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ABSTRACT: The accelerating depletion of natural resources
undoubtedly demands a radical reevaluation of research practices
addressing the escalating climate crisis. From traditional approaches
to modern-day advancements, the integration of automation and
artificial intelligence (AI)-guided decision-making has emerged as a
transformative route in shaping new research methodologies.
Harnessing robotics and high-throughput automation alongside
intelligent experimental design, self-driving laboratories (SDLs) offer
an innovative solution to expedite chemical/materials research
timelines while significantly reducing the carbon footprint of
scientific endeavors, which could be utilized to not only generate
green materials but also make the research process itself more
sustainable. In this Perspective, we examine the potential of SDLs in
driving sustainability forward through case studies in materials discovery and process optimization, thereby paving the way for a
greener and more efficient future. While SDLs hold an immense promise, we discuss the challenges that persist in their development
and deployment, necessitating a holistic approach to sustainability in both design and implementation.

KEYWORDS: sustainability, experimental design, automation, machine learning

1. INTRODUCTION

The current global lifestyle consumes natural resources roughly
twice as fast as the Earth can regenerate them.1 Additionally,
anthropogenic contributions to climate change have resulted in
a global average temperature rise exceeding the Paris
Agreement’s 1.5 °C threshold for the first time in 2023.2 As
resource and health challenges become more complex,
focusing solely on the “greenness” of a product is insufficient:
the sustainability of the entire research, development, and
production processes must be considered as well. Early efforts
into sustainability focused on the economic optimization of
production processes: using less material, generating less waste,
and utilizing less hazardous materials.3,4 Eventual efforts began
to incorporate the product itself in the creation of materials
which by their own action or by their contrast to existing
materials are less harmful to (or actively beneficial for) the
environment.5,6 Irrespective of the final product, there is an
opportunity to make materials discovery and process develop-
ment research themselves more sustainable.7 Considering Li-
ion batteries and silicon-photovoltaics, technologies central to
renewable energy efforts, these technologies have required
decades of research from numerous laboratories to become

commercially viable and even longer to develop potential
technological competitors. Automation and miniaturization
already present a way to significantly reduce the carbon
footprint of research and development,8 and intelligent,
collaborative research strategies enabled by artificial intelli-
gence (AI) present the opportunity to reduce this carbon
footprint further. Given the research acceleration possible with
automation, AI, and collaboration, how would the Earth’s
biosphere and inhabitants benefit from industrially relevant,
green alternatives to processes such as nitrogen fixation or
materials such as concrete discovered and developed within the
span of months rather than decades? As the demands for and
complexity of higher-performing materials and increased
process optimization grow, a new paradigm is needed for
conducting sustainable research.
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The concept of “sustainability” in a materials context is not
new.9,10 One of the earlier formal definitions from United
Nations in 1987 was “meet[ing] the needs of current generations
without compromising the ability of future generations to meet
their own needs”,11 yet with increased awareness of the hazards
of petroleum and mining, it took on a sense of minimizing oil,
plastic, and mined resources.12 Then, the more modern idea of
minimizing or offsetting carbon footprints arose around having
a quantifiable means of measuring harm to the environ-
ment.13,14 From this historical perspective, the complexity of
achieving sustainability is shown as it requires minimizing
harm (to an ever expanding network of, sometimes arbitrarily
defined, human and natural systems), allocating resources,
forecasting market demands, and predicting the cascade of
both harm and technological capability. Regardless of the
technical definition used, the reduction of material use, and the
mitigation of hazards are central to engineering a sustainable
future.
Within this broad context of sustainability, the field of

chemical engineering, over the last two decades, has focused
on improving chemical manufacturing processes and practi-
ces.15,16 There is a nuance to the role of chemical engineering
as a critical piece for the existing carbon-intensive chemical and
materials industries. However, at its core, the desire to make
the most of available resources (or renewable feedstocks) and
promote safety have allowed chemical engineers to focus on
improving dated chemical manufacturing techniques and make
significant progress toward reducing the overall carbon
footprint of chemical and material production processes.16,17

Chemical engineering no longer addresses challenges of scale
and throughput solely by making plants or laboratories larger;
now environment-aware modeling, reactor engineering, and
process optimization offer additional tools for scale-up. In
addition to making production more material and energy
efficient, the act of research has similarly seen material-
conscientious optimization.18 This intensification of research
and production processes, both in academic and industrial
settings, demonstrates the inherent ties of chemical engineer-
ing to sustainability�reflected in Anastas and Warner’s 12
principles of green engineering,19 the 5 principles of
“Inherently safer design”,20 the adoption of numerous greener
industrial processes,21 and research practices utilizing automa-
tion.22−24

