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Abstract—Performance modeling is an important tool for
many purposes such as designing hardware accelerators, im-
proving scheduling, optimizing system parameters, procuring
new hardware, etc. This paper provides a new methodology
for constructing performance models for Deep Neural Networks
(DNNs), a popular machine learning workload. Prior works
require running DNNs on existing hardware, which may not be
available, or simulating the computation on futuristic hardware,
which is slow and not scalable. We instead take an analytical
approach based on analyzing the raw operations within DNN
algorithms, which allows us to estimate performance across any
hardware, even hardware that is in the process of being designed.
Evaluations show our approach is fast and gives a good first
order approximation (+10 — 15% accuracy) across many DNNs
and hardware platforms including GPUs, CPUs, and a futuristic
Processing In Memory (PIM) accelerator called BLIMP.

Index Terms—Analytical models, DNN models, Heterogeneous
systems, Performance modeling

I. INTRODUCTION

Deep Neural Networks (DNN) are commonplace for numer-
ous machine learning tasks. This has led to a flurry of activity
in the past decade from several fronts - developing new models
for applications, fine tuning parameters for existing models,
mapping these models on existing hardware for maximum
efficiency, designing and developing new hardware for running
these models, deploying and operating datacenter infrastruc-
ture to host these models in a cost-efficient manner, etc. At the
heart of all these efforts are answers to the following questions:
how would model X perform on hardware Y (whether the
hardware is already present, or is to be procured, or is being
hypothesized)? Are we using the best algorithms to run a given
model on the hardware? What would be the ideal configuration
parameters (batch size, number of Processing Engines, etc.)
for running these models on the given hardware? For the first
time, this paper presents a simple model that can give a quick
first order approximation of the performance of a given DNN
on a given hardware platform to answer these questions.

There are numerous model parameters, algorithmic choices,
and hardware platforms (both existing and emerging), that are
continuously evolving to run large DNNs. On the algorithmic
front, designers are constantly improving their models, intro-
ducing new layers to optimize the model for real time con-
straints that is often the case for ML inference. Understanding
how their models would perform on existing hardware is at
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the crux of their designs.

On the hardware front, computer architects are continu-
ously innovating their hardware with new features/accelerators
(e.g., TPUs, PIM accelerators) to improve model performance.
While industry and researchers often test new designs using
cycle accurate simulators, running large DNN models at scale
is virtually impossible on such simulators. A first order model
that can quickly predict performance would help architects un-
derstand “what-if” trade-offs in their designs and hypothesize
how they would perform even if the hardware does not exist
today.

Programmers and runtime systems need to map DNN mod-
els efficiently onto the given hardware. However, this is a
non-trivial problem - even if there are numerous libraries to
perform common tasks (e.g., matrix multiply). Each hardware
has its own nuances, impacting how each algorithm can
perform despite the same high level functionality. Further, the
efficiency of the mapping can be impacted by the parameters
(e.g., tensor dimensions/lengths can impact cache hit rates) that
they need to operate on. Programmers can clearly benefit from
a framework to quickly estimate what algorithms should be
employed for the various parameters and high level operations.

Finally, infrastructure providers (e.g., cloud/datacenters) of-
ten have a diversity of existing hardware and options/budget
to procure new systems to host ML workloads. Such hardware
is expensive, with a high demand for their capabilities in this
Al era. Providers not only have to grapple with how best to
allocate their budget across different options with different
price-performance trade-offs, but also dynamically decide how
to allocate workloads onto their existing diverse/heterogeneous
hardware resources to meet overall SLOs.

Despite such widespread needs, there is a dearth of tools
to quickly estimate performance of these DNN models on
diverse hardware. At one end, simulators are flexible in
modeling hardware, even hardware that may not exist, but
are time-consuming to build and more time-consuming (or
intractable) to execute for large DNNs. At the other end, one
can empirically benchmark models on different hardware, but
it may not accurately reflect the performance on new hardware
or even slight changes to existing hardware (e.g., larger caches,
fast interconnects, etc.).

