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A B S T R A C T

This paper discusses a source inversion method for the reconstruction of moving or stationary wave sources
on the top surface of a two-dimensional (2D) linear elastic solid. This adjoint-gradient-based source inversion
method uses vibrational measurements from sensors at the top surface of the solid, which can be heterogeneous
and damped, to reconstruct temporal and spatial distributions of the wave sources. The finite element method
(FEM) is used to obtain wave solutions with the high-resolution discretization of source functions in space and
time leading the number of inversion parameters to range in the millions.

Numerical experiments, in which the iterative inversion procedure begins with an initial guess of zero
loading at all points in space and time, show that the presented approach is effective at reconstructing
horizontal and vertical components of force (i.e., normal and shear tractions) for multiple simultaneous moving
dynamic distributed loads without any prior knowledge about the loads except that all loading is applied along
the top surface of the solid. Provided that moving loads on roadways are applied to the top surface, it is shown
that updating the guessed loading at just surface nodes, rather than at all nodes in space, greatly improves
the inversion results. The inversion is shown to be as effective at reconstructing loads on the top surface of
a solid when the solid is horizontally layered with multiple materials as when the solid it is homogeneous.
Reducing the distance between sensors improves the accuracy of the inversion while reducing the width of
distributed loads leads to less accurate results. The authors also validate the presented inversion method by
using experimental data obtained from lab-scale tests at a high frequency (100 kHz) for a stationary load on
a homogeneous solid.

1. Introduction

The authors of this paper are interested in a numerical algorithm
that can identify the full profile of an arbitrary number of moving
or stationary vibrational sources on solids of a multi-dimensional set-
ting by using sparsely-measured wave motion data from the solids.
Such an algorithm for identifying spatial and temporal profiles of
loads acting on the surface of a solid can contribute to reconstruct-
ing and monitoring of the dynamic response of the pavement layer
of a roadway and its sublayers, railways, or structural components,
such as bridge decks or girders subject to moving loads. Namely,
the algorithm can provide engineers with the ground-truth profiles
of traction exerted by moving objects on transportation infrastructure
(e.g., trucks, trains, airplanes on runways). The profiles of traction
could include its time-dependent spatial distribution: moving speed,
moving direction, frequency contents, and amplitudes. As such, the
new algorithm can be used for replaying the vibrational responses of
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the considered transportation structures and indicate where and when
stress waves of large-valued amplitudes take place within the struc-
tures due to such traction. Thus, it can help the users know the time
history of large-amplitude stress waves for the considered structures.
The algorithm allows structural engineers to establish a performance-
based engineering tool to monitor the effect of vehicle loadings of
large amplitudes on critical transportation infrastructure. On the other
hand, identification of the profile of stationary wave sources can be
also useful as follows. First, engineers can detect locations of impacts
in complex structures, such as aerospace composite structures and,
thus, localize impact-induced damages (e.g., delamination in aircraft
wings) [1–6]. The source identification can also be used for other
acoustic emission (AE) applications that, thus far, mostly rely on signal-
processing techniques such as wavelet transform [7,8]. At the same
time, source localization and characterization are crucial for the success
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of guided wave-based mobile robotic inspection systems [9,10]. That
is, structural features, such as edges and stiffeners [11], need to be
identified and differentiated from damages, such as cracks and delami-
nations [12]. Identification of the profile of stationary wave sources can
also detect falls of elderly people in buildings, improving home care of
seniors [13–22].

There have been studies on (𝜔) modeling the dynamic behaviors of
solids/structures subject to moving sources and (𝜔𝜔) detecting moving
vibrational sources on them by using sparsely-measured vibrational
data as follows. There have been studies on computing dynamic behav-
iors, induced by moving vibration sources, of Euler–Bernoulli beams—
e.g., simply supported beams or multi-span continuous beams [23–
27]. Raftoyiannis et al. [28] studied the dynamic response of floating
bridges of a beam model subject to buoyancy forces and/or moving
loads on the bridge deck by solving the nonlinear dynamic equation.
Toscano Correa et al. [29] investigated the dynamic behaviors of
frictionally damped Euler–Bernoulli beams on a Winkler-type foun-
dation under vehicle forces. The dynamic responses of an inclined
beam with a moving load are studied in consideration of the effect
of the axial component of the vertical load on the stiffness capacity
of the beam and the associated structural stability problem [30]. An
approximated formula in the closed-form was studied for evaluating the
maximum response of the resonant behaviors of beam-model bridges
on viscoelastic supports subject to moving loads [31]. In addition to
such studies on the dynamic behaviors of a 1D beam-model structure
due to moving loads, research has been conducted on the dynamic
behavior of 2D or 3D solids induced by moving loads. Celebi and
Schmid [32] studied the three-dimensional dynamic response of the
free field near railway lines induced by moving train loads by using
the thin layer method and the boundary element method. Wu [33]
investigated the dynamic responses of an inclined plate subject to
moving loads, presenting the effect of the inclined angle of the plate,
moving-load speed, and the number of the moving loads on the plate’s
dynamic responses. To model ground-borne vibration with a significant
reduction of the number of degrees-of-freedom in a curved track–
tunnel–soil system excited by moving railway traffic loads, a curved
two-and-a-half-dimensional (2.5D) model was investigated [34]. Ma
et al. [35] extended the curved 2.5D model by coupling the curved 2.5D
finite elements and perfectly-matched-layers (PML) elements to study
the wave propagations in longitudinally curved tunnel-ground systems,
of which laterally-propagating waves being emitted to the far field, are
modeled by the PML [36,37].

As methods for detecting moving vibrational sources on beam struc-
tures/solids by using sparsely-measured vibrational data, the Genetic
Algorithm (GA)-based minimization method has been employed to
detect the properties of moving loads on beam structures. Au et al. [23]
investigated a multiple-level GA—adjusting the range of the parameter
values during the inversion process—so that the optimizer avoids the
local minimum of a minimization function. Jeong et al. [38] investi-
gated the GA-based minimization method to identify several moving
wave sources of an arbitrary number in a 1D solid setting. However,
GA-based acoustic source inversion (ASI) methods are effective only
when the number of unknown load parameters is small, as shown
in [38]. In addition, there have been studies on a passive moving
wave source-based structural health monitoring (SHM) approach, by
which engineers can take advantage of ambient vibration sources, such
as vehicles on roadways or trains on railroads in order to monitor
the structural integrity. Mei et al. [39] presented a theoretical and
experimental study for the detection of structural damages by using
sensors on passing-by vehicles and considering vehicle–bridge dynamic
interaction. The GA method was also useful for simultaneously identify-
ing the speed, acceleration, frequency, and amplitude of a moving load
on a Timoshenko-beam bridge model and the anomaly (e.g., reduction
due to damage) in the elastic modulus of the bridge by using the
measurement data of bridge vibration [40]. Recently, Lloyd and Jeong
have investigated an adjoint equation-based inverse-moving source

method for identifying the spatial and temporal distribution of wave
sources, which are either moving or stationary, in a 1D heterogeneous
undamped solid [41]. Lloyd and Jeong also introduced the discretize-
then-optimize (DTO) approach to solving the inverse-moving source
problem considering a 1D heterogeneous damped solid truncated by
a wave-absorbing boundary condition (WABC) [42]. However, these
studies [41,42] have been conducted primarily in 1D settings. The
literature is still sparse on the adjoint equation-based inversion methods
to detect the spatial and temporal distributions of moving sources in
2D solids or 3D solid settings. Such a potential method can be also
employed, without the loss of generality, for detecting the profile of
a stationary wave source.

To fill this gap, the presented paper contributes to the body of
knowledge by presenting a new adjoint equation-based numerical
method for identifying arbitrary wave sources on a 2D, bounded,
heterogeneous, damped solid. The control parameters are all the dis-
cretized parameters of the possible distributions of the wave sources
in all the discrete locations within/on the domain and all the time
steps during the observation time so that the total number of the
parameters could be as large as several million or more. To update such
a large number of inversion parameters, a gradient-based minimization
method is used in which the gradient of a misfit function is determined
in an analytical fashion by the PDE-constrained optimization approach.
The accuracy and computational efficiency of computing the gradient
during the full-waveform inversion (FWI) process are superior and do
not depend on the number of the parameters. The authors’ mathemat-
ical modeling accurately takes into account the wave physics—such
as reflection, refraction, and damping—in the solid. The discretized-
then-optimize (DTO) approach enables such mathematical modeling in
a systematical and compact manner while considering all the physics
of interest. As the strength of the presented algorithm, it does not
need to have any prior knowledge about targeted sources (e.g., their
numbers, excitational frequency contents, initial locations, moving
directions, moving speeds, and accelerations). Even without such a-
prior knowledge, the algorithm is capable of reconstructing the spatial
and temporal distributions of sources of an arbitrary number on a 2D
bounded heterogeneous, damped solid. The authors also experimentally
validate the presented algorithm by testing the feasibility to determine
the profile of a wave source in a 2D plane-stress setting by using the
presented algorithm with real experimental measurement data in a
laboratory.