Tracing the evolution of scientific research from the
Edisonian approaches to data-driven experimentation, the
recent integration of machine-learning (ML) modeling and
decision-making with process automation presents a powerful
tool to more efficiently address current challenges facing the
chemical industries25�such as those in materials develop-
ment,26 process optimization,27 scale-up,28 and translation to
industry.29 The potential of AI allied with automation and
miniaturization is clear as a valuable tool to efficiently conduct
sustainability research.30−35 The synthesis of AI, robotics, and
lab automation into a self-driving laboratory (SDL)36 is a
rapidly emerging concept by which research in chemical and
materials sciences can be accelerated to meet these imminent
challenges.37−43 SDLs, by acting as a robotic copilot to the
human researchers, can reduce the time to solution by a factor
of 10−1000×,44 compared to manual or semiautomatic
experimental techniques�similarly, other explorations of
manual, automated, and self-driving experimentation estimate
10−100× reductions in cost, waste, and energy.8 The SDL’s
research acceleration is achieved by leveraging both high-

throughput automation and intelligent experimental design/
selection. This reduction of time, when combined with
chemical engineering design frameworks such as process
intensification, and green and circular chemistry principles,
results in less material consumption and waste generation,8

thus reducing the carbon footprint of the entire research
workflow. To reduce redundant effort, it has been proposed to
make the rich, digital experimental data sets generated by SDLs
shareable such that the operation of one SDL catalyzes the
education of other SDLs. It should be emphasized that while
SDLs can (and should) be used to create green technologies/
materials, this process of research is itself more sustainable
than traditional high-throughput experimentation (HTE).
Within this Perspective, the anatomy of an SDL is dissected

to evaluate the intrinsic sustainability of this autonomous
research paradigm: the process rather than the products of
SDLs’ research. Next, examples of prototype SDLs’ contribu-
tions to materials discovery and process optimization are
provided to demonstrate the diversity of techniques and
devices which can be integrated and the breadth of challenges
these platforms can address. Finally, the remaining challenges
of SDL development and deployment through the lens of
sustainability are discussed.

2. SDLS: A ROBOTIC COPILOT FOR A SUSTAINABLE
FUTURE

SDLs built through the integration of automated chemistry and
material science laboratories with autonomy (automated
decision-making) offer a promising avenue for different aspects
of sustainability, ranging from the accelerated discovery of
high-efficiency and clean energy materials to the optimization
of material- and energy-efficient manufacturing processes
(Figure 1). In addition to the material or process outputs of
an SDL, the synergy of the physical and digital components of
an SDL’s experimentation can reduce the carbon footprint of

Figure 1. Analogy to self-driving vehicles to show the progression of
experimental strategies. Traditional approaches are inefficient: the
human driver selects routine paths, and the experimentalist obtains a
paucal number of experiments. With automation, vehicles can find the
most efficient paths and laboratories can conduct many experiments
to exhaustively search a space. The introduction of autonomy further
enhances efficiency: a fleet of self-driving cars can find optimal
carpools and drastically reduce emissions; similarly a SDL can
perform a minimal number of experiments while maximizing
information gained. Finally, with the introduction of collaboration,
multiple pathing or materials design needs can be addressed and
distributed fairly to achieve optimality.
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research itself. The physical and digital aspects must act in
harmony to balance the costs of physical and computational
experimentation. A resource-conscientious SDL may include
miniaturized reactors, rapid online product analysis, and
efficient optimization techniques. In this section, we discuss
the physical and digital aspects of green SDLs�highlighting
how these tools accelerate research and make research more
sustainable.
Conventional human-dependent chemical and materials

research and development in academic and industrial settings
is rarely conscious of its impact on the environment.
Traditionally, chemical synthesis relies on labor-intensive
manual experimentation in batch reactors (e.g., flasks,
autoclaves) which usually consume solvents and solids on
the milliliter and gram scale per synthesis�leading to high
chemical consumption and waste generation over an extended
period of time. Additionally, one-factor-at-a-time or exhaustive
combinatorial approaches to experimentation are slow at
navigating through high-dimensional chemical spaces. More-
over, the segregation of the synthesis, characterization, and
performance evaluation of materials results in the loss of
intermediate information and opportunities for intersystem
optimization (e.g., process control, heat recapture, reactive
separations). The challenges of reproducing manual operations
(with high variance and lossy data capture) hinders a smooth
transfer of knowledge and necessitates further, redundant
experiments�increasing chemical consumption, waste gen-
eration, labor costs, and project time. In the past three decades,
lab automation technologies in chemistry and material sciences
have been slowly evolving toward the goal of resource- and
time-efficient development, resulting in HTE and reaction
miniaturization. Building on the decades of advancements in
laboratory automation technologies, SDLs seek to address the
aforementioned challenges of the existing experimental
sciences through optimal hardware and data engineering
(Figure 2). The next subsections discuss various facets of
SDLs and their role in making the overall experimental
sciences more material- and time-efficient.

