar intensity values along tumor contours can be
indicative of similar tissue properties surrounding the infil-
trating tumors, registration of tumor shape + intensity is
necessary. In essence, this process allows matching of similar
tissue properties across GBM tumors. Another important
property of the defined shape + intensity distance is that the
contribution of geometric contour information versus inten-
sity information depends on the chosen value of A in the
representation. When A is small, registration is driven pri-
marily by geometric features of tumor contours, and when A
is large, it is driven by intensity information. We can visual-
ize the geodesic path or optimal path of deformation
between two GBM tumor shape + intensity objects via a lin-
ear interpolation between g ; and the optimally rotated and
reparameterized gq; ,,

(1-71) qz,1 +7 O*(qﬁ,z ° ”/*)\/“,T*, Te[0,1], (7)

where O* and y* are the optimal rotation and reparameteri-
zation computed using Equation (6). The length of this path
is given by ds([q; ], [q; ,])- Such deformation paths provide
insight into the contribution of the shape and intensity com-
ponents in the registration and comparison of GBM tumors.

An illustration of registration and shape + intensity dis-
tance computation is provided in Figure 3. The two pre-
shape + intensity objects in this figure were simulated using
the data generating mechanism described in Section S4 in
the Supplementary Materials. In the figure, the SRVFs of the
two simulated pre-shape + intensity objects are represented
by the two points labeled g | and g} ,. They are elements of
the pre-shape + intensity space C and lie in their respective
orbits [q; ;] and [q] ,]. The oribts are shown as two parallel
straight lines to illustrate the fact that the distance de(-,-) is
unchanged by a common rotation and/or reparameterization
of the two pre-shape + intensity objects. In other words,
applying a rotation O € R and a reparameterization y € I" to
both gq;, and g;, shifts these two points by the same
amount along their orbits. Also, recall that all points lying
along an orbit of a pre-shape +intensity object g are
equivalent representations of its shape + intensity. When
visualized in the shape + intensity space S, an entire orbit
collapses to a single point. Then, the distance between two
orbits on S, each representing a unique tumor shape-
+ intensity, can be computed on C by fixing an element in
the first orbit and minimizing the distance dc(:,-) over all
elements of the second orbit. The minimizing distance is
illustrated by the horizontal line that is orthogonal to the
two parallel lines representing the orbits. For this particular
example, we chose a very small value of A= 0.01. Thus,
registration primarily focuses on aligning geometric
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C

e.g.,A=0.01 [4}.1]

Shape Intensity

Shape

1O\

Intensity

A

x>\/%gj

|

inf_ de(q31,0(¢52 ©7)V/A)

O (qh 207 )V

Shape

> @

Intensity

@t~

-

(> Jﬂ\

ds([ar1); (42 2])

Figure 3. lllustration of registration and shape + intensity distance computation for two simulated pre-shape + intensity objects.

shape features. A more thorough discussion of the effects of
A on registration and subsequent shape + intensity distance
computation will follow in Section 3.1.

2.2. Statistical Summarization of GBM Tumor
Shape + Intensity

The proposed representation and distance enable joint statis-
tical analysis of GBM tumor shape + intensity. Our focus
here is on the definition and computation of an average,
and exploration of variability via principal component ana-
lysis, based on a sample. Given f; |, ..., f; ,, and their corre-
sponding SRVFs ¢ |,....q; ,, the sample shape + intensity
average, for a fixed value of /, is defined as

st

based on the distance ds(-,-) defined in Equation (6). This
optimization problem is solved using a gradient descent
algorithm (Karcher 1977), the details of which are presented
in Section S3.2 in the Supplementary Materials. Note that
[it; 4] denotes an entire orbit, but we choose a single elem-
ent fi, , € [ft; ] as its representative for visualization and
subsequent analyses. To visualize the mean shape + intensity,
we apply the inverse SRVF transformation: fi,(t) =
fo [t),q(u)|ft), 4(u)|du. One can further estimate the uncer-
tainty of the sample shape+ intensity average using the
bootstrap. The procedure to compute the bootstrap estimate
of variance for the sample shape+intensity average is
described in Section S5 in the Supplementary Materials.
Moreover, shape + intensity distances from the sample aver-
age can be used for outlier detection. Section S6 in the
Supplementary Materials provides the procedure for outlier

(8)

= arg mm

ESI’l q/z 4

[mﬂ]

detection and describes associated results for the GBM data-
set. Finally, the quantity

SN

is the overall variance in the shape + intensity sample, and
can be used as a surrogate measure of GBM tumor
heterogeneity.

