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Abstract. We develop techniques to construct explicit symplectic Lefschetz fibrations over the 2-
sphere with any prescribed signature o and any spin type when o is divisible by 16. This solves
a long-standing conjecture on the existence of such fibrations with positive signature. As applica-
tions, we produce symplectic 4-manifolds that are homeomorphic but not diffeomorphic to con-
nected sums of S2 x S2, with the smallest topology known to date, as well as larger examples as
symplectic Lefschetz fibrations.
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1. Introduction

An immense literature has been dedicated to the study of symplectic Lefschetz fibrations
since the works of Donaldson and Gompf [19,31] established Lefschetz fibrations over the
2-sphere as topological counter-parts of closed symplectic 4-manifolds, after blow-ups.
However, the possible values of one of the most fundamental invariants of 4-manifolds,
the signature of a Lefschetz fibration over the 2-sphere, has not been quite understood,
despite many effective ways of calculating it being available, due to the works of Endo,
Ozbagci and others [17,20,21,42,45,51]. The aim of our article is to resolve this problem:

Theorem A. There exist infinitely many relatively minimal symplectic Lefschetz fibra-
tions over the 2-sphere, whose total spaces have any prescribed signature o € 7 and
any spin type when o is divisible by 16. All the examples can be chosen to be simply-
connected, minimal, and with fiber genus as small as 9, as well as arbitrarily high.

By fiber summing with trivial fibrations over orientable surfaces, possibly with bound-
ary, the main statements of the theorem carry over to Lefschetz fibrations over any given
orientable surface.
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It was often conjectured that Lefschetz fibrations over the 2-sphere with positive sig-
natures did not exist, which constituted a long-standing open problem; see e.g. [44,45],
[56], [57, Problems 6.3, 6.4], [39, Problems 7.4, 7.5]. Our examples settle this conjecture
in the negative. In contrast, in the literature there are plenty of examples of Lefschetz
fibrations over the 2-sphere with negative signatures, many coming from algebraic geom-
etry. To the best of our knowledge, even in this case it was not known that every negative
signature could be realized; see Remark 18.

We will prove the theorem by explicitly describing the Lefschetz fibrations in terms of
their monodromy factorizations, which correspond to positive Dehn twist factorizations in
the mapping class group of an orientable surface. Our constructions will heavily use varia-
tions of the breeding technique [10,32] for building Lefschetz pencils and fibrations out of
lower genera ones. A great deal of our efforts will be spent on building monodromy factor-
izations for spin Lefschetz fibrations. We should note that, even though we effectively use
the breeding technique to derive new symplectic 4-manifolds from smaller ones, this is not
an inherently symplectic operation; we build pencils/fibrations with locally non-complex
nodal singularities in intermediate steps, but then we match all the locally non-complex
nodes with locally complex ones and remove these pairs at the end (which corresponds
to a 5-dimensional 3-handle attachment, and at times to removing an S 2 % §2 summand
from a connected sum); see Remark 16.

We should also note that more flexible variations of this signature realization prob-
lem are easier to address, even in the holomorphic category: For Lefschetz pencils, where
one allows base points, examples with prescribed signatures are easy to obtain using very
ample line bundles on suitable compact complex surfaces. Similarly, there are many com-
pact complex surfaces admitting semistable fibrations over non-rational complex curves;
in fact, when one allows the base surface of the fibration to be of higher genus, there
are even smooth fibrations, often called Kodaira fibrations, whose total spaces have pos-
itive signatures. While the essential challenge is to describe positive signature Lefschetz
fibrations over the 2-sphere, we point out that most, and possibly all, of our examples in
Theorem A are non-holomorphic; see Remark 19. Since there are no separating vanish-
ing cycles in our fibrations, by Endo’s signature formula [20], none of our examples with
non-negative signatures can be hyperelliptic either.

Recall that two 4-manifolds are said to be stably diffeomorphic if they become diffeo-
morphic after taking connected sums of each with copies of S2 x S2. By a classical result
of C. T. C. Wall, we have the following immediate corollary to our theorem:

Corollary B. Any closed smooth oriented simply-connected 4-manifold is stably diffeo-
morphic to a symplectic Lefschetz fibration.

Furthermore, by crafting the monodromies of our fibrations more carefully and invok-
ing Freedman’s celebrated work, we can show that any closed smooth oriented simply-
connected 4-manifold X with signature o, provided its holomorphic Euler characteristic
xn(X) = %(e(X ) 4+ o(X)) is integral and sufficiently large (depending solely on o), is
homeomorphic to a symplectic Lefschetz fibration. (Doing this for all integral y;(X)
greater than a constant that depends on ¢ requires more work.) So we get symplectic
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Lefschetz fibrations as exotic copies of standard 4-manifolds that are connected sums of
copies of S? x S2, CP? and the K3 surface, taken with either orientations. It is a very
interesting problem to determine the smallest y, (or b,) one can take for a given o. For
example, when o0 = 0, we can show

Corollary C. There exist symplectic Lefschetz fibrations, whose total spaces are pair-
wise non-diffeomorphic, but homeomorphic to #,,(S? x S?), where the examples can be
chosen so that m is as small as 127, or is any odd m > 415.

These are the first exampes of Lefschetz fibrations in the given homeomorphism
classes. The spin examples are particularly interesting, and have been sought after for
quite some time, in connection with the existence of exotically knotted orientable surfaces
in the 4-sphere. Examples of exotically knotted non-orientable surfaces in the 4-sphere
were constructed by Finashin, Kreck and Viro [24], and further examples were given by
Finashin [23], all using involutions on genus-1 Lefschetz fibrations. In contrast, it is still
unknown whether there are any examples of exotically knotted orientable surfaces in the
4-sphere, whereas double covers along topologically but not smoothly trivial ones would
yield exotic #,, (52 x S?); see Remark 21.

The motivation for Theorem A in part comes from the symplectic geography prob-
lem, pioneered by Gompf [30], which asks to determine the pairs of integers that can be
realized as y; and ¢? = 2e + 30 of minimal symplectic 4-manifolds for a given spin
type and fundamental group, akin to the geography problem for compact complex sur-
faces [18,48,49]. This is because of the extensive use of Lefschetz fibrations in the past
four decades as building blocks for new complex, symplectic and smooth 4-manifolds.
Employing symplectic surgeries, which do not preserve the fibration structure, we can
get sharper results and realize new pairs of values as (xp, ¢?) of simply-connected spin
symplectic 4-manifolds:

Theorem D. There exist symplectic Lefschetz fibrations over the 2-torus, which are equiv-
alent via Luttinger surgeries to infinitely many, pairwise non-diffeomorphic symplectic
4-manifolds homeomorphic to #,,(S 2xS 2), where m can be chosen as small as 23,
as well as arbitrarily large. They further yield examples of infinitely many, pairwise
non-diffeomorphic symplectic 4-manifolds homeomorphic to #,(S? x S?) for any odd
m > 23.

To the best of our knowledge, Theorem C contains examples with the smallest topol-
ogy among the exotic #,,(S? x S?) discovered to date. Symplectic 4-manifolds hom-
eomorphic but not diffeomorphic to #,,(S? x S?) were first constructed by J. Park [47]
for unspecified large m, and this result was improved dramatically by Akhmedov and
D. Park to m > 275 [4] and later to m > 175 [5]. (Recent talks by Sakalli announce fur-
ther improvement to m > 27 in joint work with the same authors [6], but this preprint is not
publicly available at the time of writing.) All these previous works use compact complex
surfaces with positive signatures built by algebraic geometers as essential ingredients. Our
main ingredients, the symplectic Lefschetz fibrations over the 2-torus we build, are not
homotopy equivalent to any complex surfaces.
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We discuss how to describe spin structures on Lefschetz pencils and fibrations using
their monodromy factorizations in Section 2. There we present a way to calculate the
divisibility of the fiber class from the monodromy factorization, and produce a very handy
criterion for equipping the fibration with a spin structure, building on Stipsicz’s work [54];
see Proposition 8 and Theorem 9. Both are employed repeatedly in our constructions of
spin Lefschetz fibrations to follow. In the proof of our main theorem, Theorem A, the
signature zero genus-9 Lefschetz fibration over the 2-sphere singled out in Theorem 14
will play a key role. The construction of this fibration, which spans the entire Section 3,
is the most technically involved one in our paper, so we chose to present it in multiple
steps, in each step producing positive factorizations for Lefschetz pencils that might be
of particular interest themselves. Even more effort is spent on establishing whether this
fibration has a primitive fiber, since we have not been able to identify any sections of this
fibration. (We plan to examine the existence of (multi)sections of this fibration elsewhere.)
We will finish the proof of Theorem A in Section 4, and prove Corollary C and Theorem D
in Section 5, using the explicit monodromies of our signature zero Lefschetz fibrations,
while now paying special attention to killing the fundamental group efficiently so as to
produce symplectic 4-manifolds in the desired homeomorphism classes.

Conventions: Any Lefschetz fibration in this article is assumed to have non-empty critical
set, and any Lefschetz pencil has non-empty base locus. All are assumed to be relatively
minimal, i.e. no exceptional spheres contained in the fibers. Unless explicitly specified
otherwise, the base of our Lefschetz fibrations is the 2-sphere. We denote by EZ & acom-
pact orientable surface of genus g with b boundary components and k marked points in
its interior, and we drop b or k from the notation when they are zero. The mapping class
group Mod(Eg ’ «) then consists of orientation-preserving diffeomorphisms of EZ & Which
fix all the boundary points and marked points, modulo isotopies of the same type. A right-
handed or positive Dehn twist about a simple closed curve or simple loop ¢ on a surface
3 is denoted by #. in Mod(X). Our products of mapping classes, and in particular of
Dehn twists, act on curves starting with the rightmost factor. We express a monodromy
factorization of a genus-g Lefschetz fibration by #., ---#,, = 1 in Mod(Zg), and that of
a genus-g Lefschetz pencil with b base points as t¢, -+ t¢, =15, -+ 15, in Mod(Zg), where
{8;} are boundary parallel curves along distinct boundary components of Eg. We often
refer to these as positive factorizations (of identity or boundary multi-twist). The reader
can turn to [31] for general background on Lefschetz fibrations and pencils, monodromy
factorizations and symplectic 4-manifolds, and to [21, 22] for more on relations in the
mapping class group and signature calculations (while keeping in mind that in [22] the
authors’ convention is to use left-handed Dehn twists instead).

2. Spin structures on Lefschetz pencils and fibrations

In this section, we will first review some preliminary results on spin structures on Lef-
schetz pencils and fibrations, and present a few quintessential examples that will be used
in our later constructions. We will then discuss how to calculate the divisibility of the
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homology class of the regular fiber of a Lefschetz fibration, and present a practical way to
build a spin structure on its total space, solely using monodromy factorizations. The reader
can turn to [31, 36, 54] for basic definitions and background results on spin structures on
3- and 4-manifolds, and to [16,35,41] for spin structures on surfaces, quadratic forms
and spin mapping class groups. While we will focus on Lefschetz pencils and fibrations,
we note that everything we discuss is applicable, mutatis mutandis, to achiral pencils and
fibrations. In what follows, H«(X) denotes the integral homology group of a space X,
while coefficient groups other than Z in our homology calculations will be explicitly
specified.

Given a Lefschetz pencil (X, f), we can easily determine whether X admits a spin
structure by studying the Z,-homology classes of the Dehn twist curves in the mon-
odromy factorization of f:

Theorem 1 (Baykur—Hayano—Monden [14]). Let (X, f) be a Lefschetz pencil with mon-
odromy factorization te, ---tc, = g ++-15, in Mod(Ei’,), b > 1. Then X admits a spin
structure if and only if there is a quadratic form q: Hq (Eg; Z) — Z, with respect to the
Zy-intersection pairing such that q(c;) = 1 for all i, and q(§;) = 1 for some j.

Note that X cannot admit a spin structure if b is odd or if any c; is separating.

Given a Lefschetz fibration (X, f), we can also determine whether X admits a spin
structure or not from the monodromy factorization of f* provided the integral homology
class of the regular fiber F is primitive and there is information available on the self-
intersection of an algebraic dual S of F in H3(X),i.e. F - S = 1. (These extra conditions
will be the focus of our discussions to follow.) A characterization in this case was given
by Stipsicz [54], which motivates and predates Theorem 1. We rephrase it as follows:

Theorem 2 (Stipsicz [54]). Let (X, f) be a genus-g Lefschetz fibration with monodrony
factorization ¢, --- 1., = 1. Assume that the homology class of the regular fiber has an
algebraic dual S in Hy(X). Then X admits a spin structure if and only if S has even
self-intersection, and there is a quadratic form q: H1(Xg; Z,) — Z, with respect to the
Zr-intersection pairing such that q(c;) = 1 for all i.

In our revised statement of Theorem 2, we replaced the original algebraic condition for
the vanishing cycles {c; } given in [54] with an equivalent condition in terms of a quadratic
form, which we find to be handier for our calculations. (See below for an explanation of
this condition.) Further, we have stated the existence of an algebraic dual as a hypothesis,
which always holds when the homology class of the regular fiber is primitive in H(X). In
[54,55] it was claimed that every Lefschetz fibration has a primitive fiber class, but there
is a mistake in the proof of this claim (and there are counter-examples in the achiral case,
such as Matsumoto’s genus-1 achiral Lefschetz fibration on S*); see e.g. [11, Appendix]
for an explanation. In the case of a pencil, the induced handle decomposition removes the
need for additional assumptions on the homological dual of the fiber class. Note that when
X 1is spin, the condition on the vanishing cycles is implied regardless of the divisibility of
the fiber class.
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Recall that a function q: H; (Eg; Z3) — Z describes a quadratic form with respect
to the Z,-intersection pairing if ¢ (¢ + b) = q(a) + q(b) + a - b (mod 2) for every a,b €
H\(%%:7Z,). There is a bijection between the set of isomorphism classes of spin structures
Spin(X,) and the set of such quadratic forms on H;(Xg; Z,) [16,35]—and a similar
correspondence holds for X2, where the quadratic form is no longer non-singular. From
the proof of the above theorems, one can in fact deduce that any spin structure on X
comes from one on Eg or X, for which the monodromy curves satisfy the spin property
given in the statements.

An important invariant of a quadratic form g on H;(Xg; Z5) is its Z,-valued Arf
invariant Arf(q), which can be most easily calculated as

q
Arf(q) = > q(ai)q(Bi).
i=1
where {«;, B;} is any symplectic basis for H;(X4; Z5). For g5, qs the quadratic forms
corresponding to s, s’ € Spin(X,) respectively, there exists a spin diffeomorphism ¢ :
(Zg,5) = (Zg,s"), or equivalently ¢*(gs') = g5, if and only if Arf(qs) = Arf(gy) [7,35].

For a fixed spin structure s € Spin(Zg), let Mod(Zg, s5) be the spin mapping class
group, which consists of ¢ € Mod(Z) such that ¢*g = ¢, where ¢ is the quadratic form
corresponding to s. Since g respects the Z,-intersections, it follows from the Picard-
Lefschetz formula that a non-separating Dehn twist #. is in Mod(X, s) if and only if
g(c) = 1. Now, if Y is a Xg-bundle over S' with monodromy ¢, then it admits a spin
structure s that restricts to a spin structure s on the fibers if and only if ¢ € Mod(Xg, 5).
When this holds, attaching a Lefschetz 2-handle to Y x I along a simple loop ¢ on a fiber
prescribes a fibered cobordism from ¥ to Y’, another X¢-bundle with monodromy ¢’ =
fc o ¢, if and only if ¢ is non-separating and 7. € Mod(X,,s) [50,54]. With these in mind,
we will next illustrate how Dehn twists in Mod(X, s) play a key role in building spin
Lefschetz fibrations.

Let (X, f) be a Lefschetz fibration with monodromy factorizationf, ---f., =1, and
assume that there is a quadratic form ¢ satisfying the hypothesis of Theorem 2. The Lef-
schetz fibration f on X induces a decomposition X = (D? x £,) U W U (D? x Z,),
where W = (S x £, x I) U Y_"_, h; consists of Lefschetz 2-handles h; attached along
the Dehn twist curves ¢; on X,. For s € Spin(X,) corresponding to the quadratic form ¢,
take the spin structure on the first copy of D? x %, which is the product of the unique
spin structure on D? with s. The induced spin structure s on the boundary dD? x X,
is obviously the product of the bounding spin structure on S! and s [54]. Now, by our
discussion in the previous paragraph, W yields a spin cobordism from dD? x T, to X’
for X' = (D2 x Zg) UW. Aste, -1, = |, there is a diffeomorphism X’ — S x =,
which maps the induced spin structure ¢’ on 39X’ to a spin structure s” on S x Z,. How-
ever, for s” to extend over the remaining D? x X, it should come from a product spin
structure where the spin structure on the S! factor is the bounding one.

We note that when we double the monodromy factorization, the spin condition for the
vanishing cycles alone is sufficient to conclude that the total space of the new fibration is
spin:
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Proposition 3. Let (X, f) be a Lefschetz fibration with monodromy factorization
(tey ++1e,)? = 1, wherete, -+ 1, = 1 in Mod(Zg). Then X admits a spin structure if and
only if there is a quadratic form q: H{(Xg¢; Z2) — Z, with respect to the Z,-intersection
pairing such that q(c;) = 1 for all i.