2.1. Precursor Formulation Module. Batch-to-batch
precursor variability imposes a prevalent challenge to the
chemical synthesis. Consistent precursor compositions are a
prerequisite for reproducible synthesis. The precursor
variability challenge lies in the variation during solid and

liquid dispensing as well as in mixing. The automation of
material handling provides improved accuracy and precision
over manual preparation, and the standardization of solution
processing diminishes concentration and temperature varia-
tions, resulting in improved precursor reproducibility.
Commercial liquid-handling robots have provided general

and highly specialized automated options for microliter-level
liquid dispensing in the life sciences45 and are seeing increased
use in chemical and materials science research.46 Do-it-yourself
and 3D-printed pipetting robots are drawing increased
attention due to their low-cost and reconfigurability.47 Discrete
and continuous liquid handling are enabled via common and
reliable liquid transfer tools such as syringe and peristaltic
pumps, and automation interfaces allow these tools to be
readily connected into SDLs.48 The automation of small-scale
solids handling, however, is stymied by challenges with
managing and accounting for particle size distributions, static,
and moisture�variables which result in inconsistent dispens-
ing and mechanical bugs.49 Commercial solid dispensing
robots typically rely on gravity, hoppers, or positive displace-
ment to dispense solids and on precise calibrations or
gravimetric sensors to determine the amount of material
dispensed.50 Recently, a biomimetic dual-arm solid dispensing
robot with a lower operating bound for 2 mg dispenses was
published.51

The automation of heating, cooling, and mixing steps also
helps to reduce precursor variability. Heating and cooling
modules, either integrated with pipetting robots or working
independently, offer precise and uniform temperature control
across the reactor (or batch of reactors as in a well plate).52,53

Mixing modules (typically shakers for well plates or stirrers for
sealed reactors) can provide adequate mixing for many
applications�achieving uniform and rigorous mixing in well
plates remains an open challenge.54 Crucially for the objective
of reproducibility (the reduction of replicate experiments and
their material use and waste generation), the reliability and
capability of these formulation modules can be resolved with
technological advancements that can be easily rolled out en
masse�in comparison to the (re)training of human operators.

2.2. Reactor Module. The reactors play a vital role in the
quality of synthesis, experimental throughput, and material
consumption. The most common reactor is a single batch
reactor, which can be a vial, a flask, or a beaker. Single batch

Figure 2. Breakdown of SDLs modules within the sustainability framework. Precursor preparation and the reaction module can benefit from
miniaturization and on-demand material preparation. Synthesis and characterization should be designed synergistically to minimize the amount of
workup necessary. Characterization should be data-rich to increase shareability and in situ to avoid throughput bottlenecks. The cognition module
employs digital tools like ML-guided experimentation, models, and simulation to reduce the total number of physical experiments.
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reactors are compatible with many general-purpose pipetting
machines and robotic arms. However, even small single batch
reactors consume milliliter quantities of material, and their size
can result in concentration and temperature gradients which
may hinder process optimization or intensification.
Miniaturized batch reactors, such as multiwell plates,

increase throughout while reducing the chemical consumption
per reaction and retain their compatibility with many well-
established automation technologies such as liquid handlers
and robotic arms. Miniaturized batch reactors can handle
solids and suspensions during synthesis relatively easily55 (cf.
flow reactors) and are suitable for dealing with discrete
reaction parameters in parallel (such as in catalyst and
biomolecules screening campaigns56,57). SDLs utilizing batch
reactors can leverage the free transfer of material between unit
operations (e.g., a robotic arm ferrying samples between
analytical devices) to enable flexible, parallelizable workflows
and facilitate the incorporation of new unit operations with
minimal integration effort. Resource efficiency in plate-based
architectures is, however, curtailed by the material waste
generated (sc. multiwell plates and pipetting tips). Multiwell
plates are typically made of polystyrene and polypropylene,
which are nonrecyclable especially when contaminated by
reaction materials, and can result in high carbon footprints for
platforms which operate continuously for long periods of time.
This waste generation motivates the transition from exhaustive
HTE to the intelligent experiment selection and reaction
plating of SDLs to minimize the number of experiments, and
thus multiwell plates and tips used.
Due to their facile integration to automated workflows,

microfluidic reactors have been widely utilized in SDLs for
continuous HTE.58,59 Microfluidic reactors enable continuous
control of reaction conditions (such as reaction temperature,
residence time, and precursor flow rates) allowing for rapid
switching between experimental conditions. This reduced
downtime for cleaning and equilibration translates into less
waste and less starting material which improves the material
efficiency of operation.60 Microfluidic reactors, in comparison
to batch reactors, minimize heat- and mass-transfer artifacts,
which in turn improves the quality of reaction data and
facilitates the exploration of reaction spaces. Single-droplet and
multiphase, segmented flow strategies further reduce material
use and enhance mixing, boosting throughput and offering an
economic edge for organic and nanoparticle synthesis.60 While
flow reactors synergize well with SDLs, they are challenged by
solids, the coupling of experiments conducted in series, and
often require substantial development time. Recent efforts have
been successful in making microfluidic systems more modular
to improve their flexibility;61 however, in some applications
other architectures are more appropriate.
Future SDLs may consider reactor design as a free parameter

