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Abstract

We construct symplectic surface bundles over surfaces with positive signatures for all
but 19 possible pairs of fiber and base genera. Meanwhile, we determine the commu-
tator lengths of a few new mapping classes.

1 Introduction

Surface bundles over surfaces constitute an interesting family of 4-manifolds, which
is amenable to techniques from different areas of mathematics, such as algebraic
geometry, symplectic topology and geometic group theory. Let X, denote a closed
orientable surface of genus g and let o denote the signature of a 4-manifold. Surface
bundles with 0 = 0 are certainly easy to generate for any fiber and base genera; in
fact, a Xg-bundle over £j, has o = 0 in many situations, such as when 71 (%) acts
trivially on H*(X,), when the fibration is hyperelliptic (in particular when g < 2),
or when the base genus 4 < 1 [16, 18, 39]. Further, 0 = 0 (mod 4) for any surface
bundle [39].

Our goal in this article is to provide a comprehensive answer to the following
outstanding geography problem:

For which pairs of (g,h) € N? are there Y —bundles over X, with signature
o> 0?
This problem on surface bundles has a long and rich history going back to the pio-
neering works of Kodaira, Atiyah and Hirzebruch in the late 1960s [1, 27, 30], who
produced the first examples of surface bundles with o > 0 via branched coverings of
products of complex curves, albeit for fairly large fiber or base genera. Endo’s inno-
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vative work on signatures of surface bundles in the late 1990s [17, 18], via Meyer’s
cocycle and relations in the mapping class group, made it possible to approach this
geography problem more systematically. Over the past two decades, these methods
have led to a myriad of examples of surface bundles with positive signatures; see e.g.
[2,7,10, 11, 15, 19, 22, 36, 37, 41, 43, 46].

Our main result is an extensive advancement in this line of research:

Theorem 1 There exists a symplectic ¥ q—bundle over %y, with positive signature for
every g>15h=2; ¢>9 h=3; g>4 h=4;andg >3, h > 5.

Since 0 = 0 when g <2 orh < 1, our theorem leaves out 19 possible (g, i) pairs.
While constructing surface bundles with positive signatures for all but 19 possible pairs
of (g, h) is the best we could achieve at the time of writing, it seems plausible that
variations of our techniques, which we will discuss shortly, may succeed in shrinking
the gap even further. Note that Hamenstddt claims in [25] that the Euler characteristic
e and the signature o of a surface bundle always satisfies the inequality |e| > 3 |o],
ruling out the existence of a surface bundle with positive signature for one (and just
one) more possible pair: (g, h) = (3, 2).

All surface bundles we built in the theorem have signature ¢ = 4. Therefore,
for M, the moduli space of genus—g curves and m, denoting the minimal genus
among the genera of all surfaces representing the generator of the infinite cyclic group
Hy(Myg; Z)/Tor, with g > 3, as observed in [10], we can conclude from our results
thatm, = 2forany g > 15, and we have the estimates mg = 2or3 when9 < g < 14,
mg=2,30r4when4 < g <8 andm, =3,40r5 when g = 3.

We describe all but one of our surface bundles in Theorem 1 via explicit monodromy
factorizations in the mapping class group Mod(Z,). (The remaining example uses a
semi-stable holomorphic fibration due to Catanese—Corvaja—Zannier in [14] as an
ingredient.) The breakthrough in our understanding of relations that generate these
small surface bundles with positive signatures is due to shorter commutator expressions
we are able to obtain for both products of commutators themselves and multi-twists
in the mapping class group. In particular, Theorem 4, the proof of which adapts an
ingenious argument of Tsuboi in [44] and Burago, Ivanov and Polterovich in [12],
allows one to derive examples with base genus 7 = 2 and 3 from those over higher
genera surfaces. Leveraging these ingredients, we calculate in Corollaries 11 and 14
the commutator and stable commutator lengths of a few new mapping classes, in
particular providing new answers to the Kirby Problem 2.13(b) [29].

One of the motivations for our work is to better understand how the geography
of surface bundles compare to that of symplectic 4-manifolds and compact com-
plex surfaces. While all surface bundles with positive signatures admit symplectic
forms a 14 Thurston, their total spaces do not necessarily admit complex structures.
In fact, by the first author’s work in [2], the surface bundles we construct in this article
yield infinitely many such examples for all possible fiber and base genera except for
less than two dozen pairs; see Remark 16.

A particularly interesting comparative geography problem is for the border case of
Bogomolov—Miyaoka—Yau inequality [8, 40, 45]. By Yau’s celebrated solution of the
Calabi conjecture [45], any compact complex surface of general type withe = 3¢
is a complex ball quotient. These constitute a rather small but very interesting class
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of complex surfaces, which can not contain any surface bundles [28, 38]. In contrast,
it is still not known whether there are symplectic 4—manifolds of general type with
e = 3 ¢ that are not complex ball quotients, leading to the more specific question:

Question 2 [s there a symplectic surface bundle over a surface withe =30 ?

This amounts to asking in particular whether there is a X,—bundle over ¥; with
positive signature for (g, h) = (4, 2)—where our example with (g, h) = (4, 4) gets
provokingly close. And more generally, it is part of the bigger question on the existence
of any further constraints on the geography of surface bundles with positive signatures,
while obviously the very examples in this article limit much wilder constraints to be
expected.

Basic conventions: All manifolds and maps we consider in this article are smooth. We
denote a compact orientable surface of genus g with b boundary components by ©?,
whereas we omit b when there is no boundary. We denote by Diff+(2)§) the group
of orientation—preserving diffeomorphisms Eé’ — Eg that restrict to the identity in
a collar neighborhood of the boundary. The mapping class group of Ei,’ is defined as
Mod(Eé’ ) = no(Difer(Eg)). Our products of mapping classes act on curves starting
with the rightmost factor. Whenever we study relations in the mapping class group of
by g, we consider the curves on ¥ é,’ and the elements in Diff +(E§) only up to isotopy
and we denote their isotopy classes by the same symbols. We denote by 7. the right-
handed, or the positive Dehn twist, along a simple closed curve ¢ on a surface X g. For
any A and B in Mod(Eg), we let [A, B] ;== ABA~! B! denote their commutator,
and A® := BAB~! denote the conjugate of A by B. We denote by |r] the largest
integer less than or equal to the real number r.