Given an average shape -+ intensity, we can summarize
and visualize variation via principal component analysis
(PCA). First, each shape + intensity observation is registered
to the average via Equation (6). With a slight abuse in nota-
tion, assuming that each registered SRVF q; , i=1,.
and the mean fi; , are sampled using T points, we compute
vii=dq,,;— I, € R*', i=1,..,n Throughout the analy-
ses presented in Section 3, we use T = 180 for T1 and T =
280 for FLAIR shape+intensity. These choices were
informed by numerical precision of tumor contour length
computations, which are described in Section S1 in the
Supplementary Materials. We then concatenate the three
coordinate vectors resulting in v, ; € R i=1,..,n,
pute the sample covariance matrix K = 121 ViV
and apply singular value decomposition K; = UXU'. Then,
we can visualize the sample shape+intensity variation
within two standard deviations around the mean along the
jth principal direction using the path,

Z;Uj,

Ja))? ©)

com-

:ai,q +s (10)

where Xj; is the jth diagonal element of X, U; is the jth col-
umn of U and s = -2, —1,0,1,2. Here, U; is the jth pri-
mary direction of shape+ intensity variation, X; is the
variance along that direction, and the sample average corre-
sponds to s = 0.



2.3. Multimodal Integration of GBM Tumor
Shape + Intensity

In practice, clinicians often examine both the T1 and FLAIR
modalities to draw conclusions about GBM severity since they
highlight different tissue properties. To achieve joint compari-
sons of shape + intensity captured in T1 and FLAIR images,
we leverage a product space structure to define a composite
distance which integrates differences in T1 and FLAIR
GBM tumor shape+intensity. Let € ={q,:S'—
R®| 1, ()|g} (1)|dt = 0} and & = {[q;]} denote the pre-
shape +intensity and shape + intensity spaces for the T1
(j =1) and FLAIR (j = 2) MRI modalities, respectively, with
orbits defined as in Section 2.1. Note that the parameters
As Ay € R can be different across the two modalities. Then,
the composite shape + intensity distance on P = S' x S* is
defined as (for (g} ) [g2: 1), ([} ). 1a2: ) € P)

ap(([ay b g3, (1alo) [a3,)) =
= /= 0)dg (g} L} ) + = de(la ) [a,])%
(11)

where o €[0,1] is a weight that controls the emphasis
of each of ';[he mogialities, and dsj([q];:)l], [q’zz]) =
inijeR, y€l Hq/,lj,l - Oj(q]@.,z ° V])\/EH for j=1,2. Small
values of o allow comparisons to primarily focus on shape-
+intensity GBM tumor differences in the T1 modality.
Similarly, large values of o put emphasis on the differences
in the FLAIR modality. Importantly, the registration of
shape + intensity, i.e., optimal rotation and reparameteriza-
tion, can differ across the two modalities.

3. Assessment of GBM Tumor Shape + Intensity
Heterogeneity

We apply the proposed framework to assess heterogeneity in
MRI-derived GBM tumor shape + intensity features. We
begin with illustrations of registration, comparison and opti-
mal deformation for a simulated example and for multiple
real GBM tumors. Next, we summarize shape + intensity
variation by sex. We calculate group specific sample means
and perform principal component analysis for different val-
ues of 4. Then, we describe the use of the proposed shape-
+ intensity distances for clustering of GBM tumors, and
relate our results to survival and tumor heterogeneity.

Throughout this section, the smallest value of /4 that we
consider is 4 = 0.01. In this case, the majority of informa-
tion comes from differences in GBM tumor shape. The larg-
est value of 4 that we consider is 4 = 0.5 since the scale of
the intensity values (after standardization) is larger than that
of the GBM tumor contour coordinates (after rescaling to
unit length). When 4 =0.5, intensity information domi-
nates registration and comparison of GBM tumor shape-
+ intensity. We found empirically that registration and
comparison results for 4 > 0.5 are very similar, if not the
same, to those for 1 =0.5

When relating our results to survival, we estimate median
survival time based on the Kaplan-Meier estimate of the sur-
vival function, which accounts for censoring in the subjects’

DATA SCIENCE IN SCIENCE . 7

survival times. One can also use other summaries of survival
such as mean survival time, which can be estimated using
the area under the Kaplan-Meier curve. We use median sur-
vival rather than mean survival, as the latter can be underes-
timated if the longest observation time is censored, which is
often the case in GBM.