Proof. In this case, the Lefschetz fibration f with doubled monodromy induces a decom-
position
X=(D*x3Z) UWUWU(D*x%,) =X UX,

where W = (S x g x I) U Y ", h;, with 2-handles %; attached along ¢; on g, is
a spin cobordism as we argued above. So X’ = (D? x Z,) U W admits a spin structure
per our hypothesis. As before, 7., - - I, = 1 induces an identification ®: 93X’ — S! x =,
and for W the orientation-reversing diffeomorphism on S! x ¥, which is the product of
the complex conjugation on S! and identity on Xz, we have X = X’ Ug—1yg X'. Clearly,
this gluing matches the induced spin structures s’ on both copies of dX’, and the spin
structures we have on the two copies of X’ then extend to a spin structure on the whole
of X. (So we see that if the cobordism W from S! x Z, to itself happens to flip the spin
structure on the S! factor, attaching W for a second time, we still get back the bounding
spin structure on the S! factor.) ]

The doubled monodromy in Proposition 3 obviously amounts to taking an untwisted
fiber sum (X, f) = (X', f') # (X', f'), where f’ has monodromy ., ---t,, = 1. In [53]
Stipsicz argues that even if f’ does not have a section, f always has one with even self-
intersection. One can then invoke Theorem 2 to obtain another proof of the proposition.

More generally, the essential information on an algebraic dual of the fiber in Theo-
rem 2 would be readily available if the fibration (X, f') admits a section S. While this is
equivalent to having a lift of the monodromy ¢, ---#,, = 1 in Mod(Z¢) to ler ot =1
in Mod(X, 1), finding such a lift—which might require isotoping the original {c; } so they
now have a lot more geometric intersections—is a challenging job; see e.g. [32,38,43,58].
Nonetheless, once we have this lift, determining the self-intersection of the section is
fairly easy. We have the short exact sequence

1 — (15) > Mod(Z}) — Mod(Zg,1) — 1

where the epimorphism is induced by capping the boundary component § of 2; by a disk
with a marked point. So there is always a further lift Loy -ty = t(é‘ in Mod(Eé), which
one can easily obtain by removing a disk neighborhood of the marked point and then
calculating the number of boundary twists needed to get back to identity, by looking at the
action of the monodromy on an essential arc on Eél,. The power k of the boundary twist #5
then determines the negative of the self-intersection number of S. This can be easily
seen as follows: The disk neighborhood of the marked point corresponds to a tubular
neighborhood of S, and by picking a fixed point on the boundary of the disk, we get
a push-off of S, so now by the action of té‘, the intersection number of the two is +k.
Running this calculation in a single example (like the ones below), once and for all we
determine the sign, and conclude that the self-intersection of S is —k.
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We continue with some quintessential examples:

Example 4. The odd-chain relation in Mod(Zé), with ¢; as in Figure 1 (a),

2g+42
(t6‘1t6‘2 "'t02g+1) gt+2 — t51182v (1)

is the monodromy factorization of a genus-g pencil on a simply-connected Kihler surface,
which is the K3 surface when g = 2 [31]. Since the Z»-homology classes of c1,...,c2g+1
generate H1(%2;7Z,), and the sum of all odd-indexed ¢; is homologous to each §;, we
see that there is in fact a unique quadratic form g: Hl(Eé; Z3) — Z, for which the
monodromy curves satisfy the spin condition (corresponding to the unique spin structure
on the 4-manifold) if and only if g is even.

Example 5. The even-chain relation in Mod(E;,), with ¢; as in Figure 1 (b),

4g+2
(teytes " ey ) 82 = g, 2)

is the monodromy factorization of a genus-g pencil on a simply-connected Kéhler surface.
Since the Z,-homology classes of the curves cy, ..., c2; generate Hl(E}g; Z,), there is
in fact a unique quadratic form ¢: H,(X!: Z,) — Z, for which g(c;) = 1 for all i. While
this pencil cannot be spin (here the number b of base points is 1), the double of this
monodromy gives a Lefschetz fibration that is spin.

O s

62 C1 Co Cc3 Cq Cag

Ci C2 C3 (4

C2g C2g+1

(a) Odd chain. (b) Even chain.

(&1 (&) C3 Cyq

(c) Hyperelliptic relation.

Fig. 1. Dehn twist curves for standard relations.

Example 6. The hyperelliptic relation in Mod(Xg), with ¢; as in Figure 1 (c),

(Z01Z02 "‘Zczgtczzgﬂlczg ”'tczlm)z =1, 3)
is the monodromy factorization of a genus-g fibration on the rational surface CIP? #
(4g + 5)CP2. The double of this factorization is known to yield a genus-g Lefschetz
fibration on the elliptic surface E£(g + 1) [31]. Once again, the Z,-homology classes of
the curves cy, ..., cog41 generate Hi(Xg; Z5). Since the odd-indexed ¢; all together
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bound a subsurface, there is a unique quadratic form g: Hy(Xg; Z>) — Z for which
q(c;) = 1 for all i if and only if g is odd.

Yet, even when g is odd, the total space CP2 # (4g + 5)CIP? for the positive factoriza-
tion (3) is obviously not spin, despite the fiber class being primitive (which is immediate
by the particular case of Proposition 8 below, or by the fibration admitting sections).
Indeed, this fibration arises as a blow-up of a pencil on a Hirzebruch surface, and admits
as many as 4g + 4 exceptional sections, each of which can be taken as the dual S. As an
instance of Proposition 3 however, when we double the monodromy factorization (3), we
get a spin Lefschetz fibration, which yields the unique spin structure on E(g + 1) for g
odd. This is also evident from Theorem 2 and the fact that by matching the exceptional
sections, we see that the latter fibration has a section S’ := S # S with self-intersection —2.
Similarly, if we cap off the two boundary components in Example 4, we get a positive
factorization of the identity, and doubling it, we get a monodromy factorization for a spin
Lefschetz fibration provided g is odd. Note that in both examples, we have the same spin
structure on X, and the corresponding quadratic form has Arf invariant 1 when g = 1
(mod 4) and 0 when g = 3 (mod 4).

On the other hand, if we cap off the boundary component in Example 5, the mon-
odromy curves, which are in this case linearly independent in homology, already satisfy
the spin condition for any genus g, and doubling it yields a spin Lefschetz fibration. The
quadratic form for this unique spin structure on X, now has Arf invariant 1 when g = 1
or 2 (mod 4) and 0 when g = 3 or 4 (mod 4).

Example 7. A less known relation in Mod(X) discovered by K.-H. Yun [63], which is
a simultaneous generalization of the hyperelliptic relation and the Matsumoto—Cadavid—
Korkmaz relation [37,42] (all coming from different involutions), is as follows:

2 2
(tAzn—z [dap—3 " TAx 4 145 " Aoy _3TA50 5 LBy * " " 1By, tAZn—l) =1, “)

where A;, B; are as in Figure 2, and m, n > 0. This is the monodromy factorization
of a genus g = 2m + n — 1 fibration on the ruled surface (X, x S2) # 4nCP?, and
importantly, a twisted fiber sum of two copies of this fibration is known to yield a genus-g
Lefschetz fibration with several (—2)—sections, the total space of which is a knot surgered
elliptic surface E(n)g, where K is a fibered knot of genus m [27,63]. Since E(n)x are
homeomorphic to E(n) [26], in particular we deduce that there is a twisted fiber sum of
two copies of this fibration that is simply-connected, and moreover spin with signature
—8&n when n is even. We show that the untwisted fiber sum of two copies of the fibration,
i.e. the double, is also spin when 7 is even.

Let {a;, Bi}'=1 U {ozj’., ,3]’ }12’=”1 be a symplectic basis of H1(Xg; Z5), represented by
the same labeled curves in Figure 2. We calculate the Z,-homology classes of the vanish-
ing cycles as

Ay = B,

Ay =Bii+ B (=2,....n-1),
Azpn—1 = Bn-1,
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/
RS}

!
An—1 ( ) B
.

Fig. 2. Dehn twist curves of Yun’s relation and the homology generators.

Aryi=o; (i=1,...,n-1),

By = o) + -+ ayp + Pt

Baj =+ + B+ Pomyrj t Bt (G =1....m—1),
Bom = By + Brug1 + Bn—1.
Brjoi =)+ o+ W+ B+ Bomgr—j + Bt (G =1,....m).

If n is odd then no quadratic form g: H1(X4; Z,) — Z satisfies g(A;) = 1 for all odd i
since such A; cobound a subsurface X7 . Suppose that n is even. Let g(o;) = q(ozj’-) =
q(B;) = 1foralli, j,andsetq(f;) = 1forallodd 1 <i <n—1andq(f;)=O0foralleven
2 <i <n—2.This defines a quadratic form on H(Zg;Z,) for whichg(A4;) =q(B;) =1
for all i, j, and the Arf invariant of this quadratic form is 0 when n = 0 (mod 4) and 1
when n = 2 (mod 4).

We will next show, when there is no information available for a section, how, using
the monodromy, we can still determine whether the fiber is primitive and thus has an
algebraic dual as required in Theorem 2. Since the kernel of the forgetful homomorphism
Mod(X,,1) — Mod(X,) is generated by point-pushing maps [22], if we take an arbi-
trary marked point on X, avoiding all the c;, we still get a lift le) o ley, = Ps,  Pa,, n
Mod(X,,1), where on the right-hand side we now have point-pushing maps along oriented
simple loops @;. This product of point-pushing maps can be expressed as one point-
pushing map along a possibly immersed oriented loop &, and when « is null-homotopic,

the marked point we picked in fact gives an honest section of the fibration.

Proposition 8. Ler (X, f) be a genus-g Lefschetz fibration which has a monodromy fac-
torization t¢, -+ -t., = 1 with the following lift in Mod(X¢,1):
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Let y; be the homology class of c¢; taken with either orientation fori = 1,...,n, and let o
be the sum of the homology classes of all a; in H1(Xg). The divisibility of the homology
class of the regular fiber F in Hy(X) is the smallest positive integer d such that the
image of da under the homomorphism Hi(Xg) — H1(Zg) /{y1, ..., Yn) is trivial. In
particular, if {y;}_, generate H{(Zg), then [F] is primitive.

Proof. We have X = X' U (D? x X,), where X’ = (D? x ) U Y7, h; and {h;}
are the Lefschetz 2-handles attached along ¢; on X,. So X’ contains all the 2-handles
of X but one, which comes from the second copy of D? x X, in the decomposition
of X. The isotopy, which takes the product #., -+, to 1 in Diff"(Z,), prescribes
a fiber-preserving diffeomorphism & from the boundary fibration f|jxs to the trivial
¥, -fibration on dD? x X,. The attaching circle ¢’ of the last 2-handle 4’ is a section
s := @7 1(dD? x p) of f|sx-, for some point p € T.

In the standard handle diagram of X', the attaching circle ¢’ of 4’ links the 2-handle of
the fiber geometrically once, and possibly goes over the 1-handles coming from X, and
links with the attaching circles {c; } of the Lefschetz 2-handles {/; }. While the section s’ of
flax- carries the first information, i.e. how ¢’ would go over the 1-handles as it traverses
around dD? x p once, there are still many ways A’ can be attached along a circle ¢ in
the complement of the attaching circles {c; }—where ¢, even if it is not isotopic to ¢’ in
the diagram, is still isotopic to s” on dX’. Equivalently, there are several ways to isotope
all the attaching circles {c;} in the diagram to curves that will project on to X still
as embedded curves {c;}, while now avoiding a marked point corresponding to ¢. Each
of them prescribes a lift of the identity ¢, ---#;,, = 1 in Mod(X,) to a factorization
Loy -ooley, = P; in Mod(Z, 1), where & is an oriented curve on X,. However, ¢ and ¢’
only differ by handle slides over /4;, and the homology classes of their attaching circles
on X¢ will only differ by relations generated by the homology classes of {c;} in H,(Zg).
Thus, they will all map to the same homology class under the projection H,(Xg) —
Hi(Zg)/(y1,---s¥n)-

Corresponding to a given lift 7,7 - -1, = P, -+ Pa,, inMod(Zg 1) is such a choice ¢
as above. To see this, let 7: S1 x ¥, — X, be the projection, and let ¢ parametrize
S1 =[0,1]/{0 ~ 1}. Take a partition 0 =ty < t; < -+ <1t; <--+ < t,, = 1. For each a;,
we can find an oriented arc B; in [#;_1, ;] X Xg, running from the point #;_; X p to the
point #; X p, so that 7|, : B; — @; is an immersion. Concatenating all of them, we get an
oriented arc B in [0, 1] x X, . Identifying the end points of either +8 or —f, we obtain c.
Just like our reading of the self-intersection number of a section from the corresponding
monodromy factorization, the correct sign of 8 here can be settled once and for all after
calculating it in one example, but for our homology calculations to follow, the sign will
not matter.

From the decomposition X = X' U (D? x ), it is clear that there is no class with
arepresentative in X’ which has non-trivial pairing with the homology class of the regular
fiber F' in H,(X). By our discussion above, up to relations generated by the homology
classes y; of ¢; on Hj(Xg), the attaching circle ¢’ of the last 2-handle 4’ is homolo-
gous to ¢ we build from a given lift, which in turn is homologous to a concatenation of
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S!x pandallajsin Hi (S x Zp) = H1(S1') x H1(Z,). Since the S! x p curve already
bounds D? x p, when we attach /', its attaching circle becomes homologous to +a in
H(S! x =) fora = Z;'n=1 [o;] in Hi(XZg). It follows that if the image of « is trivial
in the quotient H1(Xg)/(y1, ..., ¥n) = H1(X’), then the attaching circle of 4’ bounds
some surface S’ in X’. We can then form a closed surface S in X by gluing S’ and the
core of /4’ to obtain a surface which intersects the fiber F once, and conclude that [F] is
primitive.

In general, if the image of d « is trivial in H1(24)/(y1, ... ¥n), We get a surface S’
in X’ that bounds d parallel copies of the attaching circle of 4. So we can build a closed
surface S in X, which satisfies S - F = d, by gluing S” and d parallel copies of the core
of the 2-handle A’. Conversely, if [F] = d Fy for a primitive class Fp, let S be a surface
in X representing the dual of Fy, so S - F = d. If necessary, by tubing—along F—
between any pair of positive and negative intersections of S with F', we can replace S with
a higher genus surface in the same homology class, which now intersects F' geometrically
d times. We can then isotope this S so that in a small neighborhood N (F) of F identified
as N(F) =~ D? x X, we have S N N(F) =~ D? x (d points). Identifying N(F) with
D? x %, in the decomposition X = X’ U (D? x ), we conclude that any class dual
to the primitive root Fy of [F] can in fact be represented by a surface S that splits into
a surface S’ in X’ and d parallel copies of the core of 4’. Hence, the smallest positive
integer d , for which d « is trivial in the quotient, gives the divisibility of the fiber class [ F]
in Hy(X). ]

In the case of pencils, the induced handle decomposition nullifies the need for the
additional information on the attaching of the last 2-handle, and one can determine the
divisibility of the fiber class of a genus-g Lefschetz pencil with b base points directly
using a lift of the monodromy in Mod(Ei’,); see [33, Appendix].

We will call a surface S a pseudosection of (X, f) if it intersects a regular fiber F
once. As seen from our proof of Proposition 8, when the lift of the monodromy factor-
ization to Mod(X¢ 1) involves non-trivial point-pushing maps, one gets a pseudosection
(possibly after some handle slides over the Lefschetz 2-handles) provided the class «
determined by the point-pushing curves becomes trivial under the quotient homomor-
phism Hi(Xg) — Hi(Zg)/(y1.--..Vn), and conversely any pseudosection yields such
a lift. However, unlike in the case of a section, now a further lift to Mod(Zé) does not
allow us to directly determine the self-intersection number of S.!

!In principle, one can of course attempt to access all this information by first drawing the stan-
dard handle diagram for (X', f|x-), then finding a sequence of Kirby moves from the induced
diagram on dX’ to the standard handle diagram of S! x & g With 2¢g 1-handles and a 2-handle, and
finally dragging back a 0-framed meridian to the 2-handle in the latter diagram to a 2-handle in
the former, so as to calculate its framing, and so on. However, this not only proves to be a difficult
exercise even for Kirby calculus aficionados, but also departs from our general approach to read off
all the essential information from monodromy factorizations.
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We will show that, under favorable conditions that apply to all the examples we will
deal with in this article, knowing that the fiber class is primitive will be enough to build
the spin structure:

Theorem 9. Let (X, f) be a genus-g Lefschetz fibration with a monodromy factoriza-
tion te, -+ - te, = 1, a primitive fiber class in H>(X), and signature o(X) = 0 (mod 16).
Assume that there is a quadratic form q: Hi(X4; Z2) — Zy with respect to the Zo-inter-
section pairing such that q(c;) = 1 for all i, and Arf(q) = 1. Then any spin structure s’
corresponding to a quadratic form q' on H1(Zg; Z3) with q'(¢;) = 1 for all i induces
a spin structure on X.

Proof. Let us first assume that there exists a genus-g achiral Lefschetz fibration (Yg, f¢),
with a monodromy factorization t; ‘e t;Z = 1 in Mod(Xg) (for some ¢; = £1) which
satisfies the following four properties:

(i) 0(Yg) = 8 (mod 16),

(ii) fg admits a section S, of (possibly positive) odd self-intersection,
(iii) there is an s, € Spin(X,) with a quadratic form g such that gg(d;) = 1 forall i,
(iv) Arf(gg) = 1.