To address these needs, this paper presents a simple an-



alytical model to quickly give a first order approximation
(even a £10 — 15% accuracy suffices for many of the above
identified purposes) of DNN execution time on any hardware,
current or hypothetical. The goal of our model is to capture the
essentials of the DNN computation and the hardware, without
over-burdening the user, while still accurately capturing the
nuances of the interactions between the hardware and soft-
ware. Towards this end-goal, this paper makes the following
contributions:

1) We find that three important software characteristics - the
number of floating-point operations, the data transfer costs,
and the effective parallelism - are sufficient for estimating
DNN execution time. From the hardware perspective, sim-
ple characteristics such as number of Processing Engines
(PEs), Processing Speed, and memory bandwidth, which
can be obtained from data sheets and/or microbenchmarks,
are sufficient for estimating performance. We find that
other factors have a smaller impact on accuracy, and we
explain how they can be addressed at the expense of a more
complex model.

2) Based on these easily accessible parameters, we develop
a methodology for creating simple analytical models that
can reasonably estimate the execution time of individual
kernels and layers of DNN models based on the algorithm
used. We combine these estimates to provide an overall es-
timate for the entire DNN for various hardware platforms.

3) We evaluate our analytical model across many DNNs
and hardware platforms, including an emerging hardware
platform (BLIMP). Our evaluations show the accuracy of
our analytical model across CPUs and GPUs (with and
without tensor cores) for various DNNs.

4) We demonstrate use-cases for our model in (i) debugging
performance problems (e.g., finding inefficient kernels) and
(i1) predicting the execution time for a futuristic BLIMP-
PIM accelerator.

II. RELATED WORK

Several works have investigated performance prediction of
DNN models across a variety of hardware. The approaches can
be broadly placed into four categories: Empirical approaches,
Simulation based approaches, Machine learning based ap-
proaches, and Analytical model based approaches.

Empirical approaches: Empirical approaches work by running
the application on the given hardware, measuring the per-
formance, and then extending the trend to other applications
in the future. The main limitation is they require execution
on the hardware platform to perform the analysis. Most of
the works using an empirical approach focus on the training
phase of the DNN models, although the insights from these
works can be extended to inference as well. [1], [2]] use an
empirical approach to analyze the performance of the training
phase using representative kernels on the cloud and other
platforms. [3|] does the performance analysis on a multi-GPU
setup. Works like [4] provide benchmarks and analysis tools
to predict the performance. Although they provide valuable
insights regarding the kernels and predict the performance

on a given hardware, these approaches require access to the
hardware and can not be extended to hypothetical hardware
when designing new hardware.

Simulation  approaches: Simulation  frameworks  like
Smaug [5] and other works like [6]-[8|] are designed to
accurately represent low level details. They are mainly
used for estimating hardware resource efficiency and energy
consumption. Although these provide great insights to the
user, they require intimate knowledge of the hardware and
the software (libraries) along with lot of engineering efforts.
They also take a significant amount of time to execute for
accurate estimation.

Machine learning (ML) based approaches: In the ML based
approaches like [9]-[15]], ML models are designed to predict
the performance of DNN kernels across various hardware
platforms. These have been used in scenarios such as schedul-
ing DNN models, improving the utilization of hardware, etc.
For example, [[14] and [[12]] predict the performance of DNN
inference using a transformer based model and Graph Neural
network, respectively. CoDL [13] estimates the latency of
DNN inference in heterogeneous platforms using a regression
model that determines parameters for a detailed analytical
model. DNNAbacus [9] focuses on predicting the performance
and the memory usage of the DNN training process using a
ML based model. [[10] and [11] propose approaches that
perform layer-by-layer analysis to provide overall estimation
of the performance of DNN models. Although ML based mod-
els are convenient in predicting the performance accurately,
they involve feature selection and a time consuming training
process. Also, the hyper-parameters these models derive can
often be restricted to the hardware on which they have been
trained. Hence it becomes difficult to extend the work across
hardware platforms, especially for hypothetical hardware that
do not exist.

Analytical modeling approaches: Analytical models are the
fastest approach to estimating performance. The most relevant
work is Paleo [16], which focuses on performance prediction
for the training phase of DNN models. Paleo considers the
Big O notation of each operation (specific to the algorithm)
and the workload size to determine the execution time for
DNN training. Paleo focuses on GPUs including multi-GPU
settings. In contrast, our work focuses on DNN inference,
which operates at much smaller timescales (e.g., milliseconds
vs hours). Additionally, our work is more general in supporting
CPUs, GPUs, GPUs with tensor cores, and emerging hardware
like BLIMP. Our design supports hypothetical hardware to
answer what-if questions, whereas Paleo requires running
benchmarks on every platform for every algorithm to obtain a
PPP (Platform Percent of Peak) factor necessary for adjusting
the estimation to be accurate. This makes the analytical model
difficult to use unless one has access to the hardware under
consideration.