during research. Recent efforts have been made to have SDLs
3D print reactors as needed,62,63 and it is possible to have an
SDL overcome the challenges of batch or flow architectures by
integrating both approaches and selecting the optimal
configuration for experimentation. Moreover, with the
integration of in situ sensors (for typical reactor process
variables such as temperature and pressure; for character-
ization, see Characterization Module), reactor conditions
could be modified in real time to provide better control and
enriched data extraction and to accelerate exploration based on
meta-experimental information (e.g., avoiding conditions
which cause clogs or which are hard to control).

2.3. Workup Module. The crude reaction mixture exiting
the reactor module requires workup before the results can be
characterized as the reaction effluent may contain the target
product, byproducts, and unreacted reagents. Typical benchtop
approaches such as column chromatography, filtration, and
extraction often require copious amounts of solvent to isolate
products and subsequent reconcentrating steps and must be
followed with ex situ analysis for the identification and
quantification of each component.
Versions of many isolation, purification, and workup

approaches have been demonstrated in automated exper-
imental systems: filtration, membrane filtration, gravity-based
separation, centrifuges, liquid−liquid extraction, high-perform-
ance liquid chromatography (HPLC), lyophilization, dilution/
concentration, solvent changes, annealing, deposition,
quenches, and pretreatments.64−67 Further integrations with
mass spectrometry, nuclear magnetic resonance spectrometry
(NMR), and Fourier-transform infrared spectrometry have
been used to assist in robust isolation�in addition these
techniques are used to verify the identities of products and can
permit the precise calculation of reaction yields and
selectivities. Despite the diversity of separation techniques,
their automation and full integration into SDLs has remained a
challenge. Separation techniques typically require fine-tuning/
calibration for optimal performance (which may not be
possible in discovery applications) and their physical interfaces
may require changing between batch and flow paradigms.
Moreover, current automation approaches have required
specialized programmatic interfaces or the automation of
human-centric interfaces.
Industrial wisdom indicates that the ideal process workup is

to not need it at all: by achieving sufficient yield and selectivity
through processes intensification that the question of
subsequent isolation and purification is moot. While SDLs
cannot rely on this approach (they are the means by which
those optimal, intensified reaction conditions are achieved),
they stand as an opportunity to deeply integrate both synthesis
and isolation processes together�using data from one to
inform the other. This collaboration between the reactor and
workup modules could further improve the efficiency of the
research platform by reducing time and waste generation.

2.4. Characterization Module. Automated character-
ization is central to closed-loop SDLs as it controls the
accuracy and richness of the experimental data provided to the
governing ML agents. The in-line or in situ characterization of
reaction products provides real time analysis of the tested
experimental condition(s), enables the analysis of transitory
periods between experiments and enriches the acquired data
set. Depending on the application, multiple characterization
techniques (encompassing different physicochemical, struc-
tural, and/or optical properties of the reaction product, for
example) are required to provide sufficient information to the
ML agents.
When exploring organic compounds, chromatography-based

characterization techniques (e.g., gas chromatography, HPLC),
coupled with a variety of detectors such as ultraviolet/visible
(UV/vis) absorption and MS, are common commercially
available separation and quantification techniques.68−71 How-
ever, the duration and discrete-sampling of chromatography-
based techniques may lag behind the throughputs of other
modules. This disparity of throughputs can result in the
underutilization of other modules in an SDL, reducing the
platform’s overall time-efficiency.
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Spectroscopic analyses�such as NMR, Infrared, and UV/
vis�can be performed in situ via flow cell or probes to indicate
material identities or measure electronic transition proper-
ties.39,72−74 Recent developments toward automated micros-
copy could lead to SDLs with real-time imaging analysis for the
shape and size characterization of materials.75,76 The
automation of sensors for live feedback, while useful for
robust HTE platforms, is crucial for the maturation of SDLs as
it permits not only the generation of data-rich experimental
observations but also provides meta-data about the techniques
and methods of the SDL’s operation�potentially enabling
SDLs that can learn and develop better experimental
techniques.
Nevertheless, the available chromatography and spectrosco-

py technologies have not kept pace in the past decade,
impeding the propagation of SDLs. For example, high-
throughput structural characterization for inorganic materials
(such as X-ray diffraction) is still difficult, slowing advances in
SDLs for inorganic materials. While the macroscopic side of
materials science SDLs have seen mechanical construction and
testing workflows becoming increasingly automated,77,78 nano-
material characterization is lagging.
Many of the existing characterization tools can fall into the

trap of being used to accelerate the Edisonian approach:
reducing the time to solution and reducing material used per
reaction yet permitting disproportionately more experiments�
diminishing their potential to enable sustainable research
workflows. Given the potential throughputs of SDLs,
characterization techniques will need to be made more
sensitive (requiring less material for good signal) and less
destructive (reducing the demands on synthesis and workup)
to fully enable the power of SDLs in the context of efficient
research. Automation-amenable characterization techniques
are urgently needed for the proliferation of SDLs.