Further conventions: By a genus—g surface bundle (X, f) over a genus—h surface
we mean a smooth locally trivial ¥,—bundle f: X — Xj;, where X is an oriented
4-manifold. A monodromy factorization for (X, f) with b disjoint sections {S;} of
self-intersections S; - §; = —k; is a relation of the form

[A1, Bil -+ [Ay, Byl =150 157 in Mod(2D),

where A;, B; are general elements in Mod(Zé’) and {§;} are boundary parallel curves

along distinct boundary components of Eg. Finally, for any relator W = 1 in Mod(X g )
we define the signature o (W) as the algebraic sum of the signatures of the relators
that are used to derive it from the trivial word with respect to Dehn twist generators
[17,20]. We refer the reader to [5, 6, 19-21, 41] for the general background on surface
bundles, monodromy factorizations, mapping class group relations, and signatures.

2 Shorter expressions for products of commutators

There are many situations when a given product of commutators in a group can be
re-expressed as a product of less number of commutators. For example, the famous
Hall-Witt identity for arbitrary a, b, ¢ in a group G can be arranged to read
[la, b1, "11b, €], a1 = [b, [c, all.
@ Springer
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Here are a couple of other instances that might be less well-known:

Lemma3 Fora,b, c,d any elements in a group G, the following hold:

(i) [a,b][b,cllc,dlld,al = [a" e, b1 d]%, and
(ii) 152 lai, bil = ([T @i, [T, bl if lais aj] = [ai, bl = [bi, bl = 1 for all
i #J.

Proof Both identities can be checked in a straightforward fashion:

la, b][b, c]lc,d]ld,a]l = aba b beb e ede ' d dada!
=aba ' ebVde  ad a!
=aba"'cb 'de  ad™! Ma_l
= (@bya 'eb Vd@ o o)y @b)!
=la" e, b a1,

where we have underlined the canceling pairs. Likewise,

k
la;, bi] = aibiay 'by ! asbray 'by " - - agbra; by
i, Di] = d101d, 1 20205 Dy kOkdy O
i=1
=ajap---ag blal_lbl_1 192612_1172_1 . ~bkak_1bk_1
=aiay---aybiby---by al_lb]_laz_lbz_l "'ak_lbk_l
= a1a2...akblb2...bka;la£1 ...a]:] b;]b;] b;l

=ajay---agbiby by ak—l .. ~a2_1a1_1 bk_l --~b2_1b1_1
k k

anag
i=1 =l

where in each one of the intermediate steps we have repeatedly used only the given
commutativity relations. O

Recall that a conjugate of a commutator is again a commutator, so that all the
commutator identities we have listed so far, in fact, describe a product of commutators
as a single commutator. The first identity in the lemma appears in the literature as
early as in [42] and contains two special cases which appear more frequently:

_ —1 —1 _qab
la,b1[b, cllc,al =[a""¢c,b™ a]
which one derives by taking d = a in Lemma 3(i), whereas taking d = 1 we get

[a,b][b,c] = [a e, b~ 117, (1)

The second identity in the lemma is perhaps more contemporary but was clearly
already known to experts [12, 44] (more on this below).
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Fig.1 The rotation R

For monodromy factorizations of surface bundles, commutator identities as above
allow one to derive new surface bundles over surfaces of smaller genera. Our next
theorem, the proof of which is leveraging a beautiful argument of Tsuboi in [44] and
Burago, Ivanov and Polterovich in [12], shows that one can moreover lower the base
genus dramatically at the expense of increasing the fiber genus:

Theorem 4 Let (X, f) be a genus—g surface bundle over a genus—h surface with a
section of self-intersection zero. Then there also exist surface bundles

(i) (X', f) of fiber genus g’ = gh and base genus 2, for h > 2, and

(ii) (X", f") of fiber genus g’ = gL%J and base genus 3, for h > 3,

also with sections of self-intersection zero and signatures o (X') = o(X") = o(X).
Further, given an explicit monodromy factorization for (X, ) with a self-intersection
zero section S, we can explicitly describe the monodromy factorization of (X', f') and
(X", £y with self-intersection zero sections S’ and S”, respectively.

Proof Let a;, b;, fori = 1,..., h, be elements of Diff+(2§) which restrict to the

identity in some collar neighborhood of E)Eg,. Let ¢ = ]_[f': 1lai, b;]. That is to say,
we have the following relation:

¢ = la1, bi]---[ap, by] in Mod(Xy) 2)
where we simply denote the corresponding mapping classes by the same letters.
Now let R be the clockwise 2T’T—rotation of 2;,, with ¢’ = gh as illustrated in

Fig. 1, followed by a counter-clockwise 2T”—rotation of 0% 51,, supported in a small

collar neighborhood of its boundary. We take an embedding ¥ gl, — %! with image
as shown in Fig. 1, away from the support of the above boundary rotation. With this
identification of X &1, with a subsurface of E;,, we can then define ¢, a;, b; € Diff" (E;/)

by extending each ¢, a;, b; as the identity on Egl, \ X é We thus have the relation

¢ =l[ar, bi]---[an, byl in Mod(Z). 3)
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A two-commutator identity: Reviewing the details of Tsuboi’s algebraic argument in
[44] (cf. [12]) will be essential for the remammg part of the proof of our theorem. Let
C; = la;, b ], foralli =1, , h, so¢ ]_[l 1 Ci. Following [44], we set

h
P o= l—[(CRh i N CiRh—L) )

i=1

There are quite a few commutativity relations which are important to note
here. First of all, [EliRp,l;fq] = [&iRP,szq] = [I;I.RP,Efq] = 1 forany p # ¢
since each pair of diffeomorphisms in these commutators have disjoint supports
in E;],. It follows that [CRp CRq] = 1 for any i,j and p # ¢. In turn,

h—i h—i h—j h—
[CIR 1 -~-CiR | CIR T CJR /] = 1 whenever i # j, so one can spell out the
parenthetical factors in the above product expression of P in any—and in particular,
in reversed—order. Last but not least, since R” is identity on the compact support of

any dl.Rp and EI.RP (even though it is isotopic to a boundary parallel Dehn twist on E;,),
we have [R", aR"] = [R", bR"] = 1, and thus [R", CR"] = 1 for any i and p, and in
trn, (CR" )R = R’

