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ABSTRACT15

This paper presents a new discretize-then-optimize (DTO) method for dynamic force inversion16

in a two-dimensional (2D) linear elastic, damped solid based on Runge-Kutta (RK) explicit time17

integration. Previous literature on DTO modeling for force or material inversion has predominantly18

focused on inversion methods based on Newmark implicit time integration. However, because19

implicit time integration may not be suitable for a problem with a large number of degrees of20

freedom (e.g., 3D wave problems), there is a need to study an alternative DTO force-inversion21

formulation that centers around the RK explicit time integration, leveraged by a diagonal mass22

matrix. This paper attempts to fill this gap and present the full detail of the new RK-DTO23

formulation for dynamic force inversion.24
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Our computational examples demonstrate that the new RK-DTO inversion simulator e�ectively25

reconstructs moving dynamic forces on the upper surface of the solid. It excels in e�ciency when26

dealing with a higher number of degrees of freedom (DOFs) and maintains accuracy even with27

increased DOFs and observation durations. A smaller sensor spacing enhances the accuracy of the28

inverted force profile in the RK-based inversion. The presented inversion method can e�ectively29

identify the profiles of dynamic moving loads even when measurement data include noise or when30

the values of material properties are not deterministic.31

INTRODUCTION32

Dynamic force inversion is useful in a wide range of engineering applications, including (i) the33

identification of incoming seismic waves, which could be modeled as equivalent body forces, in a34

truncated domain (Guidio and Jeong 2021a; Guidio et al. 2022) and (ii) the inversion of moving35

dynamic forces in modern infrastructure (e.g., smart highways) (Jiang et al. 2003; Au et al. 2004;36

Jeong et al. 2017; Guidio and Jeong 2021b; Ni et al. 2023). Such inverse problems utilize dynamic37

motions that are measured by sparsely spaced sensors.38

Partial di�erential equation (PDE)-constrained optimization allows for the estimation of a very39

large number of control parameters that discretize the unknown force over space and time. Thus,40

forces of any profile can be identified without prior information. PDE-constrained optimization41

requires the satisfaction of the first-order optimality conditions of a minimization functional, on42

which a PDE is side-imposed. Traditionally, a continuous form of PDE is side-imposed, and its43

adjoint and control equations are derived (via the variational method). Then, the continuous PDE44

of the adjoint equation is discretized, and solving the discretized adjoint problem constitutes the45

satisfaction of the optimal conditions. The order of this process is characterized as optimize-then-46

discretize (OTD).47

On the other hand, in the DTO process, a PDE’s discrete form is side imposed to the discrete48

form of a minimization functional, and the discrete adjoint and control problems are derived. The49

imposition of a PDE’s discrete form, which is the actual physics solved by a numerical model, leads50

to the accurate evaluation of the gradient of a minimization functional by the numerical optimizer.51

As a primary merit of the DTO modeling, the DTO method allows more compact modeling than the52

OTD method even though the complex wave PDEs and boundary conditions are still considered.53
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The DTO procedure was utilized for characterizing wave sources in solids (Walsh et al. 2013). Lloyd54

and Jeong (2018) investigated the OTD modeling to identify the full profile of body force function55

in space and time in a 1D solid bar, and its DTO counterpart (Lloyd and Jeong 2022). The authors56

also tested DTO inverse modeling for the reconstruction of loads moving along the upper boundary57

of a 2D solid (Lloyd et al. 2023). Guidio and Jeong (2021a) also investigated both OTD and DTO58

for characterizing traction distribution in space and time in a 2D solid of anti-plane motion. Based59

on the proven robustness and compactness of the DTO modeling, Guidio et al. (2022) studied60

the DTO method for characterizing incoming seismic waves (modeled as traction on absorbing61

boundary conditions) in a truncated domain of SH wave motion. It should be noted that all the62

aforementioned DTO force inversion works are based on the Newmark implicit time integration63

as a forward operator. However, the implicit time integration may be less suitable than explicit64

time integration for a problem with a large number of DOFs (e.g., 3D wave problems) and large65

matrices. In such problems, the amount of time needed to complete all of the computations can be66

markedly large. While the implicit time integration uses the e�ective sti�ness matrix, which cannot67

be diagonalized, the explicit time integration uses the inverse matrix of a diagonalized mass matrix,68

reducing the computation time. Thus, there is a need to study an alternative DTO force-inversion69

formulation that centers around the explicit time integration, taking advantage of a diagonal mass70

matrix. which could arise by virtue of the conventional finite element method (FEM) with mass71

lumping or spectral element method (SEM) (Komatitsch and Tromp 1999; Tromp et al. 2008).72