2.5. Cognition Module. SDLs integrate and leverage
multiple digital technologies to improve efficiency, accuracy,
and reproducibility toward the goals of the experimental design
and its execution. It could be argued that the greenest
approach for accelerated experimentation is not experimenta-
tion at all: ideally, prior knowledge and theory, combined with
modeling, should synthesize the solution before a physical
experiment is ever performed. In practice, iteration is necessary
to overcome uncertainty and deficiencies in current models
and theories. SDLs, then, represent an effort to find, given the
costs and benefits of each, the optimal balance between
thinking about problems and doing experiments.
An SDL can leverage simulation and modeling to supple-

ment experiments, ML agents to conduct experiments, and
data-mining to augment training sets. The use of models and
simulation, such as the use of density functional theory (DFT)
to conduct virtual experiments, reduces the total number of
physical experiments required79,80 and can aid in the generality
of SDLs to new applications. For example, Strieth-Kalthoff et
al. were able to integrate a four-step DFT process into their
workflow for the discovery of organic laser emitters where in
the last step the predicted ground- and excited-state energy
gradients were used to optimize structures and eliminate entire
sections of the parameter space.
The use of purely in silico experimentation would eliminate

the use of potentially scarce, costly, or hazardous precursors,
waste, and any unsafe operational conditions. However, the
realization of experiments identified purely through digital
screening may encounter subsequent feasibility constraints.

Thus, physical experimentation must be made general, so as to
not artificially restrict proposed experiments and must be able
to perform probing and validation experiments at pace with the
digital experimentation. For successful in silico strategies,81,82

large amounts of reliable and varied data are essential.
Beyond theory-based modeling, the ML agents of an SDL

require substantial quantities of high-quality data in order to
operate effectively. In recent years, data-mining approaches
such as large language models83 and graph neural networks
(GNNs)84 have shown to be quite effective at extracting
knowledge from unstructured literature formats. This enables
an SDL to not only generate initial data sets on which to train
its ML agents but also affords the ability to reference the
literature during operation as would a scientist and avoid
redundant or wasted effort.
Prepared with ML agents, SDLs can design experimental

campaigns that are more efficient than human-generated or
combinatorial campaigns at generating information per experi-
ment�reducing the expected number of experiments before
success and increasing the probability of the autonomous
experimental campaign’s success.77,85,86 An added advantage of
ML-guided experimentation is that, with proper incentivization
and training, experimental campaigns can be designed to
include additional factors such as material use, waste
generation, atom economy, and hazard mitigation.
The digital world of SDLs also extends to process

automation and coordination, such as remote and collaborative
experimentation between SDLs to reduce redundancy and
material transfer between laboratories87 and the management
of data in sharable and usable formats for effective and efficient
collaboration. The virtualization of experiments and collabo-
ration is not free, however, as it relies on extant (and may incur
the creation of new) networks, data storage systems, and data
processing centers. These entities can involve considerable
resources (particularly electricity and water88). To some
extent, the digital carbon footprint of SDLs can be mitigated
through the use of carbon-neutral power sources; however,
both the design of SDL infrastructure89 and the computa-
tional- and data-efficiency of the models/software using them
must be addressed.
Process automation and orchestration streamlines oper-

ations�optimizing resource utilization and enabling paralleli-
zation.90,91 Multiple open-access orchestration platforms have
been designed to help with communication between
hardware.92−94 Sim et al. introduced ChemOS 2.0, which is
an orchestration architecture that coordinates the communi-
cation, exchange of data, and instruction management among
instruments. Orchestration beyond a single lab allows for
remote and collaborative experimentation. This allows
laboratories to distribute effort, leverage specialized equipment
or rare resources without requiring transportation, and pool
resources into efficient, integrated facilities.80,95 This enhances
accessibility to SDL technologies and reduces the burdens of
constructing and maintaining an individual SDL.
Within the digital aspect of SDLs, the computational

method plays a vital role in optimizing or discovering materials.
Optimization techniques are pivotal in achieving sustainability
objectives in chemistry and materials science. Single-objective
optimization focuses on finding the best solution to a given
problem from a set of possible solutions, typically defined by a
single output or a scalarization of multiple outputs. Multi-
objective optimization, on the other hand, focuses on finding
the best trade-off between competing output parameters.
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Furthermore, choosing the appropriate optimization technique
can be challenging when dealing with multiple considerations
such as the number of experiments, computational cost, sizes
of the input and output spaces, and performance metrics. In
recent years, algorithm benchmarking has gained popularity to
help future researchers decide which algorithms work best for a
particular project.85,96