We will show in a bit that there are such model fibrations for every genus g > 1.

Since (X, f) has a primitive fiber class, by our discussion above, it has a pseudosec-
tion S intersecting a regular fiber F geometrically once. Let s € Spin(X,) correspond to
the quadratic form ¢ in the hypothesis.

Removing a small neighborhood N(F) of F, where § intersects I once, and N (Fy)
of the regular fiber Fyg of (Y. fg), we can take a fiber sum ()2, f) =X, f)# Y, fe),
so that under the gluing d(X \ N(F)) — d(Yg \ N(Fg)) we have S N ON(F) sent
to Sg N IN(F,), which we can always achieve after an isotopy for any given fiber-
preserving diffeomorphism. So this fibration has a pseudosection S = (S\SNN(F)U
(Sg \ Sg N N(Fg)) = S #S,, with self-intersection $.§=5-5+ Sg - Sg=8-5+1
(mod 2), as we have assumed S, has odd self-intersection.

Identifying the boundaries N(F) and dN(Fg) with S! x X, the gluing diffeomor-
phism is prescribed by a self-diffeomorphism ® of S x X, which is the product of the
complex conjugation of the unit circle S' C C, and some ¢ € Diff"(Z;). Since both
spin structures s and s, have the same Arf invariant, we can choose ¢ to be a spin dif-
feomorphism ¢: (X4, 5) = (X4, ¢). Now, the fibration ()2 , f ) has monodromy curves
{ci,¢71(d;)}, withg(c;) = 1 and g(¢~1(d;)) = q¢(d;) = 1 forall i, j. If the pseudosec-
tion S of (X, f) had odd self-intersection, then S would have even self-intersection, and
by Theorem 2, X would be spin. However, by Novikov additivity, the signature satisfies

o(X) = 0(X) 4+ o(Y,) = 8 (mod 16),

and Rokhlin’s theorem implies that X cannot be spin. So we deduce that S has even self-
intersection, and thus we can invoke Theorem 2 to conclude that our original Lefschetz
fibration (X, f) is spin, in fact not only for ¢, but for any quadratic form ¢’ with ¢’(c;) = 1
for all i.
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We are left with building the models (Y, f¢). Note that by Proposition 3, any achiral
Lefschetz fibration satisfying (iii) should necessarily have signature o (Yg) = 0 (mod 8).
Some of these models can be derived immediately from Examples 4—-6. When we cap off
the boundary components, all these relations yield hyperelliptic Lefschetz fibrations, so
using Endo’s signature formula for hyperelliptic fibrations [20], we can easily see that the
even-chain relation yields Lefschetz fibrations with the desired properties when g = 2
(mod 4), whereas all three relations yield such examples when g = 1 (mod 4).

To get models for all g however, we will go about it a little differently, and build
achiral fibrations out of the smallest chain relations instead—while remembering that
everything we have discussed so far also applies to achiral fibrations. Below, let {«;, 8;}
be a symplectic basis for H;(X,; Z,) generated by the same labeled curves given in
Figure 3.

Qg

Fig. 3. The symplectic basis for H1(Zg; Z2).

g = 1: The capped off even-chain, odd-chain and hyperelliptic relations all give Hurwitz
equivalent positive factorizations, the monodromy curves of which evaluate as 1 under
the quadratic form prescribed by g1 (1) = ¢1(B1) = 1. Its signature is —8.

g = 2: The capped off even chain relation gives a positive factorization, the monodromy
curves of which evaluate as 1 under the quadratic form prescribed by g» (1) = ¢2(B1) =
q2(az) = 1 and g2(B2) = 0. Its signature is —24.

Every odd g > 3: We have a decomposition X, = E{ u E% U---u E% U E{, with 2k — 1
copies of %2 for g = 2k + 1. Let A denote the 2-chain relation (Zc, th)thT l'and B denote
the 3-chain relation (¢, ., tc3)4t5_l lté 1 Embed A in both copies of %1, and embed B~!
into the first copy of E%, B into the second copy, and keep alternating the embeddings
in the same fashion for all the copies of 2. The embeddings of the boundary twists
15, 1s,, ts, all cancel out with each other. So we get an achiral fibration (Y, f,), for
g = 2k + 1, with only non-separating monodromy curves as in Figure 4 (a). Take the
quadratic form g which maps g, (¢;) = g¢(B;) = 1 forall i, so g maps all the monodromy
curves to 1. By [21], taking the algebraic sum of the signatures of the relations o (A4) = —7
and 0(B) = —6, we calculate that o(Yy) = 2(=7) + k(6) + (k — 1)(—6) = —8.

Every even g > 4: This time we have a decomposition £, = X} U X3 U---U X2 U X}
with 2k — 1 copies of £2 for g = 2k + 2. Let A and B denote the 2-chain and 3-chain
relations as above, and in addition, let C denote the 4-chain relation (¢, Zc,teste,)'% 157"
Embed A into X}, then B~! and B into the copies of £? in the same alternating fashion
as above. This time we finish with embedding C into the last X} piece. Once again, the

embeddings of the boundary twists #s, fs, , 15, all cancel out with each other, and we get
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an achiral fibration (Y, fg), for g = 2k + 2, with non-separating monodromy curves as
in Figure 4 (b). Take the quadratic form g, which maps all g¢(o;) = gg(8;) = 1 except
for g (Bg—1) = 0. One can see that all the monodromy curves are mapped to 1 under g,.
Using [21] again, by taking the algebraic sum of the signatures of the relations 0 (A4) = —7,
0(B) = —6 and 0(C) = —23, we calculate that 0 (Yg) = (—7) + k(6) + (k — 1)(—6)
+ (—23) = —24.

It is easy to check that the quadratic form we described for each fibration (Y, fo)
has Arf invariant 1. (In fact, there is a unique quadratic form for each one, since the
monodromy curves of each fg generate H,(Zg; Z,).) Finally, note that every (Y, fo)
has exceptional sections: This is obvious for g = 1, 2, and the higher genus ones always
have an exceptional section supported in the X piece (for instance since the 2-chain
is obtained from the 3-chain by capping off a boundary component which has a single
Dehn twist). So each (Y, f;) has a section Sg of odd self-intersection (in fact a lot
of them). ]

B~ 1
(b) Even-genus model.

Fig. 4. Model spin achiral Lefschetz fibrations.

Remark 10. The converse to the statement of Theorem 9 is not true. For instance, when
we double the capped off even-chain relation on X, with g = 0 or 3 (mod 4), we get
a spin Lefschetz fibration with signature divisible by 16, but the only possible quadratic
form on X, under which all the monodromy curves are mapped to 1, has Arf invariant 0.
On the other hand, when rank(H ' (X; Z5)) > 0, one often finds spin structures on (X, f)
coming from quadratic forms on the fiber ¥, with either Arf invariant, which will be the
case for our key example given in Theorem 14. (While this is often the case, it is not
always true either; the double of the genus g = 2m + 1 Matsumoto—Cadavid—Korkmaz
fibration on (X, x S2) # 8CP?2 has 22™ distinct spin structures, but a calculation similar
to ours in Example 7 shows that all of these spin structures come from a quadratic form
on X, with Arf invariant 1!)
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Remark 11. While the achiral Lefschetz fibrations (Y, fg) we built in the proof of The-
orem 9 might be of some interest, the 4-manifolds Y, themselves, as well as their spin
doubles can all be seen to decompose into a connected sum of standard simply-connected
4-manifolds S2 x S2%, CPP? and K3 surface, taken with either orientations. To see this,
first observe that they are all fiber sums of 4-manifolds that are such connected sums
themselves, along embedded spheres of opposite self-intersections (coming from cancel-
ing boundary twists), then apply classical cobordism arguments due to Mandelbaum and
Moishezon, as in [12,29,40]. In particular, none of them are symplectic when g > 2.

3. Lefschetz fibrations with signature zero

We will construct our examples of signature zero Lefschetz fibrations in three steps, split
into the next three subsections, where we employ the breeding technique [10] in increas-
ing complexity, to build signature zero Lefschetz pencils and fibrations out of lower
genera pencils. This is done through careful embeddings of the corresponding positive
factorizations into the mapping class group of higher genus surfaces, so that one can can-
cel all the negative Dehn twists against positive ones. Our 3-step construction will result
in the signature zero genus-9 Lefschetz fibration (X, f) of Theorem 14.

The interested reader can see how the key signature zero example (X, f) comes to
life, without getting bogged down in more technical details. Here is the outline of our
construction: We first build relation (6) in Mod(X3%) for a genus-2 pencil, using the 2-
chain and several lantern relations. We embed two copies of this particular relation into
Mod(Eg‘), as shown in Figure 10, in order to obtain a new relation for a genus-3 pencil.
Importantly, the resulting relation (8) contains positive Dehn twists along four bounding
pairs given in Figure 11, each cobounding two copies of 2‘1‘ with a pair of negative Dehn
twist curves corresponding to the base points of the pencil. We then embed two copies
of this special relation into Mod(XZg) as in Figure 15. At this point we have four pairs of
negative Dehn twists, which we will cancel one pair at a time, by carefully embedding four
more copies of the same genus-3 relation, so that each time pairs of negative boundary
twists match and cancel with positive bounding pair twists of the first two original genus-3
relations, while a positive bounding pair matches and cancels with a negative pair. Here
one simply needs to see how the positive bounding pairs from the top and the bottom
halves of X in Figure 15 cobound a £, split into two copies of £, cobounded by these
positive pairs and a negative pair from the first two embeddings of the genus-3 relation.
Following the ingenious work of Endo and Nagami [21], which allows one to calculate
the signature of a Lefschetz fibration via elementary relations in the mapping class group,
a simple algebraic count of the total number of 2-chain and lantern relations we employed
(as cancellations and braid relations do not affect the signature) confirms that the genus-2
and genus-3 pencils, and the genus-9 Lefschetz fibration we built at the end, all have
signature zero.

During our 3-step construction we will also chase around an additional marked point
on the fiber, the information on which we will need only later when calculating the
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divisibility of the fiber class of (X, f). The reader who is not interested in this partic-
ular calculation can safely ignore the additional point-pushing maps that appear in our
monodromy factorizations. In fact, while the breeding technique plays an innovative role
in the construction of (X, /), because we present this fibration with an explicit positive
factorization, the more conservative reader may choose to skip the next three subsec-
tions and verify its monodromy given in Theorem 14 in a straightforward fashion, using
the Alexander method. (This is a tedious but still manageable calculation, as we have
observed while exercizing due diligence to test our monodromy using the same method.)

3.1. A signature zero genus-2 pencil

We begin by describing a genus-2 Lefschetz pencil whose topology and monodromy both
have special features we need for the later steps of our construction. Namely, we would
like the total space to have signature zero and be spin, and the monodromy curves to con-
tain a bounding pair and two disjoint separating curves. (The need for all these properties
will become clear as we move on to next steps.)

In order to make our construction as self-contained as possible, we will derive all
our relations from elementary relations that are known to generate the mapping class
group, namely, the 2-chain relation, the lantern relation, and the braid relation, along with
commutativity, cancellation and conjugation. In the computations we will freely perform
Hurwitz moves and cyclic permutations without stating explicitly.

A variation of the 6-holed torus relation: We first present a variation of what is known
as the 6-holed torus relation [38]. The curves involved in our construction to follow are
given in Figure 5 (a).

We begin with the following 2-chain relation and lantern relation:

6
(tayp)” = ta,
tastglty = lg la ta,td,-
We combine them as follows (here we underline the parts that we modify in that very

step):

—1 -1,-1,—-1.,—1
1= 14, tyla, tola) hlay tola, tolay ol - lalylasly, ta, 17 1)

= la, tpta, thlay thlay ] " -tdtyta3t(l_llt(;]1tdllt(1_21 “ta,tpla,tp
= lay Iplay tolay tplay Ity " - Lalylasly, 15" < Tay tolay 1y - 15 17
= taltbtaltbtaltbtaltbtytast;llm-td‘llt;zl

= layIplay tolay tblay Iolylasly, tay tolay - 13 17

= L tplay tolay tblay tolylastblay - 17,17

—-1,—1
= tay tplay lazThlay Thlay Tblastblay - 17, 1z,
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(b) Rearrangement of the boundary components.

Fig. 5. Construction of a 6-holed torus relation.

(here we have used the simple observation that 574, tp24, 15 (y) = a3)

= lay tolay lazlblay Iblay Iolastblay 1, 17

= ta,tota, tastola, tla, tastotasta, 'tglltd‘;

= la,play lastblay tblaslay tblay tay - 17, 17,

= la,Ibla, lastblay Iblaslbla) thlas - 17, 17,

= layplay lastblay Laylolaslay tblas - 17, 17,

= lay 1y - laylasty ~ tblaylasly ~ laztay 1g) < Thlas.

Now we substitute the two lantern relations

laty\lay = laylasls tass

Laylagly, = laylaslsyldys

to get

-1 ,—1,-1 —1,-1
U= tayty - tay sty - 15 10 tay y tay 5, 1)+ Wty Tasth

—1,—-1 —-1,-1 -1
15 1y Haatys g ey Taslay 17 thlay.
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Cancellation and commutativity yield

15,18, = tay loly, laytolay 17,17,  laslblayly, tblas
= 1Bolay tolasrthla, -t;;g; laslhlaylhlaslp)
= 1Bylay Iblasblay -t;;td_; “laslblaylblaslB)
= tByta; lasthlasta; -t;;t;: laslaytblaslastB),
= 1Bo!B, lay tastarta, - td‘;t;; “laslaslaslas B! )

-1 —1
= 1Bo1B, lay lay * laylasly, * 13, larlas * laslastB) B},

where Bo := t4,15(y1), By := ta_sltb_l(Vz), By = t4,14,(b), and B| := ta_31t;41 (h). We
further substitute two more lantern relations, specifically

ldylx by, = laylagts,tdes

laylxyly, = laylaszlsslas,

so that

-1 1,—1 —-1,—1
18,18, = IBoIBylaylay “laylagly, ~la) Loy tdalxy Iy Is, g,
—1,-1 —1,-1_,—1
g 5 ot st 1) 1 as s < tagtas ey gy -
This now gives

18, 18,1851841dsdg = IBolB1laylaslx Iy  Ixy tyzta4ta3tBi tB(’)

or

I8,15,18515, dstds = IBoIBy * laylaylxybxs * Ty Iyslazlay 'tB{ lB(’) )]

in Mod(X$). Finally, we push the boundary components ds and dg as indicated in Fig-
ure 5 (b) so we get the Dehn twist curves as depicted in Figure 6. With this configuration
of the curves in mind, relation (5) is the 6-holed torus relation we wanted. Note that we
have used one 2-chain relation and five lantern relations to construct relation (5).

A genus-2 pencil: We now construct the genus-2 Lefschetz pencil that will become one of
our main building blocks. Take the boundary components ds, dg of the 6-holed torus 2?
in the previous step and connect them by a tube as shown in Figure 7 (a). This gives
a 23, a genus-2 surface with four boundary components. The curves d5 and dg become
identical, so we denote both by d.

Now for the quadruples of curves a1, as, x1, X and y1, y», as, a4 each cobounding
a 23 as shown in Figure 7 (b), we have the lantern relations

Z‘dl‘leC = tal tazlxl txz,

tC’tBétd =ty lyylasztay,
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Fig. 6. The curve configuration for our 6-holed torus relation.

(c) Rearranging the boundary components §3 and 4. On
the right, 84 is on the front and §3 is on the back of the
surface.

Fig. 7. Construction of a genus-2 pencil.
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Fig. 8. Vanishing cycles of a genus-2 pencil. Notice that By, B(’) is a bounding pair and the two
separating curves C, C’ are disjoint.

where the curves B, C,C’, B; are as in Figure 7 (b). Combining the two with our 6-holed
torus relation (5) yields

18,18,18515,tdtd = IBoIB, *lajlarlx txy Uy Iyslastay - tBitB(/)

= IBylB, " lalB,lC - ZC/tBéld . tB; [B(’)~
By canceling the 74 factors we obtain the relation

t31 182 t33 184 - lB() lBl thtC tC'tBé lBi lBlf) (6)

in Mod(X3%). Moreover, after pushing the boundary components §3 and 84 as indicated
in Figure 7 (c), we get a neater presentation of the Dehn twist curves as illustrated in
Figure 8. Pairs of curves labeled with the same letters, but one decorated with a prime and
one without it, are all symmetric under the obvious involution.

Relation (6) is the monodromy factorization for our genus-2 Lefschetz pencil. Observe
that in the monodromy factorization (6) the pair By, B(’, cobounds two copies of E‘l‘ with
boundary components, and we also have two disjoint separating curves C and C’, each
cobounding a copy of E% with a boundary component.

Let us compute the signature o of the total space of this genus-2 pencil. As we noted
earlier, the 6-holed torus relation (5) is derived by using a single 2-chain relation and
five lantern relations. We have then used two more lantern relations to obtain relation (6).
Since the 2-chain relation and the lantern relation contribute —7 and +1 to the signature,
respectively, we compute the signature of the pencil as 0 = 1(=7) + 7(+1) = 0.