The presented paper is comprised of the following. (𝜔) The problem
definition introduces the goal of this research and the governing wave
equation and its associated conditions; (𝜔𝜔) The forward wave modeling
section describes the finite element modeling of wave responses of a 2D
solid subject to vibrational tractions; (𝜔𝜔𝜔) The inverse modeling section
presents the DTO approach to identifying a wave source profile using
sparsely-measured wave motion data; (𝜔𝜀) The numerical experiments
section shows a number of examples on parametric studies; and (𝜀)
Lastly, the experimental validation of this method is presented.

2. Problem definition

As the goal of this research, the authors study a new numerical
method to identify the spatial and temporal distribution of moving
or stationary wave sources on the top surface of the 2D damped,
heterogeneous solid by using measured vibrational motion data. As
experimental validation of the presented new numerical method, the
authors identify the spatial and temporal distribution of traction in-
duced by a transducer on the top surface of a solid specimen by using
this new numerical method with real measurement data (of a frequency
with the order of magnitude about 100 kHz) from a lab experiment.
Although the experiment was performed by using a stationary wave
source in a small lab scale, the validation could potentially show the
feasibility of using the presented method with vibration measurement
data on a large-scale realistic transportation structure subject to moving
sources of a frequency with a lower order of magnitude, e.g., 10 to
100 Hz.
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Fig. 1. Exemplary two-dimensional (2D) model of a multi-layered solid with a moving or stationary dynamic distributed load on the top surface. The solid is fixed along the
bottom boundary, and vibrational motions are sparsely measured at the top surface.

2.1. Governing wave physics

The 2D model considered in this study is a rectangular solid with
height, 𝜗 , and length, 𝜛, that is fixed along the bottom edge, 𝜚 =
0. This model configuration is shown in Fig. 1. The top and side
surfaces of the rectangular solid are traction-free. The solid is initially
at rest everywhere. One or more targeted moving or stationary dynamic
distributed loads are applied to the top surface, 𝜚 = 𝜗 , while sensors
at or near the surface provide measured vibrational motion data. For
this study, the sensors considered measure both 𝜍- and 𝜚-components
of displacement field of wave responses or only 𝜚-components of them.
The users of the presented method can use accelerometers, distributed
acoustic sensors (DAS), or vision-based motion sensors as sensors.

In the presented numerical method, a 2D plane-strain setting can be
considered: the thickness of the solid in the 𝜑-direction is much larger
than its 𝜍- and 𝜚-dimensions, and the cross-section and external forces
do not vary in the 𝜑-direction. A 2D plane-stress setting can also be
considered, by simply changing the elasticity tensor, for the numer-
ical method presented, which is particularly useful for the lab-scale
experimental validation.

The solid can be homogeneous or consist of layers of different
materials as shown in Fig. 1. The governing wave equation for the
domain, 𝛻, is:

ε ⋛ 𝝎 ϑ 𝜕 ℵ𝛚 + 𝛆 = ℶℷ𝛚 in 𝛻, (1)

where 𝝎 denotes the stress tensor, 𝛆 is the body force vector, 𝜕 repre-
sents a damping coefficient, ℶ is the density, and 𝛚 = [ℸ

𝜍
, ℸ

𝜚
] represents

the displacements. The material constitutive equation is:

𝝎 = 𝛝⊳, (2)

where 𝛝 is the elasticity tensor and ⊳ is the strain tensor. For the
plane-strain setting, 𝛝 is:

𝛝 = ⊲(1 ϑ 0)
(1 + 0)(1 ϑ 20)

⌋
⌈
⌈
⌈⌉

1 0

1ϑ0 0
0

1ϑ0 1 0
0 0 1ϑ20

2(1ϑ0)

{
}
}
}⦃
, (3)

where E is the modulus of elasticity, 0 is Poisson’s ratio. For the
plane-stress setting, 𝛝 is

𝛝 = ⊲

1 ϑ 02

⌋
⌈
⌈⌉

1 0 0
0 1 0
0 0 1ϑ0

2

{
}
}⦃
. (4)

The initial conditions are:

ℸ(𝜍, 𝜚, 1) = 0, 0 ∱ 𝜍 ∱ 𝜛, 0 ∱ 𝜚 ∱ 𝜗 , 1 = 0, (5)
2ℸ(𝜍, 𝜚, 1)

21
= 0, 0 ∱ 𝜍 ∱ 𝜛, 0 ∱ 𝜚 ∱ 𝜗 , 1 = 0. (6)

The boundary conditions at the bottom boundary is:

ℸ(𝜍, 0, 1) = 0, 0 ∱ 𝜍 ∱ 𝜛, 0 ∱ 1 ∱ 3 . (7)

The right hand and left hand boundaries of the solid are traction free
for all times, 1:

𝝎𝛡 = 𝛠. (8)

On the top surface, the moving loads applied may have 𝜍 and 𝜚

components of traction and are dynamic, distributed loads:

𝝎𝛡 =
⦄

4
𝜍
(𝜍, 1)

4
𝜚
(𝜍, 1)

⟨
, (9)

where 4
𝜍
(𝜍, 1) and 4

𝜚
(𝜍, 1) are traction functions of 𝜍 and 1 given 0 ∱

𝜍 ∱ 𝜛 and 0 ∱ 1 ∱ 3 .
It should be noted that the aforementioned boundary conditions rep-

resent those of a specific case. However, the presented inversion mod-
eling approach can straightforwardly accommodate various boundary
conditions by virtue of the DTO modeling. For instance, the left, right,
and bottom boundaries can be modeled as wave-absorbing boundary
conditions, such as perfectly-matched-layers (PMLs) [36] to model the
infinite extent of a roadway model.

3. Forward wave modeling

The solution of the governing wave equation is numerically com-
puted by using the Galerkin finite element method (FEM). To this end,
the finite-element approximation of the solution is introduced as the
following:

𝛚(𝜍, 𝜚, 1) =
⦄

ℸ
𝜍
(𝜍, 𝜚, 1) = 𝜺(𝜍, 𝜚)3 𝛚

𝜍
(1)

ℸ
𝜚
(𝜍, 𝜚, 1) = 𝜺(𝜍, 𝜚)3 𝛚

𝜚
(1)

⟨
,

𝛓(𝜍, 𝜚) =
⦄

5
𝜍
(𝜍, 𝜚) = 𝛓3

𝜍
𝜺(𝜍, 𝜚)

5
𝜚
(𝜍, 𝜚) = 𝛓3

𝜚
𝜺(𝜍, 𝜚)

⟨
, (10)

where 𝜺 denotes a vector of a global basis functions constructed by the
shape functions of a 9-node quadratic, quadrilateral element, and 𝛚

𝜍
(1)

and 𝛚
𝜚
(1) are the solution vectors in all nodes at time 1 while 𝛓

𝜍
and

𝛓
𝜍
are their test-function counterparts. Then, the wave equation (1) for

the solid can be expressed in a matrix form as:

𝛗𝛁(1) + 𝛛 ℵ𝛁(1) +−ℷ𝛁(1) = + (1), (11)

where

𝛁(1) =
⦄

𝛚
𝜍
(1)

𝛚
𝜚
(1)

⟨
, (12)

and 𝛗, 𝛛, and − are the stiffness, damping, and mass matrices. The
mass matrix is defined as:

− =
⟩

−
𝜍𝜍

𝛠
𝛠 −

𝜚𝜚

⟪
, (13)
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where the submatrices, −
𝜍𝜍
and −

𝜚𝜚
, are:

−
𝜍𝜍

= ∲
𝛻

ℶ𝜺𝜺3
6𝛻,

−
𝜚𝜚

= ∲
𝛻

ℶ𝜺𝜺3
6𝛻. (14)

The damping matrix is defined as:

𝛛 =
⟩

𝛛
𝜍𝜍

𝛠
𝛠 𝛛

𝜚𝜚

⟪
, (15)

where the submatrices, 𝛛
𝜍𝜍
and 𝛛

𝜚𝜚
, are:

𝛛
𝜍𝜍

= ∲
𝛻

𝜕𝜺𝜺3
6𝛻,

𝛛
𝜚𝜚

= ∲
𝛻

𝜕𝜺𝜺3
6𝛻. (16)

The stiffness matrix is defined as:

𝛗 =
⟩

𝛗
𝜍𝜍

𝛗
𝜍𝜚

𝛗
𝜚𝜍

𝛗
𝜚𝜚

⟪
, (17)

where the submatrices, 𝛗
𝜍𝜍
, 𝛗

𝜍𝜚
, 𝛗

𝜚𝜍
, and 𝛗

𝜚𝜚
, are:

𝛗
𝜍𝜍

= ∲
𝛻

⟫
⊲(1 ϑ 0)

(1 + 0)(1 ϑ 20)

❲
2𝜺
2𝜍

2𝜺
2𝜍

3

+
⟫

⊲

2(1 + 0)

❲
2𝜺
2𝜚

2𝜺
2𝜚

3

6𝛻,

𝛗
𝜍𝜚

= ∲
𝛻

⟫
⊲

2(1 + 0)

❲
2𝜺
2𝜚

2𝜺
2𝜍

3

+
⟫

⊲0

(1 + 0)(1 ϑ 20)

❲
2𝜺
2𝜍

2𝜺
2𝜚

3

6𝛻,

𝛗
𝜚𝜍

= ∲
𝛻

⟫
⊲

2(1 + 0)

❲
2𝜺
2𝜍

2𝜺
2𝜚

3

+
⟫

⊲0

(1 + 0)(1 ϑ 20)

❲
2𝜺
2𝜚

2𝜺
2𝜍

3

6𝛻,

𝛗
𝜚𝜚

= ∲
𝛻

⟫
⊲(1 ϑ 0)

(1 + 0)(1 ϑ 20)

❲
2𝜺
2𝜚

2𝜺
2𝜚

3

+
⟫

⊲

2(1 + 0)

❲
2𝜺
2𝜍

2𝜺
2𝜍

3

6𝛻. (18)

The matrices 𝛗, 𝛛, and − are symmetric. The force vector + (1) is
defined as:

+ (1) =
⟩

+
𝜍
(1)

+
𝜚
(1)

⟪
, (19)

where

+
𝜍
(1) = ∲

7loaded

4
𝜍
(𝜍, 1)𝜺 67 ,

+
𝜚
(1) = ∲

7loaded

4
𝜚
(𝜍, 1)𝜺 67 . (20)

Eq. (11) per each 𝜔th time step is written as:

𝛗𝛁
𝜔
+ 𝛛 ℵ𝛁

𝜔
+−ℷ𝛁

𝜔
= +

𝜔
(21)

where 𝛁
𝜔
is the solution vector of 𝛁(1) at the 𝜔th time step, the system

of equations is solved using Newmark time integration. The Newmark
time integration steps can be written in the following compact form:

±8𝛁 = 8+ , (22)

where the vectors 8𝛁 and 8+ , for all the time steps, are built as:

8𝛁 =

⌋
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈⌉

𝛁0
ℵ𝛁0
ℷ𝛁0
𝛁1
ℵ𝛁1
ℷ𝛁1
⋜
𝛁
9𝜔

ℵ𝛁
9𝜔

ℷ𝛁
9𝜔

{
}
}
}
}
}
}
}
}
}
}
}
}⦃

, 8+ =

⌋
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈⌉

𝛠
𝛠
+0
+1
𝛠
𝛠
⋜
+
9𝜔

𝛠
𝛠

{
}
}
}
}
}
}
}
}
}
}
}
}⦃

. (23)

The vector 𝛁
9𝜔
contains the displacements at every node for the final

time step, 9
𝜔
, and the vector +

9𝜔
contains the forces at every node for

the final time step, 9
𝜔
. There are 𝜍- and 𝜚-components of displacement

and force so 𝛁
9𝜔
and +

9𝜔
each have the order 29

.
ϖ 1 where 9

.
is the

number of nodes. Therefore, the vectors 8𝛁 and 8+ each have the order
3(29

.
)(9

𝜔
+ 1) ϖ 1. The , matrix in Eq. (22) is defined as [42]:

± =

⌋
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈⌉

∓ 𝛠 𝛠 𝛠 𝛠 𝛠 … 𝛠 𝛠 𝛠 𝛠 𝛠 𝛠
𝛠 ∓ 𝛠 𝛠 𝛠 𝛠 … 𝛠 𝛠 𝛠 𝛠 𝛠 𝛠
𝛗 𝛛 − 𝛠 𝛠 𝛠 … 𝛠 𝛠 𝛠 𝛠 𝛠 𝛠
(1 (2 (3 𝛗eff 𝛠 𝛠 … 𝛠 𝛠 𝛠 𝛠 𝛠 𝛠
<1∓ ∓ 𝛠 ϑ<1∓ ∓ 𝛠 … 𝛠 𝛠 𝛠 𝛠 𝛠 𝛠
<0∓ <2∓ ∓ ϑ<0∓ 𝛠 ∓ … 𝛠 𝛠 𝛠 𝛠 𝛠 𝛠
⋜ ⋜ ⋜ ⋜ ⋜ ⋜ ⋝ ⋜ ⋜ ⋜ ⋜ ⋜ ⋜

𝛠 𝛠 𝛠 𝛠 𝛠 𝛠 … (1 (2 (3 𝛗eff 𝛠 𝛠
𝛠 𝛠 𝛠 𝛠 𝛠 𝛠 … <1∓ ∓ 𝛠 ϑ<1∓ ∓ 𝛠
𝛠 𝛠 𝛠 𝛠 𝛠 𝛠 … <0∓ <2∓ ∓ ϑ<0∓ 𝛠 ∓

{
}
}
}
}
}
}
}
}
}
}
}
}
}
}⦃

,

(24)

where

𝛗eff = <0− + <1𝛛 +𝛗,

(1 = ϑ<0− ϑ <1𝛛,
(2 = ϑ<2− ϑ 𝛛,

(3 = ϑ−, (25)

and

<0 =
4

(ℏ1)2
, <1 =

2
ℏ1

, <2 =
4
ℏ1

. (26)

The ± matrix has the order 3(29
.
)(9

𝜔
+1)ϖ 3(29

.
)(9

𝜔
+1) where 9

.
is

the number of nodes, and 9
𝜔
is the number of time steps. The in-house

forward wave solver, based on the Newmark time integration scheme,
used in this study is verified by comparing its solution with that from an
academic FEM software, FEAP [43]. Details of this verification against
FEAP are omitted in this paper for brevity.

4. Inverse modeling

To reconstruct targeted moving or stationary wave sources by using
measured vibrational data, guessed loads are iteratively updated to
minimize the misfit between measured wave responses, induced by un-
known targeted wave sources, and computed wave responses generated
by the guessed sources.

4.1. Discrete objective and Lagrangian functionals

Under this work, the following objective functional in a continuous
form is minimized:

∳ = ∲
3

0

9>❳
>=1

(𝛚m>
ϑ 𝛚

>
) ⋛ (𝛚m>

ϑ 𝛚
>
)61, (27)

where 𝛚m>
is the measured displacement at the >th sensor, 𝛚

>
is the

computed displacement at >th sensor based on the guessed loading, and
9

>
is the number of sensors. The interval 1 = 0 to 3 is the time period,

for which wave responses are observed. The discrete-form counterpart
of Eq. (27) is:

8∳ = (8𝛁m ϑ 8𝛁)3 ⋆)(8𝛁m ϑ 8𝛁), (28)

where ⋆) is a block diagonal matrix defined as ⋆) = ℏ1), and ) has values
of one at diagonal elements corresponding to displacements at nodes,
where sensors are located, and zero everywhere else.

By imposing the compact discrete form, Eq. (22), of the wave
problem onto the discrete objective functional, through the use of
Lagrange multiplier, 8𝝑, the following Lagrangian functional is built:

8⨋ = (8𝛁m ϑ 8𝛁)3 ⋆)(8𝛁m ϑ 8𝛁) ϑ 8𝝑3
/
±8𝛁 ϑ 8+

\
. (29)
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4.2. The first order optimality conditions

In order to determine the estimated control parameters that lead
to the vanishing gradient of the objective functional, the following
optimality conditions must be satisfied:

2 8⨋
2 8𝝑

= 0 ϱ The first condition (state problem), (30)

2 8⨋
28𝛁 = 0 ϱ The second condition (adjoint problem), (31)

2 8⨋
2 8+

= 0 ϱ The third condition (control problem). (32)

Each condition above is described as follows.

4.2.1. The first optimality condition
First, taking the derivative of Eq. (29) with respect to the Lagrange

multiplier, 8𝝑, gives the following:

2 8⨋
2 8𝝑

= ϑ±8𝛁 + 8+ = 0. (33)

This first optimality condition is automatically satisfied by obtaining
the solution of the discrete forward problem Eq. (22).

4.2.2. The second optimality condition
Setting the derivative of the discrete Lagrangian with respect to 8𝛁 to

vanish gives the following:

2 8⨋
28𝛁 = 2 ⋆)(8𝛁 ϑ 8𝛁m) ϑ±3 8𝝑 = 0. (34)

Because Eq. (34) involves the transpose of Q and the final conditions
are known, the reverse Newmark time integration is then used to
solve for the Lagrange multiplier solution vector, 𝝑, at every time step
backtracking from the final time step to the initial time step.