We have the product expressions

l—[(CRh i » Cth i —1 l—[(CRh i o CiRh—[)_l
and
h h7'+1 h—i+1 h— h h-l h—. h
=Tt ek = 1‘[<cR el =a 1‘[(65 e,
i i=0
Therefore,

h—i h— l h—i h
— ¢ 1 H(CR CR —1 Cl l_[(cR ClRi‘_l )
~_ — h—i h—i h—i h—i
=¢'C 1‘[((6{e e I (/Y i)
~_ h—i
=¢~'C HCfil

h
l—[ Rh i+l
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_¢ [1—[~Rh i+1 1—[~Rh 1+1]

i=1

where we repeatedly used the commutativity relations mentioned above and invoked

Lemma 3(ii) at the final step.

. ~ ph—i+1 h—i .
Setting A := ]_[fll af " and B = ]_[l | bk “ we arrive at the two-

commutator identity y
¢ =[A, B[R, P~']in Mod(Z,) . )

A variation: Let ¢ = ]_[f':1 C; and R be as above. This time set

—1 _ ) _ h—1 . ;
0= TIek -ty =TIk -t
- i=1

Note that by the commutativity relations mentioned above, the parenthetical terms in

this product can also be spelled out in any order. So by using the equality (Cfl )Rh =

Cfl, we have

_ i+1 i+1 i
(0 Hf = ]"[(cR e H(CR ™!
h—1
-1 R! L
=C l_[(cl ) h z+1)

i=1
It follows that for [Q, R] = QRQ 'R~ = Q(Q~ 1R, applying the same arguments
as earlier, we have

-1 ) ) h—1 )
(0. R1=¢ [k cfy o' T]ek iy ™

=¢c ek el cf p™!
=¢cr' [Jel et p el ey
i=1

R’ R’ i
_ 5l € G R =
=4 C H(Ch i1
h
Rl ~RI
1_[ CC C/l th 71
h—i+1
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h—i+1 h—i+1 :
R R h—i+1
c| ~CcRTR

h
7 -1
=¢ []c )
i=1
h gh—i+1 jh=i+1 iy R gh—i+1 Rh=i+1 p_id)
g ~Cj - O R ~Cj G TR
= ¢ Hbl bl nal‘ .
i=1 i=1
h—it1 h—i+1 L. .
(Here we take CIR e CZ.R_1 = 11ifi = 1, and so on.) Setting
h oA GREH i b CRPIFL | CREIE i
A= Héi ! it and B’ := Hbl. ! -
i=1 i=1
give us the equality
¢ =10, R][A, B']in Mod(Z;,) . 5)

A three-commutator identity: Assume that for j = 1, 2 we have

hj
¢; = [ [lai (). bi (/)] in Mod(Z})

i=1

and let s be the maximum of /21 and /5. Possibly after adding trivial commutators, we
can express both as ¢; := ]_[flzl [ai (j), bi (j)]. Running Tsuboi’s trick for j = 1 and
its above variation for j = 2, respectively, we obtain two identities

&1 = [A, BI[R, P11 =[R, P~][A, B]IF K]
é = [0, RI[A, B]1=[A’, B']'Rl[Q, R]

in Mod(E;/). Here, the triples A, B, P and A’, B/, Q are determined by diffeomor-
phisms coming from the entries of the commutators in ¢ and ¢;, respectively, but R
is the same diffeomorphism of Zé,. By the special case of Lemma 3(i), we have

oy = [A', BNORI[Q, RI[R, P~'[A, BIP K]
= [A", BI@R o~ P! RO 4, BYIPT R,
Relabeling the conjugated commutator entries, we get a new three commutator

expression L
$2¢1 = [A1, B1l[A2, B21[A3, B3] in MOd(E;/) (6)

We note that here g’ = gh for h = max{hy, ha} and not | + h».

Constructions of (X', f') and (X", f"): There is a monodromy factorization for
(X, f) with a section S of self-intersection zero of the following form:

[ar. b1]- -+ [an. byl = 1in Mod(Z,). (7)
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Taking ¢ = 1 in (2), and in turn getting é = 1in (3), the equality (4) becomes:
[A, BI[R, P~'] = lin Mod(Z})). (8)

Prescribed by this relation is the surface bundle (X', f’) with fiber genus g’ = gh and
base genus 2, along with a section S’ of self-intersection zero.

On the other hand, if we take ¢» = [ay, b1]- - - [ak, bx] and ¢ = [ag+1, bg+1] - -+
lan, by] for k = L%J in our construction of the three-commutator identity, the
equality (6) becomes

[A1, Bil[A2, B21[A3, B3] = 1in Mod(Z},), 9

where g” = gk. Prescribed by this relation is the surface bundle (X", ) with fiber
genus g’ = gL’%lJ and base genus 3, along with a section S” of self-intersection
Zero.

The monodromy factorization of a surface bundle is derived from the trivial word in
the mapping class group of a fiber using some sequence of basic relators between Dehn
twists. By [20], the signature of this surface bundle can be expressed as an algebraic
sum of the signature contributions of these basic relators, and the result is independent
of the sequence. Moreover the signature contribution of a relator and its conjugate are
the same, so it suffices to look at a few basic relators.