This paper attempts to meet this need and present the full detail of the new DTO formulation73

for the force inversion using Runge-Kutta (RK) explicit time integration. The RK method has74

been used for computationally e�cient forward modeling in problems that involve dynamic moving75

loads (Raftoyiannis et al. 2014; Lin and Trethewey 1990; Ding et al. 2012; Aloisio et al. 2022). To76

implement RK in the DTO modeling presented in this study, a forward operator models the RK77

explicit time integration and is side-imposed into a minimization functional via the multiplication78

with an adjoint solution vector. Details of how the adjoint problem of a discretized form is derived79

in the context of PDE-constrained optimization (i.e., the first-order optimality condition) and how80

the adjoint solver is implemented are discussed in this paper. Included in this discussion are how81

the gradient of the functional with respect to the discrete force parameter is derived in the DTO82
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process, and how it is implemented in the numerical inversion solver. As an illustrative case, we83

examine a force-inversion scenario aimed at determining the patterns of dynamic loads that travels84

the upper boundary of a 2D solid.85

To the merit of the presented RK-DTO formulation, it can be easily extended into various86

inverse problems (e.g., force inversion (Oh et al. 2023), inversion of incoming seismic waves (Jeong87

and Seylabi 2018; Ghahari et al. 2018a; Ghahari et al. 2018b), material characterization or geo-88

physical inversion (Askan et al. 2007; Aguiló et al. 2010; Kallivokas et al. 2013; Pakravan et al.89

2016), or inverse scattering (Jung et al. 2013; Jung and Taciroglu 2014; Jung and Taciroglu 2016;90

Chatzi et al. 2011; Guzina et al. 2003; Aquino et al. 2019)) in 2D/3D settings where the forward91

wave problems are solved by using the RK explicit time integration with diagonal mass matrices.92

Because the discreized forward operator, which already includes boundary conditions, heterogene-93

ity, and anisotropy, is side-imposed into a minization functional, the presented method is scalable94

for various boundary conditions (e.g., absorbing boundary conditions) or material models.95

PROBLEM DEFINITION96

A 2D solid model (Fig. 1) of a rectangular shape with length, L, and height, H is employed to97

present the RK-DTO method. The solid is fixed at the lower boundary (y = 0). The model can98

have various configurations, including homogeneous or layered materials. It begins in a state of rest,99

and dynamic distributed forces may be applied to the upper surface (y = H). The side surfaces are100

not subject to traction. In numerical experiments conducted to test the presented inverse modeling101

approach, the loads applied to the top surface are the target loads to be reconstructed by the102

inverse model and can be moving or stationary. In the model, sensors at the top surface record103

vibrational motion data, including both x and y components of wave responses. The inverse model is104

evaluated using these sensor measurements in example cases. The presented dynamic force inversion105

method aims to minimize the di�erence between measured displacements and model displacements106

computed using predicted loads. Measured data may be acquired through the use of accelerometers,107

distributed acoustic sensors (DAS) (Daley et al. 2013), or vision-based motion sensors (Ngeljaratan108

and Moustafa 2020). In this computational study, synthetic measurement data, created via wave109

simulations, are utilized. The solution of wave motions is numerically obtained via the FEM and110

the RK explicit time integration. Then, a new DTO modeling is examined for the force inversion111
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that includes the side imposition of the forward operator in the discrete form, the derivation of the112

discrete adjoint equation, and the implementation of the adjoint equation.113

Governing wave physics114

The plane-strain setting for 2D models is used in this study, and the wave motion in the domain115

� is governed by:116

Ò · ‡ ≠ –u̇ = flü in �, (1)117
118

where ‡ denotes the stress tensor, – denotes a damping coe�cient, fl is the mass density, and119

u = [ux, uy] represents the displacements. The moving loads applied, on the upper surface, are120

distributed forces ‡n = [fx(x, t); fy(x, t)], where fx(x, t) and fy(x, t) denote traction functions for121

0 Æ x Æ L and 0 Æ t Æ T , and n denotes the outward normal unit vector on the boundaries.122

It should be noted that while the boundary conditions for the model in this study repre-123

sent a specific case, our DTO inversion can model various other boundary conditions, such as124

wave-absorbing boundary conditions, to model the large extent of transportation infrastructure,125

like perfectly-matched-layers (Fathi et al. 2015; Kucukcoban and Kallivokas 2011) and consistent126

transmitting boundaries (Lee 2023).127

FORWARD MODELING128

The numerical solution of the wave motion is obtained through the Galerkin FEM. In pre-129

vious force-inversion research (Lloyd and Jeong 2018; Lloyd and Jeong 2022; Lloyd et al. 2023),130

the Newmark time integration scheme was used to compute displacements at discrete time steps.131