We can moreover describe an explicit spin structure on this pencil (which we will
make use of in Section 5.1). Let {&1, 81, @2, B2, 81, 82,84} be a basis for Hl(Zg; Z5),
given by the same labeled curves in Figure 9.

We can then compute the Z,-homology classes of the vanishing cycles as

By = a1 +az + 61 + 82 + 64,

By =a1+B1+az+ B2+ 681+ 82 + 64,
By =B1+ B2+ 81 + 82 + 84,

C =4,
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|| @20 ||
Fig. 9. A basis for H(X5: Z>).

C'=56,

Bj = 1 + B2 + b4,

Bl =1 + B1+ o2 + B2 + 84,
By = ay + ap + 84.

If we now define a quadratic form ¢ on H,(X%; Z,) such that
q(a;) =q(Bi) =q6j) =1 foralli =1,2and j =1,...,4, (7)

then it maps each vanishing cycle to 1, and by Theorem 1, we get a spin structure on the
total space of the pencil.

Equipping the pencil with a Gompf-Thurston symplectic form, we get a symplectic
4-manifold. Then, observing that the fiber of the pencil violates the adjunction inequality,
we conclude that the total space has to be a rational or a ruled surface. As it quickly
follows from the above calculation, the rank of the first Z,-homology of this 4-manifold
is 2, thus it should be the ruled surface 72 x S2.

Remark 12. There are other explicit monodromy factorizations for genus-2 pencils
with four base points on the ruled surface T2 x S?2; they were obtained by the second
author [32] as lifts of Matsumoto’s well-known relation [42]. It is natural to ask whether
the one we discovered here is Hurwitz equivalent to any of those, and we will show that
this is indeed the case in Appendix A.

3.2. A signature zero genus-3 pencil

We will next describe a genus-3 pencil, the total space of which has signature zero and
is spin, whereas its monodromy has four (in fact five) pairs of Dehn twists about certain
bounding pairs.

We breed two copies of the genus-2 pencil constructed in the previous subsection to
obtain the desired genus-3 pencil. The curves 81, 83, C3, C4 on 2‘3‘ in Figure 10 cobound
a subsurface diffeomorphic to 2‘2‘. The same goes for the curves 85, 84, C1, Cy. Thus, we
can embed two copies of relation (6) in Mod(23) into Mod(X4) as

lartxtplc icytdrtwla = 15, 1551C31Cy
lertzlglesteytytyle = Is,ts,0C ECs s

where the curves are as shown in Figure 11. Note that the second embedding is obtained
from the first embedding followed by a rotation by & about the horizontal line indicated
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Fig. 10. The curves C;, §; on 2‘31.

Fig. 11. Vanishing cycles of the genus-3 pencil.

in Figure 10. Dehn twist curves in the two relations above are the images, under the
respective embeddings, of the curves of relation (6) in the same order.
By cyclic permutations, we can rewrite the relations as

tartwlalatxly = 15, I5,1C51C,1c,) Tc,
tylyleletzlg = 15,15,1c, 1Cy T, ICa -
Combining them we get
tartwlala txlp - Ty tylelertzlg = 15,15,85515,,
which, using cyclic permutation and commutativity, can be expressed as
tala txtply bylelertzlgtgrty, = 15, ts, 15,15, . ®)

This is a positive factorization in Mod(X$%), which prescribes a genus-3 pencil.

In relation (8), we have the two bounding pairs a, a’ and ¢, ¢/, which are inherited
from the genus-2 pencil. There are two more bounding pairs b, b’ and d, d’; see Fig-
ure 11. (The existence of these four bounding pairs is the most essential feature for our
constructing of the signature zero Lefschetz fibration in the next subsection.) There is in
fact a fifth bounding pair we can get after Hurwitz moves: We can move the factor ¢, over
the subword 551,21 (i.6. we conjugate this subword with z) to get the subword .7, in
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the monodromy, where the pair x, z also splits the surface into two genus-1 subsurfaces.
(Note that the pair y, w is yet another bounding pair, but this property is destroyed when
we bring ¢, and ¢, together above.)

The total space Y of our genus-3 pencil has signature zero since relation (8) is the
combination of two copies of relation (6) with signature zero. The Euler characteristic is
easily calculatedase(Y) =4 —4g+1 —b=4—4-3 + 12 — 4 = 0 (where g is the fiber
genus, / is the number of Lefschetz critical points and b is the number of base points).

To pin down the topology of ¥ we will calculate its first homology. Let us use the
symplectic basis {1, B1, ®2, B2, @3, B3} for H1(X4;7Z) as in Figure 12. The homology
classes of the vanishing cycles in this basis are a = a’' =¢c =¢' = a; + a3z, x =z =
artas—Pr+pPr—Psb=b=d=d =p1— P+ psandy =w =01 + a3 +
B1 — B2 + B3. Inturn, the relations in H; (Y ; Z) we obtain by setting the vanishing cycles
equal to zero are ¢z = —a1 and B3 = —f; + B2. Therefore H(Y; Z) is freely generated
by a1, 1.2, B2, and Hy(Y;Z) = Z*.

Fig. 12. The basis for Hy(X4;Z).

Since o(Y) =e(Y) and b1 (Y) = 4, Y cannot be a rational or ruled surface. Since this
genus-3 pencil has four base points, by [13, Theorem 1.2], Y is a symplectic Calabi—Yau
4-manifold, rational homology equivalent to 7%, (In fact one can show that w1 (Y) = Z*
and thus Y is homeomorphic to T#.) In particular, we see that Y is spin. Alternatively, one
can directly construct a quadratic form on 2‘3‘ that satisfies the conditions in Theorem 1
to show Y is spin.

Remark 13. There are other explicit monodromy factorizations for genus-3 pencils with
four base points on symplectic Calabi—Yau 4-manifolds homeomorphic to 74, obtained
by the first author [10] and the second author and Hayano [33]. It is once again natural
to ask whether the one we discovered here is Hurwitz equivalent to any of those, and we
will also confirm that this is the case in Appendix A, which in particular will imply that
this 4-manifold Y is diffeomorphic to the standard 7.

A lift of the genus-3 relation: Here we pause our construction to capture a lift of rela-
tion (8) in Mod(XZ%) to Mod(Eg"z). This lift will involve non-trivial point-pushing maps,
and thus it will not yield an honest section, but we will plug this information in later to
describe a pseudosection for the penultimate signature zero genus-9 Lefschetz fibration.
We first note the following simple yet useful observation (due to the anonymous ref-
eree). Suppose that #¢, -+ f., = 5, ---15, is a positive factorization in Mod(ZIZ,) with
b > 1. As illustrated in Figure 13, we take an annulus with a marked point p in the inte-
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. . ; 4
Fig. 14. A lift of the genus-3 relation to Mod(23,2).

rior and glue it with the surface Zg along the boundary component §; to obtain a new

surface Elg’,,l, where §; is replaced by the new boundary component §}. Then

-1
Leyley ooty = t51t82“'t3b = t81t51 't81182"‘t8h = ‘(P& 't51t82“'t(sb’

where @ is an oriented loop based at p on the annulus as in Figure 13. This is a lift
of the original relation to Mod(Eg’l), which only depends on the choice of a boundary
component. Obviously, we can also apply this operation to multiple boundary components
to get a lift with multiple marked points.

Going back to relation (8) in Mod(Eg), we put the first marked point near §; on the
front of the surface and the second near &4 on the back as in Figure 14. Then relation (8)
lifts to Mod(Eg’Z) as

tala/txtplp tyletertztglaty '7)&1‘7)&2 =15, 15,18515,, 9)

where &; and @, are based loops parallel to §; and 84, respectively. Note that we placed
the point-pushing maps on the other side of 75, and 73, in the equation and accordingly
the orientations of the loops were chosen so that the point-pushing maps become positive
on that side.

3.3. A signature zero genus-9 Lefschetz fibration over the 2-sphere

We will now describe our genus-9 fibration (X, f), the total space of which has sig-
nature zero. Further properties of X, such as it being spin, will be explored in Sec-
tion 4.1. Expectedly, its monodromy factorization will not contain any Dehn twists about
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separating curves (which would destroy the spin property), but it contains Dehn twists
about a quadruple of bounding curves which split the ¥¢ into two copies of 2‘31. This
extra property will be essential for our arguments in Section 5.

We will first explain how we obtain our signature zero Lefschetz fibration, without
specifying all the embeddings involved in this construction, and thus without an explicit
description of all the curves in the final monodromy factorization. We will also omit the
marked point in this exposition. This first round of information suffices to justify the exis-
tence of a signature zero genus-9 Lefschetz fibration. Afterwards, we will describe the
embeddings explicitly, and also include the marked point for the pseudosection calcula-
tion. The latter will take the chunk of this subsection.

Schematic construction: For simplicity, we omit all the marked points in any of the fig-
ures we will refer to here. We will breed six copies of our genus-3 pencil with monodromy
factorization (8). As seen on the right in Figure 15, the curves A, Ap, Az, Aq on g
bound two copies of X%, which constitute the top and the bottom halves of Z9. We embed
two copies of relation (8) in Mod(X%) into Mod(Z) via the embeddings ®; and ®, as
explained in Figure 15 (and its caption), such that the first one is supported on the top and
the second one on the bottom half:

ta1ta’1ZX1tb1tbityllcltcilmtdltd{twl = IA A IAS A,
tazta’zZX2tbztb’ztyzlcztcélmtdztdéth = IA A IASTA,-

These curves are explicitly given in Figures 16 and 23. As usual, the Dehn twist curves
in the two relations above are the images, under the respective embeddings ®; and &5,
of the curves of relation (8) in the same order—and the same goes for our four other
embeddings to follow.

Since these two relations have disjoint supports, we can combine them to get

talta’l azta/zt)ﬂtleb1tb/1tbztbézy1lyzlcllcitqtcétzlzzztd1td{td2tdétwlth

42 2 2 2
= tAltA2IA3tA4’

Fig. 15. The embedding ®; of 2‘3‘ into Xg. First, we slide the four boundary components as indi-
cated by the blue arrows. Then embed the surface into the top half of ¥g. The labels 1,2, 3, 4
indicate how the boundary components are matched with the quadruple A, Az, Az, A4. Also, the
gray curves, which fill %, and their embedded images are drawn so that the embedding @ is
uniquely defined. The second embedding @, is given by @1 followed by the r-rotation r, that is,
@2 =ro ¢>1-
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Fig. 16. The four bounding quadruples.

in Mod(XZ), which we can rewrite as

—1.-1 -1,—1
talta/lta2taétAltA4 . txltx2 . tb] tb/lthIb,ztA:; tA4 . tJ’1tyz

—-1.—1 —-1.—1 _
el testestayIay oty ay ta tdytayta, Tay ~twyfwy, = 1. (10)

The most essential feature of this relation is that it contains Dehn twists about four bound-
ing quadruples, as singled out in Figure 16, such that the subsurfaces they cobound are
diffeomorphic to 2‘3‘ with pairs of A; as genus-1 bounding pairs in each 2‘3‘.

Now, let us examine the configuration of the curves ai, aj, a2, a5, Aj, As. Let S3 be
the subsurface bounded by the quadruple a1, a}, a», a, that contains Ay and A4. Then
it is easy to observe that S3 is diffeomorphic to % and the pair Ay, A4 splits S3 into
two genus-1 subsurfaces with boundary components a;, a’l, A1, A4 and a,, a/z, A1, Ay,
respectively. Turning to Figure 11 we note that the pair d, d’ also splits X3 into two
genus-1 subsurfaces with boundary components 8y, 8>, d, d’ and 83, 84, d, d’, respec-
tively. This means that the tuple of curves (a;, a/l, as, a’z, A1, Ay) in S3 is topologically
equivalent to (81,82, 83,84,d,d’) in 2‘3‘. Therefore there exists an embedding ®3 of E‘;’
into X9 such that

o O3 maps (61,62.63.84,d,d’)to (a1,a), a2, a,, A1, Ay).

Identical arguments guarantee that there exist embeddings ®4, &5, O¢ of 2‘3‘ into X such
that

) <D4 maps (81,82, 83,84, d, d/) to (bl,bi,bz,bé, A3, A4),
o ®5 maps (51,82, 83,04, d, d/) to (C],C/I,Cz, CIZ, Ay, Az),
o Og maps (51,82, 83,04, d, d/) to (dl, d{, d,, dé, Aq, Az)

Now the genus-3 relation (8) can be rearranged as
twlala txtplp tylelert; = g, U5, ts3l5,17 17"

Soif weseta; := ®;(a),a; := ®;(a’),x; := ®;(x), and so on, then copies of this relation
are embedded into I'g as

_ —1,—1
twylazlaylxslos oy lyslesleylzs = layla laslal I TA, s

—-1,—1
tw4ta4taﬁt x4tb4lb£ly4104lc2124 = lbltb’ltbztb/ztA3tA4v
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—-1,—1

twstastagZXStbslbg lysles lcg lz5 = Iy lci lQ’cé’Az Iass
_ —-1.—1
twstasta’()lxstb6lbély6lc6lcélz6 =14, tdi tdztdétAl In,-

Then we can substitute those four relations into the underlined parts of relation (10) to
obtain

tw3ta3ta’31x3tb3tbgty3t63tcét23tx1 [x2 . tw4ta4ta£‘tx4tb4tb"tty4tc’4tc"ttZ4ty1 ty2
. twstasta’stxstbstb’stystcstcgtzstzltzz . tw6ta6ta/6t)(:6tb6tbétyGICGICétZGIw]th =1. (11D
This is a positive factorization of the identity in Mod(Xg), so it provides a genus-9

Lefschetz fibration f: X — S2. Since we have only used copies of relation (8), which
has signature zero, the total space X has signature zero.

Explicit construction: We will now describe explicit embeddings @3, P4, ©5, Pg of 2‘3‘
(with or without a marked point) into X ; to obtain an explicit monodromy factorization
of the genus-9 fibration, as well as to pin-point a pseudosection.

On X we take two parallel copies of A,, Az and Az, and add a marked point between
them as in Figure 17. The first two embeddings ®; and &, are now regarded as embed-
dings of 2‘3‘ into X9 1 in a straightforward fashion, which provide the two relations

lay Loy Lxy Ty Uy Iyy Tey Lo Uzy Ty T Twy = TAL TR TASTAS
tazta’zlxztbzzbélyzlczlcélzzldztdélwz = IAIIA21A3ZA4

in Mod(X¢,1). Combining them as before, we get a factorization (with no point-pushing
map yet)

—-1,.—1 —-1,—1
talta/l taztll/ztAl tA4 “lxilxy Iy tb’l tbztblztA:; tA4 Ly ly,

—1,-1 —1,-1 —
Sleyteqteyleyty tay otz tay tagtaytagta, ty) ~twituy = 1. (12)

We can now describe our embeddings @3, 4, P5, Og. We first modify the presen-
tation of the genus-3 relation (9) so that one of the bounding pair sits in a “standard
position” as illustrated in Figure 19. Take the surface 2‘3‘,2 in Figure 14 and slightly slide
the boundary components as indicated in Figure 18. Then we conjugate relation (9) by
the series of Dehn twists

tplylalplylaly

Fig. 17. The curves A1, Az, Az, A3, Agon X9 .
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Fig. 18. Sliding the boundary components and the curves for the conjugation.
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Fig. 19. Monodromy curves of the genus-3 pencil with simpler d and d’.

with the curves given on the right of Figure 18. This puts the bounding pair d, d’ in
the standard position as shown in Figure 19, where the images of the other curves are
also given. Here we keep using the same symbols for the curves as those before the
conjugation.

By cyclic permutation and commutativity, relation (9) becomes

—-1,.—1
‘?)&2 clwlala Ixplpy tylelerty - 3)5;1 = 15,15, l5515,05 Lyr - (13)

We will embed relation (13) with the curves in Figure 19 into Mod(Xy,;). For ®3 and
®,4 we do not need the marked points. For ®5 we include the marked point p; and for-
get p», whereas for ®¢ we keep p» and forget pq. In Figures 20 (a)—(d), we describe the
embeddings

q>3 . Eg — 29,1, CI)4 : Eg — 29,1, @5 . Eg,l — 29’1, CD6 . Eg,l — 29,1

as the compositions of embeddings ®; (which are easier to visualize) and diffeomor-
phisms v; of ¥g ;. The embeddings ®; are uniquely specified by describing how the
gray curves that fill the genus-3 surfaces are embedded. The diffeomorphisms 3, ¥4, ¥'5
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/2 rotation

(d) The embedding ®¢ = V6 0 Ds.

Fig. 20. The embeddings.