Post factum, after embedding a positive factorization in X ;, into the mapping class
group of another surface as we did via the embedding %, <> ¥/, we can in fact
regard it to be obtained from the trivial word in Mod(E;/) using the same basic

relators in Mod (X ; ;). (See next section for more on this.) Therefore, the initial positive
factorization in our monodromy constructions, namely (7) has the same signature as
the positive factorization (2) with ¢ = 1. Pivotal to our construction is that after that
point, in our derivation of the positive factorizations (8) and (9) all the relations we have
used can be easily seen to be only commutativity and conjugation relators, along with
insertion/removal of canceling pairs, all of which have zero signature contribution.
Hence, we have o (X) = o(X’) = o(X"), as promised. O

3 Shorter expressions for products of Dehn twists

We now turn to expressing products of positive Dehn twists as products of small num-
bers of commutators, while using only the relators (between Dehn twist generators)
in the mapping class group with non-negative signature contributions.! Despite this
resriction, several of our commutator expressions will make it possible for us to cal-
culate the precise (and positive) commutator and stable commutator lengths of a few
new mapping classes. These are discussed at the very end of this section.

More explicitly, our focus here is on expressing a product P of positive Dehn twists
as a product C of a few commutators, so that the signature of the relator P~'C = 1 is

! This seemingly unnatural restriction is due to our aspirations to build surface bundles with positive
signatures via monodromy factorizations we will obtain in the final section by combining the relators we
get here with other known relators that have negative signatures.

@ Springer
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Fig.2 The lantern curves on Zg

positive. Following [17, 20], we will take the infinite presentation of Mod(Zf, ) with
Dehn twists along all curves as the generators, and the relators between them. We
review some of these relators and their signatures first.

3.1 Basic relators and signatures in the mapping class group

We have the obvious relator z,¢, ! = 1 for any a. If two curves a and b are disjoint, then
we have the commutativity relator t,tpt; ! t, =1 Similarly, for simple closed curves a
and b intersecting transversely at one point, there is the braid relator t, 1,1, ! t; 1 ty -
1. All these basic relators have signature o = 0. It then follows that for any A, B €

Mod(Eé’), the conjugation relator A"'B71ABB = 1 has o = 0 as well. This has
several implications. For one, if one induces a relator W/ = 1 in Mod(Eé’,/) from

a given relator W = 1 in Mod(Eg) through some embedding Zé,’ — Z;’,/, then
o (W) = o (W), and o (W’) is in fact independent of the embedding.

There are two basic relators with positive signatures that are of importance to us.
First, for a null-homotopic curve a in é’ , the well-known relator I — 1haso = +1.
One implication of this is the following: Say we have a monodromy factorization for

a surface bundle with sections expressed by a relator W := C 1, ki 5, I 5, % — 1in

Mod(Eg ), where C is some product of commutators. Suppose that a relator W' = 1
in Mod(XZ é,’ ~1 is derived from W by capping off the boundary component §; with a
disk. Then o (W') = o (W) + k; by the above reasoning.

The point guard in our game is the lantern relator in Mod( Eé )

—1

—1,—1,—1 _
Is, 15, lsy 15, Ulylz =1,

where the curves x, y, z, §; are as shown in Fig. 2. This relator also has 0 = +1,
which now follows from the facts we laid out above, once you embed 26‘ > g.

@ Springer
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3.2 Multitwists as products of a few commutators

In the next several lemmas, we are going to express various multitwists, i.e. products
of positive Dehn twists about disjoint curves, as small number of commutators using
only the relators (with non-negative signatures) we have listed earlier. Our relations
are supported in 2, for g = 2, ¢ = 3 and g = 5 (and varying b), respectively, where,
importantly, we always have b > 0, so the same relations can be embedded into any
Mod(Zg,,) forg' > g.

We are going to make repeated use of the following simple but highly useful obser-
vation, which has been well-exploited in several prior works; e.g. [4, 5, 19, 23, 26, 32,
33, 41].

Lemma5 Letaj,as,...,a, andby, by, ..., b, be curves on Eg such that there is a
diffeomorphism F € Diﬁ“*(Eé’) with F(a;) = b; foralli =1, ..., m. We then have
the one-commutator expression

kvl g Ko U= [k B in Mod(39) (10)

ap “Lay
and the corresponding relator has signature zero.

Proof Given the hypotheses, the following equalities hold in Mod(Eé’ ):
k km 7km _k — k km 7km _k
tall e tam tbm e tbl b= (tall T tam) (tF(am) e tF(all))
= (t‘]l‘ll . 1‘5”;’) F (t‘;nkm . ta_lkl)F_l

k k k kmy—1 —1
= (tall "'ta,r:)F(tu: ...ta’r:) F

k k
= [tg) -1, F].

Since we have not used any relators with non-trivial signature contributions above,
the relator (rﬁ; e tclf;:)_l[tffl‘ e tclfr'j,, Fl=1in Mod(Eg) has signature zero. O

Remark 6 When applying Lemma 5, we are going to typically take {g; } and { } each as
collection of disjoint curves on 2, so we can argue the existence of a diffeomorphism

F simply by looking at the homeomorphism types of the cut surfaces Eg \ {a;} and

ZS \ {b;}, while making sure that the boundary component match in the fashion we
want to map a; to b;.

In the proof of the next lemma, our arguments work for any power of the same
(multi)twist that is of particular interest to us, so we will derive the commutator
expressions for all of them at once.

Lemma 7 For 81, 67 any two boundary components of Z;’, and n any positive integer,
there is a relator

N
5.5 [[Citmy =1 in Mod(33)

1
i=1
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5804 R. 1. Baykur, M. Korkmaz

with N = |(n 4+ 3)/2] commutators {C;(n)} and signature 2n.

Proof Consider ZS in Fig. 3. By the lantern relation, we have

tal taz ta3 t81 = IX3 txl txz ,

Iblaylazls, = Ly Ly, ly;

so that

-1 _
laylaylasls ly, = Ixzlxys

-1
tbtazta3t52ty3 =ty ty,.