However, this study focuses on the RK method to compute displacements at each discrete time132

step. Because of the ease of inverting a diagonal mass matrix, the RK method generally requires133

less computational time than the Newmark method when the number of the time steps are equal134

to each other. The computational e�ciency of the RK time integration, relative to the Newmark135

time integration, becomes increasingly significant for larger models. However, for the given finite136

element mesh, convergence using the RK method is conditional based on the time step size. It is137

selected to satisfy the following Courant-Friedrichs-Lewy (CFL) condition for convergence, useful138

for explicit time integration schemes, C = vmax(�t)
rmin

Æ Cmax, where C is the Courant number; vmax139
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is the largest wave speed of the material(s) used in the model; �t is the time step size; rmin is140

smallest distance between nodes in the finite element model, and it decreases as the frequency141

of wave increases; and Cmax is the maximum allowable Courant number, typically equal to one.142

Choosing Cmax = 1, the time steps used in this study meet the following condition, �t Æ rmin
vmax

.143

The wave equation (1) for the solid can be expressed in a matrix form, by virtue of the finite144

element approximation, as:145

Ks(t) + Cṡ(t) + Ms̈(t) = f(t), (2)146
147

where s(t) = [ux(t); uy(t)]; ux(t) and uy(t) are the solution vectors in all nodes at time t; and K,148

C, and M are the global sti�ness, damping, and mass matrices. The element mass matrices are149

numerically integrated in each element by using the conventional Gauss quadrature and diagonalized150

by using the mass lumping technique. While letting y(t) = ṡ(t), the discrete form, Eq. (2), is151

multiplied through by M≠1 such that:152

≠ y(t) + ṡ(t) = 0 (3)153

M≠1Ks(t) + M≠1C ṡ(t)
¸˚˙˝
y(t)

+ s̈(t)
¸˚˙˝
ẏ(t)

= M≠1f(t). (4)154

155

The discrete form equations (3) and (4) can be rearranged so that the derivatives of s(t) and y(t)156

over time are alone on the left side of the equation gives:157

˙̄s(t) = Js̄(t) + M≠1f̄(t), (5)158
159

where160

s̄(t) =

S

WU
s(t)

y(t)

T

XV , ˙̄s(t) =

S

WU
ṡ(t)

ẏ(t)

T

XV , (6)161

J = ≠

S

WU
0 ≠I

M≠1K M≠1C

T

XV , M≠1 =

S

WU
I 0

0 M≠1

T

XV , f̄(t) =

S

WU
0

f(t)

T

XV . (7)162

163
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For every discrete n-th time step, equation (5) can be written:164

˙̄sn = Js̄n + M≠1f̄n. (8)165
166

The initial displacements and velocities are zero s̄0 = 0, and167

˙̄s0 = Js̄0 + M≠1f̄0 =

S

WU
0

M≠1f(t = 0)

T

XV . (9)168

169

Using the fourth-order RK method, the vector s̄n is computed each n-th time step, after the initial170

time, with following equation:171

s̄n = s̄n≠1 + �t
1
6 (k1 + 2k2 + 2k3 + k4) , (10)172

173

where174

k1 = ˆs̄
ˆt

(tn≠1, s̄n≠1) = Js̄n≠1 + M≠1f̄n≠1, (11)175

k2 = ˆs̄
ˆt

3
tn≠1 + �t

2 , s̄n≠1 + �t

2 k1

4
= J

3
s̄n≠1 + �t

2 k1

4
+ M≠1f̄n≠0.5, (12)176

k3 = ˆs̄
ˆt

3
tn≠1 + �t

2 , s̄n≠1 + �t

2 k2

4
= J

3
s̄n≠1 + �t

2 k2

4
+ M≠1f̄n≠0.5, (13)177

k4 = ˆs̄
ˆt

(tn, s̄n≠1 + �tk3) = J (̄sn≠1 + �tk3) + M≠1f̄n, (14)178
179

and180

M≠1f̄n≠0.5 =

S

WU
0

M≠1f
1
t = tn≠1 + �t

2

2

T

XV . (15)181

182

By expressing k1, k2, k3, and k4 in terms of s̄n≠1, f̄n≠1, f̄n≠0.5, and f̄n and substituting k1, k2,183

