


Assessment of Glioblastoma Multiforme Tumor Heterogeneity via MRI-Derived 

Shape and Intensity Features

Yi Tang Chen and Sebastian Kurtek 

Department of Statistics, The Ohio State University, Columbus, OH, USA 

ABSTRACT 
We use a geometric approach to jointly characterize tumor shape and intensity along the tumor 
contour, as captured in magnetic resonance images, in the context of glioblastoma multiforme. 
Key properties of the proposed shapeþ intensity representation include invariance to translation, 
scale, rotation and reparameterization, which enable objective characterization and comparison of 
these crucial tumor features. The representation further allows the user to tune the emphasis of 
the shape and intensity components during registration, comparison and statistical summarization 
(averaging, computation of overall variance and exploration of variability via principal component 
analysis). In addition, we define a composite distance that is able to integrate shape and intensity 
information from two imaging modalities. The proposed framework can be integrated with 
distance-based clustering for the purpose of discovering groups of subjects with distinct survival 
prognosis. When applied to a cohort of subjects with glioblastoma multiforme, we discover groups 
with large median survival differences. We further tie the subjects’ cluster memberships to tumor 
heterogeneity. Our results suggest that tumor shape variation plays an important role in disease 
prognosis.
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1. Introduction

Glioblastoma multiforme (GBM) is a severe type of brain 
cancer commonly found in adults (Holland 2000). The 
median survival time following diagnosis is approximately 
12 months (McLendon et al. 2008), with fewer than 10% of 
subjects surviving five years after diagnosis (Tutt 2011). 
GBM is a morphologically heterogeneous disease that is 
often diagnosed and examined using magnetic resonance 
imaging (MRI). Imaging features derived from MRI, in par-
ticular the shape and intensity or texture of the brain tumor, 
have been recognized as relevant prognostic factors for 
GBM (Bharath et al. 2018; Saha et al. 2016). The shape of a 
GBM tumor can reveal the extent of infiltration of the 
tumor into surrounding tissues, while tumor intensity can 
capture properties of these tissues, e.g., edema or infiltrated 
tumor cells (Hawkins-Daarud et al. 2013; Zinn et al. 2011). 
Thus, both features of imaged GBM tumors are pivotal for 
evaluating disease severity.

However, there is a lack of reliable and objective charac-
terization of GBM tumor shape and intensity for the pur-
poses of their comparison and statistical modeling. Domain 
experts often represent tumor shape in ways that are only 
able to capture its partial geometric complexity, e.g., using 
subjective features such as irregularity, circularity, major axis 

length, etc. (Chaddad et al. 2016; Krabbe et al. 1997). 
Similarly, tumor intensity information is often transformed 
into a histogram, which is then used to derive simple fea-
tures that can be incorporated into statistical models as 
GBM biomarkers, e.g., skewness, kurtosis, range, mode or 
percentiles (Baek et al. 2012; Just 2011; Song et al. 2013). 
Moreover, GBM tumor shape and intensity are often studied 
separately, potentially overlooking the interdependence 
between these two tumor signatures (Gevaert et al. 2014).

To address these deficiencies, we develop a geometric 
approach that integrates, and appropriately balances, informa-
tion related to GBM tumor shape and intensity via a unified 
mathematical representation. The proposed representation 
and associated distance provide reliable characterization and 
facilitate objective comparison of GBM tumors. They further 
enable joint statistical analysis of shape and intensity features 
of MRI-derived GBM tumors. Bharath et al. (2018) defined 
and studied variation in GBM tumor shapes based on a para-
meterized curve representation under the elastic shape 
analysis framework (Srivastava and Klassen 2016). They 
showed that registration of GBM tumor outlines, via removal 
of nuisance variation related to translation, scale, orientation 
and parameterization from the shape representation space, 
resulted in more informative tumor comparisons, quantifica-
tion of tumor shape heterogeneity and associated survival 
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analysis. We build on their framework by additionally incor-
porating information about the intensity (texture) along 
tumor contours by defining a joint GBM tumor shape-
þ intensity representation. Our approach leads to a distance 
between shape and intensity features of GBM tumors that 
remains invariant to all shape and intensity preserving trans-
formations. Importantly, it allows for joint registration of 
GBM tumor shape and intensity, thus capturing their inter-
dependence. The proposed distance for comparison of GBM 
tumor shapeþ intensity can then be employed for assessing 
and visualizing tumor heterogeneity via statistical summariza-
tion (mean computation and principal component analysis), 
clustering and survival analysis. We show that joint statistical 
analysis of GBM tumor shapeþ intensity results in enhanced 
quantification of tumor heterogeneity by identifying groups 
of subjects, via (unsupervised) hierarchical clustering, with 
distinct survival profiles. We also present results that relate 
other covariates, in particular sex of subjects, to GBM tumor 
shapeþ intensity characteristics.

While the proposed GBM tumor shapeþ intensity repre-
sentation was introduced in Chen and Kurtek (2023) and is 
similar in spirit to the representation defined in Liu et al. 
(2008), this manuscript presents significant extensions as 
well as a more comprehensive statistical analysis of a GBM 
tumor dataset. Our contributions, beyond Chen and Kurtek 
(2023); Liu et al. (2008), are as follows.

� We define methods for joint statistical summarization of 
GBM tumor shape and intensity heterogeneity via a mean, 
measure of overall variance and exploration of dominant 
modes of variability using principal component analysis.

� We define a composite distance that is able to integrate 
GBM tumor shapeþ intensity information from two 
MRI modalities.

� We use the defined distances for partitioning of subjects 
with GBM into groups with distinct survival profiles. We 
then quantify and visualize GBM tumor shapeþ intensity 
heterogeneity within these clusters. We discover a con-
sistent trend wherein clusters with shorter median sur-
vival contain GBM tumors that are more heterogeneous.

1.1. Dataset Description and Pre-Processing

We obtained magnetic resonance images and associated cova-
riates, including age, gender, tumor volume (in voxels), sur-
vival status and survival time (in months), for 63 subjects 
diagnosed with GBM who consented under the Cancer 
Genome Atlas protocols1, from the Cancer Imaging Archive2. 
Table 1 shows summary statistics for different subject charac-
teristics. In this study, we consider MRI data from two 
modalities: T1-weighted post contrast, henceforth referred to 
as T1, and T2-FLAIR, henceforth referred to as FLAIR. Pre- 
processing of the data, e.g., segmentation of tumors from 
MRI images, followed a standard pipeline for structural MRI 
and is described in detail in Saha et al. (2016). In brief, pre- 
processing involved (i) registration of FLAIR images to corre-
sponding T1 images, (ii) inhomogeneity correction of FLAIR 
and T1 images, (iii) semi-automatic segmentation of the 