Hence,

i—1
1_[ l_lfxg x|t+1 t)rczl l_[ (IXS)t;lq t;l],

i=1 i=1

_ n __ i—1 —1+1 n __ f; n
o 15,150 = (1, 1)) = I_Ity2 tyt, = l_[(tyl) 2 )1,
i=1 i=l

—-n __ n
tu|ta2tazt81tx2 - (tx3txl)

By multiplying the last two equalities, we get

n 2n 2n,n ,n __ yi-l
thlaylay tay 15, 15y = H(’m’yl) Bttty
i=1

where V = t,1,,. Thus

n

Vifl
n.n __ —1,.-1 fRg g g
g = l_[(tx3tyltb ta3> Ot e 1 .
i=1

Since the complements of x; U yo U a; Uap and a; U az U xp U y3 in Eg are
diffeomorphic, by the classification of surfaces, there is a diffeomorphism of Eg
mapping (x1, y2, ai, az) to (az, az, x2, y3). Such a diffeomorhism may be taken as
te tayt 1t_1 t;lty_gltaztcz. By Lemma 5, the product

X1

n.n  —Nn,—Nnn N  —Nn,—n
txlt)’Ztal taz tntyztaz tﬂ}

is a commutator. Likewise, the diffeomorphism f.,yty, fe, - fetayteste, of X3 maps
(x3, y1, b, a3) to (as, b, y1, x3), so that the product

—1,.-1 —1.—1\V
Lesly ty 1oy (tX3t}'1tb ta3)

is a commutator.
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(

333"

n

Fig.4 The curves on E% used in Lemma 8 and its proof

It follows that if n = 2k is even, then

n

i—1 k 2i-2
—-1,-1 v
Ixyly 1), t

Vv
_ | | —1,.—1 —1,—1\V
as (tXSI)’ltb ta3 (tx3t}’ltb ta3) )
i=1

i=1
is a product of k commutators, and if n = 2k + 1, then

n

: yi- n—1 . yi=1 TERE
-1,-1 —1,—1 —1,—1\V*
1_[ (tX3ty1 Iy oy ) = 1_[ (IX3ty1tb Las ) (1x3 Iyt gy )
i=1 i=1
is a product of k + 1 commutators.
Therefore, tg’l tg'z = HlNzl Ci(n) for N = | (n + 3)/2], where C;(n) are commuta-
tors, varying with n. As we have only employed signature zero relators and 2n lantern

relators, the relator ta_l”ta_z” ]_[,N:1 Ci;(n) = 1haso = 2n.

O
Next is a three-commutator expression we derive on the genus—3 surface with one
boundary component.
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Lemma8 Foray, a, as, as the curves shown in 231 in Fig. 4, there is a relator

1722172 2C1CoC3 = 1 in Mod(Z))

ay ‘ay ‘az ‘as

of signature 8, where C, C; and C3 are commutators.

Proof By the lantern relation, we have

taltazta3ta4 = tXZtXStxl

or

1
txz taylartazlay = Txzlx,-
This yields the equality

122121212 = (ty1y)?

x2 ‘artaz‘az‘aa
e 42
= tX3 (tX3)xltxl
so that
2.,2.2.2 2.2 r
taltaztagtzu = tx1tx2tx3(l‘x3)"1.

Hence,

4 4 4 4 2.2 2.2.2.2 t
Laylarlastay = txltxztx3 (tmtaztastm) (txs) H
2 .2 2.2 t t
=0T (txl Lolxs (tx3)™1 ) ()™
t
2.2 2.2\ 2 .2\t
=27 (tXItxz) 2 (12)". (11)

By a similar computation, the lantern relation

laylaylaslh = Ty Iy, ly,

yields
22,22 _ 2.2 ty
Lo oyt = Byt (52
and
ty
4,444 2.2 (,2.2\7 .2 2.
faytaylay o = Ty lys (tyztya) ty, ()72 (12)

From the equalities (11) and (12) we get
! t
8.8.8 4.4 _ 2.2 2.2\ 2,2\t 2.2 2.2\ .2 21t
Laylaylastay Ty = TxyIx, (tmtm) I (tX3) Tt (tyztys) & (t}’l) 2
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X
_ (2,222 2,222 2.2 2 2\Y
- <IX1ty2tX2ty3) (tX1ty2tX2ty3) (tX3ty1(IX3ty1) )’
where X = 1,1, Y = ty,1,,. We then write

2222 _ (2.2 -2-2 2.2 -2.-2
taltazta3ta4 - <tX1tY2tal taz txztnttlz tas )

X
2.2 ,-2,-2 2.2 2,2
(txltyzta_s ) )

2.2.,-2,-2 2.2 2.2\
(tx3tyl toy tay (it tay 1y ) :
We now show that each of the three factors on the right-hand side is a commutator,
by invoking Lemma 5 repeatedly. It is easy to see (e.g. by cutting the surface along
the given quadruples of curves) that there are F; € Diff™ (231), fori = 1,2,3, such
that
o I1(x1,y2,a1,a2) = (a2, a3, x2, y3)
o I(x1,y2,0a3,a4) = (a1, b, x2,y3)
o F3(x3,y1,a1,a3) = (a2, b, x3, y1).
The diffeomorphisms F;, F» and F3 can be chosen as follows:

o Fi =l taty 17! -tcg‘t}g‘tath,
o Iy = tylylpty  leylyytysle -tztalty_lltz_l - h, and
o F3 = leylaylisley = Lesty Tpley - 15 1o 1y o - testptastes.
where z = tyyle tayte, (A1), W = ty teytay (c2) and h = (tg, 1, taztc2ta3tc3)7. Note that
h projects to a hyperelliptic involution of the closed surface of genus 3 obtained by
gluing a disc along the boundary of E%.
We now have

Fi
2.2 ,-2,-2 2.2 ,-2,-2\_ (2,2 ,-2,-2 2.2 —2,-2
<txlty2ta1 taz ) ’ <tX2t)’3ta2 ta3 ) - (txltmtal taz ) (taltaztxl t)’z )
_r2 .2 =22
= [txll‘yzl‘a1 ta2 , F11,
P
2.2 -2.-2 2.2 ,-2.-2\_ (2,2 ,-2. -2 2.2 ,-2,-2
(txltyzt% ta4 ) : (txzt)@tm tb ) - (tx1 tyzta3 ta4 ) (ta3ta4tx1 tyz )
=22 272 By,

x1°y2%a3 ‘as °

and

Y YF3
2.2 2,2 2.2 .-2.-2 _ 2.2 2,2 2.2 . -2.,-2 :
(txatyw tﬂl ta3 ) (tX3ty1 taz tb ) - (txatyl tal ta3 ) (tal ta3IX3 ty1 )

= (12121722 Y F3).

x3'yitar faz >
Since a conjugate of a commutator is a commutator, we have written tgl tgz t33 ti; asa
product C;C>C3 of three commutators.
A simple book keeping of the relators we have used now shows that the relator
1272172172 . C1C2C3 = 1 has signature 8, as a result of the eight lantern relators

ay ‘ap ‘az ‘as
we employed in its derivation. O
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O
O

'Ys !