We provide software implementation details for the anal-
yses presented here in Section S2 in the Supplementary
Materials. Code to reproduce the analyses is also available as
a separate supplement.

3.1. Registration, Comparison and Optimal Deformation
of GBM Tumors

Figure 4 shows registration results for two simulated pre-
shape + intensity objects. The data generating process for
these simulated objects is described in Section S4 in the
Supplementary Materials. In each panel, we display the two
simulated tumor contours (labeled Shape) along with the
corresponding intensity functions (labeled Intensity) in red
and blue. The simulated contours have a round shape with
one region of protrusion, and the size of the protrusion dif-
fers between the two contours. The corresponding simulated
intensity functions have a single peak of high intensity with
different magnitudes. For improved display, we plot the
intensity functions as if they were defined on the domain [0,
1]. In Figure 4(a), we show the pre-shape + intensity objects.
Recall that, to arrive at this representation, we (i)(center
and) rescale the contours to unit length, and (ii) translate
and rescale the intensity functions via subtraction of the
mean and division by the standard deviation. In Figure 4(b),
we show the registration result for a small value of A=
0.01. In this case, the registration process is driven by geo-
metric information of the contours as the protrusions on
the two contours are well aligned. On the other hand, the
peaks on the two intensity functions are misaligned since
this information plays a minor role. When 4 is increased to
0.5, as shown in Figure 4(c), intensity information domi-
nates registration: the peaks on the intensity functions
become well aligned while the protrusions on the contours
become misaligned.

Figure 5 presents registration results for two pairs of T1
GBM tumors, which have visually similar (top row) and dif-
ferent (bottom row) shapes. The first pair shown in the top
row come from subjects with survival times of 6.14 months
(blue; subject 17) and 17.8 months (red; subject 23). In the
bottom row, the tumors come from subjects with survival
times of 42.1 months (blue; subject 57) and 14.3 months
(red; subject 20). Similar to the registration results based
on the simulated pre-shape + intensity objects (Figure 4),
Figure 5(b) shows that when 4 =0.01, corresponding to
very little emphasis on intensity information during registra-
tion, geometric features of the tumor contours are better
aligned as compared to the intensity functions. When 4 is
increased to 0.5, the registration process focuses on intensity
as demonstrated by improved alignment of the intensity
functions in Figure 5(c).
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Figure 6. Shape + intensity geodesics between the two simulated pre-shape-
+ intensity objects considered in Figure 3(a).
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Figures 6 and 7 show geodesic deformations between the
shape + intensity representations for the simulated example
and two real T1 GBM tumor examples considered in
Figures 4 and 5, respectively. These deformation paths were
computed using Equation (7). Each row, from top to bot-
tom, corresponds to a deformation computed with a differ-
ent value of 1. Along each row, the geodesic path starts at
the blue GBM tumor, followed by 5 equally spaced points
along the path, and ends at the red one. Note that GBM
tumor shape + intensity at the end of the geodesic path is
optimally registered to the GBM tumor shape + intensity at
the start of the path, based on the given value of A. Along
each geodesic path, shape components are drawn as 2D

tumor contours with overlaid colors representing intensity.
We do not include a colorbar indicating the scale of inten-
sity values since they have been normalized prior to this
analysis. As seen in the top row of each of the three figures,
when 4 is very small, the deformation is primarily driven by
the shape component. Here, geometric features of the con-
tours, e.g., protrusions, are in correspondence across the two
shapes and this is reflected in the resulting geodesic path.
As / increases, the influence of the intensity component on
the geodesic deformation becomes apparent. For instance, in
the bottom row of each figure, when / is large, we see that
the deformation is mostly driven by the correspondence of
high/low intensity values. Such deformations can provide
valuable visualizations for clinicians as they assess severity of
GBM based on imaging data.

3.2. GBM Tumor Shape + Intensity Heterogeneity by Sex

We first summarize the GBM tumor shape + intensity vari-
ation in the T1 MRI modality by sex via PCA for two differ-
ent values of 4. The left and right columns of Figure 8 show
the two primary directions (along rows) of shape + intensity
variation when 4 = 0.025, for females and males, respectively.
Each PC direction is sampled at —2, — 1,0, 1,2 standard devi-
ations from the mean (see Equation (10)), i.e., the midpoint



DATA SCIENCE IN SCIENCE . 9

T1 Subject 17 vs. Subject 23 Subject 57 vs. Subject 20

— +=20.25 =05 7=0.75 r=1 =0 7=0.25 7=0.5 7=0.75 7=1

OO C \’(.J
A=001]| Vv N NV VS~ - ./ J

Y MOY MDY NN \«"/‘w’?/‘jG
A=017 | NV U U~ U A U A W A

m ﬁ » P ~ ~ ~

) M | YaYaYala
A=050 | M \v \’7 ! 2 ¢ A N (\,’ (-’

Figure 7. Shape + intensity geodesics (along rows), for different values of /, between the T1 GBM tumors considered in Figure 5.