k3, and k4 into the RK method, Eq. (10) results in the following RK method equation written in184
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terms of s̄n≠1, f̄n≠1, f̄n≠0.5, and f̄n:185

s̄n = s̄n≠1 + �t

6 (J + 2L1 + 2L3 + L6) s̄n≠1 + �t

6 (I + 2L2 + 2L4 + L7) M≠1f̄n≠1186

+ �t

6 (2I + 2L5 + L8) M≠1f̄n≠0.5 + �t

6 M≠1f̄n, (16)187
188

where189

L1 = J + �t

2 JJ, L2 = �t

2 J, (17)190

L3 = J + �t

2 JL1, L4 = �t

2 JL2, (18)191

L5 = �t

2 J + I, L6 = J + �tJL3, (19)192

L7 = �tJL4, L8 = �tJL5. (20)193
194

Appendix I shows a detailed description of deriving L1 to L8 by expressing k1, k2, k3, and k4195

in terms of s̄n≠1, f̄n≠1, f̄n≠0.5, and f̄n. The RK method equation (16) can be written even more196

compactly:197

s̄n ≠ s̄n≠1 ≠ A1s̄n≠1 ≠ A2f̄n≠1 ≠ A3f̄n≠0.5 ≠ A4f̄n = 0, (21)198
199

where200

A1 = �t

6 (J + 2L1 + 2L3 + L6) , (22)201

A2 = �t

6 (I + 2L2 + 2L4 + L7) M≠1
, (23)202

A3 = �t

6 (2I + 2L5 + L8) M≠1
, (24)203

A4 = �t

6 M≠1
. (25)204

205

The RK method can now be shown in the compact equation:206

Qŝ ≠ Rf̂ = 0, (26)207
208
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where ŝ and f̂ are constructed for each time step as follows:209

ŝ =

S

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWU

s̄0

0

s̄1

0

s̄2

0
...

s̄N≠1

0

s̄N

T

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXV

, f̂ =

S

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWU

f̄0

f̄0.5

f̄1

f̄1.5

f̄2

f̄2.5
...

f̄N≠1

f̄N≠0.5

f̄N

T

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXV

, (27)210

211

where N is the final time step. The vectors f̄0 to f̄N are subvectors of the vector f̂ and contain zeros212

and forces at every node ordered as in equation (7) at each half time step. The vectors s̄0 to s̄N213

are subvectors of the vector ŝ and contain the displacements and velocities at every node ordered214

as in equation (6) at each full time step. Displacements and velocities at the half time steps are215

not needed to solve the RK method equation (21), so the subvectors for the half time steps in ŝ are216

treated as zero vectors. There are x- and y-components of displacement, velocity and force so the217

s̄ and f̄ subvectors each have the dimension 2(2jN ) ◊ 1 where jN is the number of nodes except for218

those with Dirichlet boundary conditions. Since there are subvectors in ŝ and f̂ for the initial step,219

each half time step, and each full time step, there are 2N + 1 subvectors. Thus, ŝ and f̂ each have220
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the dimensions of 2(2jN )(2N + 1) ◊ 1. The matrix Q is defined as:221

Q =

S

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWU

I 0 0 0 0 0 . . . 0 0 0

0 0 0 0 0 0 . . . 0 0 0

≠I ≠ A1 0 I 0 0 0 . . . 0 0 0

0 0 0 0 0 0 . . . 0 0 0

0 0 ≠I ≠ A1 0 I 0 . . . 0 0 0

0 0 0 0 0 0 . . . 0 0 0
...

...
...

...
...

... . . . ...
...

...

0 0 0 0 0 0 . . . I 0 0

0 0 0 0 0 0 . . . 0 0 0

0 0 0 0 0 0 . . . ≠I ≠ A1 0 I

T

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXV

. (28)222

223

The matrix R is defined as:224

R =

S

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWU

0 0 0 0 0 0 . . . 0 0 0

0 0 0 0 0 0 . . . 0 0 0

A2 A3 A4 0 0 0 . . . 0 0 0

0 0 0 0 0 0 . . . 0 0 0

0 0 A2 A3 A4 0 . . . 0 0 0

0 0 0 0 0 0 . . . 0 0 0
...

...
...

...
...

... . . . ...
...

...