Fig.5 The curves on Eg used in the proof of Lemma 9

Lastly, we obtain a two-commutator expression on the genus—5 surface 252:

Lemma9 Leta and b be pairwise disjoint nonseparating curves on 252 such thataUb

separates the surface Eg into two genus—2 components, and let x be another curve
nonseparating in the complement of a U b. Then there is a relator

7', 1 72C1Ca =1 in Mod(22)

with signature 4.

Proof Consider the curves on Zg as illustrated in Fig. 5. By the lantern relation, we
have

tal taz ta; Ig = txz tX_?, txl s

tptagtasle = Ly Ty lys.

It follows now as in the proof of Lemma 8 that

2222 2.2 Lxy
ta]taztmta - txl txztx3tx3 ’
2.2.,2.2 2.2 Iy
tbta4ta5tc = tyzty3ty1ty1 s

so that we have

2

2
taz

2
ta3

2
ta4

2 .2
ta5

2 2.2.2 _ 2.2 e by
tal td tb tC = t-xl tyZ . tx2[y3 . tx3tyl . (tx3ty1) x1typ ,
or equivalently

2 _(42,2,-2,-2 2.2.-2.-2 —1,—1 =1 =1\t 1y,
lalply, = (tntyztaz fay” - tmtyatas le )'(tx3ty1ta las '(IX3ty1tb Las )12,

One can easily find Fy, F, € Diff" (Zg) such that

o Fi(x1,y2,a2,a4) = (a3, c, x2, y3),
o [2(x3,y1,a,as) = (b, as, x3, y1).

The diffeomorphisms F and F» can be chosen as
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o F =lctulale; * testasty tey + teglystagley + testelystes and
o Fy = lestasty tes * Lylslplz, - Uy Iplaly,

where

e z; is any simple closed curve intersecting a and b transversely once and is disjoint
from x3, y; and as, and

e 7 is any simple closed curve intersecting b and x3 transversely once and is disjoint
from y; and as.

227272

It follows that, by using Lemma 5 once again, we can express fy 3.1, “t,,

t%zty%ta;zt_z, as well as tx3tylta as c(tasty by —1 _1)”1 v, as a single commutator.
We thus get a relator 7, ! ty lt,;lzclc2 = 1, with signature 4. O

3.3 Commutator lengths of some mapping classes

For an element x in the commutator subgroup of a group G, let cl(x) denote its
commutator length, the minimum number of commutators needed to express x as a
product of commutators, and let scl(x) := lim,_, Cl(rf ) be its stable commutator
length [13].

Let ¢ be anonseparating curve on X é’ . Recall that the mapping class group Mod (X é’ )
is perfect for g > 3, whereas H; (Mod(Eé7 )) = Zy9, generated by the class of 7.; see
e.g. [31]. It should be clear from our rendition of Tsuboi’s trick in Sect. 2 thatcl(#!) = 2
in Mod(E?) when g is large enough (c.f. [35]). On the other hand, cl(#!') > 2 for any
g.n € ZT [9]. Ensuing these facts is the question below, which is a refinement of
Mess’ question on cl(#) in [29]. To ease the upcoming discussion, let us define g2 (1)
to be the minimum genus g > 2 such that cl(#!) = 2 in Mod(Z g,) for a nonseparating
curve ¢, where it makes sense only to consider n = 0 (mod 10) when g = 2.

Question 10 For a given positive integer n, what is g»(n)?

The minimal genus in Mod(Eg) with b > 1 is the same as the one in Mod (X g,) since
two surfaces of the same genus with boundaries embed into each other, and thus,
we can cater commutator expressions from one another. By the same reasoning, any
commutator expression for ¢! in Mod(X ;) provides an upper bound for the mini-
mal genus in Mod(XZ,), too. However, it is not immediately clear to us whether the
qualitative difference here would translate to a quantitative one; in fact, when g = 1,
we can show that cl(tgz) = 2 in Mod(X), but certainly not in Mod(E}), where no
nontrivial power of 7. is a product of commutators. Lastly, let us add that there is no
reason—other than us not wanting to digress here any further—for not considering
this question for separating curves.

Without sharper lower bounds in hand, it is challenging to answer the above question
in full generality. Nonetheless we are able to determine the minimal genus g»(n) for
a few values of n. We record them here:

Corollary 11 We have g2(1) = g2(2) = g2(4) = 3, and g»(10) = 2.
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Proof It was shown by Ozbagci and the second author in [33] that cl(z.) = 2 when
g = 3, and by the second author in [32] that cl(tcl.o) =2 when g = 2.

For tf and tf we proceed as follows. Let {51, 82, 3} denote the three components
of 82%. By Lemma 7, we have f5,t5, = C1C> as well as t321 1‘822 = DD, for some
commutators C;, D; in Mod(X3). Consider an embedding £3 < X! obtained by
attaching a cylinder to the two boundary components §; and §, of ES. The image
of §1 and &, are isotopic to the same non-separating curve c in 231, whereas the
remaining boundary component maps to the unique boundary component of X 31 . Using
the homomorphism Mod(Zg) — Mod(231) induced by this embedding, we thus
derive two new expressions of the form 2 = C|C} and t* = D/ D} in Mod(Z}),
where C}, D} are commutators.

None of the ¢! considered above are in the commutator subgroup of Mod(X él,) for
smaller g, so we get the claimed values for g2 (n). O

Remark 12 Corollary 11 provides a complete (meaning, for all g > 3) answer to
Problem 2.13(b) in Kirby’s List [29] for n = 1, 2 and 4. Using similar arguments, we
can also conclude that cl(tg) <3 forall g > 3 andis equal to 2 for g > 5.