" 0000000000
1000000000

Figure 8. First two prlnapal directions of var|ab|I|ty around the mean, displayed along rows, for T1 GBM tumor shape + intensity in female (left) and male (right)

subjects when 4 = 0.025; pg gy5F = 0.241 and pg gys,y = 0.254.

of each path is the sample average computed via Equation
(8). In this case, due to the small value of 4, the shape com-
ponent dominates the analysis and the top principal compo-
nents tend to capture more shape variation than intensity
variation. Overall, TI GBM tumor shape + intensity is more
varied in the male group indicating higher tumor heterogen-
eity. The variances in the female and male groups are
Poos,p = 0.241 and pg g5, = 0.254, respectively. The left
and right columns of Figure 9 provide the same visualization
of shape + intensity variation for females and males, but with
/A =0.1. We note the increased role of intensity information
in these primary directions of variation. As before, overall
variation in T1 GBM tumor shape + intensity is larger in the
male group than in the female group:
Po1,r = 0.549, poy p = 0.582

We repeat this process for FLAIR GBM tumor shape-
+ intensity, with the same values of 1 = 0.025 and 4 =0.1.
These results are visualized in Figures 10 and 11, and similar
conclusions can be drawn here as in the T1 MRI modality.
As before, for each of the two values of /, the overall vari-
ance in the male group is larger than in the female group.
In particular, pggysr=0.401 and pg gy = 0.436 when
A =0.025, and pg; p = 0.794 and pg, »; = 0.850 when A =
0.1. It is also notable that there appears to be more variation
in FLAIR GBM tumor shape + intensity than in T1 GBM

tumor shape + intensity when the same value of A is used
for each modality.

Interestingly, previous studies have shown that females
with GBM have longer median survival than males (Colopi
et al. 2023; Ostrom et al. 2018). In our dataset, the sample
median survival times for males and females are the same at
13.6 months, but the sample mean survival time is slightly
longer for females than for males: 20.04 versus 17.84 months.
Given the larger overall variance of GBM tumor shape-
+ intensity in males than females, for both the T1 and
FLAIR modalities, it appears that tumor heterogeneity, as
captured by these features, provides valuable information
about GBM prognosis. Alternative displays of the primary
directions of variation shown in Figures 8-11, wherein the
shape component is plotted separately from the intensity
component, are provided in Section S9 in the Supplementary
Materials. Also, bootstrap estimates of variance for the sam-
ple average shape + intensity in each sex group are provided
in Section S5 in the Supplementary Materials.

3.3. Clustering of GBM Tumor Shape + Intensity and
Survival Analysis

The proposed representation and distance can be incorpo-
rated into machine learning tasks, which can be useful in
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subjects when 2 = 0.1; pg, r = 0.549 and pg ; y = 0.582.
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Figure 10. First two principal directions of variability around the mean, displayed along rows, for FLAIR GBM tumor shape -+ intensity in female (left) and male

(right) subjects when /4 = 0.025; p g5 r = 0.401 and pg 5y = 0.436.
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Figure 11. First two principal directions of vanab|l|ty around the mean, displayed along rows, for FLAIR GBM tumor shape + intensity in female (left) and male

(right) subjects when 4 = 0.1; pg f = 0.794 and pg 4 y = 0.850.

assessing inter-subject GBM tumor heterogeneity with
respect to shape and intensity features. In our analysis, we
use distance-based hierarchical clustering to study differen-
ces in survival across partitions of the GBM tumor shape-
+ intensity data. Depending on the choice of the tuning
parameter /, the clustering can be driven either by geomet-
ric shape differences (for small values of 2), intensity differ-
ences (for large values of 1) or both. Furthermore, if the
composite distance defined in Equation (11) is used for clus-
tering, the choice of the weight « additionally allows the
clustering to focus more/less on differences in T1-derived or
FLAIR-derived GBM tumor shape + intensity information.
We consider the entire dataset consisting of 63 subjects.
For each subject, we have GBM tumor pre-shape + intensity
extracted from T1 and FLAIR MRIs. For each modality, we
first compute ten 63 x 63 pairwise distance matrices using