0 0 0 0 0 0 . . . A4 0 0

0 0 0 0 0 0 . . . 0 0 0

0 0 0 0 0 0 . . . A2 A3 A4

T

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXV

. (29)225

226

The Q and R matrices have the same order, 2(2jN )(2N + 1) ◊ 2(2jN )(2N + 1).227

INVERSE MODELING228

To reconstruct wave sources, guessed loads are iteratively estimated to minimize the misfit229

between the measured motions and the model wave responses that are computed by the forward230
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model when the guessed loads are applied.231

Discrete objective and Lagrangian functionals232

The continuous form of the objective functional to be minimized is:233

L =
⁄ T

0

qNÿ

q=1
(umq ≠ uq) · (umq ≠ uq)dt, (30)234

235

where umq is the displacement recorded at the q-th measurement point, uq is its calculated coun-236

terpart at the same location induced by guessed force, and qN is the total number of measurement237

points. Equation (30) is rewritten with the temporal integration in the discrete fashion:238

L̂ = (̂sm ≠ ŝ)T B(̂sm ≠ ŝ), (31)239
240

where ŝm is the vector, which contains measured displacements and velocities at sensors and discrete241

points in time, and ŝ is the vector of discrete displacements and velocities calculated using the242

forward model and the guessed loading. The matrix, B, is a block diagonal matrix with Bs on the243

diagonal:244

B =

S

WWWWWWWWWWWWWWWWWWWWU

Bs 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0

0 0 Bs . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . Bs 0 0

0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 Bs

T

XXXXXXXXXXXXXXXXXXXXV

, (32)245

246

where247

Bs =

S

WU
�tB 0

0 0

T

XV , (33)248

249
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corresponding to250

s̄n =

S

WU
sn

ṡn

T

XV . (34)251

252

The matrix B contains ones along its diagonal elements, which correspond to the horizontal and253

vertical components of the nodes where sensors are positioned, while all other elements are zeros.254

The configuration of B leads to the comparison of measured and computed displacements at sensor255

locations being the basis for the determination of the misfit using the discrete objective functional,256

Eq. (31). Even though the RK-based forward model computes velocities of particle motions at each257

time step, the velocities are not considered in the objective functional in this work. Of course, the258

velocities ṡn can potentially be considered in the objective functional by using the following:259

Bs =

S

WU
0 0

0 �tB

T

XV . (35)260

261

In tests of the inversion method that include velocities in the object functional, it has been observed262

that the inversion is much slower in terms of the number of iterations to achieve the same value of263

the error norm per Eq. (50) than using just displacements. It is observed that the final inversion264

accuracy is about the same for both displacement and velocity measurement-based approaches, and265

only the displacements-based approach is used in the presented numerical examples.266

Imposing Eq. (26), which is the compact expression of the considered RK time integration,267

which arises after the global assembly of element matrices, onto the discrete objective functional268

using a Lagrange multiplier ⁄̂
T gives the following discrete Lagrangian functional:269

Â = (̂sm ≠ ŝ)T B(̂sm ≠ ŝ) ≠ ⁄̂
T 1

Qŝ ≠ Rf̂
2

, (36)270
271

where ⁄̂
T =

5
⁄0

T 0 ⁄1
T 0 . . . ⁄N≠1

T 0 ⁄N
T

6
. The vector, ⁄̂

T , has the order 1 ◊272

2(2jN )(2N + 1). Like ŝ, ⁄̂
T contains subvectors that represent components at each time step with273

zero vectors for subvectors at the half time steps.274
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The first-order optimality conditions275

The gradient of the objective functional is used to iteratively update guessed forces for all spatial276

and temporal points in a given problem. To determine the gradient of the objective functional each277

inversion iteration, the following optimality conditions are applied to the Lagrangian functional,278

Eq. (36):279

ˆÂ
ˆ⁄̂

= 0,
ˆÂ
ˆŝ = 0,

ˆÂ
ˆ f̂

= 0. (37)280
281

The first optimality condition282

Taking the partial derivative of the Lagrangian functional, Eq. (36), over the Lagrange variable,283

⁄̂, and the optimality condition is satisfied since the discrete forward problem, Eq. (26), is resolved284

by our forward wave solver:285

ˆÂ
ˆ⁄̂

= ≠Qŝ + Rf̂ = 0. (38)286
287

The second optimality condition288

Enforcing the condition that the partial derivative of Â with respect to the state solution ŝ289

must vanish reveals the adjoint equation in the discrete form to be:290

ˆÂ
ˆŝ = 2B(̂s ≠ ŝm) ≠ QT ⁄̂ = 0

¸ ˚˙ ˝
discrete adjoint equation

, (39)291

292
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where QT is as follows:293

QT =

S

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWU

I 0 (≠I ≠ A1)T 0 0 0 . . . 0 0 0

0 0 0 0 0 0 . . . 0 0 0

0 0 I 0 (≠I ≠ A1)T 0 . . . 0 0 0

0 0 0 0 0 0 . . . 0 0 0

0 0 0 0 0 0 . . . 0 0 0

0 0 0 0 I 0 . . . 0 0 0
...