3. EXAMPLES OF SDLS FOR SUSTAINABILITY

Synergy between physical and digital aspects of SDLs will drive
acceleration to shorten the time to solution of various
sustainable development goals, including affordable and clean
energy, responsible consumption and production, good health
and well-being, clean water and sanitation, climate action,
among others.97 Several proof-of-concepts SDLs have
succeeded in the discovery of novel materials and molecules
for specific domains�e.g., solid electrolytes, proteins, electro-
catalysts, thin film materials, and quantum dots (QDs)98−101

�

and in green-minded process design and optimization�e.g.,
photocatalysis,28 catalytic102,103 and chemical reactions,97 and
materials manufacturing.104 However, few calculate the relative
material/energy use compared to non-self-driving research
strategies or use sustainability metrics to guide experimenta-
tion (Table 1). With continued development addressing the

physical and digital components of SDLs, the next generation
of SDLs must be able to handle both materials and molecular
discovery and the optimization of workflows such that the
research itself, not just the product, is also sustainable.
In order to engineer a sustainable future, new high-

performing eco-friendly materials along with green manufac-
turing technologies will be required. To this end, discovery
efforts have attempted to accelerate the rate at which new
functional materials, which can be used to address current and
future challenges, are created. In addition to material discovery,
SDLs represent a transformative approach for process
optimization. These “processes” may include chemical
reactions, separations (such as distillation), remedial treat-
ments (such as carbon capture), recycling, or entire chemical/
material manufacturing production lines. SDLs provide a
continuous, iterative route to automate material discovery and
process optimization by designing and testing new materials
and approaches and leveraging data-driven insights extracted
from each experiment to efficiently explore chemical and
design spaces.

With the growing demand for renewable energy sources,
greener synthesis pathways, and environmentally friendly
manufacturing processes compounded with the growing
complexity of material solutions, sustainability goals, resource
conservation, and responsible and environmentally conscious
practices across scientific research and industrial sectors,
neither scaling-out nor intelligent design of experiments
alone will suffice. In this section, we illustrate how the pace
of scientific discovery and development is being accelerated by
SDLs to meet these demands.

3.1. Discovery: Finding the Solutions of Tomorrow.
SDLs take advantage of the synergy between physical and
digital components referenced above to tackle problems with
intractable parameter spaces, such as synthesis of inorganic
materials. Symanski et al., developed an SDL for the solid-state
synthesis of air-stable oxides and phosphates for electronics.105

It orchestrated a robotic platform to perform selected
chemistries found in the Materials Project database. Since
the chemistry was unknown, synthesis recipes were proposed
after analyzing literature by natural-language models. Active
learning was applied to direct the feasibility of each target
material and resulted in the purported discovery of 41 novel
materials in 17 days�notably, however, criticism of the
validity of these materials while this manuscript was under
review106 underscores the critical need for benchmarking and
cross-validation in SDL workflows.
Present high-throughput virtual screening approaches suffer

from a limited pool of materials and the high computational
cost of modeling calculations.107 Consequently, the use of ML
models, such as GNNs,84,108,109 have been employed to
explore the vast chemical space. Another popular strategy for
accelerated materials and molecular discovery is inverse design.
Polykovskiy et al., applied a generative model, to propose a
novel inhibitor of Janus kinase 3.110 This is made possible by
encoding the high-dimensional chemical space into a
continuous latent space of lower dimensionality, facilitating
the generation of new molecules with target properties using
the knowledge contained in this latent space. The generated
molecule was later synthesized and tested in vitro, significantly
increasing the time and atom efficiency of the typical drug
discovery cycle.111

Digital twins provide a model of the real system as the basis
for experimental selection and design. SmartDope85 is an SDL
for the production of QDs that uses an ensemble of neural
networks to model the relationship of synthesis parameters and
QD properties to enable experimental selection through
Bayesian optimization (BO). The SDL was able to discover
the best-in-class doped metal halide perovskite QD of its
search space (of ∼1013 possible synthesis conditions) within
only 1 day of continuous, automatic experimentation.
Leveraging continuous experimentation and in situ character-
ization, SmartDope accelerated materials discovery for renew-
able energy technologies.
By discovering novel materials, future generations are

provided with a greater arsenal of materials, tools which can
be used to address the problems they face. By making the
discovery of these materials resource- and waste-efficient, those
generations will start from a lesser deficit, and have more
resources and knowledge available to optimize the production
of these solutions.