In order to address these disadvantages, we propose a new
approach based only on the specification sheet (or general
FLOP rating and bandwidth measurements in cases where the
specification sheet lacks this information). Our aim is to build a



fast and versatile analytical model which is relatively agnostic
of specific frameworks/libraries while being general enough to
estimate the execution time of the DNN model on any given
hardware platform (commodity or prototypical/hypothetical
ones). At the same time, the model needs to be simple
enough to be easily specifiable by a relatively naive user,
without requiring a wide spectrum of DNN models and/or
hardware parameters that only an expert may be able to
provide. This way, our proposed analytical model can provide
quick insights to both hardware and software designers for
where to optimize the hardware and/or software without using
empirically derived parameters.

III. MODELING THE PERFORMANCE OF A DNN

The goal of the model is to explore what-if scenarios for the
execution time of DNN models on various hardware platforms.
In order to accommodate rapid changes occurring in both
software and hardware fields and provide quick feedback for
developers, our model should be simple enough to accept read-
ily available parameters and general enough to accommodate
a wide variety of hardware. The inputs to this model should
be easily extractable either from the execution framework (like
Pytorch or Tensorflow) or from the datasheets of the hardware.
At the same time, accuracy cannot be compromised. To realize
these goals, we need to identify the primary hardware and
software factors that impact the performance of DNN models
to be able to reasonably predict the execution time. To tackle
this, we first need to understand the basic structure of DNN
models.

Structure of the DNN models: A Deep Neural Network (DNN)
model comprises a Data Flow Graph (DFG), where each
node represents a DNN layer, and each layer is associated
with a specific computation. Edges in the DFG represents
the dataflow between the layers as shown in DNN
layers perform operations on multidimensional arrays known
as tensors. Depending on the operation (e.g., Convolution,
ReLU, GeMM), each DNN layer transforms input tensors
into output tensors. The output from one layer becomes the
input for other layers based on the edges in the DFG of the
DNN. The DFG is not necessarily a simple linear graph; it
can include periodic divergences and convergences.

Various algorithms can implement operations in DNN lay-
ers. For instance, Convolution can be implemented using the
Direct convolution algorithm, Winograd algorithm [17], FFT-
based algorithm [17], [18], or implicit GeMM-based algo-
rithm. Typically, DNN model developers specify operations
(such as convolution) to frameworks like PyTorch [19] or
TensorFlow [20]. Based on the dimensions of input tensors
and the hardware platform, underlying libraries like Intel
MKLDNN or CuDNN choose the optimal algorithm for the
best performance.

The compute and the data movement costs: The execution of
a DNN layer involves performing ALU operations on tensors
obtained from memory. Therefore, the execution time of the
DNN layer comprises both the time spent on computation
and the time spent on data movement. Computation primar-

ily involves applying fundamental operations like Multiply-
and-ACCumulate (MACC) operations (for convolution) or
Compare-and-Assign (for ReLU) inside nested loops to ef-
ficiently perform the specified layer operation. The compute
time is thus a function of the number of these fundamental
operations performed and the processing speed of the hard-
ware.

Data movement on the other hand, entails transferring data
from memory to the Processing Engine (PE). The data move-
ment time is influenced by the number of bytes transferred
between memory and the PE and the bandwidth of the inter-
connect. If there are multiple PEs, distributing computation
among them can enhance performance. Moreover, multiple
PEs can better utilize the interconnect between memory and
PEs by saturating it. Equally, it can also create contention
in the shared interconnect. Consequently, parallelism becomes
another crucial factor in determining the execution time of a
DNN layer. Therefore, by accurately calculating the compute
time and data movement time, and by accounting for the
parallelism, one can precisely estimate the execution time of
a DNN layer.

Extending the layer-by-layer calculation to the entire DNN:
DNN frameworks typically perform a topological sort and
execute layers sequentially one after another. Since each
layer is launched as kernels/functions separately (i.e., different
layers are not executed in parallel), from the performance
estimation point of view, the order in which DNN layers gets
executed is irrelevant. That is, whether a specific layer gets
executed as the first layer or tenth layer has no significance
on the execution time of the DNN as long as the input and
output tensor sizes are same. Hence the total execution time
of the DNN model can simply be calculated by adding the
execution time of individual layers.