...
...

...
...

... . . . ...
...

...

0 0 0 0 0 0 . . . I 0 (≠I ≠ A1)T

0 0 0 0 0 0 . . . 0 0 0

0 0 0 0 0 0 . . . 0 0 I

T

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXV

. (40)294

295

The derivation of the discrete adjoint equation is straightforward so it is not shown in this paper296

(the background of the derivation of the discrete adjoint problem is detailed by Guidio et al. (2022)).297

⁄n can be determined for each time step in reverse order starting from the final time step, n = N :298

⁄N = 2Bs(sN ≠ smN ). (41)299
300

For time steps n = N ≠ 1, N ≠ 2 ... 0, this work computes:301

⁄n = 2Bs(sn ≠ smn) ≠ (≠I ≠ A1)T ⁄n+1. (42)302
303

Namely, the adjoint solver is straightforwardly implemented via equations (41) and (42).304

The third optimality condition305

The partial derivative of Â over f̂ is:306

ˆÂ
ˆ f̂

= RT ⁄̂. (43)307
308
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The gradient of L̂ over the control parameter vector, f̂ , for all points in space in time can be309

evaluated as:310

ĝ = RT ⁄̂, (44)311
312

where ĝ has the order 2(2jN )(2N + 1) ◊ 1, the same order as f̂ , and contains gradient values for313

all points in space and time (including even half time steps that are required in the RK forward314

modeling).315

The parameter-updating scheme316

The estimated force is updated via the conjugate gradient method as follows:317

f̂ i+1 = f̂ i + hid̂i, (45)318
319

where f̂ i represents the estimated load at the i-th iteration, hi signifies a step size, and d̂i denotes320

the search direction, determined through the subsequent conjugate-gradient computation: for i = 0321

and every 50-th iteration, d̂i = ≠ĝi, and for i Ø 1 except every 50-th iteration, d̂i = ≠ĝi +322

ĝi·ĝi
ĝi≠1·ĝi≠1

d̂i≠1. Thus, the search direction is reset at every 50-th iteration to ≠ĝi to avoid errors323

potentially accumulated over the iterations of calculating the search direction (Kang and Kallivokas324

2010).325

Assuming that the target load is reasonably situated on the solid’s upper surface, equation (45)326

for parameter updates can be adjusted to modify the guessed loading exclusively at surface nodes327

rather than every node throughout the solid domain. The modified parameter update equation is328

the following:329

f̂ i+1 = f̂ i + hiDd̂i. (46)330
331

Herein D represents a diagonal matrix with ones at its diagonal elements corresponding to nodes332

situated on the upper surface and zeros elsewhere. It was found in a previous investigation of333

Newmark-based moving-force inversion (Lloyd et al. 2023) that updating the guessed forces at the334

top surface of the solid, as in equation (46), yields more accurate results than determining the335
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guessed forces at all nodal points in the solid. The ideal step size hi, which corresponds to the336

one causing the greatest reduction in the objective functional upon updating the estimated load, is337

calculated using Newton’s scheme as detailed by Lloyd and Jeong (2018). Parameter updating is338

stopped if the total number of iterations reaches a limit (e.g., 300). Alternatively, it can be stopped339

if the value of the misfit functional, L̂, at a given iteration decreases less than 1% of that at a340

previous iteration over three consecutive times.341

NUMERICAL EXPERIMENTS342

This paper compares the performance of the inversion algorithm for reconstructing moving loads343

using the RK forward simulation with that of the reference algorithm using the Newmark forward344

simulation. In each numerical experiment, moving loads serve as target loads to reconstruct. The345

FEM models in the numerical experiments use 9-node square, quadratic elements of an element346

size of 1 m. Using equation (46), it is assumed that the y-position of all moving loads is known to347

be at the top surface of the solid prior to beginning the reconstruction of the loading.348

However, all other information about the target—e.g., the distributions of fx(x, H, t) and349

fy(x, H, t) over space and time—is unknown prior to reconstruction. An initial guess is f̂0 = 0, i.e.,350

the components of force in all space and time are initially predicted to be zero.351