3.2. Process Optimization: Making the Most of the
Solutions of Today. Optimizations, especially those for scale-
up, are instrumental in both industrial adoption and the

Table 1. Extant SDL or Autonomous Laboratory Systems or
Tutorialsa

aIn a survey of 106 manuscripts on extant SDL or autonomous
laboratory systems or tutorials, while many gesture toward
sustainability, produce “green” materials, or optimize processes,
(gesture) only a handful explicitly calculate sustainability metrics
(quantification) or use such metrics to guide experimentation (guide).
Counts are presented with a relative percent below in parentheses
(accounting for some manuscripts that were deemed not applicable
for individual classifications).
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reduction of industrial carbon footprints. Through the use of
advanced data analytics and real-time process monitoring,
SDLs can identify inefficiencies in processes and implement
corrective measures to improve overall performance.
In the past few years, SDLs have been successfully deployed

for both accelerated discovery of greener materials and process
optimization of environmentally friendly manufacturing routes.
For instance, the open-source, autonomous platform, Robo-
Chem,28 integrates a liquid handler, syringe pumps, a
photoreactor, affordable Internet of Things devices, and an
in-line benchtop NMR spectrometer to facilitate automated
and data-rich optimization of photocatalytic transformations
such as photoredox catalysis. By utilizing a combination of
robotic automation and algorithmic optimization, RoboChem
streamlines the process of reaction optimization and scale-up,
reducing the need for human intervention. This not only
enhances operational safety but also enables researchers to
dedicate more time to creative aspects of chemistry, ultimately
fostering innovation in sustainable chemical processes. Addi-
tionally, the platform’s modularity allows for integration with
various reactors and analytical technologies, enhancing
versatility in addressing diverse challenges.
Braconi et al. utilized BO to identify reaction conditions

with earth-abundant catalysts and nonhazardous solvents,
particularly for the case of C−N coupling of sterically
hampered bromo-pyrazines and benzylamines.112 The BO
approach efficiently explored a 140k-reaction space with only
80 experiments while achieving 87% yield. This BO approach
was then combined with design of experiment models to
provide a richer analysis to the researchers. Similarly, through
the use of a multiobjective BO algorithm, robotics, and
automated data-rich experimentation, Nambiar and co-workers
presented a robotic platform to optimize computer-generated
synthesis plans for the small molecule pharmaceutical,
sonidegib. In this study, the authors highlighted the
importance of human input for addressing unforeseen chemical
incompatibilities and refining synthesis strategies. These
examples demonstrate how machine assistance streamlines
process optimization, and how researchers can shift focus to
underlying chemical and physical processes, ultimately
facilitating the development of better (broadly applicable)
approaches in the future.61

Bridging optimization and discovery, the modular robotic
SDL, Ada, autonomously optimized the optical properties of
thin film materials by adjusting the composition and processing
conditions. By automating experimentation processes and
enhancing adaptability through modularity, the Ada platform
accelerated material development, potentially leading to new
solutions for advanced solar cells and other applications.
Furthermore, the platform’s scalability and ability to
accommodate diverse materials and techniques offered a
pathway for broader adoption within the materials science
community.101

4. CHALLENGES AND OPPORTUNITIES

The power and potential of SDLs may be clear, but SDLs are
held back from driving into a sustainable future due to the
technological restraints. Much of the fundamental experimental
machinery used by SDLs was developed for biology and not
chemistry/materials science and may not be compatible with
the necessary engineering controls imposed by reactive
materials. As many synthesis, workup, and characterization
technologies were designed in isolation, there are challenges in

matching throughputs; in addition, commercial automation
interfaces are often lacking in the level of control required for
research and deep integration into an SDL and creating
software wrappers to supplement these interfaces requires great
technical expertise.113 These problems are tangential to the
core of why SDLs are not already the common research
paradigm. SDLs promise a reduction in material use and time
spent finding solutions, fundamentally by reducing redundant
and unnecessary experimentation; furthermore, SDLs promise
a self-perpetuating cycle of collaborative research to address
problems of increased complexity and scale. These promises,
however, are locked behind by a lack of communication of
performance metrics for each developed SDL.
Redundant experiments are avoided by the transparent and

rapid communication of experimental plans and results as well
as by more precise equipment. The current fleet of SDLs has
been, however, developed in isolation as a result of funding
interests with specific foci and the current atmosphere in
academia to be quick to publish. This need for speed results in
prototype SDLs with hardware limitations that may corrupt
experimental results (e.g., such as optima lying beyond
operational conditions) and in highly specialized units that
do not generalize to other applications. As a consequence, an
SDL may not be able to utilize data generated on another SDL,
resulting in redundant experiments. Even with otherwise
reliable data generation, documentation, and reporting,
intellectual property restrictions can prevent the communica-
tion of these results and (software) tools used to aid in
autonomous operation.114 SDLs also may strain existing
(meta)data formats such as FAIR115 due to the convolution
of experimental, platform, and environmental informa-
tion.116,117 This difficulty in communicating results and tools
causes friction that hinders the self-perpetuation of SDLs.
SDL technologies are only useful toward elevating the

quality of human life and maintaining natural resources insofar
as they are used. The deployment of SDLs can be challenged
by the presence of “bigger problems” (such as electricity
production, transportation emissions, and food and water
scarcity). However, SDLs provide the fundamental research
needed to address those very problems. By accelerating (and
lessening the carbon footprint of) research, SDLs help find
ways around and solutions to these big problems. SDLs need a
champion demonstration of their capabilities in an industrially
relevant problem to ignite interest that will propel them into
use in the future.
Even with the expectation that the barrier to entry for SDLs

will decline over time, because SDLs are expensive to build but
provide more cost-effective research, they can cause disparity
in research capability (and thus funding) between the
laboratories with and laboratories without an SDL.118,119