Equation (6), corresponding to ten equally spaced values of
/ between 0.01 and 0.5. Varying the parameter A allows us
to understand the importance of geometric shape versus
intensity information in the clustering results and subse-
quent survival analysis. We then apply hierarchical cluster-
ing, with complete linkage, to each of the ten distance
matrices and partition the data into two clusters, with the
aim of discovering a value of A that provides large separ-
ation between the clusters in terms of median survival. Our
implementation uses the linkage and cluster functions in
MATLAB (version R2022a).

First, in Figure 12(a), we display the absolute difference in
median survival between the two estimated clusters for each
value of A and each MRI modality. In Figure 12(b), we show
the corresponding absolute differences in the sample sizes
across the two estimated clusters. For the T1 modality, the
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Figure 12. Absolute difference (y axis) in (a) median survival, and (b) sample sizes in estimated clusters for different values of 4 (x axis). Results based on T1 data

are shown in blue while results based on FLAIR data are shown in red.

largest absolute difference in median survival of approximately
4.6 months (cluster 1: median survival of 17.8 months with
(95%) CI [10.4, 22.3]; cluster 2: median survival of 13.2 months
with (95%) CI [6.87, 14.7]) occurs at a relatively small value of
A =0.17, ie., where shape plays a more prominent role than
intensity in the comparison of GBM tumors. We also note that
the two clusters are approximately balanced in terms of their
sample size for this value of 4. For the FLAIR modality, the
largest absolute difference of approximately 18.7 months occurs
at a relatively large value of 4 = 0.4, i.e., where intensity plays
the dominant role in the comparison of GBM tumors.
However, this difference may not be statistically reliable since
one cluster contains only four subjects, yielding an absolute
difference in the sample sizes across the two clusters of 55. On
the other hand, when 4 = 0.12, we discover two clusters that
have sufficient sample sizes (more than ten observations in
each cluster), and vyield the second largest absolute difference
in median survival of 7.85months (cluster 1: median survival
of 20.7 months with (95%) CI [6.14, 27.2]; cluster 2: median
survival of 12.85months with (95%) CI [8.8, 14.7]). Having
sufficient sample sizes in both clusters for A = 0.17 in T1 and
/-=0.12 in FLAIR suggests that the corresponding large dif-
ferences in median survival discovered based on the proposed
shape + intensity representation of GBM tumors are fairly reli-
able. However, whether or not having balanced sample sizes in
the two groups of subjects with distinct survival is clinically
relevant needs to be further investigated. Nevertheless, the cor-
responding survival differences based on the estimated clusters
are quite large, as the median survival time in GBM is only
12 months (McLendon et al. 2008).

Figure 13 shows the clusterwise Kaplan-Meier estimates
of survival probabilities for clusters estimated based on (a)
T1 GBM tumor shape+ intensity with A =0.17, and (b)
FLAIR shape + intensity with 4 =0.12, ie., the 4 values
that yield the largest absolute difference in median survival
while having sufficient sample size in each cluster. In both
cases, subjects placed in cluster 2 had lower survival proba-
bilities across most of the study period. In particular, when
clustering is based on the FLAIR modality, the difference in
survival probabilities between the two clusters is larger
across the study period and the Kaplan-Meier curves of the
two clusters cross much later during the study period, as

compared to clustering based on the T1 modality. This sug-
gests that the FLAIR MRI-derived tumor shape + intensity
may be more useful in identifying two groups of subjects
with distinct survival patterns.

To again assess GBM tumor shape + intensity heterogeneity
in the clusters computed using the value of A that yields the
largest difference in median survival, we display the clusterwise
first two principal directions of variability for each of the two
modalities in Figure 14 (T1) and Figure 15 (FLAIR). As before,
each PC direction is sampled at —2, — 1,0, 1,2 standard devia-
tions around the sample average (see Equation (10)), which is
the midpoint of each path. For the T1 modality with A=
0.17, there appears to be little variation in terms of the shape
of the tumors, especially in cluster 1. In cluster 2, we observe a
lot of intensity variation along the first PC direction. The over-
all clusterwise variances in this case are p;,; ., = 0.648 for
cluster 1 and p,; o = 0.716 for cluster 2. Interestingly, the
GBM tumor shape +intensity in the T1 modality appears
more heterogeneous in cluster 2, which was associated with
shorter median survival. The clusterwise principal directions of
variation, computed based on FLAIR GBM tumor shape-
+ intensity with 4 = 0.12 exhibit more shape and intensity
variation than those computed based on the T1 modality. The
resulting overall clusterwise variances in this case are pg 1, 4 =
0.751 and py 1, -, = 0.855 for cluster 1 and cluster 2, respect-
ively. Again, GBM tumor shape + intensity is more heteroge-
neous in cluster 2, which is associated with shorter median
survival. Alternative displays of the primary directions of vari-
ation shown in Figures 14 and 15, wherein the shape compo-
nent is plotted separately from the intensity component, are
provided in Section S9 in the Supplementary Materials.