Targeted dynamic forces352

The targeted moving loads, for 0 Æ t Æ T , are defined as:353

fx(x, H, t) =
kNÿ

k=1
Px(t)ke≠ (x≠b(t)k)2

2dk
2

, 0 Æ x Æ L (47)354

fy(x, H, t) =
kNÿ

k=1
Py(t)ke≠ (x≠b(t)k)2

2dk
2

, 0 Æ x Æ L (48)355

356

where kN denotes the number of the forces in motion; Px(t)k and Py(t)k denote the horizontal and357

vertical amplitudes at the peak location of the k-th force, respectively; b(t)k is the time-varying358

position of the peak of the k-th force; and dk determines the horizontal width of the k-th force. The359

full width at a tenth of the maximum (FWTM), as illustrated in Figure 2, is employed to estimate360
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the distribution width of the k-th load. It is related to dk as follows:361

dk = FWTM of the k-th force targeted
2
Ô

2 ln 10
. (49)362

In this study, the presented inversion method is tested using example cases in which a set363

of three (i.e., kN = 3) targeted moving forces are exerted to the upper boundary of 2D solids364

with varied material properties. The three targeted moving loads (Loads A, B, and C) have365

vertical and horizontal components with spatial distributions, which vary in time, along the upper366

boundary where the FWTM of each load is 4.29 m (d = 1.0 m) as shown in Figs 4a and 4b. The367

horizontal component for each moving force has the same position and width of a central peak as368

its corresponding vertical one. Loads A, B, and C have di�erent accelerations, initial velocities,369

initial positions, and amplitudes as shown below.370

• The vertical component of force A is Py(t)1 = ≠[400 sin(2fi(15)t)+18000] N/m. Its horizontal371

counterpart is Px(t)1 = ≠[400 sin(2fi(15)t) + 5504.59 + (2700 + 1.225(25 + 3t)2)] N/m. The372

x-location of the central peak for both Px(t)1 and Py(t)1 is b(t)1 = [8 + 25t + 0.5(3)t2] m.373

Plugging Py(t)1, Px(t)1, and b(t)1 into Eqs. (47) and (48) fully characterize Load A.374

• Load B has Py(t)2 = ≠[300 sin(2fi(10)t) + 22000] N/m and Px(t)2 = ≠[300 sin(2fi(10)t) ≠375

6727.83 ≠ (3300 + 1.225(≠30 ≠ 3t)2)] N/m with the central peak location b(t)2 = [33 ≠ 30t ≠376

0.5(3)t2] m.377

• Load C has Py(t)3 = ≠[600 sin(2fi(5)t) + 32000] N/m and Px(t)3 = ≠[600 sin(2fi(5)t) ≠378

19571.9 + (4800 + 1.225(40 ≠ 6t)2)] N/m with the central peak location b(t)3 = [≠45 ≠ 40t ≠379

0.5(6)t2] m.380

The time-varying amplitudes, Px(t) and Py(t), have static and dynamic components. When it381

comes to the identification of moving loads on a roadway, the static part of Py(t) may represent382

the weight of a vehicle while its dynamic part can model vertical forces such as those induced by383

the powertrain vibrations.384
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Assessment of the inversion error385

To evaluate the inversion performance, the discrepancy between the guessed and targeted force386

is determined by the normalized mean absolute error equation:387

E =
qN

n=1
qjN

j=1 |fnjtarget ≠ fnjestimate |
qN

n=1
qjN

j=1 |fnjtarget |
, (50)388

389

where fnjtarget denotes a targeted nodal force at n-th timestep and j-th node that is resulted from390

the finite element approximation of the targeted traction in Eqs. (47) and (48). fnjestimate denotes391

its estimated counterpart. It has been observed that the errors computed using the normalized392

mean absolute error equation (50) may have large values even when plots of the reconstructed393

loads visually compare well to plots of the target loads. Nonetheless, the normalized mean absolute394

error serves as a useful metric for assessing the progression of inversion results over iterations and395

for comparing results across various cases that share the same target loads.396

Example 1: In-depth inspection of the performance of RK-based inversion and397

Newmark-based inversion398

For Example 1, the accuracy of the RK-based inversion is compared to that of the Newmark-399

based inversion. Herein the three target moving loads are applied to a 2D solid that is 30 m wide400

and 10 m in height and is layered with two material layers representing multi-layered ground soil.401

In the initial test, Layer 1, at the upper part (y = 5 to 10 m) of the solid, consists of Material 1402

listed in Table 1 with a damping constant of – = 2000 kg/(m3 s), and Layer 2, at the lower part403