4.2.3. The third optimality condition
For having the derivative of the Lagrangian functional 8⨋ with

respect to the vector of control parameters 8+ equal to zero, the desired
control parameters satisfy the following discrete control equation:

2 8⨋
2 8+

= 8𝝑 = 0. (35)

The side-imposed part of the Lagrangian functional always vanishes
once the state problem is solved. Therefore, the gradient of the discrete
objective and Lagrangian functional with respect to 8+ can thus be
written as:

2 8⨋
2 8+

= 2 8∳
2 8+

= 8𝝑. (36)

Only the components of 8𝝑 that correspond to the degrees of freedom
and time steps of the non-zero force components of 8+ in Eq. (23)
comprise the gradient vector, 8𝟎, such that:

8𝝑 =

⌋
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈⌉

𝝑0
ℵ𝝑0
ℷ𝝑0
𝝑1
ℵ𝝑1
ℷ𝝑1
⋜

𝝑
9𝜔

ℵ𝝑
9𝜔

ℷ𝝑
9𝜔

{
}
}
}
}
}
}
}
}
}
}
}
}⦃

, 8𝟎 =

⌋
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈⌉

𝛠
𝛠
𝟎0
𝟎1
𝛠
𝛠
⋜
𝟎
9𝜔

𝛠
𝛠

{
}
}
}
}
}
}
}
}
}
}
}
}⦃

=

⌋
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈⌉

𝛠
𝛠
ℷ𝝑0
𝝑1
𝛠
𝛠
⋜

𝝑
9𝜔

𝛠
𝛠

{
}
}
}
}
}
}
}
}
}
}
}
}⦃

. (37)

The vectors 8𝝑 and 8𝟎 contain the Lagrange multipliers and gradients,
respectively, for 𝜍- and 𝜚-components at all nodal points in space and
time. Each 8𝝑 and 8𝟎 have the order 3(29

.
)(9

𝜔
+ 1) ϖ 1 where 9

.
is the

number of nodes and 9
𝜔
is the number of time steps.

4.3. The parameter-updating scheme

By using the conjugate gradient method, the estimated loading is
updated in the following way:

8+
≨+1 = 8+

≨
+ 𝐴

≨
8𝟏
≨
, (38)

where 8+
≨
is the guessed loading at the ≨th iteration, 𝐴

≨
is a step size,

and 8𝟏
≨
is the search direction based on the following conjugate-gradient

calculation: for ≨ = 0 and every 𝐵th iteration, 8𝟏
≨
= ϑ8𝟎

≨
, and for ≨ ⨌ 1

except every 𝐵th iteration, 8𝟏
≨
= ϑ8𝟎

≨
+ 8𝟎≨⋛8𝟎≨

8𝟎≨ϑ1⋛8𝟎≨ϑ1
8𝟏
≨ϑ1. Namely, the search

direction is reset at every 𝐵th iteration to ϑ8𝟎
≨
to avoid errors potentially

accumulated over the iterations of calculating the search direction. In
this study, 𝐵 = 50 is used, and it is chosen from a trial and error
considering a few choices of 𝐵 from 1 to 50.

Given that it is reasonable to assume that the unknown vibrational
load is located on the top surface of the 2D solid, Eq. (38) can be
modified to only update the guessed loading at surface nodes (instead
of entire nodes in the solid domain) in the following way:

8+
≨+1 = 8+

≨
+ 𝐴

≨
𝟐 8𝟏

≨
, (39)

where 𝟐 is a diagonal matrix that has values of one at diagonal
elements that correspond to nodes located on the top surface and
zero everywhere else. In this study, the optimal step size 𝐴

≨
—i.e., the

step size for which the resulting updated estimated loading causes
the objective functional to decrease the most—is determined by using
Newton’s method, the details of which can be found in [41].

5. Numerical experiments of moving-source inversion

To demonstrate the performance of the presented inversion algo-
rithm to reconstruct the targeted loads, numerical experiments are
conducted with one or more moving loads applied to the top surface
of a 2D solid serving as targets. A 2D FEM model, with a length of
𝜛 = 60 m and a height of 𝜗 = 20 m, is used for each example in the
presented numerical experiments. The FEM model uses nine-node 1 m
ϖ 1 m square, quadratic elements and the observation period is 3 = 2 s
with a time step size of ℏ1 = 0.002 s.

With 4961 nodes in the entire domain, two force component direc-
tions (𝜍 and 𝜚), and 1001 time steps, including the initial step, there
could be at most 4961 ϖ 2 ϖ 1001 = 9, 931, 922 control parameters
that can discretize estimated wave source functions. However, if an
estimated loading is updated at the top surface only, as in Eq. (39),
121ϖ2ϖ1001 = 242, 242 guessed parameters are updated each iteration.
The initial guess for each example case is 8+0 = 0, i.e., the 𝜍 and 𝜚

components of estimated force at all points in space (i.e., the entire
domain or the top surface) and time in the model are set to be zero. In
the following example cases, the information about target loadings—
such as the number of moving loads, velocity, 𝜍-position, magnitude,
or frequency of each load—is considered unknown and to be identified.

The moving dynamic distributed loads, for 0 ∱ 1 ∱ 3 , are defined
by the following:

4
𝜍
(𝜍,𝜗 , 1) =

9𝐶❳
𝐶=1

𝐷
𝜍
(1)

𝐶
e
ϑ (𝜍ϑ𝐸(1)𝐶 )2

26𝐶2 , 0 ∱ 𝜍 ∱ 𝜛 (40)

4
𝜚
(𝜍,𝜗 , 1) =

9𝐶❳
𝐶=1

𝐷
𝜚
(1)

𝐶
e
ϑ (𝜍ϑ𝐸(1)𝐶 )2

26𝐶2 , 0 ∱ 𝜍 ∱ 𝜛 (41)

where 9
𝐶
is number of the moving distributed loads; 𝐷

𝜍
(1)

𝐶
and 𝐷

𝜚
(1)

𝐶

are the time-varying amplitudes at the peak point of the 𝐶th load in the
𝜍- and 𝜚-directions respectively; 𝐸(1)

𝐶
defines the position of the central

peak of the load; and 6
𝐶
controls the horizontal width of the distribution

of the load. The full width at a tenth of the maximum (FWTM)—see
the visualization of FWTM in Fig. 2—of the amplitude of the 𝐶th target
moving load is used to approximate the width of the distribution of
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Fig. 2. The full width at a tenth of the maximum (FWTM) of a distributed moving or
stationary traction.

each target load and has the following relationship to 6
𝐶
:

6
𝐶
= FWTM of the 𝐶th target force amplitude

2
(
2 ln 10

. (42)

To assess the inversion results in the following numerical experi-
ments, the error between the estimated loading and the target loading
is calculated using the following normalized mean absolute error:

⊳ =
1
9𝐹

)9𝜔

𝜔=1
)9.

.=1 ⦅4𝜔.target ϑ 4
𝜔.estimate

⦅
1
9𝐹

)9𝜔

𝜔=1
)9.

.=1 ⦅4𝜔.target ⦅
(43)

where 9
𝜔
is the number of points in time, 9

.
is the number of points

in space, and 9
𝐹
is the total number of points in space and time. This

error considers the loads at all nodal points in space and time in the
problem, i.e. all the control parameters in the problem. It is normalized
while avoiding dividing by zero, which would happen if another type
of error (e.g., the mean percentage error) is used. The authors agree
that the errors, computed using (43), may have large values, especially
even when the inversion method appears to get good results. However,
the normalized mean absolute error is still helpful in judging whether
the inversion results improve with increasing iterations and how the
inversion results compare across different examples and cases that
have the same target loads. Alternatively, this work could (a) extract
velocity, acceleration, initial position, amplitude, and frequencies from
the final inverted force distribution and (b) compare them with targeted
counterparts. It may, though, need another algorithm to extract those
but reduce the value of the error.

5.1. Example 1: Updating an estimated loading at every node within the
domain versus only at the nodes along the top surface

In Example 1, the performance of the presented moving-source
inversion—(a) when the guessed loading is updated at every node in
the entire domain of interest each iteration—is compared to that—(b)
when the guessed loading is updated only at the nodes along the top
surface by examining the following two cases.

• Case 1a: The guesses for the 𝜍- and 𝜚-components of force at each
node point in the entire domain for each time step (i.e., 9.93
million control parameters) are updated as in Eq. (38).

• Case 1b: The guesses for the 𝜍- and 𝜚-components of force are
updated only at the nodes located on the top surface of the
solid for each time step (i.e., 0.24 million control parameters) as
in Eq. (39).