tumors using the Medical Image Interaction Toolkit 
MITK3M3 Image Analysis (v1.1.0) and the NIFTI toolbox in 
MATLAB. In T1, the segmented region corresponds to the 
contrast enhancing tumor. In FLAIR, the segmented region 
corresponds to the solid tumor, and regions of edema and 
infiltrating tumor (Saha et al. 2016). In similar fashion to 
Bharath et al. (2018) and Saha et al. (2016), our study focuses 
on the analysis of GBM tumor shapeþ intensity captured in 
the axial image slice with the largest tumor area in the T1 
modality, and the corresponding slice in the FLAIR modality 
that has the same anatomical vertical position. Figure 1(a)
shows an example of such a T1 axial slice for one subject 
with GBM, while Figure 1(b) shows the corresponding FLAIR 
axial slice. The segmented tumor outlines are illustrated as 
red contours that are overlaid on the images. Noticeably, the 
appearance of the tumor outlines differs across the two MRI 
modalities even though the images are for the same subject. 
This is because different MRI modalities highlight different 
tissue properties: T1 highlights fat tissues while FLAIR high-
lights not only fat tissues, but also structures with high water 
content. Consequently, the tumor contour in the T1 image 
captures the solid tumor area, whereas the tumor contour in 
the FLAIR image captures the solid tumor area as well as 
regions of edema in the surrounding tissues.
The rest of this paper is organized as follows. Section 2
presents details of the statistical framework for shape-
þ intensity analysis of GBM tumors. First, in Section 2.1, 
we introduce the mathematical representation and distance 
for comparison of shapeþ intensity based on a single MRI 
modality. In Section 2.2, these are further used to define 
tools for (i) averaging, (ii) quantification of overall variation, 
and (iii) exploration of dominant modes of variability 
of GBM tumor shapeþ intensity features. Finally, in Section 
2.3, we specify a composite distance that is able to integrate 
shapeþ intensity information from two MRI modalities. 
Section 3 describes a comprehensive application of the pro-
posed statistical analysis tools on the GBM tumor dataset 
described in Section 1.1. Our focus in this section is on 
assessment of GBM tumor shapeþ intensity heterogeneity 
and how it relates to other covariates, e.g., sex (Section 3.2) 
and survival time (Section 3.3). We close with a brief discus-
sion and directions for future work in Section 4.

The Supplementary Materials contain (i) a study to deter-
mine an appropriate sampling density for shapeþ intensity 
in each modality (Section S1), (ii) software implementation 
details (Section S2), (iii) description of algorithms (Section 
S3), (iv) description of the data generating process for 

Table 1. Summary statistics of GBM subject characteristics.

Variable Categorical level Numerical summary

Age (mean (SD)) 56.33 (15.44)
Gender (n (%)) Female 21 (33.3)

Male 42 (66.7)
Survival status (n (%)) Deceased 57 (90.5)

Living 6 (9.5)
Survival time (med (IQR)) 13.6 (6.87, 26.40)
FLAIR volume (mean (SD)) 135,953.38 (88,272.70)
T1 volume (mean (SD)) 128,692.81 (90,581.05)

We use SD for standard deviation, n for sample size, med for median and IQR 
for interquartile range.
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simulated shapeþ intensity (Section S4), (v) a procedure for 
bootstrap estimation of variance for average shapeþ inten-
sity (Section S5), (vi) a procedure for distance-based outlier 
detection (Section S6), (vii) additional details of comparative 
analyses (Section S7), (viii) distance-based classification 
studies using shapeþ intensity (Section S8), and (ix) alterna-
tive displays of shapeþ intensity principal directions of vari-
ation (Section S9).

2. Methodology

We begin by defining a mathematical representation of 
image-derived GBM tumors, which captures their shape and 
intensity information. We refer to this representation as 
shapeþ intensity for simplicity of presentation. We then 
specify an elastic distance for comparison of GBM tumor 
shapeþ intensity, which allows for registration of these fea-
tures with respect to rotation and reparameterization. The 
distance is used to further define procedures for averaging 
of and assessing variability in a sample of GBM tumor 
shapeþ intensity. Finally, we define a composite elastic dis-
tance that allows for integration of shapeþ intensity infor-
mation from two imaging modalities. The proposed 
framework builds on tools from elastic shape analysis (Chen 
and Kurtek 2023; Liu et al. 2008; Srivastava and Klassen 
2016). Throughout this manuscript, we use j � j and jj � jj to 
denote the Euclidean norm in 3 and the 2 norm, 
respectively.

2.1. GBM Tumor Shape 1 Intensity Representation and 

Distance

We first construct a coordinate function that consists of (i) 
the x and y coordinate functions of the tumor outline, and 
(ii) the intensity function along the tumor outline. Let bc :

1 ! 2 denote the 2D closed curve representing the tumor 
outline, and bI :

1 ! denote the intensity function along 

the tumor outline. As seen in Figure 1, segmented GBM 
tumor contours, as well as the associated intensity functions, 
form closed curves, making the unit circle domain 1a natu-
ral choice in this application. Motivated by the discrete 
nature of MRI data, we take the following pre-processing 
steps to construct bc and bI from segmented images. To 
obtain bc, we smooth each tumor outline, which is origin-
ally represented by discrete x and y image coordinates, using 
a five-point moving average smoother. Then, the intensity 
value at each point on bc is obtained by taking the average 
of the five intensity values at the discrete x and y image 
coordinates that are closest (with respect to the Euclidean 
distance) to the x and y coordinate on bc: This averaging 
step serves two purposes: (i) it mitigates effects of potential 
noise in the intensity values, and (ii) it allows us to incorp-
orate intensity information from tissues that surround the 
tumor outline. We then additionally smooth the intensity 
function using cubic splines to obtain bI .

We rescale bc to unit length to remove scaling variability 
in the eventual shape component of the proposed 
representation. We denote the rescaled bc by b�c , where Ð

1 j _b�
c ðtÞjdt ¼ 1 ( _b�

c denotes the coordinatewise derivative of 
b�c ). In case the size of GBM tumors is also of interest, one 
may choose to not normalize the scale of their outlines, 
leading to size-and-shape analysis (Kurtek et al. 2012). In 
our analyses, we remove this source of variation since there 
exist significant tumor size differences across GBM subjects. 
Such scale differences can result in tumor comparisons that 
are primarily driven by their size, consequently overlooking 
important geometric differences in shape, e.g., regions of 
protrusion. Furthermore, tumor volume, one of the variables 
in the dataset, can be incorporated separately into any statis-
tical analysis task of interest. The intensity function bI is 
also standardized by subtracting its average and dividing by 
its standard deviation (Ellingson et al. 2012). This is moti-
vated by a well-known issue that arises in MRI studies, 
where intensity values corresponding to the same or similar 

Figure 1. (a) T1 axial image slice with largest tumor area and (b) corresponding FLAIR slice for a GBM subject in the dataset with survival time of 12.2 months. 
The tumor outline is highlighted as a red contour and overlaid on each image.
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tissues can vary across images/subjects, making them not 
directly comparable (Ny�ul and Udupa 1999). The standar-

dized bI is denoted by b�I : We then define b�k ¼
b�c
kb�I

� �
:

1 ! 3, where b�I is additionally scaled by a parameter 
k 2 þ, which controls the emphasis of intensity informa-
tion in the proposed representation. Thus, we model each 
tumor outline, and the intensity along the outline, as a 
three-dimensional parameterized closed curve. A pictorial 
illustration of the construction of b�k (for k ¼ 1) based on a 
segmented MRI image of a GBM tumor is presented in 
Figure 2.