(a) Curves for 3 (b) for Y4 (c) for Y5 (d) for ¥¢

Fig. 21. Dehn twist curves for the diffeomorphisms V3, ¥4, ¥5, V6.
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and v, are given by the products of Dehn twists below. Here #; means the right-handed
Dehn twist about the curve labeled i in the respective Figures 21 (a)—(d):

o —1-1,-1.-1,-1,-1,-1,-1

2 =1 =1 == —1,—1,—1,—1,—1,—1,—1,—1
Yy 1= Iilpolioly 1y Iy I Iz Iz Iy 13 Ly 1y L1y

6
_t;lté—lti—ltﬁ—lti—lti—lté—lté—lglta—lté—ltg—lti—ltﬁ—lti—lti—l,
Vs 1= titatstststst5t5,
R o P B Y Y P A R e N N P
So
e O3 maps (81,02,03,04.d,d’) to (ay,a},a),as, As, Ay),

®4 maps (81,62, 03,84.d,d’) to (b1, b}, b2, by, As, A3),
®s maps (81.6,.83,84.d.d’) to (c1. ¢}, ¢y ca, Az, Ay),
®g maps (81,6.83,84.d,d’) to (d1,d],da,d}, Ay, Ay).
Under these embeddings, the modified genus-3 relation (13) yields

—-1,—1

tw3ta3tagtx3tb3tbgty3tc3tcétz3 = l‘all‘ar1 ttlzta’ztAl l‘A4,
—-1,—1

t’u)4ta4ta:1tX4tb4tb£1ty4tC4tc£‘tZ4 = tbltb’l tbztb/ztA3tA4’
—-1,—1

twstasta’stxstbstbgtystcstc;fzs . ;7)&1 = l‘cll‘c/1 tcztchztAy

_ —-1,.—1
5)&»2 . twstastagtxstbetbétyst%tcgtze = Iq, td{tdztdétAl Z‘Az.

The images of the curves under these embeddings are given in Figures 23. In addition, the
oriented loops &1, @, for the point-pushing maps are given in Figure 22. By substituting
all into relation (12), we get

tw3ta3ta/3IX3tb3tbg lysles tcg lz3lxilx, [w4la4taﬁttx4tb4tbgty4tc4tcgt24ty1 Iy,
. twstastagtxstbstbgtys’Cstcgtzs . fP&l sl g, fP&z
* twelaglal, txelbe b yeleolel tzotwy twy = 1.
Here z; and z, are disjoint, &; and z, are disjoint, and z; and &, are disjoint, so we get

e{/)al . [zll22 . ‘7)&2 = J)&l . [22[21 . ?&2 — tZz . ‘?&1?& . lzl .

Fig. 22. Curves of the point-pushing maps.
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Fig. 23. Vanishing cycles of the genus-9 Lefschetz fibration with signature zero.

Then the product &5, P, is equal to the single point-pushing map along @, which is

homotopic to the concatenation as - @1.
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Hence, we obtain the factorization in Mod (21 ):
twslastal bxs byt tystestey tosta Ty * twglaglal xatba by Tyaleale, Lzaly, Tys
“twslasta testhstoylystesteslzs * 1zo - g 1z
“ twglaglal e the b} o leste, tzotw fwy = 1, (14)

where all the Dehn twist curves are as in Figure 23. Forgetting the marked point (and thus
the point-pushing map in the factorization), we get an explicit monodromy factorization
of our signature zero Lefschetz fibration.

4. Proof of Theorem A

Here is an outline for our proof of Theorem A: Since the novel genus-9 Lefschetz fibration
(X, f) we built in the previous section will serve as one of the main building blocks of
our constructions, we will first analyze the algebraic and differential topology of X in
some detail. We will then first prove all the statements for genus-9 fibrations, deferring
the construction of higher genus examples till the end. We will first construct Lefschetz
fibrations with prescribed signatures, and then the spin ones. All will be done by taking
products of conjugated positive factorizations of the identity in Mod(X¢) (corresponding
to twisted fiber sums of the fibrations) and breedings (one of which corresponds to lantern
substitution, thus the rational blow-down), which will require extra care in the spin case.

4.1. The topology of the signature zero genus-9 Lefschetz fibration
The essential information we need for later arguments is summed up as follows:

Theorem 14. There is a symplectic genus-9 Lefschetz fibration (X, f') with monodromy
factorization

twslastalytesths ) tystestey tzstey oo twalagtal, Exalbal) tyateale) Tzaly Iy
twstastas bxsths o, tysleste, tzstza Lz twglag L) Ero the oy e teo el tzgtwy fws = 1, (15)

in Mod(Xg), where the Dehn twist curves are as in Figure 23. The total space X is
a spin symplectic 4-manifold of general type, which is not deformation equivalent to any
compact complex surface, where e(X) = 16, 0(X) =0, and Hi1(X) =27 ® Z4 & Z».

Proof. The Lefschetz fibration (X, f) prescribed by the positive factorization (15) we
have constructed in the previous section is a symplectic fibration with respect to a Gompf—
Thurston symplectic form @ we can equip it with. While it will take some effort to
prove that X is spin, all other claims on the differential topology of X follow from our
claims on its algebraic topology: Since X is spin, it is obviously minimal, and ¢ (X) =
2e(X) + 30(X) = 32 > 0, so the Kodaira dimension of the symplectic 4-manifold (X, w)
is k(X) = 2, in other words, it is of general type. Because b (X) is odd, X is not even
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homotopy equivalent to a compact complex surface of general type, which are all known
to be Kihler.
We calculate the algebraic invariants of X next.

Euler characteristic and signature: The Euler characteristic of X is easiest to calculate by
e(X) = 4 — 4g + n, where the genus of the Lefschetz fibration is g = 9, and the number
of nodes, corresponding to the Dehn twists in the monodromy factorization, is n = 48.

Although the calculation of the signature of a Lefschetz fibration usually requires
computer assistance to run an algorithm, we leveraged the fact that we have built the
monodromy factorization (15) for (X, f) from scratch, using only basic relations in the
mapping class group. Thanks to the work of Endo and Nagami [21], we easily calculate
the signature of X by an algebraic count of the relations we have employed to derive
the final positive factorization of the identity in Mod(X9). Embeddings of relations into
higher genus surfaces, cancellations of positive and negative Dehn twists, and Hurwitz
moves do not affect the signature calculation. Since we built our genus-9 factorization
through embeddings of the signature zero genus-3 relation, cancellations and Hurwitz
moves, we conclude that o(X) = 0.

Note that we calculated the signature of our genus-2 and genus-3 pencils in the same
way, recalling that every use of the 2-chain and the lantern relation contributes —7 and +1
to the signature count [21]. Algebraically, we used one 2-chain and seven lantern relations
to derive the monodromy factorization of the genus-2 pencil, whereas these numbers are
doubled for the genus-3 pencil. In turn, a total of twelve 2-chain and 84 lantern relations
yield the positive factorization for (X, f). (These large numbers might demonstrate why
it is more feasible to build such a relation in multiple steps via breedings.)

First homology: The total space of a genus-g Lefschetz fibration over the 2-sphere has
a handle decomposition (D? x Zg) U Y, h; U (D? x X,), where h; are 2-handles
attached along the loops on X, which are the Dehn twist curves ¢; in the monodromy
factorization of the fibration [31]. Therefore, the first homology of the total space can be
calculated by taking a quotient H(X), as the first D2 x % ¢ contains all the 1-handles,
by the abelianized relations induced by the attaching circles of all the 2-handles, which
are the vanishing cycles c;, and the attaching circle of the last 2-handle coming from the
second D? x X, in the above decomposition.

Accordingly, we will calculate H;(X) using the monodromy factorization of our
genus-9 fibration. Let {«;, B;} be the homology generators of H;(Xg), represented by
the loops in Figure 24. After picking an auxiliary orientation on each Dehn twist curve in
Figure 23, and calculating the number of its algebraic intersections with {«;, 8; }, we can
easily read off the relation induced by the corresponding vanishing cycle. We tabulate this
data below in a way the coefficients are easily visible, as it will be vital to our arguments
for determining the spin type of X as well.

Homology classes of the vanishing cycles:

w3 = a1 +2a2+203+204tos+2a6+2a7+208+209 +283 —-B7,
a3z = a1 +3ax+203+2a4 tos5+2a6+207+3a3+209 +283 —B7 —Bo,
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aly = a1 +202+203+ 304 +os+3a6+207+ 205 +200 +283 —B7 —Bo,
x3 = o1 +302+2a3+ 304 +a5+306+207+ 303+ 209 +283 —B7 —289,
bz = o +ay +ae +as +B7 —2B9,

5= as +agq +ae +os +83 —2po,
y3 =o1 +arx+203 +astos +act+2a7 +ag+2o9 +B3 —2B7 +289,
c3=ay For+203+204+as+206+207 +ag+2a +83 —2B7 +Bo,
c; = a1 +20+203 +oatas +ast+2a7+2a5+2a9 +83 —287 +Bo,
z3 = o1 +2a2+203+2a4 o5 +2a6+207+2a8+209 +B3 —287,
X1 = %3 +asg +B1—B2 +B3 +B7—Bs —Bo,
X2 = ay +os +B3—Ba+Bs—Bs +B7 —Bo,
wy = a1 222 +203+2a4+as5 +oag +ag +B3 —Bo,
as = a1 +20+203+ 204 +as +oag +og +B1—B2 +8s3 +B7—Bs  —PBo,
ay = a1+20+2a3+2as+as +ag +as +B3—Ba+Bs—Bs +B7 —Bo,
X4 = a1 +200+203+20s+0as5 +ae +as +B1—B> +B3—Ba+Bs—Bs +2B7—Bs —Bo,
by = Bi—B2 +B3—Ba+Bs—Bs +2B7—Bs —Bo,
b, = Bi1—B> +B3—PBa+B5—Bs +2B7—Ps,

Ya = a1+202+2a3+204+as +as +asg —Bi1+B2 —B3+Ba—Bs+Bc —2B7+Bs,
¢4 = a1 +20x+203+24+as +og +oag —Bi1+B2 —B3 —B7+Bs,
cy = a1 +200+2a3+20s+os +ag +os —B3+Bs—Bs+Bs —B7.

Z4 = o1 +200+203+204+as +ag +asg —B3,

yi = as +as —B1+B2 —Bs —B7+Bs,

Y2 = oy +ae —B3+Bs—Bs+Bs —B7,
ws = a) +as +2a9 —B7 +Bo,
as =a; +os +os +ag+20a9 —B7,
as = +oastas +ag +2a9 —B7,

X5 = a1 +on Fagtas +og +ag+2a9 —B7 —Bo,
bs = o +oy +ag +og —B7 —Bo,
bl = o +ay +ae +oag —B3 —Bo,
ys=oa1 —o2 —agtas —og —ag+209 +B3 +Bo,
cs=a; —as +as —ag+209 +B3,
ct=a; —astos —ag +2a9 +83,

Z5 = o +as +2a9 +83 —Bo,

Fig. 24. The symplectic basis for H1(XZ9; Z).
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z1 = o +ag +B1—B2 —Bs,

z; = ay +as —B4+B5—Bs,

We = A +as5 +os+2a7 +osg +B7 —2Bo,
as = a +as +as+2a; +og —Bi1+B2 +Bs —2Bo,
ay =a; +as +ast+2e; +oas +B4—Bs+Bs —2o,
X6 = @i +as +as+207 +og —B1+B2 +B4—Bs+Bs —B7+Bs —2Bo,
be = B1—B2 —Ba+B5—Bs +B7—Bs.

b = B1—B2 —Ba+Bs—Bs +B7—Bs +Bo,
Y6 = @i +as +as+2a7 +og +B1—B2 —Ba+Bs—Bs +B7—Bs —Bo,
c6 = +as +as+20; +og +B1—B2 —Bs  —Bo,
ce =i +as +as+2a7 +as —Ba+Bs—PBs —Bo,
Ze = Q) +oas +oast+207 +og —B7 —Bo,
wy = %3 +asg —Bi1+B2 +Bs —Po,
wy = ay +os +B4—Bs+Be —Bo.

Recall that there is one more 2-handle we have to consider, and as we explained in the
proof of Proposition 8 in Section 2, its attaching circle is homologous to the sum of the
oriented curves of the point-pushing maps for any chosen marked point inducing a lift of
the monodromy factorization from Mod(X9) to Mod(Xo,1). (If we could find a section of
(X, f), the lift for the corresponding marked point would have no point-pushing maps, so
this homology class would be trivial.) Looking at the point-pushing map in relation (14)
in Mod(Xo,1) we get the following additional relation in homology:

s=ay+ag+ Bs—PBs+ Bs—B7—Po=0.

With this explicit presentation in hand, determining the finitely generated abelian
group H;(X) is now a straightforward calculation. We will show that H{(X) = Z’ @
Z4®ZLs.

From b — by = Bo we see fo = 0. Then, a3 — w3 = ap + oy — fo, ay — w3 = a4 +
ae — Bo give an + ag = 0, a4 + a¢ = 0. Since b3 = B7 modulo By = oy + g = g4 +
a6 =0, we have f7 = 0. Similarly, b5 = 0 gives B3 = 0. Now x| = f; — fo — fgand x, =
—B4 + Bs — Be modulo Bo = ar + g =014 + g = B3 = f7 =0, thus B — B — fs =
—Ba + Bs — Bs =0, 0r B1 = B2 + Bg and Bs = B4 + Bs. From ws = 0 with B7 = B¢ =0
we see o + o5 + 209 = 0. Looking at w3 = 0 together with o1 + a5 + 2000 = 00 + g =
a4 + ag = B3 = B7 =0 we get 2a3 + 2a7 = 0. Combining 0 = w4 + we = 201 + 202 +
203 + 204 + 205 + 206 + 207 + 208 + B3 + 7 —3Po and ap + g = s + 006 = 2003 +
2a7 = B3 = B7 = B9 = 0 we obtain 2«1 + 2«5 = 0. Since we also know o1 + a5 + 209 =

0 we deduce 49 = 0. We turn to we = 0 and substitute &y + o5 = —2a9, f7 = B9 =0
to get —2a9 + a6 + 207 + ag = 0, or g = —og — 207 + 20t9. In summary, we have
2(az +a7) =0,
40(9 = 0,
oy = —ag = og + 2007 — 2a9,

4 = —Ug,
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o5 = —o1 — 2a,

g = —Qg — 207 + 209,
B1 = B2+ Bs,

B3 =0,

Bs = B4 + Be,

B7 =0,

Bo = 0.

It is easy to check that any other relations that come from the vanishing cycles can be
deduced from the above relations. The extra relation coming from the point-pushing map
is
s=or+as+ Pa—PBs+ Ps—P7—Po=0.

However, this relation can be deduced already from the relations coming from vanishing
cycles since oy + ag = B4 — B5 + Be = B7 = Bo = 0. This implies that we have a pseu-
dosection. So we can take g1 = o1, 82 = ®3,93 = 06, 84 = P2, 85 = B4, 86 = Ps,87 =
Bs,gs = a9, g9 = a3 + 7 as generators and the only relations among them are 4gg = 0
and 2g9 = 0. We conclude that

HX)=Z2Z"®7s&®Z>.

Other algebraic invariants: While we can derive an explicit presentation of 71 (X)) in the
same fashion we did for H;(X) earlier, we will not actually need all of this more massive
presentation for any of our arguments to follow, even the ones that involve killing the
fundamental group. Instead, it will suffice to observe that in the monodromy factorization
of (X, f), we have three disjoint non-separating curves, coming from the bounding quad-
ruple of curves x1, z1, X2, z2; see Figure 25. These three curves simultaneously kill three
generators of 771 (X9).

Fig. 25. The bounding quadruple.

As is the case for any closed oriented 4-manifold, the remaining homology groups
of X, as well as b, (X) and b5 (X), are already determined by e(X), o(X) and H;(X)
by Poincaré duality and the universal coefficient theorem. In particular, H,(X) = Z2% @
Z4 ® Zp and b; (X) = b5 (X) = 14. Moreover, X can be seen to have an even intersec-
tion form, which will follow from its spin type.
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Spin type: To build a spin Lefschetz fibration, our heuristic has been to breed exclusively
Lefschetz pencils on spin 4-manifolds, as the monodromy factorizations of such pencils
consist of Dehn twists that preserve a spin structure on a compact surface with bound-
ary [14]. The groundwork for describing spin structures on X was laid out in Section 2,
and particularly in Theorem 9.

From our calculation of the Z-homology classes of the vanishing cycles on Xg in the
symplectic basis {«;, 8; } represented by the oriented curves with the same labels in Fig-
ure 24, we easily deduce the Z,-homology classes of them. We will single out two spin
structures on X, restrictions of which to the regular fiber will have different Arf invariants.
Let the quadratic form gg on H1(Xg; Z>) be defined by

qgo(ai) = qo(B;) =1 foralli, j except for go(Bo) =0,

and the quadratic form ¢, by

q1(0;) = q1(Bj) =1 foralli, j except for g1 (a7) = q1(Bo) = 0.

Both are easily seen to evaluate as 1 on all the vanishing cycles. Let 5o, 51 € Spin(Xy)
be the spin structures corresponding to these two forms qg, g1, which have Arf invariants
Arf(qo) = 0 and Arf(g1) = 1, respectively.