In Example 1, the solid consists of one material where the mod-
ulus of elasticity, density, and Poisson’s ratio are ⊲ = 25 MPa, ℶ =
2400 kgςm3, and 0 = 0.3, respectively, representing the ground soil
below the surface. For Example 1, the constant, 𝜕, has the value
𝜕 = 12,500 kgς(m3 s). The sensors are located along the top sur-
face and are spaced every three meters. A previous study by Guidio

et al. [44]—on the seismic input inversion (not the moving source
inversion)—suggested that, in the inverse source problem, the sensor
spacing in the order of magnitude of the S-wave wavelength on the top
surface leads to effective source-inversion performance. In Example 1,
the smallest wavelength of Case 1 is 13 m, which corresponds to the
shear wave speed of 63 m/s and the frequency of a moving wave source
of 5 Hz. In example 3, the maximum frequency is 15 Hz so that the
smallest wavelength is about 4.3 m. The three meter sensor spacing
is smaller than the smallest S-wave wavelength so that it meets the
desired sensor spacing mentioned above. In the experimental validation
in Section 6, sensor spacing of 10 mm is employed whereas the smallest
wavelength is 30 mm corresponding to 𝜀

𝐺
= 3097 mςs and the frequency

of 100 kHz. For both Case 1a and Case 1b, the target loading is a
vertical load applied to the top surface of the solid with 6 = 1.5 m
(FWTM = 6.44 m). The time-varying amplitude, 𝐷

𝜚
(1), has a static and

dynamic component: 𝐷
𝜚
(1) = ϑ[500 sin(𝐻1)+2000] Nςm with an angular

frequency, 𝐻 = 2𝐼(5) radςs. The time-varying peak amplitudes in
this study serve as examples of loading cases that can have static and
dynamic components. They can be employed to model the traction from
moving vibrational loads (e.g., vehicles). Namely, the static part of 𝐷

𝜚
(1)

represents the weight of a vehicle while its dynamic component models
the vertical force caused by the rotatory vibration of a vehicle engine.
If the total load under the Gaussian distribution is approximated as the
area of the triangle with a base equal to FWTM and height equal to
the amplitude of the static part, the largest load in the examples is
1
2 (2000 Nςm)(6.44 m) = 6440 N, which is about half the weight of a
typical compact car. However, 6.44 m and 3.22 m of FWTM are not
realistic widths of surface contact for vehicles. The target load moves
horizontally with an initial displacement, 𝜍0 = 2.5 m, an initial velocity,
𝜀0 = 20 mςs, and an acceleration, < = 3.6 mςs2, so that the central peak
of the target loading varies over time as 𝐸(1) = [2.5 + 201 + 0.5(3.6)12] m
based on the equation for position, 𝐸(1) = [𝜍0 + 𝜀01 + 0.5<12]. Fig. 3
shows snapshots, at two different points in time, of the moving load
and its corresponding displacement magnitude of wave responses ⦅ℸ⦅ =⦆

ℸ
𝜍
2 + ℸ

𝜚
2 in the domain.

The results of Example 1, with 300 iterations1 completed, show that
updating the guesses at the top surface nodes is much more effective in
reconstructing the moving distributed load than updating the guesses
at every node in the entire domain. Namely, Fig. 4 shows the inversion
errors calculated, per Eq. (44), each iteration for Case 1a and Case
1b, presenting that the terminal value of the inversion error is smaller
in Case 1b than Case 1a. Essentially, this work considerably reduces
the number of unknown control parameters in the presented inverse
problem by considering only the loads at nodes along the top surface as
unknown. When the number of control parameters is reduced, a typical
inversion solver performs more effectively than otherwise. Fig. 5
shows, in its contour plots, that the target and reconstructed loads
after 300 iterations for Case 1a and Case 1b. With time as an axis,
the changes in position over time of the targeted and reconstructed
moving loads are displayed in Fig. 5. The contour plots show that the
reconstructed loads in both Case 1a and Case 1b capture the position
of the target moving load. However, the magnitude of the force on the
surface in Case 1b is much closer to its targeted counterpart than in
Case 1a. As the reason for such an inaccuracy of inversion in Case 1a,
it can be observed, from Figs. 5(c) and 5(d) , that some body force close
to the surface (e.g., see 0 ∱ 𝜍 ∱ 10, 15 ∱ 𝜚 ∱ 20, and 1 = 0) is present in
the reconstructed force profile in Case 1a, while only surface loads are
present for the target and the reconstruction in Case 1b. Both Case 1a

1 300 is defined as the authors’ maximum number of iterations, which
is basically chosen on trial and error, but 300 iterations is a conservative
estimate for Examples 1 through 4. The error plots in Fig. 4, Fig. 7, and Fig. 11
show that the error stops improving before 100 iterations. Thus, using a high
value of iterations (e.g., 300) allows the overall inversion performance to be
discovered.
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Fig. 3. The snapshots of the target and predicted force distributions of a single moving wave source and the corresponding wave responses (displacement magnitudes) for the
target loading at (a) 1 = 0.6 s and (b) 1 = 1.66 s for Case 1b.

Fig. 4. Error over iteration for Example 1 up to 300 iterations: The guessed force
is updated at every node in the domain in Case 1a versus at nodes only along the
top surface in Case 1b. Updating guesses only along the top surface improves the
performance of the inverse modeling.

and Case 1b estimate small 𝜍-components of the moving load as there
is zero force in the 𝜍-direction for the target. Since it is reasonable
to consider that any moving load in the presented problem must be
located somewhere along the top surface, the method of updating the
guessed loads only at the top surface is used for all following example
cases.

Figs. 3(a) and 3(b) show the predicted and target vertical loading
on the top surface as a function of 𝜍 after 300 iterations for Case 1b at
two time steps. Fig. 3 shows that the width and location of the moving
dynamic distributed load are predicted well at both of the selected time
steps. However, in Fig. 3(a), which shows a point in time in which the
central peak of the load is located very near to a sensor location, the
magnitude of the central peak amplitude is overestimated. Whereas, in
Fig. 3(b), which show another point in time in which the central peak
of the load is located nearly midway between to sensor locations, the
magnitude of the peak amplitude is underestimated. Fig. 6 shows the
target and predicted vertical load as a function of time at two locations
on the for Case 1b after 300 iterations. Fig. 6(a) shows the predicted

Table 1
The properties of materials used in Examples 2, 3 and 4.
Layer ⊲ (MPa) ℶ (kgςm3) 0 𝜕 (kgς(m3 s))

Layer 1 15 1,600 0.2 25,000
Layer 2 25 2,400 0.3 12,500
Layer 3 45 2,000 0.25 37,500

and target 4
𝜚
as a function of time at a point on the top surface,

(30, 20) m, where a sensor is located. Fig. 6(b) shows the predicted and
target 4

𝜚
as a function of time at a point on the top surface, (31.5, 20) m,

that is a meter and half away from the nearest senors, which are located
at (30, 20) m and (33, 20) m. For both locations in Fig. 6, the timing
of the load is predicted well. However, the magnitude of the load is
overestimated at the sensor location and underestimated at a location
away from the sensor. This reflects a tendency for the reconstruction
to place more of the load at the sensor points than other points, which
can be seen in Figs. 3 and 5.

5.2. Example 2: Effects of material complexity, sensor spacing, and load
width on reconstructing moving surface loads

In Example 2, the solid consists of three materials in horizontal
layers with Layer 1 at the top (𝜚 = 15 m to 𝜚 = 20 m), Layer 2
in the middle (𝜚 = 5 m to 𝜚 = 15 m), and layer 3 at the bottom
(𝜚 = 0 to 𝜚 = 5 m). The material properties used for these layers are
listed in Table 1 and represent multi-layered ground soil . This example
investigates the effects of material complexity, sensor spacing, and load
width on reconstructing moving surface loads by studying the inversion
performance in the following cases.

• Case 2a: The target loading in Case 2a is the same as the target
loading in Example 1. The sensor spacing is one sensor every
three meters for Case 2a (as in Example 1). However, the material
properties in the domain under Case 2a, as mentioned above, are
heterogeneous as opposed to Example 1. By comparing Case 2a
with Case 1b, the effect of material heterogeneity on the inversion
accuracy is examined.

• Case 2b: The conditions under Case 2b are identical to those of
Case 2a except that the sensor spacing is reduced to one sensor
every one and a half meters in Case 2b from one sensor every
three meters in Case 2a. By comparing Case 2b with Case 2a,
the effect of sensor spacing interval on inversion accuracy is
investigated.
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Fig. 5. Force in space and time for the 2D solid in Example 1 where (a) shows the target loading in the 𝜍-direction; (b) shows target loading in the 𝜚-direction; (c) and (d) show
the reconstructed loading in 𝜍 and 𝜚 respectively after 300 iterations for Case 1a; (e) and (f) show the reconstructed loading in 𝜍 and 𝜚 respectively after 300 iterations for Case
1b.