The defined tumor representation, b�k, contains two add-
itional sources of nuisance variation: (i) orientation or rota-
tion of the tumor contour in the image, and (ii) 
parameterization of the tumor contour and intensity func-
tion. In order to define a shapeþ intensity representation 
based on b�k, we must thus account for these two additional 
sources of variability. For rotations, our focus is on a sub-

group of SOð3Þ, R ¼ SOð2Þ 0
0 1

� �
� SOð3Þ, elements of 

which rotate the first two (tumor contour) coordinates of 
b�k, but not the third (intensity) coordinate. The rotation of 
b�k by O 2 R is then given by the left group action of matrix 
multiplication: Ob�k: Different parameterizations of the 
closed curve b�k involve (i) different seeds or starting points 
on the domain 1, and (ii) different speeds of traversal 
along the curve. Let C ¼ fc : 1 ! 1jc is an orientation 
preserving diffeomorphismg denote the group of reparame-
terization functions. Then, a reparameterization of b�k by c 2
C is given by the value-preserving group action of compos-
ition: ðb�k, cÞ ¼ b�k � c: In the applied context of capturing 
GBM tumor shapeþ intensity heterogeneity, the actions of R 

and C do not change the shape of the tumor outline, and 
must be appropriately removed from the representation 
space. At the same time, allowing flexible rotations and rep-
arameterizations of b�k results in optimal registration of geo-
metric features of the tumor outline (eg regions of 
protrusion) and intensity function (eg local extrema) across 
GBM tumors. This results in more natural shapeþ intensity 
comparisons that preserve such features. We demonstrate 
this later in Section 3.

To remove the rotation and parameterization variabilities, 
we seek a rotation- and parameterization-invariant distance 
dð�, �Þ between two closed curves b�k, 1 and b�k, 2, which must 
satisfy the isometry property:

dðb�k, 1, b�k, 2Þ ¼ dðOðb�k, 1 � cÞ, Oðb�k, 2 � cÞÞ: (1) 

While convenient because of computational efficiency, it 
is well-known that the standard 2 distance does not satisfy 
this property (Srivastava and Klassen 2016). Instead, we use 
an elastic Riemannian metric, which is known to be (rota-
tion- and) parameterization-invariant (Mio et al. 2007). The 
metric is called elastic as it measures the amount of bending 
and stretching/compression needed to deform one shape 
into another. The resulting Riemmanian distance can be 
computed efficiently using a convenient transformation 
called the square-root velocity function (SRVF), which flat-
tens the elastic Riemannian metric to the 2 metric3

(Kurtek et al. 2012; Srivastava et al. 2011). The SRVF of a 
curve b�k is also a curve in R3 and is given by.

q�k ¼
_b
�
kffiffiffiffiffiffiffiffi
j _b�

kj
q : 1 ! 3, (2) 

where again _b
�
k denotes the coordinate wise derivative of b�k:

If the curve b�k is absolutely continuous, then its SRVF q�k is 

Figure 2. Flowchart illustrating construction of b�k using a segmented MRI image of a GBM tumor.
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an element of 2ð 1, 3Þ (Robinson 2012). Note that the 
SRVF representation is automatically invariant to translation 
as its definition only involves the derivative of b�k: While the 
location of the tumor in the brain can potentially carry 
information about severity of GBM, our focus is on tumor 
shapeþ intensity heterogeneity and we thus remove this 
source of variation from the representation. As in the case 
of the size of the tumor, this information can be incorpo-
rated separately into statistical analyses. This leads to the 
definition of the pre-shapeþ intensity space of GBM tumors 
as the space of SRVFs of closed 3D curves: C ¼ fq�k :

1 !
3 Ð

1 q�kðtÞjq�kðtÞjdt ¼ 0g:�� Because of the closure condition Ð
1 q�kðtÞjq�kðtÞjdt ¼ 0, C is non-linear leading to an intrinsic 

distance, induced from the 2 distance on 2ð 1, 3Þ, that 
cannot be computed in closed form. Thus, for computa-
tional efficiency, we instead use the extrinsic 2 distance on 
the pre-shapeþ intensity space C given by (for 
q�k, 1, q�k, 2 2 C)

dCðq�k, 1, q�k, 2Þ ¼ jjq�k, 1 − q�k, 2jj: (3) 

Importantly, as stated earlier, for a c 2 C and O 2 R, the 
2 distance between two SRVFs q�k, 1, q�k, 2 2 C is isometric 

under the actions of C and R:
dCðq�k, 1, q�k, 2Þ ¼ jjq�k, 1 − q�k, 2jj ¼ jjOðq�k, 1, cÞ − Oðq�k, 2, cÞjj
¼ dCðOðq�k, 1, cÞ, Oðq�k, 2, cÞÞ: (4) 

Here, we use the following two facts. First, a rotation of a 
curve b�k by O 2 R, Ob�k, corresponds to a rotation of its 
SRVF q�k, Oq�k: Second, a reparameterization of a curve b�k 
by c 2 C, b�k � c, corresponds to the following transform-
ation of its SRVF q�k : ðq�k, cÞ ¼ ðq�k � cÞ ffiffiffi

_c
p

.
Since dCð�, �Þ satisfies the isometry property with respect 

to rotations and reparameterizations, we use it to remove 
rotation and reparameterization variabilities from the repre-
sentation space. Formally, we account for rotation and rep-
arameterization variabilities in the representation q�k (b�k) via 
the definition of an orbit

q�k
� � ¼ fOðq�k � cÞ

ffiffiffi
_c

p
jc 2 C, O 2 Rg, (5) 

which unifies all SRVFs within a rotation and reparameteri-
zation of each other. In other words, the entire orbit (set) 
½q�k� associated with q�k represents the unique shapeþ inten-
sity for a GBM tumor. The set of all such orbits is denoted 
by S ¼ f½q�k�jq�k 2 Cg ¼ C=ðR � CÞ and forms the shape-
þ intensity quotient space. The shapeþ intensity space S is 
formed by partitioning the pre-shapeþ intensity space C via 
the orbits. The resulting distance between two shapeþ inten-
sity orbits, ½q�k, 1�, ½q�k, 2� 2 S, is defined via the 2 distance 
on C as follows:

dSð q�k, 1
� �

, q�k, 2
� �Þ ¼ inf

O2R, c2C
dCðq�k, 1, Oðq�k, 2 � cÞ

ffiffiffi
_c

p
Þ

¼ inf
O2R, c2C

jjq�k, 1 − Oðq�k, 2 � cÞ
ffiffiffi
_c

p
jj: (6) 

The optimization problems over R and C are solved using 
Procrustes analysis, i.e., singular value decomposition (opti-
mal rotation) (Dryden and Mardia 2016, Chapter 4), and 
the dynamic programming algorithm (Bertsekas 1995; 

Robinson 2012, Chapter 3) with an additional seed search 
(optimal reparameterization), respectively. A detailed algo-
rithm for solving the optimization problem in Equation (6)
is provided in Section S3.1 in the Supplementary Materials. 
This process aligns or registers the shapeþ intensity repre-
sentations of GBM tumors such that the 2 distance 
between them is minimized. This, in turn, results in 
improved comparisons of GBM tumor shapeþ intensity fea-
tures. Since similar geometric structure of tumor contours as 
well as similar intensity values along tumor contours can be 
indicative of similar tissue properties surrounding the infil-
trating tumors, registration of tumor shapeþ intensity is 
necessary. In essence, this process allows matching of similar 
tissue properties across GBM tumors. Another important 
property of the defined shapeþ intensity distance is that the 
contribution of geometric contour information versus inten-
sity information depends on the chosen value of k in the 
representation. When k is small, registration is driven pri-
marily by geometric features of tumor contours, and when k 
is large, it is driven by intensity information. We can visual-
ize the geodesic path or optimal path of deformation 
between two GBM tumor shapeþ intensity objects via a lin-
ear interpolation between q�k, 1 and the optimally rotated and 
reparameterized q�k, 2,

ð1 − sÞ q�k, 1 þ s O�ðq�k, 2 � c�Þ
ffiffiffiffiffi
_c�

p
, s 2 0, 1½ �, (7) 

where O� and c� are the optimal rotation and reparameteri-
zation computed using Equation (6). The length of this path 
is given by dSð½q�k, 1�, ½q�k, 2�Þ: Such deformation paths provide 
insight into the contribution of the shape and intensity com-
ponents in the registration and comparison of GBM tumors.