Next, recall that the homology relation oy + ag + B4 — B5 + Be — B7 — B9 = 0
induced by the pseudosection s is already generated by the relations induced by the
vanishing cycles we listed during our calculation of H;(X). So by Proposition 8, the
homology class of the regular fiber [F] is primitive in H»(X). As we have (X, f) with
a primitive fiber class and signature o (X) = 0 (mod 16), by Theorem 9, the existence of
the quadratic form ¢; with Arf(g;) = 1 now implies that we have spin structures s; on X
coming from the spin structures s;, for each i = 0, 1. Note that s¢, s are only two of the
512 spin structures on X, for H'(X;Z) = Zj acts freely and transitively on Spin(X). m

Remark 15. It might be interesting for symplectic construction enthusiasts to observe
how the topology of the pieces we built evolved: Our most elementary building blocks are
a genus-0 pencil (corresponding to the lantern relation) and genus-1 pencils (correspond-
ing to 6-holed torus and 2-chain relations) on rational surfaces, breeding of which gives
us a genus-2 pencil on the ruled surface 72 x S2. All have symplectic Kodaira dimension
k = —oo. Using copies of the genus-2 pencil on the ruled surface, we obtained a sym-
plectic Calabi—Yau 4-torus, which has ¥ = 0. We can also re-present our construction of
the genus-9 fibration so that it is made out of two copies of a genus-5 pencil (each one of
which is obtained by breeding a pair of our genus-3 pencils), along with two more copies
of the genus-3 pencil. These genus-5 pencils have k = 1. Lastly, our resulting genus-9
fibration (X, /') yields a symplectic 4-manifold with x = 2.

Remark 16. Although we have used the breeding technique to effectively produce sym-
plectic 4-manifolds out of smaller symplectic 4-manifolds, it is not inherently a symplec-
tic operation. One first produces achiral pencils/fibrations on 4-manifolds that are often
not symplectic, and only after pairing the vanishing cycles of all the negative nodes with
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matching vanishing cycles for positive nodes can we eliminate them to get a symplec-
tic pencil/fibration. In general, the matching pairs would be visible only after a sequence
of Hurwitz moves, or equivalently, a sequence of handle slides between the Lefschetz
2-handles. To approximate a surgery description, one can interpret the breeding construc-
tion as a two-step process, where one first takes a fiber sum of achiral fibrations, whose
monodromies are now supported on a larger surface, and then attaches a 5-dimensional
3-handle. (The latter can be seen by looking at the handle diagram of the neighborhood
of the two matching nodes; see [10].) As observed in [31], when this matching vanishing
cycle is trivial in the fundamental group of the complement, eliminating the two Lefschetz
2-handles is equivalent to removing an S? x 2 or S? X $? summand from a connected
sum (and capping off with D*).

4.2. Lefschetz fibrations with prescribed signatures
We are now ready to prove our main theorem.

Proof of Theorem A. To keep our presentation simple, here we will not attempt to keep
the topology of the arbitrary signature examples small, but instead, we will refine our
arguments in specific cases, as we will also do in Section 5. In fact, the following bit of
information will be enough to run all our arguments: There is a signature zero genus-9
Lefschetz fibration (X, f), where X is spin and 71(X) has subgroups of arbitrarily large
index. The existence of such a fibration is guaranteed by Theorem 14. We can assume,
after a global conjugation, that the Lefschetz fibration (X, ') has a monodromy factor-
ization in Mod(X):

tg, P1 =1, (16)

where P; is a product of positive Dehn twists, and B; is the non-separating curve in
Figure 26 (a).

Any signature: There are ¢1, ¢ € Mod(Xo) such that ¢1(B1) = B, and ¢»(B1) = B),
where B, B, and B} are the curves shown in Figure 26 (a). Conjugating the monodromy
factorization (16) with ¢; foreachi = 1,2, we gettp, P, = 1 and Ig, P3 =1inMod(Xy),
where P; = P1¢ ? is the product of positive Dehn twists about the images of the Dehn twist
curves in P; under ¢;, in the same word order. After cyclic permutations, we get product

C] Cg C3 C4 C5 |

(b)

Fig. 26. Embeddings of lantern and 5-chain relation curves.
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factorizations tg, Py - Pitg, = 1 andip, P> - P3tBé = 1, and in turn we get
2 tp,tgr P2P,P3 =1 17
Ip,1B,1py P P2 P3 = 17)

in Mod(Xo), where tg,, tp, and !B, all commute with each other. The signature of the
corresponding Lefschetz fibration, which is nothing but a twisted fiber sum of four copies
of the signature zero fibration (X, f'), is zero. Since B;, B, B, and B/, (where B/ is iso-
topic to By) cobound a subsurface ¥§, we can make a lantern substitution (or equivalently
breed with the genus-0 pencil on CIP?) in the monodromy factorization (17), and get

txtytz PP P3Py = 1 (18)

in Mod(XZy), where x, y, z are the images of the standard lantern curves under the embed-
ding of the above X3 into Zg. Since the signature of the lantern relation is 1, the factor-
ization (18) prescribes a new Lefschetz fibration (X1, f1) witho(X;) = 1.

By taking fiber sum of copies of (X1, f1) with copies of any genus-9 Lefschetz fibra-
tion with a negative signature, we get Lefschetz fibrations (X, fr) with o(Xg) = k, for
any prescribed k € Z. For instance, by taking the fiber sum of k copies of (X1, f1), we
obtain a Lefschetz fibration (Xg, fx) with o(Xy) = k, for any k € Z™. If we employ in
this procedure any of the Lefschetz fibrations discussed in Example 6, since their van-
ishing cycles already kill 1 (X¢), we get simply-connected examples with prescribed
signature. For example, we can take the fiber sum of (X417, f41) with a genus-9 Lefschetz
fibration on CIP2 # 41CP? which has the monodromy factorization (3), to get a simply-
connected Lefschetz fibration with signature 1. For later reference, let (X, fx) denote
a fixed family of simply-connected genus-9 Lefschetz fibrations with signature k € Z we
obtain through these arguments.

Spin with any signature divisible by 16: The spin structure s on X is induced by some
spin structure on Xg, which corresponds to a quadratic form on H;(X9; Z,) mapping all
the Dehn twist curves in the monodromy factorization, and in particular By, to 1.

Let {«;, B;i} be the curves in Figure 27 (a), which constitute a symplectic basis for
Hi(X9;Z,). We claim that there is a spin structure s € Spin(Xg) where the corresponding
quadratic form ¢ is such that

q(B1) = q(B3) = q(1) = q(az) =1 and ¢(B2) =0,

and ¢ sends every vanishing cycle (which we will get after a conjugation) to 1.

While the values of the remaining basis elements under ¢ will not matter for our argu-
ments, we will rely on the fiber genus g being at least 3. We will obtain s as the image,
under a diffeomorphism ¢ of X, of the initial spin structure on X yielding the spin struc-
ture s on (X, f). (The promised quadratic form g will then be obtained by pulling back
under ¢! the quadratic form for the initial spin structure.) We will require ¢ to fix Bj.
We will obtain this diffeomorphism ¢ as a composition of several diffeomorphisms of g,
each realizing a well-known symplectic basis change for H,(X9;Z5); cf. [16,35]. At each
step, we take the new spin structure we get under the diffeomorphism of Xg¢. Note that
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al 0

©
Fig. 27. Basis changes.

every Dehn twist curve in the monodromy factorization will be conjugated by the diffeo-
morphisms, and will be mapped to 1 again under the new quadratic form corresponding
to the new spin structure.

Below, we will focus on the values of the ordered pair of elements «;, 8; in Z, X Z,
under the quadratic form ¢, and will simply call them a (¢(«;), ¢(B;)) pair.

First of all, note that if g(c;) = q(B;) = 0 for some i, we can replace o; with &} :=
tg, (a;) sothat g (o)) = 1, or B; with B} := 1, (B;) so that g(B;) = 1. Therefore, any time
q(a;)q(B;) = 0, we can find a pair of geometrically dual curves in a small neighborhood
of o; U B;, where ¢ maps our pick of one of the two curves to 1 and the other one to 0. So
there are diffeomorphisms (which obviously change the spin structure) that trade between
a(0,0),a(1,0) ora (0, 1) pair locally.

Secondly, suppose g(;) g(Bi) = 1 = g(«;j) q(B;) for some i # j. It is easy to see
that there is a diffeomorphism supported in a £3 neighborhood of (o; U ;) U (; U B;)
which replaces «; and ; with  and ﬁ; shown in Figure 27 (b), while fixing 8; and «;.
Here ], B; and o, ,3; are disjoint geometrically dual pairs contained in Z% as well, but
now ¢q(a;) = q(,B]’.) = 0. Thus, we see that any time we have two disjoint (1, 1) pairs,
there is a diffeomorphism which replaces them with disjoint (0, 1) and (1, 0) pairs, and
vice versa.

We can now complete the proof of our claim. All we have initially is that we have
a quadratic form which maps the monodromy curves to 1, and in particular g(81) = 1,
since B; = Bj. Suppose g (1) = 0. Since the genus of the surface g > 3, it follows from
the above observations that, after a diffeomorphism supported away from oy U B, we
can get a (1, 0) pair «;, 8;. Under the inverse of the diffeomorphism we described in
the previous paragraph, we can switch these two disjoint (0, 1) and (1, 0) pairs with two
disjoint (1, 1) pairs, all the while fixing ;. Relabeling the quadratic form corresponding
to the new spin structure as ¢, we now have g(o1) = ¢(B1) = 1. Finally, after another
diffeomorphism supported away from the new «; U 81, and relabeling again the quadratic
form for the new spin structure, we can assume that o, 5 is a (1, 0) pair and g(83) = 1
as desired; see Figure 27 (c). This completes the proof of our claim.
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Let c¢1, ¢, ¢3, ¢4, ¢5 be as in Figure 26 (b). For s € Spin(X9) we obtained above,
and ¢ the quadratic form corresponding to s, we easily see that now g(¢;) = 1, so
te; € Mod(Xo, s) for all i. In particular, ¢ = ¢, tc,teste,tes € Mod(Zo, s), where one can
easily verify that ¢ (¢;) = ¢;4+1 foreachi = 1,...,4. (Alternatively, foreachi = 1,...,4,
we can take V; = Ic;lc; ., € Mod(Zy, s) so that ¥;(c¢;) = c;+1.) After conjugating the
positive factorization (16) with the diffeomorphism ¢ we described above, we can further
conjugate the resulting positive factorization with powers of ¢, and get five positive fac-
torizations Q; := 1, bel_l‘p = 1fori =1,...,5. (Recall that By = ¢1.) Next, take the
product factorization (Q10,030405)® = 1, which, after conjugating away the prod-
ucts of positive Dehn twists P1¢ =19 in Q; (i.e. after the corresponding Hurwitz moves),
yields a positive factorization

(tcltC2t63tC4t(,‘5)6 Q =1 (19)

in Mod(Xy), where Q is the product of all the remaining Dehn twists conjugated away
from ¢, . This is in fact a factorization in Mod(Xo, 5). Because it is a product of signature
zero relations, the signature of this last relation is also zero.

Now, by substituting the inverse of the 5-chain relation in the factorization (19), or
equivalently breeding with the achiral counter-part of the genus-2 pencil on the K3 surface
given in Example 4 (which we do by embedding the relation into the subsurface %3 that
is a neighborhood of the chain ¢y, . .., ¢5), we get a new positive factorization

R:=tp,tp, 0 =1 (20)

in Mod(Xy). It is evident from Figure 27 (¢) that D; = B3 and D5 is homologous to it,
s0 ¢(D1) = q(D3) = 1. Thus, this too is in fact a factorization in Mod(Zy, ), i.e. the
quadratic form ¢ maps all the Dehn twist curves in the factorization (20) to 1. Following
our heuristic, we have once again bred with an achiral pencil on a spin 4-manifold. This
new relation has signature 16, since we had a signature zero factorization, and inserted the
inverse 5-chain relation, which has signature 16 [21] (it is the signature of the K3 surface
with the opposite orientation after all).

To be able to apply Theorem 9 and equip the new fibration with a spin structure, we
still need to confirm that it also has a primitive fiber class. While this is indeed the case
for the fibration corresponding to the factorization (19), which is nothing but a twisted
fiber sum of several copies of (X, f), the substitution we have made above requires a new
calculation for the pseudosection. There is an easier way to get what we want, which we
will discuss next, in two distinct cases:

Suppose Arf(s) = 1. Let H = 1 be the positive factorization (3) in Example 6
for a genus-9 fibration on CP2 # 41CP2. Recall that the unique quadratic form on
H{(X29; Z,) that maps all the Dehn twist curves in H to 1 also has Arf invariant 1. So,
there is some diffeomorphism ¥ of Xg¢ sending the spin structure corresponding to that
quadratic form to the spin structure s we had. Now take the product positive factorization

RO (HHY =1 (21)
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in Mod(X), which is in fact a factorization in Mod(Zy, s). It also has signature 6 - 16 +
2(—40) = 16. Because the Dehn twist curves in H already kill 71 (X9), by the particular
case of Proposition 8, the fiber class of the Lefschetz fibration (Z1, i), prescribed by the
positive factorization (21), is primitive. So Z; is spin by Theorem 9.

Suppose Arf(s) = 0. Consider the positive factorization (4) in Example 7. For n = 8
and m = 1, this prescribes a genus-9 Lefschetz fibration on (72 x S2) # 32CP2. While
there are four quadratic forms on H;(X9; Z,) which map all the Dehn twist curves in the
factorization (4) to 1, they all have Arf invariant 0. As explained in Example 7, there is
a twisted fiber sum of two copies of this fibration, which gives a spin genus-9 Lefschetz
fibration with a section on the knot surgered £ (8) g, where K is any genus-1 fibered knot,
say a trefoil. Let Y = 1 be a positive factorization corresponding to this latter fibration. So
it has signature —64, and since the fibration has a section, 71(¥9)/ N = m(E(8)kx) = 1,
where N is the subgroup of 1 (X9¢) normally generated by the Dehn twist curves in Y.
So the Dehn twist curves in the positive factorization Y already kill 71 (X¢). (In fact,
here we chose m = 1 so one can also see directly how to twist the fiber sum to get
a spin fibration with trivial ; as desired.) The unique quadratic form on H;(Xg; Z5)
which maps all the monodromy curves to 1 necessarily has Arf invariant 0. It follows
that there is again some diffeomorphism 1 of ¥¢ sending the spin structure correspond-
ing to that quadratic form to the spin structure s we had. Now take the product positive
factorization

RYY =1 (22)

in Mod(X9), which is in fact a factorization in Mod (X, s). It too has signature 5- 16 +
(—64) = 16. Because the Dehn twist curves in Y already kill 7;(X9), once again, by
the particular case of Proposition 8 and Theorem 9, for (Z1, k1) denoting the genus-9
Lefschetz fibration prescribed by the positive factorization (22), we conclude that Z; is
spin.

Note that either of the two cases, with Arf(s) = 1 or 0, may occur depending on
the initial choice of s € Spin(X9) which yields the spin structure on (X, f). (Indeed, the
signature zero genus-9 Lefschetz fibration (X, f) of Theorem 14 admits spin structures of
both types.) Also note that, in either case, the vanishing cycles of (Z1, &1) we constructed
kill 771 (Z9).

To finish our proof, take a fiber sum of k copies of (Z1, k1) to produce a genus-9
Lefschetz fibration (Zy, k) with 0(Z) = 16k, for any prescribed k € Z™. By Propo-
sition § and Theorem 9, all Z; are spin, and since the vanishing cycles of even one
copy already kill m;(X9), all Zy are simply-connected. Negative signature examples
are already realized by fiber sums of Lefschetz fibrations on knot surgered K3 surfaces
discussed in Example 7, for any genus-4 fibered knot. Finally, to get simply-connected
examples of signature zero, one can simply lower the power of R by 1 in the mon-
odromy factorizations (21) and (22). For later reference, let (Z, iy ) denote a fixed family
of simply-connected genus-9 Lefschetz fibrations with Zj spin and o(Zy) = 16k, for
kelZ.
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Higher genera: For any index d subgroup of nl(X ), there exists a d-fold cover 7y :
X (d ) — X. The composition f (d):= fomny: X(d) — §2 yields a Lefschetz fibration
on X (d) of genus g = 8d + 1, and since the signature is multiplicative under unbranched
coverings, (X (d). ]7 (d)) too is a signature zero Lefschetz fibration. We can thus follow
the same construction scheme as above, now for genus g = 8d + 1 fibrations.

For arbitrary signatures, take a twisted fiber sum of four copies of ()? (d), f (d)) so
that we get Dehn twist curves cobounding a subsurface ¢, and then make a lantern
substitution to get a genus g = 8d + 1 Lefschetz fibration ()? 1(d), f: (d)) with sig-
nature 1. Then, by taking fiber sums of copies of (X1(d). ﬁ(d )) and copies of any
genus-g Lefschetz fibration with a negative signature, we can build ()Z (d), ﬁc (d)) with
o(Xe(d)) = k, for any given k € Z. Once again, picking the negative signature sum-
mands as simply-connected ones, like the ones in Example 6, we can assume that Xe (d)
are all simply-connected.