Finally, Figure 16 shows multidimensional scaling (MDS)*
plots (Borg and Groenen 2005; Cox and Cox 2001) for the
shape + intensity data corresponding to (a) the T1 modality
with 2 =0.17, and (b) the FLAIR modality with 1 = 0.12.
Each observation is colored according to its cluster member-
ship (cluster 1: blue; cluster 2: red). In both panels, we see that
there is reasonable separation between estimated clusters based
on the proposed shape + intensity representation and distance,
suggesting that the choice to partition the data into two clus-
ters is appropriate in this setting. These plots further confirm
that overall shape + intensity variation in cluster 2, which is
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Figure 13. Clusterwise Kaplan-Meier survival estimates based on (a) T1 shape + intensity with 2 = 0.17, and (b) FLAIR shape -+ inensity with 2 = 0.12.
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Figure 14. First two prlnapal directions of variability around the mean, displayed along rows, for cluster 1 (left) and cluster 2 (right) estimated using T1 tumor

shape + intensity with 4 = 0.17; pg 47, = 0.648 and pg 47 , = 0.716.
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Figure 15. First two prmapal directions of variability around the mean, displayed along rows, for cluster 1 (left) and cluster 2 (right) estimated using FLAIR tumor

shape + intensity with 4 = 0.12; pg 4,1 = 0.751 and pg 1, , = 0.855.

associated with shorter median survival, is larger than in clus-
ter 1, for each MRI modality. Importantly, the MDS coordi-
nates are computed using pairwise distance matrices only and
do not incorporate survival information, i.e., it is a form of
unsupervised dimension reduction.

In summary, the individual clusterings based on T1 and
FLAIR GBM tumor shape + intensity both discover similar
values of 4 (A =0.17 for T1 and 4 = 0.12 for T2) that yield
a large difference in survival estimates across clusters with
sufficient sample sizes. This indicates that GBM tumor
shape is more informative relative to intensity information
for identifying groups of subjects with distinct survival pat-
terns. Moreover, we consistently find that the cluster associ-
ated with shorter median survival has more heterogeneous
GBM tumor shape + intensity as measured by the overall
variance.

To harness information from both modalities, we also
perform clustering, again into two groups, using the com-
posite distance defined in Equation (11) with three pre-
selected values of the weight parameter o = 0.25,0.5,0.75.
As illustrated in Figure 17, this approach allows us to parti-
tion the data into groups that yield an even larger absolute
difference in median survival while having sufficient sample
size in each cluster. For instance, when 1; = 0.01, A, =
0.12 and o = 0.5, the difference in median survival between
the estimated two clusters is 8.3 months (cluster 1: median
survival of 20.9 months with (95%) CI [7.26, 27.2]; cluster 2:
median survival of 12.6 months with (95%) CI [8.41, 14.3])
as compared to 4.6 months and 7.85months when the T1
and FLAIR data are used separately. Moreover, as illustrated
by the clusterwise Kaplan-Meier estimates of survival proba-
bilities shown in Figure 18, the difference in the Kaplan-



27 © .
o o ® e o o
Q] 17 .o . ° . °
[©)] °
T : e .
c .. L °
.—é O L * .0 ¢ s ® ° ‘
8 ° % ° ® o o. L] .
o Y . L] L ]
-1 T ° ’ L ‘ e o ’ L]
° . .
= s
-2 -1 0 1 2 3

Coordinate 1
(a) T1 with A =0.17

DATA SCIENCE IN SCIENCE . 13

1 -
°
°
05! .0 ‘ ) .
c; ° o . ., 9 5
© ¢ ° i ®
% 0s° '.o e L4
= ] ° L4 [
Q g ° § x . '® ° 5
8 [ ] ° ° o [ ] o o
e o °
050 °° ’ .
- ° © °
°
-1 -05 0 0:5 1