In summary we use the following data as input to our model:
From the DNN model, (i) the DataFlow Graph (DFG) of the
neural network, (ii) the algorithm used in each of the layers
(nodes) of this DFG, and (iii) the dimensions/sizes of the
input/output tensors. From the hardware, (i) the number of
processing elements (PEs), (ii) the processing speed (i.e. FLOP
rating) of these PEs, and (iii) the bandwidth of the interconnect
between the PE and the memory (typically DRAM).

Acquiring these inputs is relatively straightforward. On
the DNN model side, input can be directly obtained from
the framework. Similarly, input from the hardware side can
be derived either from the specification sheet [21], [22] or
by conducting micro-benchmarks [23]], [24]]. These inputs,
although simple, are general enough to allow mapping of
various hardware platforms such as CPU, GPU, TPU, and
other accelerators into our modeling framework. In the fol-
lowing section, we elaborate on how these inputs are utilized
to estimate the execution time of DNN models.

IV. OUR ANALYTICAL MODELING METHODOLOGY

Based on the ideas discussed in the previous section, our
analytical modeling methodology can be summarized using
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Fig. 1: Calculating the number of primitive operations in a DNN model.

the following formula for execution time:
Z fundamentalOpsy,

)
Lelayers
Here fundamentalOpsy represents the number of Float-

ing point operations in layer L, which are based on the
specific algorithm and input parameters/sizes. dataM ovedy,
represents the data loaded and stored in layer L, which
are based on the input/output sizes. numPEy, ProcSpeed,
and memoryBandwidth represent the number of processing
engines used in a layer, processing speed of a PE, and memory
bandwidth of the hardware, respectively. Next, we provide
intuition behind this expression and how each parameter in
this expression is obtained.

dataMoved,
memoryBandwidth

numPEy, x ProcSpeed

A. Intuition behind the analytical model
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Fig. 2: Accuracy of analytical model for compute intensive

convolution layers when only Compute time is considered.

The above mentioned expression has 2 components: (i)
Compute time calculation and (ii) Data movement calculation.
The intuition behind these have been explained in
and we add these 2 components to to calculate the execution
time of a given layer. One may wonder, why addition is
used instead of considering maximum of compute time and
data movement time. When we considered just the compute
time for compute intensive layers (convolution in this case),
from we can see that, although the deviations are
acceptable for CPUs, it is high for GPUs (positive deviation
means over estimation and negative deviation means under
estimation of execution time from our analytical model).
But when both compute and data movement components are
considered and added, the deviations arrived into reasonable
level of accuracy which can be seen in Hence both
compute time and data movement times are added to get the
execution time of a layer.
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tensor (f )
# Layer name Input dimension Kernel size | Padding | Strides || Output Dimension
[nxexh xw] | rxs p s [n x k x h xw|
1 Conv2d-1 [1x3x224x224] 11x11 2 4 [1x64x55x55]
2 ReLU-2 [1x64x55x55] - - - [1x64x55x55]
3 MaxPool2d-3 [1x64x55x55] 3x3 0 2 [1x64x27x27]
4 Conv2d-4 [1x64x27x27] 5x5 2 1 [1x192x27x27]
5 ReLU-5 [1x192x27x27] - - [1x192x27x27]
6 MaxPool2d-6 [1x192x27x27] - 0 2 [1x192x13x13]
7 Conv2d-7 [1x192x13x13] 3x3 1 1 [1x384x13x13]
8 | ReLU-8 [1x384x13x13] - - - [1x384x13x13]
9 Conv2d-9 [1x384x13x13] 3x3 1 1 [1x256x13x13]
10 | ReLU-10 [1x256x13x13] - - - [1x256x13x13]
11 | Conv2d-11 [1x256x13x13] 3x3 1 1 [1x256x13x13]
12 | ReLU-12 [1x256x13x13] - - - [1x256x13x13]
13 | MaxPool2d-13 | [1x256x13x13] 3x3 0 2 [1x256x6x6]
14 | AvgPool2d-14 [1x256x6x6] 3x3 1 1 [1x256x6x6]
15 | Dropout-15 [1x256x6x6] - - [1x9216]
16 | Linear-16 [1x9216] [1x4096]
17 | ReLU-17 [1x4096] [1x4096]
18 | Dropout-18 [1x4096] [1x4096]
19 | Linear-19 [1x4096] [1x4096]
20 | ReLU-20 [1x4096] [1x4096]
21 Linear-21 [1x4096] [1x1000]