Remark 13 1If 1! is expressed as a product of two commutators in Mod(XZ ;), we get a
genus—g Lefschetz fibration over ¥, with n nodes clustered all in one fiber. Then [9,
Theorem 8] dictates that g > %. Thus, we have g (n) > % for every n.

Lastly, we look at the stable commutator length of the boundary multitwist
A = tst5 -+ 15, in Mod(Eg), for g > 2, b > 0. Note that A is in the commutator
subgroup of Mod(Eé’ ), even when g = 2.

In [5], it was shown by Monden and the authors of this article that when b = 1,
cl(A™) = |(n + 3)/2] for any positive 7, so that scl(A) = 1/2. The main gain in
the case of a boundary multitwist is the sharp lower bounds we get, which can be
interpreted as a manifestation of the Milnor-Wood inequality [3, 24]. As the same
lower bound carries over to Mod(Eg ) for any b > 1, precise calculations of cl(A")
and scl(A) are possible any time we are able to realize the lower bound. And when
we cap the extra boundary component, Lemma 7 does precisely this for b = 2, as we
can now express A" = tg’l tgz as a product of [ (n + 3)/2] commutators in Mod(Z%).
In summary, when b = 2, we also have cl(A") = |[(n 4+ 3)/2] and scl(A) = 1/2 in
Mod(Zg). We record these calculations as well:

Corollary 14 Let A be the boundary multitwist in Mod(Zfé). For any g > 2 and
b =1,2, we have scl(A) = 1/2.

There is a little more we can say here: Let us say that a sequence (cy, c2, ..., Ck)

of curves on a surface is a chain if ¢; and c; intersect transversely at one point for
J =i = 1and are disjoint otherwise. For a chain (c1, ¢z, ..., c2¢) on E;, and a chain

(c1,¢2,...,Cog41) ON 252,, consider the elements

S i=teley  teyy € MOd(E)) and T :=teytey -+ tey,,, € Mod(E3).
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It is well-known that $*+2 = A and 7272 = A; see e.g.[21]. Since scl is homo-
geneous and since scl(A) = 1/2, we get scl(S) = 1/(4(2g + 1)) in Mod(Eé) and
scl(T) = 1/(4(g + 1)) in Mod(E2), g = 2.

4 New surface bundles with positive signatures

This final section is dedicated to the proof of our main theorem.

Proof of Theorem 1 We begin with an elementary observation (cf. [19]): Say we have
a monodromy factorization

Ci---Cp=1 in Mod(%y)

for a X,—bundle over X, with a section of self-intersection zero, where {C;} are
commutators. Call this surface bundle (X, f). Then for any given g’ > g and i’ > &,
we can derive another monodromy factorization

Ci++ ChChyy -+ Cpy =1 in Mod(Z})

fora X,/—bundle over % with a section of self-intersection zero, by using any embed-
ding ¥ ; — X ;,, and concatenating the trivial commutators C;l IRTRE C;l to the
product of the commutators C; which are the images of the original commutators C;.
Since embedding a relation or adding trivial commutators do not change the signature,
for the new surface bundle (X', f’) we obtained, we have o (X’) = o (X).2

It should be noted that in order to increase the fiber genus here, we needed the
initial surface bundle (X, f) to have a section of self-intersection zero, or equivalently,
a commutator identity supported on X é as opposed to X,. Recall that this is also a
necessary condition to invoke Theorem 4.

With the above in mind, we will generate the promised surface bundles with positive
signatures from a few base examples. O

h > 5and g > 3 :Forthe curves a;, §; on Zf' as shown on left in Fig. 6, the four-holed
torus relation in [34] gives us a relator

—1
t51

z(;zlta‘}lt(il(tcozcl festeolestey)” =1 in Mod(E})
with 0 = —4. We embed 2‘1‘ — Z; so that the images of the boundary components
8; of Zi‘ are as shown on the right hand side of Fig. 6, denoted by the same letters.
As 8> and 84 become isotopic in E%, we represent them by the same curve after the
embedding. The image of each ¢; is labeled as q;.

Thus, we have the following relator in Mod(E%) with o0 = —4:

S S i | 2 1 -1 —1 -1 2
V=15 15 15 15, (tagtay tastagtartas)” = s, 15 Ts 5, tagly Teates (Tay tay aytay)”

2 This construction is good enough to address the mere existence of positive signature surface bundles with
prescribed fiber and base genera. Otherwise, to generate surface bundles with larger signatures relative to
their topology, it is certainly better to use extensions with nontrivial surface bundles with positive signatures.
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Fig.6 4-holed torus curves and the embedding E‘l‘ — 231

Fig.7 The curves on 251

where z1 = 14,14;(q0), 22 = tajlaslazta,(a0) and z3 = 14,14 1aslazlasta, (ap). Using
Lemmas 5 and 8, we can change this into

—1 —1 -1 —1 2
L= (15, tag 1215, )t 12 Losts, ) (tay taylaztay)
2 -2
= C4C5 (tallazttn ta4) : (la1[a2[a3ta4) C1C2C3
= (C4Cs - C1C1C3,

or equivalently, into the relator
C1C2C3C4Cs =1 in Mod()),

with signature 0 = —4 4 8 = 4. This prescribes a X3-bundle over X5 witho = 4
and a section of self-intersection zero. In turn, we get X,—bundle over X, witho = 4
(and a section of self-intersection zero) for any g > 3 and 7 > 5.

h =4 and g > 5 : Take an embedding Zi‘ L 251 so that the ¢; curves of the 4-holed
torus relation (c.f. Fig. 6) are as shown on the left hand-side of Fig. 7, whereas the
boundary curves §; are mapped to the separating curves d;.
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In the following, let us denote #.; by #; for simplicity. From the 4-holed torus relation,
we have the following in Mod(ZJ):

taytay tayta, = loh113lotalalot 13101214
= 1oty P2 1 g tat oo 1
= toty PO B R 3 sttty