Coordinate 1
(b) FLAIR with A = 0.12

Figure 16. MDS plots, for 4 values that yield largest absolute difference in median survival while having enough sample size in each cluster, for (a) T1 shape-
+ intensity with 2 = 0.17, and (b) FLAIR shape + intensity with /. = 0.12. Each subject is colored according to cluster membership: cluster 1: blue, cluster 2: red.

a:0.25

. i e
- O N N~ M O S O 0 - O o I~
O O «~ -~ A N ™ ™ < © o O « «
d o d d o o oo a 9 o o o o

_ 023

=105

|

=075

o B
I
H B H B
=

75

N >

N 25

: , - . y 0 P 0.0
© T O 10 g - O NN~ M ©® T O B o
N ™ ™ ¥ 9 O 0 -~ -~ A N ™ ®m = @
o o 6 o © o 0 86 0 d 6 d o a9
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Meier estimates between the two clusters estimated using
the composite distance is larger across the study period than
those when T1 and FLAIR data are used individually (see
Figure 13 for comparison). Large differences in median sur-
vival (red cells in Figure 17) mostly appear when 4; < 0.23,
especially when o = 0.25, 0.5, ie., more emphasis placed
on the shape component in the T1 modality. This further
indicates the importance of the TI GMB tumor shape com-
ponent for discovering groups of subjects with distinct sur-
vival. This observation may be clinically relevant since the
T1 modality captures the solid tumor area.

3.3.1. Comparative Analyses

We compare the proposed integrated framework, which uses
a joint shape + intensity representation and an associated dis-
tance, to alternative approaches which utilize (i) shape-only
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Figure 18. Clusterwise Kaplan-Meier survival estimates when « =0.5,1; =
0.01, and 4, = 0.12.

distances, or (ii) intensity-only distances. Our comparisons
are based on hierarchical clustering and subsequent survival
analysis as presented in Section 3.3. Note that the shape-only
analysis is a special case of the proposed integrated
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framework, i.e., specifying 2 = 0 in the shape + intensity rep-
resentation. Intensity-only analysis, on the other hand, is not
a special case of the integrated framework, and thus involves
a different representation and associated distance, which are
presented in Section S7.1 in the Supplementary Materials.

Table 2 reports absolute differences in median survival
where the clusters are estimated using shape + intensity,
shape-only, or intensity-only distances. As seen in the table,
for both T1 and FLAIR, the resulting absolute differences in
median survival from using shape-only and intensity-only
distances are smaller than those based on clustering using
the shape + intensity representation and associated distance.

Tables 3-5 present absolute differences in median sur-
vival when clustering is based on the composite distance
that utilizes shape + intensity, shape-only, or intensity-only
information from T1 and FLAIR modalities, for o=
0.25, 0.5 and 0.75, respectively. According to these tables,
clustering based on the shape + intensity composite distance
yields larger absolute differences in median survival while
having sufficient sample sizes in the estimated clusters, as
compared to those estimated based on clustering using
shape-only or intensity-only composite distances.

Finally, in Section S7.2 in the Supplementary Materials we
provide results of clustering based on a weighted combination
of the shape-only and intensity-only distances within each
modality. While this approach results in larger differences in

median survival for some weights than the proposed inte-
grated framework, the resulting clusters are highly unbalanced.
On the other hand, using shape + intensity distance for clus-
tering and subsequent survival analysis can yield clusters with
sufficient sample sizes while having large differences in
median survival as shown in Table 2. In summary, the com-
parative analyses presented here and in the Supplementary
Materials demonstrate the benefits of using the proposed inte-
grated framework for the task of discovering groups of sub-
jects with distinct survival prognosis.

4. Discussion

We propose a framework that provides objective character-
ization and comparison of tumor shape and intensity, and
allows assessment of tumor heterogeneity across subjects.
The proposed representation combines and balances infor-
mation about tumor shape and intensity along the tumor
contour. The balance of information is achieved by scaling
the intensity along the tumor contour to control its influ-
ence in the comparison and summarization of tumor shape
and intensity information. The proposed representation and
associated distance are invariant to translation, scale, rota-
tion and reparameterization, which are desirable mathemat-
ical properties that lead to improved comparison of tumor
shape + intensity. The proposed distance enables further

Table 2. Absolute differences in median survival based on clustering via the shape + intensity, shape-only, or intensity-only distances.