Such disparities can deter a willingness to collaborate (again
increasing the probability of redundant efforts) and can pose a
risk of skill erosion in the workforce (hampering scientists
ability to address future problems). Moreover, the desire to
break into the SDL scene despite the barriers can result in ad
hoc solutions to solved problems, circling back to the issues of
poor reproducibility and generalizability which prevent SDLs
from delivering on their promise to reduce wasted effort.
Due to a lack of standardization in measuring and reporting

SDL performance metrics, the scientific community lacks the
ability to effectively communicate about and thus improve
SDLs. Without proper metrics, it is hard to determine the
transferability of SDLs across the material-scale and data
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boundaries between research institutions and industry partners
(cf. disparities in the size, format, detail, rights, etc., of data
available to each). Moreover, as SDLs are complicated systems
in an ecosystem without good metrics for describing them, it
can be hard to forecast platform needs when designing them.54

This can often result in wasteful solutions. On the hardware
side, it is easy to oversize throughput needs which can make an
SDL just as wasteful as a traditional HTE platform. On the
software side, it is easy to deploy unnecessarily involved ML
agents that waste computational resources120 and may be
oversized for the data set and rate of data generation available,
ultimately resulting in poorly trained or overfit models.121 The
poor generalizability of these models results in worse
performance and reduced transferability�breaking the prom-
ises of more efficient experimentation.
Furthermore, as complicated systems with limited vendor

support for automation and personnel training in automated
research and ML, many SDLs face challenges with
maintenance.54 Discovery-oriented platforms especially face
challenges with new conditions and materials causing problems
(clogs, fires, signal aberration, etc.) which can necessitate
resource-intensive cleaning, discarded experiments, and time-
consuming platform rectification. Ultimately, the inclusion of
such maintenance metrics into reporting on SDLs will enable
pain-points to be identified, engineering solutions to be
developed, and the overall usability of SDLs to be
improved�moreover, these metrics will be crucial for
adoption by industry where having realistic estimates for
downtime and maintenance costs are crucial for evaluating
investment in projects.
At the core of these roadblocks preventing SDLs from

fulfilling their promise of creating a more sustainable research
paradigm is a lack of communication. There is a need for more
useful metrics to better understand the economic and
ecological impacts of SDL operation.122 Furthermore, universal
standards for hardware and software interfaces are required to
reduce redundant efforts in the construction of SDLs and the
integration of SDLs into a collaborative network. To provide
for the development and measurement of the benchmarks and
interfaces, it may be necessary to push for incorporating into
grant proposals sections on sustainability to ensure there are
measured deliverables.
Incorporating sustainability metrics such as life cycle

assessment (LCA), and technoeconomic analysis (TEA), and
measures of adherence to the 12 principles of green chemistry
into materials discovery, process optimization, and self-
monitoring workflows is essential for transparent communica-
tion of SDL technologies.17 These frameworks provide a
systematic approach to evaluating and minimizing the
environmental impacts of products and processes. LCA allows
for a comprehensive analysis of the environmental impacts
associated with a product or process throughout its entire life
cycle, from raw material extraction to end-of-life disposal.123,124

By integrating metrics such as LCA into the process
optimization and materials flow into the discovery framework
of SDLs, scientists can assess the environmental footprint of
experimental designs and identify opportunities for improve-
ment. By quantifying resource consumption, energy use,
emissions, and other environmental factors, LCA enables the
automation of decision-making strategies and the evaluation of
potential alternatives. TEA evaluates the holistic economic
viability (such as input, output/waste, and operational costs as
well as output returns) and facilitates the transfer of SDLs and

their outputs (materials or processes) to industry.125 Metrics

for the adherence to the 12 principles of green chemistry allow

ML agents to approach the design of materials and processes

with sustainability in mind. These principles and metrics guide

researchers and engineers in designing chemical processes and

products that minimize waste, reduce toxicity, conserve

resources, and promote safer alternatives. By codifying the

way by which SDLs adhere to these principles into measurable

observables, these platforms can steer toward long-term

environmental objectives and communicate their progress to

collaborators, robotic, academic, industrial, or otherwise.126

With this breakthrough for communication, and thus

collaboration, SDLs can contribute fully to the development

of more sustainable technologies and practices, driving positive

change to both the way research is conducted and to the

solutions research provides.
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