• Case 2c: The conditions under Case 2c are identical to those of
Case 2a except that the target loading in Case 2c has a narrower
load-distribution width, 6 = 0.75 m (FWTM = 3.22 m), than its
counterpart 6 = 1.50 m (FWTM = 6.44 m) in Case 2a. By compar-
ing Case 2c with Case 2a, the relation between a load-distribution
width and the inversion accuracy is studied.

• Case 2d: The conditions under Case 2d are identical to those
of Case 2b except that the target loading in Case 2d has a
narrower distribution width, 6 = 0.75 m (FWTM = 3.22 m)

than its counterpart 6 = 1.50 m (FWTM = 6.44 m) in Case 2b.
By comparing Case 2d with Case 2b and 2c, the effect of both
the load-distribution width and sensor spacing on the inversion
accuracy is investigated.

Simulations in this example show that reducing the distance be-
tween sensors improves the performance of the inversion as shown by
the plots of the errors vs. iteration in Fig. 7. Namely, Case 2b achieves
better accuracy than Case 2a with the same load distribution width for
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Fig. 6. The target and predicted 𝜚-component of force vs.time on the top surface of the 2D solid at (a) a sensor location (𝜍 = 30 m) and (b) midway between two sensors
(𝜍 = 31.5 m) for Case 1b.

the target but having reduced sensor spacing, and, similarly, Case 2d
achieves better accuracy than Case 2c with the same load distribution
width for the target but reduced sensor spacing. However, reducing the
width of the target load leads to less accurate inversion results. Namely,
Case 2a achieves better accuracy than Case 2c, which is simulated at the
same sensor spacing but with a wider distribution for the target load.
Case 2b achieves better accuracy than Case 2d, which is simulated at
the same sensor spacing but with a wider distribution for the target
load. While the wider target load leads to a larger denominator in
the normalized error plotted in Fig. 7, the error is smaller for wider
loads even when this is accounted for. The finding from Example 2—
the reconstruction of moving loads achieves better accuracy for wider
distributed target loads and more densely spaced sensors—is consistent
with results found for the 1D example cases studied by Lloyd and
Jeong [42].

The target loading and sensor spacing in Case 2a are the same as in
Case 1b. However, the solid in Case 2a is layered with three materials,
and the solid in Case 1b consists of one material. Fig. 7 shows that
the inversion for Case 2a, considering a solid with three horizontally
layered materials, is nearly as effective as it is for the single-material
solid considered in Case 1b.

5.3. Example 3: Multiple moving loads with both horizontal and vertical
components of traction

In Example 3, the authors’ inversion method is tested for multiple
moving loads with 𝜍- and 𝜚-components of forces. This setting reflects
that typical traction from vehicle wheels consists of both horizontal and
vertical components. The material properties and layer geometries in
Example 3 are the same as those (i.e., the 3-layered solid) in Example 2.
In Example 3, three targeted moving loads with vertical and horizontal
components of force (Loads A, B, and C) are simultaneously applied to
the top surface of the solid. The vertical and horizontal components of
each load have a spatial distribution, which varies over time, along the
top surface where the FWTM of each load is 3.22 m. The horizontal
loading for each moving load has the same central peak position and
width as the corresponding vertical loading.

• Load A: The amplitude of vertical force for Load A is 𝐷
𝜚
(1)1 =

ϑ[500 sin(2𝐼(15)1)+2000] Nςm. The horizontal component of Load
A has an amplitude of 𝐷

𝜍
(1)1 = ϑ[500 sin(2𝐼(15)1)+1034+1.225(20+

Fig. 7. Error vs. iteration for Example 2 up to 300 iterations: The performance of the
inversion improves with denser sensor spacing and for loads with wider distributions.
Case 2a: spacing = 3 m, FWTM = 6.44 m. Case 2b: spacing = 1.5 m, FWTM = 6.44 m.
Case 2c: spacing = 3 m, FWTM = 3.22 m. Case 2d: spacing = 1.5 m, FWTM = 3.22 m.

3.61)2] Nςm. The 𝜍-location of the central peak for both the
vertical and horizontal loadings for Load A is 𝐸(1)1 = [2.5 + 201 +
0.5(3.6)12] m.

• Load B: Load B has a vertical force amplitude 𝐷
𝜚
(1)2 = ϑ[500

sin(2𝐼(10)1)+2000] Nςm and a horizontal force amplitude 𝐷
𝜍
(1)2 =

ϑ[500 sin(2𝐼(10)1)ϑ1168+1.225(30ϑ7.21)2] Nςm. Both of them have
the same central peak location 𝐸(1)2 = [ϑ10 + 301 ϑ 0.5(7.2)12] m.

• Load C: Load C has a vertical force amplitude 𝐷
𝜚
(1)3 = ϑ[500

sin(2𝐼(5)1) + 2000] Nςm and a horizontal force amplitude 𝐷
𝜍
(1)3 =

ϑ[500 sin(2𝐼(5)1)ϑ1066] Nςm. Both of them have the same central
peak location 𝐸(1)3 = [45 ϑ 251] m.

Fig. 8 shows snapshots of the three moving loads in Example 3 and
the resulting displacements at two points in time. All of the vertical
components of the target loads in Example 3 act in the negative 𝜚-
direction throughout the observation period. However, Loads B and C
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Fig. 8. The snapshots of the target and predicted force distributions of three moving wave sources and wave responses (displacement magnitudes) for the target loading at (a)
1 = 0.6 s and (b) 1 = 1.66 s for three loads (A, B, and C) in Example 3.

have positive horizontal components of force, while Load A has only a
negative horizontal component of force. The first part of the horizontal
load, like the dynamic part of the vertical load, uses a sine function
and does not represent any specific dynamic load. The second part uses
𝐵<±

[
𝐽
𝐾
𝐵𝐿 +𝑀

<
𝜀
2], which represents the frictional force acting on top

surface of the solid assuming the surface is flat. The terms 𝐽
𝐾
𝐵𝐿 and

𝑀
<
𝜀
2 can be used for representing the rolling resistance and the wind

drag respectively, and their signs should be opposite the sign of the
velocity of the moving load, 𝜀. Hypothetical but reasonable numbers
were chosen for the coefficients 𝐽

𝐾
and 𝑀

<
. The second part is also time

varying since it can consider the velocity of the moving load varies
with time. However, like for the vertical load components, 6.44 m
and 3.22 m are not realistic widths of surface contact. Fig. 9 shows
the contour plots of the target and the reconstructed loads after 300
iterations in Example 3. Fig. 9 shows that the presented algorithm
to reconstruct the loading profile accurately estimates the number of
moving loads and their moving directions as well as time-dependent
locations. The general positions of the reconstructed moving loads
match their targets well.

5.4. Example 4: Reconstructing moving loads with horizontal and vertical
components of traction using sensors measuring only vertical displacements

The setting in Example 4 is the same as that in Example 3 except
that, while the sensors in Example 3 measured displacements in the
𝜍- and 𝜚-directions, the sensors in Example 4 only measure vertical
displacements. Fig. 10 shows that, for force in the 𝜚-direction, the
reconstructed loads in Example 4 after 300 iterations are similar to
the reconstructed loads in Example 3 after 300 iterations. However, for
force in the 𝜍-direction, the accuracy of reconstructing loads is lower
in Example 4 than in Example 3. Fig. 11(a) shows the error at each
iteration for Examples 3 and 4 up to the 300th iteration. Figs. 11(b) and
11(c) show the error for the 𝜍- and 𝜚- components of force, respectively,
for Examples 3 and 4 at each iteration up to the 300th iteration. The
normalized mean absolute errors for the 𝜍- and 𝜚- components of force

are computed as follows:

⊳
𝜍
=

1
9𝐹

)9𝜔

𝜔=1
)9.

.=1 ⦅4𝜍𝜔.target ϑ 4
𝜍𝜔.estimate

⦅
1
9𝐹

)9𝜔

𝜔=1
)9.

.=1 ⦅4𝜍𝜔.target ⦅
and

⊳
𝜚
=

1
9𝐹

)9𝜔

𝜔=1
)9.

.=1 ⦅4𝜚𝜔.target ϑ 4
𝜚𝜔.estimate

⦅
1
9𝐹

)9𝜔

𝜔=1
)9.

.=1 ⦅4𝜚𝜔.target ⦅

(44)

where 9
𝜔
is the number of points in time, 9

.
is the number of points in

space, and 9
𝐹
is the total number of points in space and time. The error

plots in Fig. 11 show that the inversion performs better in Example 3
which has sensors measuring displacements in both 𝜍- and 𝜚-directions
than in Example 4 which has sensors measuring displacements in only
the 𝜚-direction. However, Figs. 11(b) and 11(c) show that the most
significant increase in error for Example 4 as compared to Example
3 occurs in the estimation of the loading in the 𝜍-direction, i.e., the
direction in which displacements are not measured in Example 4. For
Example 4, The accuracy of the inversion for the 𝜚-component of force
is significantly better than it is for the 𝜍-component of force.