TABLE I: Alexnet description

B. Getting the parameters of the analytical model
1) Collecting hardware related input

First we would gather input related to the hardware plat-
form. Ideally, we aim to obtain all input data from readily
available sources such as the hardware datasheets. In cases
where the data is not specified (e.g., performance of specific
CPU extensions), the data can be determined by running
micro-benchmarks, such as MLC [24].
2) Collecting DNN model related input

Second, we collect input related to the DNN model. The
Data Flow Graph (DFG) and the sizes of input and output
tensors can be easily obtained from the model description.
The algorithm used can be obtained from the description of
the operation. For existing hardware like CPUs and GPUs,
one can either explicitly select the algorithm (as in the case of
MKLDNN) or use heuristics to decide the algorithm for im-
plementation. For example, in NVIDIA GPUs, the Winograd
approach is taken when the dimension of the weight tensor in
convolution is 3 X 3 or 5 x 5. If tensor processing units are
involved and the number of input channels is a multiple of 4,
then the implicit GeMM-based convolution approach is taken,
and so on. In the case of custom-designed futuristic hardware,
developers will likely have some insight into the algorithm
used. This information should be manually specified by the
user to our analytical model.
3) Calculating the total number of fundamental operations

In order to calculate the fundamental operations of a given
layer, the algorithm used to implement the layer is needed.
Without the knowledge of the algorithm, the number of
fundamental operations can vary drastically. To illustrate how
fundamental operations are calculated, let us consider an



example. Consider the first layer of Alexnet in which is
a 2D Convolution (referred to as Conv-2D). For this particular
layer, the dimension of the input tensor and the output tensor
are 1 x 3 x 224 x 224 and 1 x 64 x 55 x 55 respectively,
and a kernel of 11 x 11 with 64 filters is applied to perform
the convolution. These input and output tensors are placed in
NCHW format where N, C, H, and W stand for the batch
size, the channels, the height of the image and the width of the
image, respectively. Similarly, the filter is placed in KCRS
format where K, C, R, and S stand for the number of filters,
channels in the filter, filter height, and filter width, respectively.
If we use the Direct Convolution algorithm, the computation
involved is a seven layer nested loop (1 for batch size, 1 for
input channels, 1 for output channels, 2 for kernels, 2 for
images) with 1 MACC in the innermost nested loop.

This results in 1 x 3 x 64 x (11 x 11) x (55 x 55) MACC
operations, where the last 4 values are drawn from the kernel
size (11) and output tensor size (55).

All these parameters are mostly derived from the dimension
of input, weight, and output tensors. However in some algo-
rithms like Winograd based convolution, algorithm-specific pa-
rameters are involved which determine the number of MACC
operations involved in the layer. In this algorithm, parameters
called m (in case of GPUs for 3 x 3 it is 4) is used to determine
the tile size on which transformations are applied.

Since the processing speed of the hardware is given in
Floating Point Operations per second (FLOPS), we convert
MACC operations into floating point operations. One MACC
operation is equivalent to two floating point (addition and
multiply) operations.

If information about the implementation is not known (in
case of proprietary software), the number of floating point
operations can be deduced by running hardware specific
profilers. In this work, we use a priori computed analytical
model for all the algorithms evaluated.

4) Accounting for the parallelism

The number of PEs used in a layer is typically bounded
by the number of PEs in the hardware; DNNs are in general
implemented by experienced programmers to maximize the
parallelism that can be exploited from the hardware. However,
there are some cases where the parallelism used by the
algorithm is less than the parallelism available in the hardware
(e.g., for better performance to avoid/reduce data replication).
For example in case of batch normalization in GPUs, the
parallelism depends on the number of input channels, and
the number of channels can be less than number of PEs in
some layers. Thus, our model determines the number of PEs
used in a layer based on both the hardware and algorithm to
appropriately account for the actual parallelism.

5) Calculating the data movement time

In order to calculate the number of bytes transferred, we
take the following approach: Since the tensor sizes are large,
the time spent in data movement can be reasonably estimated
using number of bytes transferred through the interconnect
(between memory and PE) and the interconnect bandwidth.
Along with this, since the DNN layer algorithms are usually

well optimized, the cache misses are mainly cold misses, with
much lower capacity, conflict or coherence misses. Hence the
number of data elements transferred can be approximated
by the size of the input and output tensors since first time
accesses (cold misses) cannot be avoided. This simplifies the
data movement cost calculation to a great extent. Multiplying
the number of data elements accessed with the datatype size (4
bytes for FP32) and then dividing it by the memory bandwidth
will give the time spent in data movement. In one
can see that this assumption does not sacrifice the accuracy.