T FLAIR
Absolute difference in median Absolute difference in median

Distance survival Sample size in smaller cluster survival Sample size in smaller cluster
shape + intensity 4.60 7.85 17

A =0.17 for T1

A =0.12 for FLAIR
shape only 2 =0 435 0.90 12
intensity only 4.15 2.15 12

Table 3. Absolute differences in median survival based on clustering via a composite distance that utilizes T1 and FLAIR tumor shape-

+ intensity, shape-only, or intensity-only.

Distance

Absolute difference in median survival

Sample size in smaller cluster

shape + intensity 2, = 0.06 4, = 0.28
shape only 2 =0
intensity only

6.80 22
0.50 2
4.95 4

The T1 and FLAIR tumor differences are weighted by o = 0.25.

Table 4. Absolute differences in median survival based on clustering via a composite distance that utilizes T1 and FLAIR tumor shape-

+ intensity, shape-only, or intensity-only.

Distance

Absolute difference in median survival

Sample size in smaller cluster

shape + intensity Z2; = 0.01 4, =0.12
shape only 2 =10
intensity only

8.3 17
0.50 2
1.95 12

The T1 and FLAIR tumor differences are weighted by o = 0.5.

Table 5. Absolute differences in median survival based on clustering via a composite distance that utilizes T1 and FLAIR tumor shape-

+ intensity, shape-only, or intensity-only.

Distance

Absolute difference in median survival

Sample size in smaller cluster

shape + intensity 4; = 0.06 4, = 0.01
shape only 2 =0
intensity only

7.45 26
0.45 5
4.35 3.

The T1 and FLAIR tumor differences are weighted by « = 0.75.



statistical analysis of GBM tumor shape + intensity and can
be easily integrated into machine learning tasks such as clus-
tering and classification. Beyond the context of MRI-derived
GBM tumors, the proposed approach is quite general and
can be applied to data extracted from other medical imaging
modalities.

We discover that a certain emphasis on the intensity
component is helpful in distinguishing subjects with poor
disease prognosis from those with good prognosis, in terms
of survival, as shown in the clustering and survival analysis
results. Furthermore, we are able to associate tumor hetero-
geneity, as measured by the overall shape+ intensity vari-
ance, to differences in survival outcomes. Such information
can aid medical decisions made by patients and clinicians
after GBM diagnosis, e.g., whether to undergo invasive sur-
gery to remove the tumor.

While we mainly consider the unsupervised learning task
of clustering for discovering groups with distinct survival
profiles, the proposed integrated framework can also be
used in supervised learning tasks. An application to classifi-
cation, wherein the parameters 4 and o can be tuned auto-
matically via cross-validation, is presented in Section S8 in
the Supplementary Materials. In short, we discovered that
using the composite distance with a k-nearest neighbors
classifier, with large emphasis on shape differences in T1
and large emphasis on intensity differences in FLAIR, can
better predict survival classes (as defined by a survival cutoff
of 12months) compared to using T1 or FLAIR shape-
-+ intensity distances separately.

We have identified multiple directions for future work.
First, the proposed method uses information about the shape
of the tumor outline and the intensity along the outline,
which does not capture intensity information inside the
tumor. A natural direction for future work is thus to extend
the proposed approach to additionally use information about
the level curves inside the tumor and the associated intensity
values along these curves (Jermyn et al. 2012; Kurtek and
Drira 2015; Portman et al. 2007). This extension can capture
information about the spatial organization of intensity values
inside the tumor, thus providing more information regarding
GBM tumor heterogeneity. Second, we will develop survival
models that are able to incorporate shape + intensity objects
as predictors. This will enable inferential procedures that
fully capture these MRI-derived GBM features. Third, most
of the observations resulting from our statistical analysis are
exploratory in nature and based on a relatively low sample
size of 63 GBM subjects. We will thus apply the developed
methods to a larger cohort for confirmatory purposes.
Finally, we will use the proposed tumor shape+ intensity
representation in formal statistical models to study radioge-
nomic associations in the context of GBM (Mohammed et al.
2021, 2023).

Notes

1. http://cancergenome.nih.gov/
2. http://www.cancerimagingarchive.net/
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3. The SRVF transformation actually flattens a single instance in
the family of elastic Riemannian metrics by fixing the weights
that penalize the bending and stretching/compression terms.

4. MDS is a useful tool for visualizing information about
pairwise distances between objects in a lower dimensional
space.
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