6. Experimental validation of stationary-source inversion

The presented source inversion algorithm is validated by using
experimental data. The experimental data on a real-scale roadway
induced by moving vehicle traction is not suitable to be utilized as
input data in the presented inverse modeling yet because the authors’
wave model is based on a bounded 2D domain (it will be extended
to an unbounded 3D domain in the future). To bridge this gap for the
experimental validation, experimental data from a bounded solid in the
laboratory is used. Since the scale of the lab specimen is small (e.g., the
order of magnitude of the domain size is 10 cm by 10 cm), experimental
data of a very high-frequency range (e.g., the order of magnitude of
100 kHz) is obtained. Under such a high-frequency excitation, trans-
ducers suffer from low sensitivity so that it is not feasible to implement
a ‘‘moving’’ wave source. Instead, a non-moving wave source is used
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Fig. 9. Force in space and time for the 2D solid in Example 3 where (a) shows the target loading in the 𝜍-direction; (b) shows target loading in the 𝜚-direction, (c), and (d) show
the reconstructed loading in 𝜍 and 𝜚 after 300 iterations.

in the experiment. Using the test data from the stationary source, our
source-inversion modeling code is utilized to identify the temporal and
spatial distribution of the wave source on the top of the solid.

6.1. Experimental setup

As shown in Fig. 12, two ultrasound contact transducers (Digi-
talwave B-454) are arranged in a pitch–catch configuration on the
top surface of the specimen. Ultrasound gel is applied between the
transducers and the specimen, and a weight is placed on top of the
transducers to help achieve consistent contact conditions even in the
presence of uneven surface roughness. Positioning is aided through a
3D-printed template that is only in contact with the substrate at its cor-
ners. A 20-cycle sinusoidal Hann-windowed tone burst at 4 = 100 kHz is
generated by an arbitrary waveform generator (Keysight 33512B) and
directly fed into the actuator. To record the measurements, the sensing
transducer is connected to the oscilloscope (PicoScope 5442D). Signals
are recorded for up to 1.0 ms with a sampling rate of 125MHz. In order
to improve the signal-to-noise ratio of the measurements, the analyzed
signal is the time-average of 200 repeated acquisitions.

The studied test object is a 199.44 mm (L) ϖ 150.04 mm (H) ϖ
15.85 mm (D) 6061 aluminum block. It rests on a soft cloth to isolate
it from the experimentation table and is held upright through the use
of a C-clamp as shown in Fig. 12(a). It should be noted that different
(isolated) mounting options are evaluated without observing any signif-
icant differences in the signals, thus confirming that nearly ‘‘free-free’’

boundary conditions are established. The employed template allows for
the transducer to be located every 10 mm, starting from the origin on
the left. The actuator (φ19 mm diameter) is placed at the stationary
location of 𝜍

<
= 70mm. The roving sensor is placed at every other

possible location in subsequent experiments, i.e., at 𝜍
𝐺
∇ [10, 30]mm

and 𝜍
𝐺
∇ [110, 180]mm. Namely, the experiments are repeated with

the sensor being placed at various locations to mimic having a grid
of sensors at the corresponding positions. This is a commonly used
practice when not enough sensors are available at a time: in this work,
eleven sensors should be employed for experimental validation so that
one-sensor measurement was repeated eleven times. Fig. 12(b) shows
a typical raw signal of a measured dynamic response with the receiver
at 𝜍

𝐺
= 160mm. The larger amplitude of the measured signal at the

receiver at the time after 200 us is attributed to reflection.

6.2. Simulation setup

To simulate the physical validation experiments, a 2D plane stress
FEM model of the aluminum plate is used rather than the plane strain
model used for Simulations 1 through 4. A plane stress model is used
because the thickness of the aluminum plate, or the 𝜑-direction dimen-
sion of the plate, is much smaller than the dimensions of the plate in
the 𝜍- and 𝜚-directions, and the plate is mostly unconstrained in the 𝜑-
direction. The 2D model of the aluminum plate matches the dimensions
of the laboratory specimen, i.e., it has a length of 𝜛 = 0.200 m, a height
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Fig. 10. Force in space and time for the 2D solid in Example 4 where (a) shows the target loading in the 𝜍-direction; (b) shows target loading in the 𝜚-direction, (c), and (d)
show the reconstructed loading in 𝜍 and 𝜚 after 300 iterations.

of 𝜗 = 0.150 m, and a constant thickness of 0.01585 m. The 2D plane-
stress FEM model consists of nine-node elements of the uniform size
0.005 m ϖ 0.005 m. For the simulations of the aluminum plate, the
material properties of ⊲ = 68.9 GPa, ℶ = 2700 kgςm3, 0 = 0.33, and
zero damping are used. The boundary and initial conditions are the
same as described in Section 2 (i.e., fixed bottom boundary and zero
initial value conditions). The observation time is 3 = 2 ϖ 10ϑ4 s, and
the time step size is ℏ1 = 4 ϖ 10ϑ7 s. In the experimental setup, there
is a gap in the sensor locations between 𝜍 = 0.030 m and 𝜍 = 0.110 m
to avoid mechanical interference with the actuator at 𝜍

<
= 0.070 m.

Accordingly, these approximate width and location of the load are
considered to have been estimated prior to the inversion. In addition,
it is assumed that the actuator only applies normal forces (𝜚-direction)
to the surface, as the low-viscosity ultrasound gel used does not allow
for shear force transmission. Similarly, the receiver is assumed to only
measure displacements normal to the surface.

6.3. Inversion simulation of a pseudo experiment using synthetic measure-
ment created by a synthetic target with the Gaussian spatial distribution

Before using the presented inversion method to reconstruct the
experimental loading profile with data from the sensors used in the
physical experiments, numerical (pseudo) experiments with synthetic
sensor data are conducted. First, displacement fields of wave responses

are generated using an FEM simulation, in which a stationary, 20 mm-
wide Gaussian-distributed targeted dynamic load is applied. The center
of its spatial Gaussian distribution is located at the center point (𝜍

<
=

70mm) of the actuator in the physical experiment. Considering the
raw signal at the transducer (i.e., loading data) from the physical
experiment to be a force in Newtons, the synthetic target distributed
load (in the unit of Newtons per meter) is designed such that the mag-
nitude of its spatially-integrated force signal is equal to the magnitude
of the experimental force signal at each time step. The width of the
synthetic targeted distributed load is set to approximate the width of
the transducer. However, it is hypothetical that the type of the spatial
distribution of the synthetic target load is Gaussian.

In this simulation, 𝜚-direction displacements generated by the for-
ward simulation, due to the targeted synthetic load, at sensor locations
are the measured data for the inversion. Note that the physical exper-
iments mainly provide measurements in the 𝜚-direction. In addition,
only 𝜚-direction forces, with vanishing 𝜍-direction force, between 𝜍 =
0.060 m and 𝜍 = 0.080 m on the top surface of the plate are updated
each iteration. Namely, the amplitude of the stationary targeted load—
how the amplitude varies with time and how the load is spatially
distributed at each time step—is updated. The inversion result after 300
iterations matches the target loading as Fig. 13 shows. This simulation
indicates that the presented inversion simulation can generally identify
the unknown distribution over space and time of synthetic traction in
this high-frequency setting.
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Fig. 11. Error for Examples 3 and 4 (a) shows the error at every iteration up to the 300th iteration; (b) shows the error for the 𝜍-component of force at every iteration up to the
300th iteration; (c) shows the error for the 𝜚-component of force at every iteration up to the 300th iteration.

Fig. 12. Laboratory setup for high-frequency, validation experiments where (a) shows contact transducers positioned via template on top of ‘‘free-free’’ aluminum block and (b)
shows a typical raw signal for 𝜍

<
= 70mm and 𝜍

𝐺
= 160mm.

Comparisons between the real measured displacements and their
synthetic counterparts, induced by this synthetic target load, are shown
for a few selected sensor locations in Fig. 14. While there are sim-
ilarities between the measured displacements and the displacements
computed for the synthetic loading, the differences between the mea-
sured and synthetic displacements suggest in part that the actual spatial

distribution of the load is different from the hypothetical Gaussian
distribution used for the synthetic load, in addition to other effects that
are present during the experiments such as transducer ringing.

In summary, this pseudo experiment shows that the presented in-
version scheme is able to accurately identify a targeted load of which
spatial distribution is assumed to be the Gaussian distribution (as
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Fig. 13. Inversion results using synthetic measurement data in a lab-scale domain; (a) shows the target loading; (b) shows the reconstructed loading after 300 iterations.