An illustration of registration and shapeþ intensity dis-
tance computation is provided in Figure 3. The two pre- 
shapeþ intensity objects in this figure were simulated using 
the data generating mechanism described in Section S4 in 
the Supplementary Materials. In the figure, the SRVFs of the 
two simulated pre-shapeþ intensity objects are represented 
by the two points labeled q�k, 1 and q�k, 2: They are elements of 
the pre-shapeþ intensity space C and lie in their respective 
orbits ½q�k, 1� and ½q�k, 2�: The oribts are shown as two parallel 
straight lines to illustrate the fact that the distance dCð�, �Þ is 
unchanged by a common rotation and/or reparameterization 
of the two pre-shapeþ intensity objects. In other words, 
applying a rotation O 2 R and a reparameterization c 2 C to 
both q�k, 1 and q�k, 2 shifts these two points by the same 
amount along their orbits. Also, recall that all points lying 
along an orbit of a pre-shapeþ intensity object q�k are 
equivalent representations of its shapeþ intensity. When 
visualized in the shapeþ intensity space S, an entire orbit 
collapses to a single point. Then, the distance between two 
orbits on S, each representing a unique tumor shape-
þ intensity, can be computed on C by fixing an element in 
the first orbit and minimizing the distance dCð�, �Þ over all 
elements of the second orbit. The minimizing distance is 
illustrated by the horizontal line that is orthogonal to the 
two parallel lines representing the orbits. For this particular 
example, we chose a very small value of k ¼ 0:01: Thus, 
registration primarily focuses on aligning geometric 
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shape features. A more thorough discussion of the effects of 
k on registration and subsequent shapeþ intensity distance 
computation will follow in Section 3.1.

2.2. Statistical Summarization of GBM Tumor 

Shape 1 Intensity

The proposed representation and distance enable joint statis-
tical analysis of GBM tumor shapeþ intensity. Our focus 
here is on the definition and computation of an average, 
and exploration of variability via principal component ana-
lysis, based on a sample. Given b�k, 1, :::, b�k, n, and their corre-
sponding SRVFs q�k, 1, :::, q�k, n, the sample shapeþ intensity 
average, for a fixed value of k, is defined as

l̂k, q
� � ¼ arg min

q½ �2S
1
n
Xn

i¼1
dSð q½ �, q�k, i

� �Þ2, (8) 

based on the distance dSð�, �Þ defined in Equation (6). This 
optimization problem is solved using a gradient descent 
algorithm (Karcher 1977), the details of which are presented 
in Section S3.2 in the Supplementary Materials. Note that 
½l̂k, q� denotes an entire orbit, but we choose a single elem-
ent l̂k, q 2 ½l̂k, q� as its representative for visualization and 
subsequent analyses. To visualize the mean shapeþ intensity, 
we apply the inverse SRVF transformation: l̂kðtÞ ¼Ð t

0 l̂k, qðuÞjl̂k, qðuÞjdu: One can further estimate the uncer-
tainty of the sample shapeþ intensity average using the 
bootstrap. The procedure to compute the bootstrap estimate 
of variance for the sample shapeþ intensity average is 
described in Section S5 in the Supplementary Materials. 
Moreover, shapeþ intensity distances from the sample aver-
age can be used for outlier detection. Section S6 in the 
Supplementary Materials provides the procedure for outlier 

detection and describes associated results for the GBM data-
set. Finally, the quantity

q̂k ¼
1
n
Xn

i¼1
dSð l̂k, q
� �

, q�k, i
� �Þ2 (9) 

is the overall variance in the shapeþ intensity sample, and 
can be used as a surrogate measure of GBM tumor 
heterogeneity.

Given an average shapeþ intensity, we can summarize 
and visualize variation via principal component analysis 
(PCA). First, each shapeþ intensity observation is registered 
to the average via Equation (6). With a slight abuse in nota-
tion, assuming that each registered SRVF q�k, i, i ¼ 1, :::, n 
and the mean l̂k, q are sampled using T points, we compute 
vk, i ¼ q�k, i − l̂k, q 2 3�T , i ¼ 1, :::, n: Throughout the analy-
ses presented in Section 3, we use T ¼ 180 for T1 and T ¼
280 for FLAIR shapeþ intensity. These choices were 
informed by numerical precision of tumor contour length 
computations, which are described in Section S1 in the 
Supplementary Materials. We then concatenate the three 
coordinate vectors resulting in ~vk, i 2 3T , i ¼ 1, :::, n, com-
pute the sample covariance matrix K̂ k ¼ 1

n−1
Pn

i¼1 ~vk, i~v>k, i, 
and apply singular value decomposition K̂ k ¼ URU 0: Then, 
we can visualize the sample shapeþ intensity variation 
within two standard deviations around the mean along the 
jth principal direction using the path,

l̂k, q þ s
ffiffiffiffiffiffi
Rjj

p
Uj, (10) 

where Rjj is the jth diagonal element of R, Uj is the jth col-
umn of U and s ¼ −2, − 1, 0, 1, 2: Here, Uj is the jth pri-
mary direction of shapeþ intensity variation, Rjj is the 
variance along that direction, and the sample average corre-
sponds to s ¼ 0:

Figure 3. Illustration of registration and shapeþ intensity distance computation for two simulated pre-shapeþ intensity objects.
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2.3. Multimodal Integration of GBM Tumor 

Shape 1 Intensity

In practice, clinicians often examine both the T1 and FLAIR 
modalities to draw conclusions about GBM severity since they 
highlight different tissue properties. To achieve joint compari-
sons of shapeþ intensity captured in T1 and FLAIR images, 
we leverage a product space structure to define a composite 
distance which integrates differences in T1 and FLAIR 
GBM tumor shapeþ intensity. Let Cj ¼ fqj�

kj
: 1 !

3jÐ 1 qj�
kj
ðtÞjqj�

kj
ðtÞjdt ¼ 0g and Sj ¼ f½qj�

kj
�g denote the pre- 

shapeþ intensity and shapeþ intensity spaces for the T1 
(j ¼ 1) and FLAIR (j ¼ 2) MRI modalities, respectively, with 
orbits defined as in Section 2.1. Note that the parameters 
k1, k2 2 þ can be different across the two modalities. Then, 
the composite shapeþ intensity distance on P ¼ S1 � S2 is 
defined as (for ð½q1�

k1, 1�, ½q2�
k2, 1�Þ, ð½q1�

k1, 2�, ½q2�
k2, 2�Þ 2 P)

dPðð½q1�
k1, 1�, ½q2�

k2, 1�Þ, ð½q1�
k1, 2�, ½q2�

k2, 2�ÞÞ ¼
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − aÞdS1ð½q1�

k1, 1�, ½q1�
k1, 2�Þ2 þ a dS2ð½q2�

k2, 1�, ½q2�
k2, 2�Þ2

q
,

(11) 

where a 2 ½0, 1� is a weight that controls the emphasis 
of each of the modalities, and dSjð½qj�

kj , 1�, ½qj�
kj , 2�Þ ¼

infOj2R, cj2C jjqj�
kj , 1 − Ojðqj�

kj , 2 � cjÞ
ffiffiffiffi
_cj

p jj for j ¼ 1, 2: Small 
values of a allow comparisons to primarily focus on shape-
þ intensity GBM tumor differences in the T1 modality. 
Similarly, large values of a put emphasis on the differences 
in the FLAIR modality. Importantly, the registration of 
shapeþ intensity, i.e., optimal rotation and reparameteriza-
tion, can differ across the two modalities.