For spin examples, first note that if x: Y — Y is a finite covering of a spin 4-man-
ifold Y, then Y is also spin: The tangent bundle TY is isomorphic to the pull-back
bundle 7*(T'Y), and by functoriality, the second Stiefel-Whitney class of Y is wo (T 17) =
7*wo(TY). So forwy(Y) = wy(TY) =0in H2(Y ; Z,), we have wy(Y) = wo(TY) =0
in H 2()'7; Z») as well. Since w, is the only obstruction to the existence of a spin struc-
ture on an orientable manifold, the signature zero Lefschetz fibrations (X (d), f (d)) of
genus ¢ = 8d + 1 we described above are all spin. It follows that there is a spin structure
on X, with a quadratic form that evaluates as 1 on all the Dehn twist curves in a mon-
odromy factorization of (f (d), ]7 (d)). As the argument we gave in the genus g = 9 case
applies just the same to any other genus g > 3, we can then build a twisted fiber sum of
copies of (X (d), f (d)), with a monodromy factorization of the form (f¢, fc, e te4tes ) O
=1 in Mod(X,, 5), for some spin structure s. Once again, by an inverse 5-chain sub-
stitution, we get a new genus-g Lefschetz fibration, with a monodromy factorization in
Mod(Zg, 5). By fiber summing this fibration with simply-connected, spin, genus-g fibra-
tions, which come with a quadratic form on H;(Zg; Z,) with the same Arf invariant
as ¢, we obtain a simply-connected, spin, genus-g Lefschetz fibration (Z;(d), . (d)),
with o(Z1(d)) = 16. For this, we observe that for any g = 8d + 1, there exists a spin
genus-g Lefschetz fibration among the ones in Examples 7, where the quadratic form
that evaluates as 1 on all the monodromy curves has the desired Arf invariant. Finally, by
taking further sums as explained in the genus-9 case, we can get simply-connected, spin,
genus-g Lefschetz fibrations (Z x(d), Ek (d)) with O'(Zk (d)) = 16k, for any prescribed
k € Z*, and in turn examples with any signature 16k, for k € Z.

By the initial assumption on 771 (X'), we can take the covering degree d to be arbitrarily
large, and obtain the above examples with arbitrarily high genera.

Other properties: We equip all our examples with a Gompf —Thurston symplectic form
so they become symplectic Lefschetz fibrations. Set (Xo(l) fo(l)) = (Xo, fo) and
(Zo(l) ho(l)) = (Zy, ho), which are the simply-connected and signature zero examples
for genus g = 9 where the latter is spin. Taking further fiber sums with copies of the
simply-connected, signature zero genus ¢ = 8d + 1 Lefschetz fibration (f o(d), ﬁ)(d ),
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or in the spin case, with copies of (Zo(d), ho (d)), we get an infinite family of simply-
connected examples. Since fiber sums of Lefschetz fibrations of genus g > 1 are always
minimal [61] (see also [11]), these symplectic 4-manifolds are minimal.

This completes the proof of Theorem A. ]

Remark 17. While all the examples of arbitrary signature Lefschetz fibrations over the
2-sphere we have presented in this article are of fiber genus g = 1 (mod 8), we do not
have any reason to believe that the gaps in values of g are essential. On the other hand, it
is interesting to determine the smallest g for a genus-g Lefschetz fibration with positive
signature, and even more so, with zero signature (as should be evident from our proof
above, one can then generate examples with any other signatures). For the restricted class
of hyperelliptic Lefschetz fibrations, one can derive upper bounds using Endo’s signature
formula [20], and in particular any genus g = 1 or 2 fibration is known to have negative
signature; see also [45]. Therefore, the question really is:

Are there genus-g Lefschetz fibrations over the 2-sphere with arbitrary signatures for
3<g=<8

Note that if one asks the analogous question for Lefschetz fibrations over the 2-disk
instead, with no restriction on their global monodromy, then it is easier to generate posi-
tive signature examples, and there is a satisfactory answer that follows from the work of
Cengel and Karakurt [17], where we see that g = 1 suffices in this case.

Remark 18. It was conjectured by Stipsicz that all symplectic Lefschetz fibrations over
the 2-sphere had negative signatures [44, 56], and this constituted an open problem for
over 20 years; see e.g. [44,45,56], [57, Problem 6.3], and [39, Problems 7.4]. Besides
the lack of examples with positive signatures in the literature, as far as we know, not
all negative values were known to be realized as the signature of Lefschetz fibrations
over the 2-sphere either—especially for fixed fiber genus. Since the signature is additive
under fiber sums, the gaps in the latter case were essentially due to lack of examples with
signatures close to zero. Prior to our work, the largest known signatures in the literature
we know of had signature 0 = —4 (realized by the examples of Matsumoto, Cadavid and
Korkmaz for every even g > 2, and by the examples of the first author [10] for every odd
g > 3), with the exception of 0 = —3 in the g = 2 case (realized by the examples of
Xiao [62] and Baykur—Korkmaz [15]).

Remark 19. We expect most of our examples to be non-holomorphic. The main building
blocks, and many non-simply-connected examples we can produce, have odd first Betti
numbers, and thus their total spaces are not even homotopy equivalent to compact com-
plex surfaces. It would be interesting to know to what extent an analogue of Theorem A
holds in the holomorphic category:

Are there holomorphic Lefschetz fibrations over CP! with arbitrary signatures?

Many examples with various negative signatures appear in the works of Persson, Peter,
Xiao among many others. It is claimed in [47] that some of the holomorphic fibrations
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on positive signature compact complex surfaces described in [49] are Lefschetz, but the
authors’ construction in the positive index case appears to always involve multiple fibers.
(Existence of multiple fibers have no bearing on the rest of the arguments of [47].) In fact
the authors successfully build their negative signature examples as Lefschetz fibrations,
and use this to deduce the simple-connectivity of their complex surfaces, whereas for
their positive signature examples, they take a detour and use different arguments to kill
the fundamental group [49].

5. Proofs of Corollary C and Theorem D

In this final section we focus on the signature zero case and apply our techniques to present
novel constructions of symplectic 4-manifolds homeomorphic but not diffeomorphic to
#m(S? x §2), the connected sum of m copies of S x S2. Here m is necessarily odd
since the holomorphic Euler characteristic of any almost complex 4-manifold is an integer,
implying that the Betti numbers of a symplectic 4-manifold satisfies the equality 1 — b;
+ b;r = 0 (mod 2). We will first produce such examples as Lefschetz fibrations over the
2-sphere and prove Corollary C. We will then produce examples with smaller topology by
applying symplectic surgeries to certain Lefschetz fibrations over the 2-torus and prove
Theorem D.

5.1. Exotic #,,(S? x S?) as symplectic Lefschetz fibrations

Any example of simply-connected, spin, signature zero symplectic Lefschetz fibration
granted by Theorem A is necessarily homeomorphic to #,,(S? x S2) (for some large m),
by Freedman [28]. Whereas by the works of Taubes [59, 60], no symplectic 4-manifold
with b;r > 1 can be diffeomorphic to such a connected sum, thus such a symplectic
4-manifold would be an exotic #,(S? x S?2). Corollary C to our main theorem promises
two refinements: we can get explicit examples for m = 127 and also for every odd
m > 415. Although we are going to produce all our examples with fiber genus g = 9,
one can adopt the construction scheme below to generate higher genus examples as well
(for different values of m), as we did in the proof of Theorem A.

Proof of Corollary C. Let (X, f) be the signature zero genus-9 Lefschetz fibration of
Theorem 14, equipped with the spin structure s(. Recall that ¢ is induced by s €
Spin(Xg) with a quadratic form ¢ that evaluates as 1 on all the basis elements «;, 8;
but B¢ given in Figure 24.

For an easier presentation of our arguments, let us first note that there is a diffeo-
morphism of X9 which fixes the spin structure 5o and maps the bounding quadruple
(z1, X1, 22, x2) (see Figure 25) in the monodromy factorization (15) of (X, f), to the
quadruple (81, B. Bs., B5) shown in Figure 29 (a). For instance, we can take the diffeo-
morphism

¢1 = 15 15 15 1 statyty ity txts sttty t b 1
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Fig. 29. Left: The curves o;, f;, B} and the diffeomorphisms p and ¢ of Xg. Right: 81, 87, B5 and
their images under the diffeomorphisms ¢y, .

where the Dehn twist curves are as shown in Figure 28. One can easily verify that ¢; €
Mod(Zy, s9) by looking at its action on the symplectic basis elements in Figure 24. (Here
not every Dehn twist we employed is in Mod(Xg, s¢), but their product ¢, is.) After
a global conjugation with ¢; and Hurwitz moves, we get a monodromy factorization for
(X, f) of the form

1g,1p)tpstp; P1 =1 in Mod(XZy) (23)

where P; is the product of the remaining Dehn twists. This is in fact a factorization in
MOd(Eg s So).

Simple-connectivity: We will first show how to get simply-connected fibrations. For
ai, Bj. B} as in Figure 29 (a), we have go(e;) = qo(B;) = qo(B}) = 1 foralli =1,...,9
and j = 1,...,8. It follows that the Dehn twists #,,, g, tﬂ_} are in Mod(Xy, s¢) for
all i and j as above. Also note that the clockwise /4 rotation p about the center of
the figure and the involution ¢ about the y-axis as illustrated in Figure 29 (a) both pre-
serve sg. It is now easy to see that there are diffeomorphisms ¢ € Mod(Xy, s¢) for each
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k = 2,...,6 which takes the curves f;, B}, B5 to the basis elements ¢;, §; as shown in
Figure 29 (b1)—(b6). For instance we can take

¢ = laglp;1ps larlaglpr 1) Lao P
¢3 = 1o,

P4 = 1p,1ay1g]luglpslas,

b5 = 1g;lazlplaglprler P25

b6 = tgslag!pylaylpslosP3.

Homotoping the curves «;, B, i = 1,...,9, to share a common base point, and orienting
them, we get a basis for 1(Z9). So the curves {«;, ,3,~}?=1 normally generate 1 (Z9).
In turn, we see that B, B, Bs, and their images under ¢y, k = 2, ..., 6, together nor-
mally generate 71(2o). (Here By is normally generated by B, and §], i.e. a product of
conjugates of $; and S/.)

Thus the product monodromy factorization in Mod(Zo, s¢),

Ig,1g18s Q11p,1p18, O21ps31p,1ps Q3laylaslag Qalaslaglay Oslazlaslag Qe =1, (24)

which prescribes a twisted fiber sum of six copies of (X, f), yields a simply-
connected symplectic Lefschetz fibration (Z, &) admitting a spin structure coming from
so € Spin(Xg) with quadratic form go. Here Q1 = 1g: Piand Q; = Q‘f" fork=2,...,6.
A straightforward Euler characteristic calculation shows that the simply-connected, spin,
signature zero 4-manifold Z has the same Euler characteristic as #1,7(S? x S2). Since
both are smoothable simply-connected 4-manifolds, and have even intersection forms of
the same rank, by Freedman, they are homeomorphic.

Stable range: Next we will show that we can get symplectic Lefschetz fibrations hom-
eomorphic to #,,(S? x §?) for any odd m > 415. Consider the factorization (23), which
is 18,1p/1Bs1pL Py =1, and its global conjugation by p, which reads (g, 1g11pstp: Py)r =
18,1p 1851, (P1)? = 1. By taking a product of six copies of each, and then applying Hur-
witz moves, we obtain

(tﬁltﬂ{tﬁstﬁé)G(tﬂztﬁétﬂst3§)6R =1 25)

where R is the product of the remaining Dehn twists. This is a monodromy in Mod(XZg, s¢)
for a twisted fiber sum of 12 copies of (X, f) that we will denote by (Z’, #').

In this new factorization, the quadruples B1, B/. Bs. B and B2, 5. Bs. f5 both bound
copies of £5 in ¥o. We can thus embed two copies of the monodromy factorization (6) we
had for our signature zero spin genus-2 pencil, and cancel out the boundary twists against
the Dehn twists about these bounding quadruples. It is time to remember that the spin
structure we described on this genus-2 pencil admits a quadratic form which evaluates
as 1 on each of the homology basis elements we described in (7). We can thus embed this
relation so that the symplectic pairs are mapped to a7, 87, ag, Bg and to a3, B3, a4, B4,
which in turn guarantees that the new monodromy curves are all mapped to 1 under the
quadratic form go we had. Repeating this for the other five subfactorizations, we can
embed the genus-2 pencil monodromy a total of 12 times into the product monodromy we
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had for (Z’, i’). Each time we breed with the genus-2 pencil, we get four more vanishing
cycles, and after 12 breedings, we get 48 more.

Now to get a Lefschetz fibration homeomorphic to #,,(S? x S?) for any given odd
m > 415, write m as m = 415 + 24n + 2k, where n and k are unique non-negative
integers for k < 12. We first take (Z’, f') and apply k genus-2 breedings as described
above, and then take the fiber sum of the resulting fibration with (Z, f) and n copies of
(X, f), using any gluing that preserves so € Spin(Xy). (Untwisted fiber sums prescribed
by a product of the monodromy factorizations we gave for these fibrations would do
the job.) No matter how the fundamental group changes after the genus-2 breedings, the
extra fiber sum summand (Z, /') ensures that the resulting fibration is simply-connected.
Finally, calculating the Euler characteristic, we conclude that the simply-connected, spin,
signature zero total space of the genus-9 Lefschetz fibration we have is homeomorphic to
#n(S2 x S?).

This concludes the proof of Corollary C. ]

Remark 20. It is plausible that, with a more detailed study of the fundamental group of
(X, 1) and that of twisted fiber sums, one can further improve Corollary C to get smaller
values of m. Since we will produce examples of exotic #,,(S? x S2) with much smaller
topology in Theorem D, here we content ourselves with examples we could get without
getting bogged down in technical details. It should be easy to observe that following
a similar construction scheme one can also get minimal symplectic Lefschetz fibrations
homeomorphic but not diffeomorphic to #,,(S? X S2). This can be achieved essentially
with less effort, since we are no longer concerned about matching spin structures, and
a single breeding with a non-spin pencil yields an odd intersection form.

Remark 21. Involutions on genus-1 Lefschetz fibrations were used by Finashin, Kireck
and Viro [24] to produce an infinite family of exotically knotted non-orientable surfaces
in S*; namely, a family of pairwise non-diffeomorphic surfaces, all ambiently homeo-
morphic to a standard embedding of #;oRIP? with normal Euler number 16. These were
obtained as the fixed point sets of involutions on exotic elliptic surfaces, descending to the
quotient, the standard S*. This result was later improved by Finashin [23], who produced
exotically knotted #¢RP2 with normal Euler number 8, and more recently by Havens [34],
who, by using Finashin’s techniques, obtained further irreducible examples. The starting
point of the latter works is once again involutions on genus-1 Lefschetz fibrations. In
stark contrast, no examples of exotically knotted orientable surfaces in S 4 are known,
and there have been several attempts to show that there are no smooth knottings of the
standardly embedded ones (that bound handlebodies), which is known as the Smooth
Unknotting Conjecture. Since any such examples necessarily come from an involution
on an exotic #,(S? x S?) with fixed point set homeomorphic to X,,, explicit examples
as in Corollary C, which one may attempt to build the desired involutions on, were sought
for quite a while. Similarly, examples of exotic knottings of the standardly embedded non-
orientable surface with Euler number zero would come from an involution on an exotic
#,(S? X S?). With the explicit fibration structure, the examples we built in this section
come as prime candidates for this strategy.
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5.2. Smaller, but not fibered, exotic #,, (S2 x §2)

To produce symplectic 4-manifolds homeomorphic but not diffeomorphic to connected
sums of smaller numbers of S? x S2, we will adopt an approach similar to the one
employed by the first author and Korkmaz to build an exotic CP2 # 4CP2 in [15, §5.3]:
First, we will extend our spin, signature zero Lefschetz fibration (X, f) over the 2-sphere
to a Lefschetz fibration (X', f) over the 2-torus. While this will enlarge the fundamental
group, now the symplectic 4-manifold (X', ®") will have many homologically essential
Lagrangian tori carrying the generators of 71 (X”). We will then apply Luttinger surgeries
to these tori in the same fashion as in, for example, [1-3,9, 25], to derive a symplectic
4-manifold with trivial fundamental group which is homeomorphic to #,3(S? x S2). We
will then show how to produce an infinite family of such examples and how to obtain
similar examples in the homeomorphism class of #,(S? x S2) for every odd m > 23.

Proof of Theorem D. We noted in the previous subsection that the signature zero genus-9
Lefschetz fibration (X, f) of Theorem 14 has a monodromy factorization of the form
18,1p/1Bs 01 = 1l inMod(Xy), where f1, B, Bs are as in Figure 29 (a), and Q is a prod-
uct of the remaining positive Dehn twists. Given any disjoint, non-separating curves
A1, Az, Az that are linearly independent in Hq(Xg), there is a diffeomorphism of Xg
that takes (81, 81, B5) to (A1, A2, A3). Conjugating with this diffeomorphism, we thus
get a monodromy factorization of the form 4,124,724, R = 1 in Mod(Xo, 5) for (X, f),
where R is a product of 45 positive Dehn twists and s is any spin structure on Xg yielding
a spin structure s on X.

Symplectic 4-manifolds homeomorphic to #,3(S? x §2): For any #, 8 € Mod(XZo) that
commute with each other, we can extend the Lefschetz fibration (X, f) over the 2-sphere
to a Lefschetz fibration (X', f’) over the 2-torus with a monodromy factorization

[, B8] 4 t4,t4; R=1 in Mod (), (26)

where the first term is the commutator of + and 8. Moreover, when 4, 8 € Mod(XZo, 5),
this becomes a factorization in Mod(Xy, 5), and can be seen to prescribe a spin Lefschetz
fibration over the 2-torus. For our construction to follow, it will suffice to take A = B = 1.
In this case, the extension of the spin structure of X to that of X’ can be easily seen by
first viewing X’ as X' = (X \ v(F)) U (29 x 1), where v(F) is a fibered neighborhood
of a regular fiber F = X of (X, f). Taking the product of s € Spin(Zg) with any s’ €
Spin(X}]) we get a spin structure on o x X} inducing the same spin structure on its
boundary as the restriction of the spin structure of X to dv(F) = Zg x S'. Gluing these
spin structures we get a spin structure s’ on X’. In particular, X’ has an even intersection
form.