Fig. 14. Comparisons of experimental measurements of displacements and synthetic counterparts computed using FEM and the synthetic loading hypothesized as a Gaussian
distributed load at 2 out of 11 sensor locations.

shown in Fig. 13). In addition, the wave responses at the sensor
locations, by this synthetic target load, mismatch those by the real
target load (as shown in Fig. 14), meaning that the spatial distribution
of the latter may not be Gaussian. Namely, the validation of the
inversion method using real experimental measurement, shown in the
next subsection, may disclose the unknown spatial distribution of a real,
experimental targeted load.

6.4. Inversion simulation using real experimental measurement

In the inversion simulations using experimental measurements, the
objective and Lagrangian functionals utilize displacement measure-
ments obtained by physical experiment (sensor data from 11 locations
multiplied by the time step for the raw data, ℏ1data = 8 ϖ 10ϑ9 s).

6.4.1. Validation of inversion using a larger observation time (2 ϖ 10ϑ4 s)
Fig. 15 shows the inversion results based on the measured dis-

placements after 300 iterations. The targeted spatial distribution of the
load in the experiment is unknown, so the spatial distribution of the
reconstructed load cannot be directly compared to that of the actual
load. Rather, in this example, the time signal of the spatially-integrated
magnitude of the reconstructed load is compared to the magnitude of

the experimental load signal as shown in Fig. 15(b), which shows that
the mismatch between the former and the latter increases most notably
at the later portion of the total observation period. Figs. 15(c) and 15(d)
show comparisons of the measured displacements and FEM computed
counterparts based on the reconstructed loading for two of the eleven
sensor locations. The computed responses, due to the inverted load,
in Figs. 15(c) and 15(d) are much closer to the measured responses
than their counterparts, induced by the aforementioned hypothetical
synthetic load, in Fig. 14. However, the measured wave responses at the
sensors are still not fully reconstructed by the inverted loading, and the
authors’ inversion solver is stalled at this result even beyond the 300th
iteration. The noticeable mismatch between the two displacement in
Fig. 15(c) suggests that the inversion solver is trapped in a local
minimum that is not even close to the global minimum. The authors
suggest that the inversion result in the simulation in this Section 6.4.1
is not correct primarily because of the following reason.

The bottom boundary condition of the FEM model does not com-
pletely replicate its real counterpart in the experiment, which suggests
that waves that reflect off of the bottom boundary and reach the sensors
during the observation period of the experiment may cause inaccuracies
in the inversion result. Namely, for the plate used in the experiment,
the wave speed for P-waves is 𝜀

𝐹
= 6149 mςs and the wave speed for
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Fig. 15. Inversion results for the 2D Aluminum plate model using experimental measurements updating only 𝜚-directed forces on the top surface between 𝜍 = 0.060 m and
𝜍 = 0.080 m; (a) the reconstructed loading in Nςm in the 𝜚-direction at the 300th iteration; (b) the spatially-integrated reconstructed force and the experimental force vs. time at
the 300th iterations; (c) and (d) shows comparisons, at 2 out of 11 sensor locations, between experimental measurements of displacements and those computed with FEM using
the reconstructed loading from the 300th inversion iteration.

S-waves is 𝜀
𝐺
= 3097 mςs. P-waves traveling from the top of the plate,

where the loading is applied, take 4.88ϖ 10ϑ5 s (about 25% of the total
observation period) to travel from the top, reflect off of the bottom,
and return to the top of the plate; and S-waves take 9.69ϖ10ϑ5 s (about
50% of the total observation period) to do the same.

6.4.2. Validation of inversion using a shorter observation time (9 ϖ 10ϑ5 s)
to limit the impact of the strong reflected S-waves from the bottom

To limit the impact of the strong reflected S-waves on the inversion,
the inversion procedure is conducted for an observation period of 9 ϖ
10ϑ5 s (about 45% of the total observation period). Even using the short
observation time for the validation does not exclude the reflection of P-
wave from the bottom boundary, but its amplitude is smaller than that
of S-wave. Fig. 16 shows the inversion results for this reduced observa-
tion time after 900 iterations. Fig. 16(b) shows the spatially-integrated
magnitude of the reconstructed load in this example compared to the
magnitude of the experimental load signal up to 1 = 9 ϖ 10ϑ5 s.
Figs. 16(c) and 16(d) show comparisons of the measured displacements
up to 1 = 9 ϖ 10ϑ5 s and FEM computed counterparts based on the
reconstructed loading for the reduced observation time at two of the
eleven sensor locations. The measured wave responses at the sensors
are accurately reconstructed by the inverted loading, which suggests
that the presented inversion algorithm can more effectively reconstruct
the force signal at the actuator during the reduced observation than
the full one. Fig. 16(e) shows the final-reconstructed distribution of

the traction from the actuator over space and time. It shows that the
spatial distribution is not symmetric with respect to the centroid of
the actuator, which suggests that such an asymmetric loading may
be attributed to the (unknown) internal structural dynamics of the
off-the-shelf actuator.

6.5. The limitation of the presented experiment for validating moving wave-
source inversion

Even though a moving source test could not be implemented as part
of this study, the general feasibility of the inversion method is shown
in the presence of measurement noise and other non-ideal conditions
such as positional errors and inherent delays added by the measurement
equipment. In the future, a moving source test could potentially be
implemented through a low-frequency large-scale field test as high-
frequency lab-scale testing would require very high velocities for the
source to be noticeable within the short measurement frame.

7. Conclusion

The authors discuss the wave-source inversion method for the re-
construction of the temporal and spatial distributions of moving or
stationary wave sources on the top surface of a two-dimensional (2D),
heterogeneous, damped, linear elastic solid by using the vibrational
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Fig. 16. Inversion results using experimental measurements up to 1 = 9 ϖ 10ϑ5 s after 900 iterations; (a) the reconstructed loading in Nςm in the 𝜚-direction; (b) the spatially-
integrated reconstructed force and the experimental force vs. time at the 900th iterations; (c) and (d) show comparisons, at 2 out of 11 sensor locations, between experimental
measurements of displacements and those computed with FEM using the reconstructed loading at the 900th inversion iteration; (e) contour plot of the reconstructed loading at
the top surface from 𝜍 = 0.06 m to 𝜍 = 0.08 m in Nςm over time.

measurement from the top surface. The adjoint-gradient-based source
inversion method is used within the context of DTO because of its
compact formulation. The FEM is used for obtaining the solutions of
state and adjoint wave problems.

The numerical experiments show that the presented wave-source
inversion method is effective at reconstructing target moving or station-
ary wave sources along the surface of a 2D solid modeled using plane
strain or plane stress formulations in FEM without prior knowledge
about the loads. The inversions using the plane-strain formulation are
carried out for numerical-only simulations in Section 5. Conversely, the
inversions, easily switched to the plane-stress setting, are performed in

Section 6 for the simulations that are validated by experiments. The
following conclusions can be made based on the numerical experiments
conducted for this study.

• The method of updating the guessed loading only at nodes along
the top surface of solid performs better than updating the guess
at every node in the entire domain of the FEM model.

• Reducing the distance between the sensors improves the accuracy
of the inversion, while reducing the distribution widths for the
target loads leads to less accurate results. Further investigation
of the numerical experiment results, including the tendency to
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underestimate the loads when they move to locations between
sensors, could lead to improving results for more realistic sensor
spacing to load width ratios for sparsely spaced sensors in future
research.

• The inversion results for the presented case of a moving load on
the top surface of a horizontally layered solid consisting of three
different materials are nearly as accurate as inversion results for
an identical moving load on a homogeneous solid.

• The inversion method presented is effective at reconstructing
multiple loads with both 𝜍- and 𝜚- components of forces.

• The accuracy of identifying multiple moving wave sources by us-
ing sensors that measure both horizontal and vertical components
of wave motions turns out to be greater than that using sensors
measuring only vertical motions.

• The presented inversion method for a stationary wave source
is validated for a limited observation time by using measure-
ment data of wave motions in lab-scale experiments using high-
frequency (100 kHz) excitation. The authors suggest, though, that
more realistic modeling of the bottom boundary condition using
a high-performance 3D wave solver (e.g., the spectral element
method [45–48]) could potentially allow for the full observation
time to be considered in the experimental validation.

While this paper investigates a numerical method to reconstruct the
spatial and temporal profile of wave sources in a 2D heterogeneous
solid, the wave-source inversion can be extended to a 3D setting. Thus,
it can be utilized for practical applications of moving vibrational trac-
tions in various environments (e.g., a 3D solid with a non-flat surface,
such as hills; a solid where sources move in a non-straight fashion,
such as a turn). In addition, the stationary wave-source inversion can
be useful for detecting the stationary impact load in a complex-shaped
3D structure, for which other methodologies cannot be employed for
source detection because of complex wave responses induced by re-
flection, refraction, and mode conversion. The computational challenge
in a 3D bounded/unbounded domain can be addressed by using the
spectral element method [45–48].
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