3. Assessment of GBM Tumor Shape 1 Intensity 

Heterogeneity

We apply the proposed framework to assess heterogeneity in 
MRI-derived GBM tumor shapeþ intensity features. We 
begin with illustrations of registration, comparison and opti-
mal deformation for a simulated example and for multiple 
real GBM tumors. Next, we summarize shapeþ intensity 
variation by sex. We calculate group specific sample means 
and perform principal component analysis for different val-
ues of k: Then, we describe the use of the proposed shape-
þ intensity distances for clustering of GBM tumors, and 
relate our results to survival and tumor heterogeneity.

Throughout this section, the smallest value of k that we 
consider is k ¼ 0:01: In this case, the majority of informa-
tion comes from differences in GBM tumor shape. The larg-
est value of k that we consider is k ¼ 0:5 since the scale of 
the intensity values (after standardization) is larger than that 
of the GBM tumor contour coordinates (after rescaling to 
unit length). When k ¼ 0:5, intensity information domi-
nates registration and comparison of GBM tumor shape-
þ intensity. We found empirically that registration and 
comparison results for k > 0:5 are very similar, if not the 
same, to those for k ¼ 0:5

When relating our results to survival, we estimate median 
survival time based on the Kaplan-Meier estimate of the sur-
vival function, which accounts for censoring in the subjects’ 

survival times. One can also use other summaries of survival 
such as mean survival time, which can be estimated using 
the area under the Kaplan-Meier curve. We use median sur-
vival rather than mean survival, as the latter can be underes-
timated if the longest observation time is censored, which is 
often the case in GBM.

We provide software implementation details for the anal-
yses presented here in Section S2 in the Supplementary 
Materials. Code to reproduce the analyses is also available as 
a separate supplement.

3.1. Registration, Comparison and Optimal Deformation 

of GBM Tumors

Figure 4 shows registration results for two simulated pre- 
shapeþ intensity objects. The data generating process for 
these simulated objects is described in Section S4 in the 
Supplementary Materials. In each panel, we display the two 
simulated tumor contours (labeled Shape) along with the 
corresponding intensity functions (labeled Intensity) in red 
and blue. The simulated contours have a round shape with 
one region of protrusion, and the size of the protrusion dif-
fers between the two contours. The corresponding simulated 
intensity functions have a single peak of high intensity with 
different magnitudes. For improved display, we plot the 
intensity functions as if they were defined on the domain [0, 
1]. In Figure 4(a), we show the pre-shapeþ intensity objects. 
Recall that, to arrive at this representation, we (i)(center 
and) rescale the contours to unit length, and (ii) translate 
and rescale the intensity functions via subtraction of the 
mean and division by the standard deviation. In Figure 4(b), 
we show the registration result for a small value of k ¼
0:01: In this case, the registration process is driven by geo-
metric information of the contours as the protrusions on 
the two contours are well aligned. On the other hand, the 
peaks on the two intensity functions are misaligned since 
this information plays a minor role. When k is increased to 
0.5, as shown in Figure 4(c), intensity information domi-
nates registration: the peaks on the intensity functions 
become well aligned while the protrusions on the contours 
become misaligned.

Figure 5 presents registration results for two pairs of T1 
GBM tumors, which have visually similar (top row) and dif-
ferent (bottom row) shapes. The first pair shown in the top 
row come from subjects with survival times of 6.14 months 
(blue; subject 17) and 17.8 months (red; subject 23). In the 
bottom row, the tumors come from subjects with survival 
times of 42.1 months (blue; subject 57) and 14.3 months 
(red; subject 20). Similar to the registration results based 
on the simulated pre-shapeþ intensity objects (Figure 4), 
Figure 5(b) shows that when k ¼ 0:01, corresponding to 
very little emphasis on intensity information during registra-
tion, geometric features of the tumor contours are better 
aligned as compared to the intensity functions. When k is 
increased to 0.5, the registration process focuses on intensity 
as demonstrated by improved alignment of the intensity 
functions in Figure 5(c).
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Figures 6 and 7 show geodesic deformations between the 
shapeþ intensity representations for the simulated example 
and two real T1 GBM tumor examples considered in 
Figures 4 and 5, respectively. These deformation paths were 
computed using Equation (7). Each row, from top to bot-
tom, corresponds to a deformation computed with a differ-
ent value of k: Along each row, the geodesic path starts at 
the blue GBM tumor, followed by 5 equally spaced points 
along the path, and ends at the red one. Note that GBM 
tumor shapeþ intensity at the end of the geodesic path is 
optimally registered to the GBM tumor shapeþ intensity at 
the start of the path, based on the given value of k: Along 
each geodesic path, shape components are drawn as 2D 

tumor contours with overlaid colors representing intensity. 
We do not include a colorbar indicating the scale of inten-
sity values since they have been normalized prior to this 
analysis. As seen in the top row of each of the three figures, 
when k is very small, the deformation is primarily driven by 
the shape component. Here, geometric features of the con-
tours, e.g., protrusions, are in correspondence across the two 
shapes and this is reflected in the resulting geodesic path. 
As k increases, the influence of the intensity component on 
the geodesic deformation becomes apparent. For instance, in 
the bottom row of each figure, when k is large, we see that 
the deformation is mostly driven by the correspondence of 
high/low intensity values. Such deformations can provide 
valuable visualizations for clinicians as they assess severity of 
GBM based on imaging data.

3.2. GBM Tumor Shape 1 Intensity Heterogeneity by Sex

We first summarize the GBM tumor shapeþ intensity vari-
ation in the T1 MRI modality by sex via PCA for two differ-
ent values of k: The left and right columns of Figure 8 show 
the two primary directions (along rows) of shapeþ intensity 
variation when k ¼ 0:025, for females and males, respectively. 
Each PC direction is sampled at −2, − 1, 0, 1, 2 standard devi-
ations from the mean (see Equation (10)), i.e., the midpoint 

Figure 4. Registration of two simulated pre-shapeþ intensity objects. (a) Two pre-shapeþ intensity objects prior to registration. Registration results with (b) k ¼
0:01, and (c) k ¼ 0:5:

Figure 5. Registration of two pairs of T1 GBM tumor pre-shapeþ intensity objects that have similar (top row) and different (bottom row) shapes. (a) 
Pre-shapeþ intensity for two GBM tumors. Registration results when (b) k ¼ 0:01, and (c) k ¼ 0:5:

Figure 6. Shapeþ intensity geodesics between the two simulated pre-shape-
þ intensity objects considered in Figure 3(a).
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of each path is the sample average computed via Equation 
(8). In this case, due to the small value of k, the shape com-
ponent dominates the analysis and the top principal compo-
nents tend to capture more shape variation than intensity 
variation. Overall, T1 GBM tumor shapeþ intensity is more 
varied in the male group indicating higher tumor heterogen-
eity. The variances in the female and male groups are 
q̂0:025, F ¼ 0:241 and q̂0:025, M ¼ 0:254, respectively. The left 
and right columns of Figure 9 provide the same visualization 
of shapeþ intensity variation for females and males, but with 
k ¼ 0:1: We note the increased role of intensity information 
in these primary directions of variation. As before, overall 
variation in T1 GBM tumor shapeþ intensity is larger in the 
male group than in the female group: 
q̂0:1, F ¼ 0:549, q̂0:1, M ¼ 0:582

We repeat this process for FLAIR GBM tumor shape-
þ intensity, with the same values of k ¼ 0:025 and k ¼ 0:1:
These results are visualized in Figures 10 and 11, and similar 
conclusions can be drawn here as in the T1 MRI modality. 
As before, for each of the two values of k, the overall vari-
ance in the male group is larger than in the female group. 
In particular, q̂0:025, F ¼ 0:401 and q̂0:025, M ¼ 0:436 when 
k ¼ 0:025, and q̂0:1, F ¼ 0:794 and q̂0:1, M ¼ 0:850 when k ¼
0:1: It is also notable that there appears to be more variation 
in FLAIR GBM tumor shapeþ intensity than in T1 GBM 

tumor shapeþ intensity when the same value of k is used 
for each modality.

Interestingly, previous studies have shown that females 
with GBM have longer median survival than males (Colopi 
et al. 2023; Ostrom et al. 2018). In our dataset, the sample 
median survival times for males and females are the same at 
13.6 months, but the sample mean survival time is slightly 
longer for females than for males: 20.04 versus 17.84 months. 
Given the larger overall variance of GBM tumor shape-
þ intensity in males than females, for both the T1 and 
FLAIR modalities, it appears that tumor heterogeneity, as 
captured by these features, provides valuable information 
about GBM prognosis. Alternative displays of the primary 
directions of variation shown in Figures 8–11, wherein the 
shape component is plotted separately from the intensity 
component, are provided in Section S9 in the Supplementary 
Materials. Also, bootstrap estimates of variance for the sam-
ple average shapeþ intensity in each sex group are provided 
in Section S5 in the Supplementary Materials.

3.3. Clustering of GBM Tumor Shape 1 Intensity and 

Survival Analysis

The proposed representation and distance can be incorpo-
rated into machine learning tasks, which can be useful in 

Figure 7. Shapeþ intensity geodesics (along rows), for different values of k, between the T1 GBM tumors considered in Figure 5.

Figure 8. First two principal directions of variability around the mean, displayed along rows, for T1 GBM tumor shapeþ intensity in female (left) and male (right) 
subjects when k ¼ 0:025; q̂0:025, F ¼ 0:241 and q̂0:025, M ¼ 0:254:
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assessing inter-subject GBM tumor heterogeneity with 
respect to shape and intensity features. In our analysis, we 
use distance-based hierarchical clustering to study differen-
ces in survival across partitions of the GBM tumor shape-
þ intensity data. Depending on the choice of the tuning 
parameter k, the clustering can be driven either by geomet-
ric shape differences (for small values of k), intensity differ-
ences (for large values of k) or both. Furthermore, if the 
composite distance defined in Equation (11) is used for clus-
tering, the choice of the weight a additionally allows the 
clustering to focus more/less on differences in T1-derived or 
FLAIR-derived GBM tumor shapeþ intensity information.

We consider the entire dataset consisting of 63 subjects. 
For each subject, we have GBM tumor pre-shapeþ intensity 
extracted from T1 and FLAIR MRIs. For each modality, we 
first compute ten 63 � 63 pairwise distance matrices using 

Equation (6), corresponding to ten equally spaced values of 
k between 0.01 and 0.5. Varying the parameter k allows us 
to understand the importance of geometric shape versus 
intensity information in the clustering results and subse-
quent survival analysis. We then apply hierarchical cluster-
ing, with complete linkage, to each of the ten distance 
matrices and partition the data into two clusters, with the 
aim of discovering a value of k that provides large separ-
ation between the clusters in terms of median survival. Our 
implementation uses the linkage and cluster functions in 
MATLAB (version R2022a).
First, in Figure 12(a), we display the absolute difference in 
median survival between the two estimated clusters for each 
value of k and each MRI modality. In Figure 12(b), we show 
the corresponding absolute differences in the sample sizes 
across the two estimated clusters. For the T1 modality, the 

Figure 10. First two principal directions of variability around the mean, displayed along rows, for FLAIR GBM tumor shapeþ intensity in female (left) and male 
(right) subjects when k ¼ 0:025; q̂0:025, F ¼ 0:401 and q̂0:025, M ¼ 0:436:

Figure 11. First two principal directions of variability around the mean, displayed along rows, for FLAIR GBM tumor shapeþ intensity in female (left) and male 
(right) subjects when k ¼ 0:1; q̂0:1, F ¼ 0:794 and q̂0:1, M ¼ 0:850.

Figure 9. First two principal directions of variability around the mean, displayed along rows, for T1 GBM tumor shapeþ intensity in female (left) and male (right) 
subjects when k ¼ 0:1; q̂0:1, F ¼ 0:549 and q̂0:1, M ¼ 0:582:
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largest absolute difference in median survival of approximately 
4.6 months (cluster 1: median survival of 17.8 months with 
(95%) CI [10.4, 22.3]; cluster 2: median survival of 13.2 months 
with (95%) CI [6.87, 14.7]) occurs at a relatively small value of 
k ¼ 0:17, i.e., where shape plays a more prominent role than 
intensity in the comparison of GBM tumors. We also note that 
the two clusters are approximately balanced in terms of their 
sample size for this value of k: For the FLAIR modality, the 
largest absolute difference of approximately 18.7 months occurs 
at a relatively large value of k ¼ 0:4, i.e., where intensity plays 
the dominant role in the comparison of GBM tumors. 
However, this difference may not be statistically reliable since 
one cluster contains only four subjects, yielding an absolute 
difference in the sample sizes across the two clusters of 55. On 
the other hand, when k ¼ 0:12, we discover two clusters that 
have sufficient sample sizes (more than ten observations in 
each cluster), and yield the second largest absolute difference 
in median survival of 7.85 months (cluster 1: median survival 
of 20.7 months with (95%) CI [6.14, 27.2]; cluster 2: median 
survival of 12.85 months with (95%) CI [8.8, 14.7]). Having 
sufficient sample sizes in both clusters for k ¼ 0:17 in T1 and 
k ¼ 0:12 in FLAIR suggests that the corresponding large dif-
ferences in median survival discovered based on the proposed 
shapeþ intensity representation of GBM tumors are fairly reli-
able. However, whether or not having balanced sample sizes in 
the two groups of subjects with distinct survival is clinically 
relevant needs to be further investigated. Nevertheless, the cor-
responding survival differences based on the estimated clusters 
are quite large, as the median survival time in GBM is only 
12 months (McLendon et al. 2008).