Wehavee(X') =4(g—1)(h—1)+1 =4-8-0+ 48 = 48 (where g, h are the fiber
and base genera, [ is the number of Lefschetz critical points), and o(X’) = 0(X) = 0
since the factorization (26) of (X', f”) is obtained from the monodromy factorization of
(X, f) by adding a trivial relation for the trivial commutator.
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We now set up our notation for the Luttinger surgeries and the fundamental group
calculation, following the conventions in [2,25]. Consider the surface X¢ with its standard
cell decomposition prescribed by a regular 36-gon with vertex x, and with edges labeled as
]_[?:1 aibja;'b; ! as we go around the perimeter. Similarly take £ = 72\ D, where D
is an open disk, with its standard cell decomposition given by a rectangle with a hole, with
vertex y and with edges labeled as aba™'b~'. So {a;, b;}]_, generate 7r1(Zo) and {a,b}
generate 71 (X}) at the base points x and y, respectively. Finally, for any ¢ € {a;,b;,a,b}
let ¢/, ¢”” denote the parallel copies of the curve ¢ on the same surface, as in [25, Figure 2].
By a slight abuse of notation, we will also denote any curve of the form ¢ x y or x x ¢ in
Y9 x X} by c.

Going forward, we take the Dehn twist curves A; in the factorization (26) to be iso-
topic to a;, for i = 1,2,3 and we assume D above is an open disk in the base T? of
the fibration f’: X’ — T? containing all the critical values. As we added a trivial com-
mutator, i.e. A = B = 1, we have 71 (X') = ({(a,b) x m1(Zg))/N’, where N’ is the
subgroup normally generated in (a, b) x m;(X,) by the Dehn twist curves of the mon-
odromy, together with an extra relation of the form [a, b] = W for some product of
commutators ‘W € [r1(Z9), 71(Z9)]. (The existence of W is implied by the existence
of a pseudosection of (X, /), and we would have ‘W = 1 if (X, f) had an honest sec-
tion.) This can be most easily seen by applying the Seifert—van Kampen theorem to the
decomposition X' = (X \ v(F)) U (Zg x E%). Nonetheless, for our fundamental group
calculation below, it will suffice to just know that N’ contains relations induced by three
Dehn twist curves aq, as, as.

The parallel transport of any « € {a;, b}, b/} over any y € {a’,b’, b"} is a Lagrangian
torus T fibered over y. Through the trivialization X"\ (f'~1(D)) = X9 x X1, we can
view T as a Lagrangian o x y with respect to a product symplectic form on X x 1. Note
that for the normal neighborhoods v(«), v(y) of @, y in X9, X1, the Weinstein neighbor-
hood of the Lagrangian torus @ x y is v(«) x v(y). Encoding the surgery information by
the triple (7, A, k), as in [2,25], we claim that performing the following disjoint Luttinger
surgeries in X

(ay xb',b' 1), (b) xd',a', 1), (a; xb',a},1), (b]’» x b”, b}, 1)

fori =4,...,9and j =1,...,9

results in a simply-connected symplectic 4-manifold X”. We take x X y as the base point
for the fundamental group calculation. Per the choices we made here, we can invoke the
work of Baldridge and Kirk [9] to deduce that 7r1 (X”) has a presentation with generators
a;,b;,a,b, for which the following relations hold (among several others we do not include
here):

611:612:613:1,

wb=pa :mai:,u}bjzl fori =4,...,9and j =1,...,9,

where the first three relations come from the vanishing cycles of our fibration, and
W, i, ,u} in the second line are the meridians of the surgered Lagrangian tori, given
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by conjugates of commutators of the pairs {b1,a}, {az, b}, {b;,a}, {a;, a}, respectively.
(While we can write out the exact commutators following [9, 25], there will be no need
for these details for our calculation to follow.) Since a, = 1, the second commutator is
trivial, so a = 1 by the relation pa = 1. Since all others are commutators of a, they too
are trivial, which implies that b = a; = b; = 1foralli =4,...,9and j =1,...9, by
the remaining surgery relations above. Now, because a; = a, = a3 = 1, we see that all
the generators of 1 (X") are trivial, so X” is simply-connected.

As we obtained X” from X’ via Luttinger surgeries, X” admits a symplectic
form w” [8]. Since these surgeries along tori do not change the Euler characteristic or the
signature, we have e(X”) = e(X’) =48 and 0 (X"”) = 0(X’) = 0. Moreover, each surgery
is performed along a Lagrangian torus from a pair of geometrically dual Lagrangian tori,
which describe a hyperbolic pair in H,(X) with respect to the intersection form. These
pairs can all be seen to be disjoint. (For example we can take the Lagrangian tori b} x a’,
ay x b', bl xa, a}’ x a” as the duals.) Since the intersection form Q- is an extension
of that of Qx~ by such hyperbolic pairs, it follows that X" is also even, and as Hy(X")
has no 2-torsion, we conclude that X" is spin. By Freedman’s celebrated result, X" is
homeomorphic to #,3 (§2 x S?).

To obtain an infinite family of examples, first note that the Lagrangian torus a’ x b’
and its dual (which we can take as b5 x a’) in X' are disjoint from all the other tori
(and their dual tori) we surgered. So it descends to a homologically essential Lagrangian
torus 7 in X", for w” agrees with @’ away from the surgery tori [8]. As shown by Gompf
[30], we can perturb w” so that T becomes a self-intersection zero symplectic torus.
Importantly, 71 (X" \ T) = 71 (X) = 1, which follows from the fact that the meridian of T
in X’ was a conjugate of a commutator of the pair {3, a} that became trivial in 71 (X").
Hence, we can perform Fintushel-Stern knot surgery [26] to X" along 7', using an infinite
family of fibered knots K, with distinct Alexander polynomials, and produce an infinite
family of symplectic 4-manifolds (X, w; ) which are pairwise non-diffeomorphic but are
all homeomorphic to X”, and thus to #,3 (S2 x S?).

Lastly, observe that we can run the same construction using spin, signature zero genus
g = 8d + 1 Lefschetz fibrations (X(d). ]7 (d)) we built in the proof of Theorem A. In
this case, we will have a similar list of Luttinger surgeries along the Lagrangian tori in
the extended fibration (X (d)’, f (d)’) over the 2-torus, except now the indices i and j
will run up to 84 + 1. This way we see that there are symplectic Lefschetz fibrations
over the 2-torus which are equivalent via Luttinger surgeries to symplectic 4-manifolds
homeomorphic to #5441 (S? x S?), forany d € Z*.

Stable range: As our observation above provides exotic #,(S? x S?) only for m = 23
(mod 24), we still need to show how to get examples for every odd m > 23. We will
achieve this by taking symplectic fiber sums of (X", »”) above with copies of a small
symplectic 4-manifold we will quickly derive from [25] as follows: Take Yy = ¥, x X5
with a product symplectic form wg. As before, let a;, b; and c;, d; denote the m; genera-
tors of the first and second copies of X, in Yy, let x and y be the base points we take on
them, and for any ¢ € {a;, b;, cj, d;} let the parallel copies ¢’, ¢” of ¢ be described in the
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same fashion. Performing the following Luttinger surgeries in Yy:”

(by x ¢, by, 1), (ay x ¢y, ah, 1), (b5 x ), b5, 1),

(ay x di,dj,1),(a} xc5,ch 1), (a] xd5,d), 1),

we obtain the desired symplectic 4-manifold Y. Clearly e(Y) = e(Yp) =4 ando(Y) =
0 (Yp) = 0. The following relations hold in 71 (¥'), based at x x y, between the generators
Cli,bi, Cj, dji

Hiby = poar =pu3by = pady = piscr = e dr = 1,

where g, fork = 1,...,6, are the meridians of the surgered Lagrangian tori, given by
conjugates of commutators of the pairs {a1, d1}, {b2, d>}, {az, d2}, {b2, c1}, {b1, d2},
{b1, c2}, respectively. We claim that a; and c¢; normally generate 71(Y). To see this,
add extra relations a; = ¢; = 1. Then the first and fourth commutators are trivial, so
by = dy = 1 by the relations @y by = pg4 dy = 1. But by = 1 implies that the fifth and
sixth commutators are trivial, and thus ¢; = d, = 1 by the relations us ¢y = pgds = 1.
Since now d, = 1, the second and third commutators are trivial, so a» = b, = 1 as well,
by the corresponding relations j a; = w3 b, = 1. Hence trivializing a; and c; kills all
of 71 (Y) as claimed. If we let 7’ and T” denote the homologically essential Lagrangian
tori in ¥ descending from a} x ¢{ and a) x ¢} in Yy (which, along with their geometric
duals b} x d{ and b} x d{, are disjoint from the other surgered tori), their meridians '
and u” are conjugates of a commutator of {by, d; } and of {b,, d; }, respectively. It follows
that 771 (Y \ (7' U T")) is normally generated by a; and ¢, as well.

Recall that by perturbing the symplectic form on X” we got a self-intersection zero
symplectic torus 7 in X" with 71(X” \ T) = 1. Let us continue denoting the perturbed
symplectic form on X” as w”. Similarly, after perturbing the symplectic form, the Lagran-
gian tori 77 and T” (which are homologically essential and independent) become sym-
plectic in (Y, wy). We can thus take the symplectic fiber sum of (X", ") and (Y, wy)
along 7 and 7" to get (X{, wy).

We have e(X]) = e(X”) + e(Y) —2e(T?) =48 + 4 =52 and 0(X{) = o(X") +
o(Y) = 0+ 0 = 0. Since the image of the generators of 1 (d(vT”)) under the boundary
inclusion map are ay, ¢y and w, and since 71(X” \ T) = 1 and 71 (Y \ T’) is normally
generated by a; and cj, by applying the Seifert—van Kampen theorem to the decomposi-
tion X{ = (X" \vT) U (Y \ vT’), we conclude that 7 (X{) = 1. A quick way to see
that X|" is spin is the following: Reversing the order of Luttinger surgeries and the sym-
plectic fiber sum, which were performed along disjoint subsurfaces, we could obtain X|’
by first taking a symplectic fiber sum of (X", ") with (Yo, wo) along T and a x c7,

2These surgeries are essentially the same as the ones employed in the construction of the homol-
ogy S% x §2 in [25], except here we do not perform surgeries along the Lagrangian tori al x ¢}
and a’2 X c’l (as we have different plans for them) and we simply took all the surgery coefficients
to be +1 (since the effect of surgery coefficient £1 on the 7; calculation will be simply killing
a generator or its inverse).
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which we can assume to be spin by taking a spin structure on the product 4-manifold Y
whose restriction on the fiber sum region agrees with that of the restriction of the spin
structure on X" [30]. In particular, we get a 4-manifold with an even intersection form.
But then, when we perform the Luttinger surgeries along the above tori contained in the
Y, factor, the result is X and the intersection form only changes by removing the hyper-
bolic pairs corresponding to the surgery tori and their duals. Therefore X' too has an
even intersection form, and since H;(X{) has no 2-torsion, X is spin. Hence X7 is
a simply-connected spin symplectic 4-manifold, which is homeomorphic to #,5(S? x S2)
by Freedman. Knot surgery along the other symplectic torus 7" that descends from Y to
X/ yields an infinite family of pairwise non-diffeomorphic symplectic 4-manifolds in the
same homeomorphism class.

Now for k > 1, we can build a symplectic 4-manifold (X', ®}) by taking a sym-
plectic fiber sum of (X", w”) and k copies of (¥, wy) by first fiber summing (X", @")
and (Y, wy) along T and T’ as above, then—without performing the knot surgery—fiber
summing the resulting symplectic 4-manifold (X}, w]) with the next copy of (Y, wy)
along 7" (which descends to X') and 7’, and repeating the latter until we add all k copies
of (Y, wy). At the very end of this procedure, we can perform knot surgery along 7" com-
ing from the very last copy of Y to produce infinitely many pairwise non-diffeomorphic
symplectic 4-manifolds homeomorphic to X, as before. A straightforward calculation as
above shows that the symplectic 4-manifold X’ has 71 (X)) = 1, e(X})) = 48 4 4k and
o(X}) = 0. Thus X is homeomorphic to #5340 (S? x §2), fork € Z™. m

Remark 22. Unlike the previous works [4,5,47], our construction of exotic #,,(S? x S?)
does not build on a compact complex surface produced by algebraic geometers. The spin
symplectic 4-manifold (X', w’), to which we applied symplectic surgeries, has by (X’) =9,
and thus it cannot even be homotopy equivalent to a compact complex surface. Moreover,
since there can only be finitely many deformation classes of simply-connected complex
surfaces with the same Chern numbers (c% = 2e + 30 and ¢, = e), all but finitely many of
our exotic symplectic #,,(S? x S?) (for fixed m) are necessarily non-complex. Perform-
ing the knot surgeries we employed in our constructions, using non-fibered knots instead
with distinct Alexander polynomials, we also get infinitely many exotic #, (S? x S?) (for
fixed m) which do not admit symplectic structures [26].

Appendix A. Hurwitz equivalence for the genus-2 and genus-3 pencils

Here we address the question of whether the signature zero, spin genus-2 and genus-3
pencils we constructed in Sections 3.1 and 3.2 are new additions to the literature. Many
genus-2 pencils on ruled surfaces were obtained in [32], and genus-3 pencils on symplec-
tic Calabi—Yau surfaces with 5; > 0 in [10, 33]. While our constructions are new, we are
able to observe that the monodromy factorizations of the genus-2 and genus-3 pencils
we constructed here are in fact Hurwitz equivalent to the monodromy factorizations of
pencils in [10,32].
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A.1. The genus-2 pencil on T? x S?

In [32], the second author described several lifts of the monodromy factorization in
Mod(2;) for Matsumoto’s well-known genus-2 Lefschetz fibration [42] to monodromy
factorizations in Mod(X3) for genus-2 pencils on ruled surfaces. Here we will observe
that the genus-2 pencil we constructed in Section 3.1 is isomorphic to one of these.

The pencil referred to as Wy 4 in [32] has the monodromy factorization

1By 11B1,11B211C 1B 2 1By 2 1By 5 1C> = 1818, 15515,, (27

where the curves are as shown in Figure 30.

Fig. 30. The monodromy curves for the pencil W4 of [32].
We perform the following Hurwitz moves to this factorization:

15,18,15318, = 1By 11B111B211C11Bo2!B1 2By 2 1Co
~1Bo.11By 1 1B ICy tBl.zth.ztcle{).z
~ tBO,llBl.lIB2,1lcltB2.2tC2tBi.2136.2

~ 1By 1By 1 1By ICy tCleéiztBiiztB(’).zv

—1,—1 ;-1 ~1,-1 -1 .
where By, = ic) g, tp  (Bo2), Bi, =ic,tp,,(B12). By, =i, (B22), and as it

turns out that By ; and By , are disjoint,

~ tB(’)_ztBl,lth,ltcl tCztBé'ztBi'ztBo.l'

To compare with the monodromy factorization of our genus-2 pencil, push the boundary
components §; and §, as shown in Figure 7 (c). Then we recognize that the last expression
exactly coincides with

tBOZBltBZICtC/tBétB{ tB(J

with the curves in Figure 8, which is the monodromy factorization (6) of the genus-2
pencil we built in Section 3.1. (In fact, we can also show that the 6-holed torus relation (5)
we obtained while building our genus-2 pencil is Hurwitz equivalent to the 6-holed torus
relation of Korkmaz—Ozbagci [38].)
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A.2. The genus-3 pencil on T*

In [10], the first author constructed symplectic genus-3 Lefschetz pencils in every rational
homology type of symplectic Calabi—Yau surfaces with b; > 0. We will show that our
signature zero, spin, genus-3 pencil with monodromy factorization (8) in Mod(X%) is
Hurwitz equivalent to the genus-3 pencil on a symplectic Calabi—Yau 4-torus in [10].
After applying a cyclic permutation to the monodromy factorization (8), we get

15,15, 18515, = Lartwlala/lxlp - tprtylelertzlg
~ tylala'txtpla, - lytclc/lztdlA/z
~ lalgtxtpla ta, tcfc’[ztth/l [A/2

~ lalxlplanla ta, * tctztthétA/l Z‘A/z

where Ay =1, 't e e e N (dD), Ay = e e S T (), Ay = e e e (w),
Ay = TN (), Ao =t e N (a!), A = 17171 (¢)). By relabeling By = a,
By =x,By,=0b, By =c, By =z, B, = d, we obtain

IByIBIByTA¢tA, 145 - lB(’)lBi tBétA{)lA’l ZA/2 = s, 15,5515, (28)

which, after suitably sliding the boundary components, coincides with the positive factor-
ization W = 14, 15,1515, in [10]. As shown in [33], by further Hurwitz moves and a global
conjugation, one can see that the monodromy factorization of the latter pencil is equiva-
lent to that of the holomorphic Lefschetz pencil on the standard 74 by Smith [52]. This
array of arguments shows that the symplectic Calabi—Yau surface ¥ which is the total
space of our genus-3 pencil in Section 3.2 is in fact diffeomorphic to 74.
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