It is important to consider that in some layers data gets
transformed into another format before the actual computa-
tion is applied. For example in case of tensor core based
convolution in GPU, data gets transformed from NCHW
format to NHWC format before actual computation. After the
computation, it gets transformed back to NCHW format. Since
these transformations happen in distinct layers and no floating
point operations are involved, the data movement cost has to
be calculated explicitly for these layers.
6) Optimizations

Some frameworks optimize performance by employing
techniques such as kernel fusion where two consecutive layers
(or kernels) are merged so that data movement costs can
be reduced. We have not explicitly modeled for all possible
kernel fusions, but our approach to modeling the performance
remains the same where the fused layer should be treated as
a single layer in the DFG and steps 3-5 should be applied. If
kernels A and B get fused to make a new kernel C, then the
total data moved of kernel C will be the sum of data loaded
in kernel A (input) and data stored in kernel B (output). The
total number of fundamental operations of kernel C will be
the sum of total number of fundamental operations in kernel
A and kernel B.

V. EXPERIMENTAL SETUP

In order to validate our analytical model, we evaluate several
DNN models across a diverse set of hardware platforms.
Metric: We compare the execution time on the actual hard-
ware to the execution time predicted by our analytical model
and show the deviation of the predicted execution time to
the actual execution time, expressed as a percentage, as a
measure of accuracy. Positive values represent over estimation
of execution time by our model. Similarly, negative values
represent the under estimation.

Hardware: We run the DNN models across 4 platforms con-
sisting of 2 CPUs and 2 GPUs (one with tensor cores and
one without tensor cores). The specification of these platforms
can be seen in For CPU platforms, we have used
AVX ISA extension engines. These extensions are known for
improving the Multiply and Accumulate operations, which are
the fundamental operations in DNN models. However, when
AVX engines in Inte] CPUs are continuously used, the oper-
ating frequency is dynamically varied to prevent overheating,
which prevents us from getting consistent evaluation results.
Hence for consistency in our evaluation, frequencies are set to
the lower range of operating frequency (800-1000 MHz and



Hardware Name

Intel(R) Xeon(R)

Intel(R) Xeon(R)

Quadro RTX 8000

Ampere GA100 (40GB)

BLIMP system

Gold 6230 CPU CPU E5-2680 v3 | (TU102)
Extension/ PE type AVX AVX SMs SMs and Tensor Cores RISC-V cores
Number of PEs (P) 16 6 1 (72 SMs) 1 (108 SMs) 128
Processing Speed (S) 19.49 TFLOPS (SMs) 500 KFLOPS (matrix-vector)
of a PE 15.45 GFLOPS 21.64 GFLOPS 16.31 TFLOPS 155.92 TFLOPS (TCs) 350 KFLOPS (matrix-matrix)
Interconnect Bandwidth | 77.8 GBPS 15.334 GBPS 672 GBPS 1555 GBPS 39.936 GBPS

TABLE II: Hardware specifications.

1200-1400 MHz for Intel Xeon Gold based machines and Intel
Xeon E5-2680 based machines, respectively). For GPUs, we
have used an A100 (40 GB) GPU to validate tensor core based
DNN model execution and Quadro RTX 8000 GPU to validate
non-tensor based DNN model execution.

Software: From the software side, for CPUs, we have used
benchDNN [23]] to run specific kernels of the DNN model.
BenchDNN provides the average execution time after running
the kernel multiple times, thus reducing deviations that can
happen from one run to the next. For GPUs, we have used
pytorch [19] to run the DNN model. Nsight compute [25] is
used to obtain the execution time of the DNN model.

DNN Models: We have taken six well known models
Alexnet [26], Caffenet [27]], Resnet18 [28|], Resnet50 [28],
Vegl6 [29], and Yolonet [30]. Based on the number of layers
and the floating point operations, these DNN models represent
small, medium and large DNN models. This provides diversity
from the DNN model side to check the robustness of our
model.