2.2
Ittty
7 tf1t3f0f2f4tflt3t 1°3 t12t2t32[2

2,222
= 1oty o, oy 11 151515
where vy = t113t0t214(cg), v1 = t1t3(co) and vy = t12t32t2t4(co). Note that ¢¢ and v
cobound a subsurface Z% in 251. ‘We multiply both sides of this equality by 75, s, - - - Z5q
and, fori = 1, 2, 3, 4, apply the four lantern relations of the form

Litiy1lsy_ 15y = Iy Ix;1q;
with the agreement that 5 = #| to get

Ta taytasta,ts, s, 15315, L5156 157 Lsg
= lotyyty, tv, - 1128515, - 121318515, - 1314ls5t5e - L4115, 1sg
= lolvglvytvy ~ By Iy Tdy ~ Tyybxyldy + Tyslagldy - Tyylxgldy
= lolugluy tvy ~ Ty Ixy ~ Tyalxy ~ Tyslas = Dygly - Ldy Iy Pd3ldy -

Now, cancelling all 74, gives

L5, 18y 315415515617 185 = TolugluyTuy ~ Ty Lxy * Lyalxy  Lyslay ~ Tyylxy
= folvgly oy ~ Ly TysLyslyy « Ly Ty Lag By -

Supported in E?, this is an 8-holed torus relation (cf. [23, 34]).
Hence, using Lemmas 5 and 9, we have

_ —1,—1,—1 1 —1,—1,—1 1
U= totogtuituy - Ly Byalysyals, sy Bsg Uy - Il lxslegls) B, sg T
_ 2 —1,-1
- (totvotal) . (tvltgl t(sl tvz)
R . ) S
Sty Ity tygly, B s s - Iyl ba bty 1) 15 15
=C1Cy-C3-Cy,

in Mod(Esl), where all C; are commutators. Here we have used the fact that
there are two diffeomorphisms G| and G» of 251 mapping (vq, 61) to (81, v2) and
1, y2, ¥3, v4, 81, 83, 85, 87) to (82, 84, 8¢, 83, X1, X2, X3, X4), respectively. (We note
that §; = ;41 fori = 1, 3, 5.) We may take, for example,

o G = tystuytsytuy - tuyls ty twy * twy 8315, tw, » and
O —1,-1
o Go=[li=1 1, 15, tyte;»
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where w; and e; are any curves with the property

e w is disjoint from v| and intersects each of §; and §3 transversely once,
e w is disjoint from §3 and intersects each of vy and §; transversely once,

e w3 is disjoint from §; and intersects each of vy and 83 transversely once, and
e ¢; is the obvious longitude of the torus bounded by d;.

Keeping track of the involved basic relators, one can easily see that the 8-holed

torus relator has 0 = —4 + 4(41) = 0. Since the relator to_lt;)] t5_12 -C1Cy =1 from
Lemma 9 has 0 = 4, we then conclude that the relator C{C2C3C4 = 1 in Mod(Zsl)
has 0 = 0+ 4 = 4. This prescribes a ¥s5— bundle over X4 with ¢ = 4 and a section of
self-intersection zero. In turn, we get X,—bundle over X4 with 0 = 4 (and a section
of self-intersection zero) for any g > 5.
g =4 and h =4 : We next construct a Xs—bundle over X4 without a section of
self-intersection zero. By [14, Theorem 1.3], there exists a genus—4 semi-simple holo-
morphic fibration over T2, with exactly two singular fibers, each consisting of a
genus—2 curve and an elliptic curve meeting transversally in two points. The total
space of this fibration is smoothly a product ¥» x ¥», so it has o = 0. Thus, we have
a relator

taylaypy 15, Ca = 1 in Mod(Zy4)

with 0 = 0, where C4 is a commutator. Since there exists an F e Diff" (Z4) with
F (a;) = b;, we can rewrite the above relator as

1= tal taz (tal taz)FC4
= (tay1a,)*[(tay1a) ™", F1Ca
= (i3, 13,) - C3Ca,,
where we have set C3 := [(1g, taz)_l, F]. We can now invoke Lemma 7 to replace the
first factor and get the relator

C1CyC3C4 =1 in Mod(XZy)

whichhaso =0+ 4 =4.
h=3,¢g>9and h =2,g > 15 : Consider the ¥3-bundle over X5 we constructed
above, which has ¢ = 4 and a section of self-intersection zero. By Theorem 4, we
can derive two more bundles from it: a ¥{5-bundle over ¥, and a X9—bundle over
33, both also with 0 = 4 and sections of self-intersection zero. In turn, we get a
Y;—bundle over X, with 0 = 4 forany g > 15, and a ¥;—bundle over X3 witho =4
for any g > 9.

All the surface bundles we constructed can be equipped with a Thurston symplectic
form. This completes the proof of Theorem 1. ]

Remark 15 In [19], Endo, Kotschick, Ozbagci, Stipsicz and the second author con-
structed surface bundles with positive signatures for all g > 3 and 4 > 9. On the other
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hand, Bryan and Donagi established in [10] that the base genus of a positive signature
surface bundle could be as small as 2. These results were partially improved by Lee in
[36], and most successfully by Monden in [41], who in particular produced positive
signature surface bundles for all g > 39 and h = 2.

Remark 16 Following the recipe of [2], our surface bundles yield further examples of
non-holomorphic surface bundles over surfaces with positive signatures at least for
every g > 16,h=2; g >10,h =3, g>6,h=4,g>4,h=5andg >3,h > 6.
In particular, we answer the question of existence of non-holomorphic X,—bundles
over X with o # 0 for all but finitely many pairs of (g, ). The signatures for all
of these non-holomorphic examples can be chosen to be 4. In fact, to the best of our
knowledge, there are no examples of holomorphic surface bundles with o = 4. Is
there an obstruction?

Remark 17 While the techniques of our paper can possibly be employed to generate
surface bundles with high Chern slope c% /c2 (equivalently, high o /e ratio) we do not
currently have any examples with slopes higher than the ones obtained by Catanese
and Rollenske in [15], making it all the more curious whether the Chern numbers of
any (symplectic) surface bundle over a surface always satisfy c% Jc2 <2+2/3.
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