Figure 13 shows the clusterwise Kaplan-Meier estimates 
of survival probabilities for clusters estimated based on (a) 
T1 GBM tumor shapeþ intensity with k ¼ 0:17, and (b) 
FLAIR shapeþ intensity with k ¼ 0:12, i.e., the k values 
that yield the largest absolute difference in median survival 
while having sufficient sample size in each cluster. In both 
cases, subjects placed in cluster 2 had lower survival proba-
bilities across most of the study period. In particular, when 
clustering is based on the FLAIR modality, the difference in 
survival probabilities between the two clusters is larger 
across the study period and the Kaplan-Meier curves of the 
two clusters cross much later during the study period, as 

compared to clustering based on the T1 modality. This sug-
gests that the FLAIR MRI-derived tumor shapeþ intensity 
may be more useful in identifying two groups of subjects 
with distinct survival patterns.

To again assess GBM tumor shapeþ intensity heterogeneity 
in the clusters computed using the value of k that yields the 
largest difference in median survival, we display the clusterwise 
first two principal directions of variability for each of the two 
modalities in Figure 14 (T1) and Figure 15 (FLAIR). As before, 
each PC direction is sampled at −2, − 1, 0, 1, 2 standard devia-
tions around the sample average (see Equation (10)), which is 
the midpoint of each path. For the T1 modality with k ¼
0:17, there appears to be little variation in terms of the shape 
of the tumors, especially in cluster 1. In cluster 2, we observe a 
lot of intensity variation along the first PC direction. The over-
all clusterwise variances in this case are q̂0:17, c1 ¼ 0:648 for 
cluster 1 and q̂0:17, c2 ¼ 0:716 for cluster 2. Interestingly, the 
GBM tumor shapeþ intensity in the T1 modality appears 
more heterogeneous in cluster 2, which was associated with 
shorter median survival. The clusterwise principal directions of 
variation, computed based on FLAIR GBM tumor shape-
þ intensity with k ¼ 0:12 exhibit more shape and intensity 
variation than those computed based on the T1 modality. The 
resulting overall clusterwise variances in this case are q̂0:12, c1 ¼
0:751 and q̂0:12, c2 ¼ 0:855 for cluster 1 and cluster 2, respect-
ively. Again, GBM tumor shapeþ intensity is more heteroge-
neous in cluster 2, which is associated with shorter median 
survival. Alternative displays of the primary directions of vari-
ation shown in Figures 14 and 15, wherein the shape compo-
nent is plotted separately from the intensity component, are 
provided in Section S9 in the Supplementary Materials.

Finally, Figure 16 shows multidimensional scaling (MDS)4

plots (Borg and Groenen 2005; Cox and Cox 2001) for the 
shapeþ intensity data corresponding to (a) the T1 modality 
with k ¼ 0:17, and (b) the FLAIR modality with k ¼ 0:12:
Each observation is colored according to its cluster member-
ship (cluster 1: blue; cluster 2: red). In both panels, we see that 
there is reasonable separation between estimated clusters based 
on the proposed shapeþ intensity representation and distance, 
suggesting that the choice to partition the data into two clus-
ters is appropriate in this setting. These plots further confirm 
that overall shapeþ intensity variation in cluster 2, which is 

Figure 12. Absolute difference (y axis) in (a) median survival, and (b) sample sizes in estimated clusters for different values of k (x axis). Results based on T1 data 
are shown in blue while results based on FLAIR data are shown in red.
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associated with shorter median survival, is larger than in clus-
ter 1, for each MRI modality. Importantly, the MDS coordi-
nates are computed using pairwise distance matrices only and 
do not incorporate survival information, i.e., it is a form of 
unsupervised dimension reduction.

In summary, the individual clusterings based on T1 and 
FLAIR GBM tumor shapeþ intensity both discover similar 
values of k (k ¼ 0:17 for T1 and k ¼ 0:12 for T2) that yield 
a large difference in survival estimates across clusters with 
sufficient sample sizes. This indicates that GBM tumor 
shape is more informative relative to intensity information 
for identifying groups of subjects with distinct survival pat-
terns. Moreover, we consistently find that the cluster associ-
ated with shorter median survival has more heterogeneous 
GBM tumor shapeþ intensity as measured by the overall 
variance.

To harness information from both modalities, we also 
perform clustering, again into two groups, using the com-
posite distance defined in Equation (11) with three pre- 
selected values of the weight parameter a ¼ 0:25, 0:5, 0:75:
As illustrated in Figure 17, this approach allows us to parti-
tion the data into groups that yield an even larger absolute 
difference in median survival while having sufficient sample 
size in each cluster. For instance, when k1 ¼ 0:01, k2 ¼
0:12 and a ¼ 0:5, the difference in median survival between 
the estimated two clusters is 8.3 months (cluster 1: median 
survival of 20.9 months with (95%) CI [7.26, 27.2]; cluster 2: 
median survival of 12.6 months with (95%) CI [8.41, 14.3]) 
as compared to 4.6 months and 7.85 months when the T1 
and FLAIR data are used separately. Moreover, as illustrated 
by the clusterwise Kaplan-Meier estimates of survival proba-
bilities shown in Figure 18, the difference in the Kaplan– 

Figure 13. Clusterwise Kaplan-Meier survival estimates based on (a) T1 shapeþ intensity with k ¼ 0:17, and (b) FLAIR shapeþ inensity with k ¼ 0:12.

Figure 14. First two principal directions of variability around the mean, displayed along rows, for cluster 1 (left) and cluster 2 (right) estimated using T1 tumor 
shapeþ intensity with k ¼ 0:17; q̂0:17, c1 ¼ 0:648 and q̂0:17, c2 ¼ 0:716:

Figure 15. First two principal directions of variability around the mean, displayed along rows, for cluster 1 (left) and cluster 2 (right) estimated using FLAIR tumor 
shapeþ intensity with k ¼ 0:12; q̂0:12, c1 ¼ 0:751 and q̂0:12, c2 ¼ 0:855.

12 Y. T. CHEN AND S. KURTEK



Meier estimates between the two clusters estimated using 
the composite distance is larger across the study period than 
those when T1 and FLAIR data are used individually (see 
Figure 13 for comparison). Large differences in median sur-
vival (red cells in Figure 17) mostly appear when k1 	 0:23, 
especially when a ¼ 0:25, 0:5, i.e., more emphasis placed 
on the shape component in the T1 modality. This further 
indicates the importance of the T1 GMB tumor shape com-
ponent for discovering groups of subjects with distinct sur-
vival. This observation may be clinically relevant since the 
T1 modality captures the solid tumor area.

3.3.1. Comparative Analyses
We compare the proposed integrated framework, which uses 
a joint shapeþ intensity representation and an associated dis-
tance, to alternative approaches which utilize (i) shape-only 

distances, or (ii) intensity-only distances. Our comparisons 
are based on hierarchical clustering and subsequent survival 
analysis as presented in Section 3.3. Note that the shape-only 
analysis is a special case of the proposed integrated 

Figure 16. MDS plots, for k values that yield largest absolute difference in median survival while having enough sample size in each cluster, for (a) T1 shape-
þ intensity with k ¼ 0:17, and (b) FLAIR shapeþ intensity with k ¼ 0:12: Each subject is colored according to cluster membership: cluster 1: blue, cluster 2: red.

Figure 17. Absolute differences in median survival for different combinations of k1 (x axis), k2 (y axis), and a (panel). The parameters k1 and k2 control the 
emphasis on intensity information in T1 and FLAIR shapeþ intensity, respectively, while a controls the weight placed on each of the two modalities in the compos-
ite distance.