Input Parameters to analytical model: Our analytical model
requires the FLOPS rating, memory bandwidth, and the num-
ber of processing engines to compute the execution time. In
CPUs, since CPU FLOPS ratings for a particular frequency
under a particular ISA extension (AVX) is not readily pub-
lished in datasheets, we have obtained it by running sample
microbenchmarks for given configurations. We have obtained
the bandwidth numbers using the Memory Latency Checker
(MLC) [24]] for given configurations. On CPUs, we have used
a batch size of 1, since it saturates the CPU pipeline. In case of
GPUs, we have used the specification sheets [21]], [22]] to get
the FLOPS rating and the memory bandwidth numbers. Nsight
compute [25]] is used to obtain the the operating frequency of
the GPU. On GPUs, we have used a batch size of 128, which
provides good GPU utilization across all DNN models and
GPUs.

VI. EVALUATION

A. Accuracy of the model

In we can see that the deviation of the predicted
execution time to the actual execution time. All deviations
are within 7.5% to -15.89% deviation from the actual perfor-
mance on the hardware, suggesting that the model can capture
performance fairly well to be useful for different purposes
as investigated below. In this result, we have considered the
parallelism modifications and the inefficient kernel modifica-
tions mentioned in the previous section. In case of CPUs, the
deviation is with in -1.65% to -15.89% for Xeon(R) Gold 6230
CPU and is with in 7.5% to 1.45% for Xeon(R) CPU E5-2680
CPU. The deviation is with in 1.52% to -7.52% in case of

Quadro RTX 8000 GPU. In case of Ampere GA100 GPU, the
deviations are with in -9.82% to -14.21%. The results show
that our simple analytical modeling approach is reasonably
accurate and robust across various diverse hardware platforms
for small, medium and large DNN models.
B. Accuracy of modeling convolution algorithms

One of the main features of our analytical model is model-
ing algorithms based on fundamental operations. In case of
convolution, which are compute intensive, we have variety
of algorithms to choose from to implement a given layer on
GPUs. Convolution layers take a significant portion of DNN
execution time. In case of Quadro RTX GPU, convolutions
take 61% to 83% and in case of A100 GPU, they take 55%
to 80% of the total execution time for previously mentioned
DNN models. Hence modeling them accurately improves the
accuracy of our model. The accuracy of our analytical model
for various convolution algorithms across GPUs can be seen
in[Figure 3¢} Some algorithms are not available in all hardware
platforms. Since this variety of algorithms are not available in
CPUs (oneDNN library) we have done comparison only for
GPUs. In case of our Quadro RTX GPU, for widely used
algorithms like Winograd and Direct convolution algorithms,
the deviation is within 5%. For the A100 GPU, the deviation
is within -10% for Direct and tensor based convolution algo-
rithms. FFT based approach is has a deviation of -17.4% in
case of Quadro RTX GPU. But this approach is taken only for
few layers in Resnet18 and Resnet50. Hence doesn’t affect the
performance much. But it has a deviation of -2.3% in case of
A100 GPU. Thus we can conclude that our analytical model
accurately models various convolution algorithms.
C. Handling inaccuracies : Parallelism and Inefficient kernels

There are 2 main reasons for inaccuracies in our analytical
model’s estimation: (i) kernels fail to completely exploit the
parallelism offered by the hardware; (ii) even if the kernels
exploit all the hardware resources, if an inefficient kernel
implementation gets chosen, then it can cause the deviation.
Without accounting for these factors, the results can be more
inaccurate, as shown in Although there is no way
to account for inefficient kernels in our analytical model,
parallelism factor can be accounted.
Batch Normalization in GPUs: In case of the Batch Nor-
malization layer (which is used in Caffenet, Resnetl8, and
Resnet50) in GPUs, the parallelism (number of CUDA blocks
launched) is parameterized by the number of input channels. In
the initial layers of Resnetl8 and Resnet50, there are around
64 channels, which is less than the number of PEs present
in the GPUs. Hence the layer fails to completely exploit the
parallelism offered by the hardware. In this case, we reduce the
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Fig. 3: Deviation in predicting the execution time.

number of processing engines to the number of input channels
in the input tensor. When accounting for this, in the first batch
normalization layer of both Resnet18 and Resnet50 (they are
of same dimension), in case of A100 GPU, the estimated time
changed from 0.93 ms to 1.55 ms and in case of Quadro
RTX 800 it changed from 1.949 ms to 2.14 ms. Both of these
changes improve the accuracy of our model. In summary, while
building an analytical model, accounting for parallelism at the
kernel level will help to improve the accuracy of the model.

D. Use Case 1: Performance Debugging (Pinpointing ineffi-
cient kernels)

To some extent, our model captures the expected perfor-
mance of these models. When its deviation is high, developers
can use this information to find inefficient kernels. This can
be illustrated with the following example: In case of Fully
connected layers in Alexnet and Caffenet on A100 GPUs,
pytorch picks the ampere_sgemm_32x32_slicedlx4_tn ker-
nel. However, this implementation is less efficient for
the given input dimension as it is unable to exploit the
full parallelism due to fail effects, which are defined as
the resource imbalance leading to low utilization during
the last wave of computation. However, when we use
cuBLAS based ampere_sgemm_64x32_slicedlx4_nn and
split Kreduce_kernel kernels for the same input, it achieves
full parallelism better than the kernel chosen by pytorch. This
may happen as the developers might not have tested the fully
connected layer for this set of dimensions and chosen the
kernel based on heuristics. Without the analytical model, it
would be hard to find this deviation. By doing this switch
to a more efficient algorithm for this particular layer and
combination of inputs, the execution time reduces from 1.42
ms to 1.08 ms, which is close to our estimation of 1.02 ms.
This illustrates one important (performance debugging) use
case for our analytical model.

E. Use Case 2: Predicting for Hypothetical/Future Hardware
Input size Output size Kernel size

Kernel 1 (K1) | [1x256x28x28] | [1x512x28x28] | 3x3
Kernel 2 (K2) | [1x512x7x7] [1x1024x7x7] 3x3

TABLE III: BLIMP convolution kernels.

In order to show the validity of our model on futuristic
hardware, we have considered a Processing In Memory (PIM)
accelerator called BLIMP [31], [32]. In this accelerator, a
RISC-V core is incorporated at the bank level in a DDR-

DRAM chip. The hardware provides high bandwidth along
with higher degree of parallelism solving the memory bottle-
neck problem.

Kernels and algorithms: We have considered 2 convolution
kernels, which are mentioned in (with appropriate
padding) for evaluation. Both kernels are run using the Im2Col
and Winograd algorithms. Our model enables us to determine
the appropriate algorithm to be deployed on this accelerator.

Input parameters: The hardware parameters are specified
in Since these algorithms are written by ourselves not
by expert library programmers, we have chosen 2 processing
speeds for matrix-matrix multiplication (for dot product com-
putation) and matrix-vector multiplication (for GeMM kernels)
to account for differences in speed. In case of CPUs and
GPUs, the libraries are written in a way to achieve the peak
performance offered. Hence this change is unnecessary for
CPU and GPU implementations.

Im2Col Approach Winograd Approach
BLIMP | Estimated Dev% BLIMP | Estimated Dev%
time(s) Time(s) time(s) Time(s)
K1 | 33.057 28.994 -12.29 | 12.223 13.389 9.54
K2 | 10.085 8.738 -13.36 | 3.734 4.257 14.01

TABLE IV: BLIMP convolution results.

Results: We employ the simulation framework mentioned
in [31)). From it can be seen that for the Im2Col
approach, the deviations are -12.29% and -13.36%, and for
the Winograd approach, the deviations are 9.54% and 14.01%.
Based on the execution times in it can be seen
that in both cases, the Winograd approach is better than the
Im2Col approach. In addition this, the speed up deviation in
comparison to Intel Xeon Gold CPU are 14.01% and 15.42%
for Im2Col approach and -8.71% and -12.29% for Winograd
approach. Thus our analytical model in addition to execution
time, also accurately predicts the speed up offered by the
BLIMP accelerator. In this way, our analytical model can be
used to predict which algorithm should be used on a given
hardware.

VII. CONCLUSION

In this paper, we identify three primary factors impacting
DNN performance and show how using these factors can cre-
ate reasonably accurate analytical performance models that are
fast and applicable to both current hardware and hypothetical
hardware that may not exist. The first factor (compute) is based



on the number of floating point operations, which requires
analyzing DNN algorithms to see the impact of the input
tensor sizes and DNN parameters. The second factor (data
movement) is based on the input/output tensor sizes, where
we find that caching is good and most of the data movement
is from cold misses when accessing the input/output for first
time. The third factor (parallelism) is based on the number
of processing elements within the hardware as well as the
degree of parallelism used in DNN algorithms. Our evaluation
shows how performance models built on these three factors are
fast and reasonably accurate (10— 15%) across many DNNs
and hardware types including GPUs, CPUs, and a futuristic
Processing In Memory (PIM) accelerator called BLIMP.
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