Figure 18. Clusterwise Kaplan-Meier survival estimates when a ¼ 0:5, k1 ¼
0:01, and k2 ¼ 0:12.
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framework, i.e., specifying k ¼ 0 in the shapeþ intensity rep-
resentation. Intensity-only analysis, on the other hand, is not 
a special case of the integrated framework, and thus involves 
a different representation and associated distance, which are 
presented in Section S7.1 in the Supplementary Materials.

Table 2 reports absolute differences in median survival 
where the clusters are estimated using shapeþ intensity, 
shape-only, or intensity-only distances. As seen in the table, 
for both T1 and FLAIR, the resulting absolute differences in 
median survival from using shape-only and intensity-only 
distances are smaller than those based on clustering using 
the shapeþ intensity representation and associated distance.

Tables 3–5 present absolute differences in median sur-
vival when clustering is based on the composite distance 
that utilizes shapeþ intensity, shape-only, or intensity-only 
information from T1 and FLAIR modalities, for a ¼
0:25, 0:5 and 0.75, respectively. According to these tables, 
clustering based on the shapeþ intensity composite distance 
yields larger absolute differences in median survival while 
having sufficient sample sizes in the estimated clusters, as 
compared to those estimated based on clustering using 
shape-only or intensity-only composite distances.

Finally, in Section S7.2 in the Supplementary Materials we 
provide results of clustering based on a weighted combination 
of the shape-only and intensity-only distances within each 
modality. While this approach results in larger differences in 

median survival for some weights than the proposed inte-
grated framework, the resulting clusters are highly unbalanced. 
On the other hand, using shapeþ intensity distance for clus-
tering and subsequent survival analysis can yield clusters with 
sufficient sample sizes while having large differences in 
median survival as shown in Table 2. In summary, the com-
parative analyses presented here and in the Supplementary 
Materials demonstrate the benefits of using the proposed inte-
grated framework for the task of discovering groups of sub-
jects with distinct survival prognosis.

4. Discussion

We propose a framework that provides objective character-
ization and comparison of tumor shape and intensity, and 
allows assessment of tumor heterogeneity across subjects. 
The proposed representation combines and balances infor-
mation about tumor shape and intensity along the tumor 
contour. The balance of information is achieved by scaling 
the intensity along the tumor contour to control its influ-
ence in the comparison and summarization of tumor shape 
and intensity information. The proposed representation and 
associated distance are invariant to translation, scale, rota-
tion and reparameterization, which are desirable mathemat-
ical properties that lead to improved comparison of tumor 
shapeþ intensity. The proposed distance enables further 

Table 2. Absolute differences in median survival based on clustering via the shapeþ intensity, shape-only, or intensity-only distances.

T1 FLAIR

Distance
Absolute difference in median 

survival Sample size in smaller cluster
Absolute difference in median 

survival Sample size in smaller cluster

shapeþ intensity 
k ¼ 0:17 for T1 
k ¼ 0:12 for FLAIR

4.60 27 7.85 17

shape only k ¼ 0 4.35 10 0.90 12
intensity only 4.15 10 2.15 12

Table 3. Absolute differences in median survival based on clustering via a composite distance that utilizes T1 and FLAIR tumor shape-
þ intensity, shape-only, or intensity-only.

Distance Absolute difference in median survival Sample size in smaller cluster

shapeþ intensity k1 ¼ 0:06 k2 ¼ 0:28 6.80 22
shape only k ¼ 0 0.50 2
intensity only 4.95 4

The T1 and FLAIR tumor differences are weighted by a ¼ 0:25:

Table 4. Absolute differences in median survival based on clustering via a composite distance that utilizes T1 and FLAIR tumor shape-
þ intensity, shape-only, or intensity-only.

Distance Absolute difference in median survival Sample size in smaller cluster

shapeþ intensity k1 ¼ 0:01 k2 ¼ 0:12 8.3 17
shape only k ¼ 0 0.50 2
intensity only 1.95 12

The T1 and FLAIR tumor differences are weighted by a ¼ 0:5:

Table 5. Absolute differences in median survival based on clustering via a composite distance that utilizes T1 and FLAIR tumor shape-
þ intensity, shape-only, or intensity-only.

Distance Absolute difference in median survival Sample size in smaller cluster

shapeþ intensity k1 ¼ 0:06 k2 ¼ 0:01 7.45 26
shape only k ¼ 0 0.45 5
intensity only 4.35 3.

The T1 and FLAIR tumor differences are weighted by a ¼ 0:75:

14 Y. T. CHEN AND S. KURTEK



statistical analysis of GBM tumor shapeþ intensity and can 
be easily integrated into machine learning tasks such as clus-
tering and classification. Beyond the context of MRI-derived 
GBM tumors, the proposed approach is quite general and 
can be applied to data extracted from other medical imaging 
modalities.

We discover that a certain emphasis on the intensity 
component is helpful in distinguishing subjects with poor 
disease prognosis from those with good prognosis, in terms 
of survival, as shown in the clustering and survival analysis 
results. Furthermore, we are able to associate tumor hetero-
geneity, as measured by the overall shapeþ intensity vari-
ance, to differences in survival outcomes. Such information 
can aid medical decisions made by patients and clinicians 
after GBM diagnosis, e.g., whether to undergo invasive sur-
gery to remove the tumor.

While we mainly consider the unsupervised learning task 
of clustering for discovering groups with distinct survival 
profiles, the proposed integrated framework can also be 
used in supervised learning tasks. An application to classifi-
cation, wherein the parameters k and a can be tuned auto-
matically via cross-validation, is presented in Section S8 in 
the Supplementary Materials. In short, we discovered that 
using the composite distance with a k-nearest neighbors 
classifier, with large emphasis on shape differences in T1 
and large emphasis on intensity differences in FLAIR, can 
better predict survival classes (as defined by a survival cutoff 
of 12 months) compared to using T1 or FLAIR shape-
þ intensity distances separately.

We have identified multiple directions for future work. 
First, the proposed method uses information about the shape 
of the tumor outline and the intensity along the outline, 
which does not capture intensity information inside the 
tumor. A natural direction for future work is thus to extend 
the proposed approach to additionally use information about 
the level curves inside the tumor and the associated intensity 
values along these curves (Jermyn et al. 2012; Kurtek and 
Drira 2015; Portman et al. 2007). This extension can capture 
information about the spatial organization of intensity values 
inside the tumor, thus providing more information regarding 
GBM tumor heterogeneity. Second, we will develop survival 
models that are able to incorporate shapeþ intensity objects 
as predictors. This will enable inferential procedures that 
fully capture these MRI-derived GBM features. Third, most 
of the observations resulting from our statistical analysis are 
exploratory in nature and based on a relatively low sample 
size of 63 GBM subjects. We will thus apply the developed 
methods to a larger cohort for confirmatory purposes. 
Finally, we will use the proposed tumor shapeþ intensity 
representation in formal statistical models to study radioge-
nomic associations in the context of GBM (Mohammed et al. 
2021, 2023).

Notes

1. http://cancergenome.nih.gov/
2. http://www.cancerimagingarchive.net/

3. The SRVF transformation actually flattens a single instance in 
the family of elastic Riemannian metrics by fixing the weights 
that penalize the bending and stretching/compression terms.

4. MDS is a useful tool for visualizing information about 
pairwise distances between objects in a lower dimensional 
space.
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