(y = 0 to 5 m), consists of Material 2 in Table 1 with a damping constant of – = 2500 kg/(m3 s).404

�t = 0.002 s is used for both the RK and Newmark-based models in Example 1. Using 1000405

time steps, the forward models have a duration of 2 s. Based on the maximum wave speed in the406

problem, vmax = 178.23 m/s, and the minimum distance between nodes, rmin = 0.5 m, the CFL407

condition requires that �tmax = 0.00281 s, which is met by �t of 0.002 s. Sensors are spaced every408

three meters along the top surface of the solid.409

First, the results of the forward model using the RK method and the Newmark method are410

compared. Figure 3 shows the displacements computed at the top center point on the rectangular411

solid, (15, 10) m, by the forward model for the target loading using the Newmark method with412
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no lumping of the mass matrix and the RK method with the lumped mass matrix. They are in413

excellent agreement with each other.414

Figure 4 shows the contour plots of force in the x- and y-directions in space and time for the415

target and identified loads produced after 300 iterations by both the RK and Newmark inversions.416

Fig. 4 shows that, after 300 iterations, both the Newmark-based inversion and the RK-based417

inversion produce reconstructions of the loading that capture the number of loads, the changing418

positions and widths of the loads, and whether they are positively or negatively directed. In419

Example 1, the values of the error norm, E , after 300 iterations are 0.73 for the Newmark inversion420

and 0.70 for the RK inversion.421

Figure 5 shows the snapshots of the target loading compared with the identified one produced422

after 300 iterations using the RK-based inversion and the Newmark-based inversion at two di�erent423

time steps. Figure 6 shows plots of the amplitude for the loading at all time steps at two points on424

the top surface, (15, 10) m (16.5, 10) m, for the duration of the simulation. The point (15, 10) m is425

the location of one of the sensors, and the point (16.5, 10) m is a point on the top surface midway426

between two sensors. While both inversion methods show a greater tendency to underestimate the427

amplitudes of the distributed loads at points the more distant they are from the sensors, the RK-428

based inversion tends to underestimate the loading even more than the Newmark-based inversion429

does. It should be considered that the force parameters in every half time step are inverted when430

the RK-based inversion is performed, while the Newmark inversion updates force parameters at431

every whole time step only. Thus, the control-variable space of the force inversion problem becomes432

larger for a given observation duration when the RK inversion is used than when the Newmark433

inversion is used. The more control parameters lead to stronger solution multiplicity. Namely,434

122,000 parameters (=61 nodes on the top surface ◊ 1,000 time steps ◊ 2 (counting every half time435

steps) are inverted in the RK inversion in contrast to 61,000 parameters for the Newmark inversion.436

The tendency for the inverted force profile to underestimate the target profile more when we use437

the RK inversion than the Newmark inversion could be due to the increased solution multiplicity.438

Overall, the results for the two inversion methods have many similarities to each other and439

predict the existence of the moving loads, their numbers, and their positions well. However, the440

average elapsed time per iteration for this example using the RK inversion is 15.81 s/iteration which441
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is a 75.91 percent decrease from the 65.67 s/iteration average for the Newmark inversion. For all442

simulations in this paper, we used a desktop computer, of which CPU is 2.71 GHz, in a non-parallel443

mode on MATLAB.444

To investigate the e�ect of material properties and damping on inversion results, the RK and445

Newmark-based inversion methods are tested for cases in which the solid is homogeneous with446

varying the material and damping conditions. The plots in Fig. 7 show that while the number of447

inversion iterations it takes for the change in error to become level o� increases as the wave speeds448

increase (i.e., Material 2 vs 3) but decreases as the damping coe�cient increases for both the449

RK and Newmark inversions. The comparison between the performance of the RK and Newmark450

inversions in Fig. 7 also shows that the accuracy of the RK inversion is close to the Newmark451

inversion regardless of the value of the damping coe�cient of the solid.452

As shown in Table 1, keeping the element size the same while increasing the wave speed of453

the material in the model may require decreasing the time step size in the RK method in order to454

satisfy the CFL condition. Decreasing the time step size for the RK inversion as the wave speeds455

in the example cases increase requires increasing the number of time steps in the model to model456

the same duration. Changing the time step size is not required when using the Newmark-based457

inversion method. Therefore, the number of parameters to invert each iteration may be greater458

using RK inversion than Newmark inversion for the same problem, and, when the wave speeds are459

su�ciently large, the elapsed times may be less for the Newmark inversion than the RK inversion460

method. Testing the inversion methods when the solid consists of di�erent materials shows that,461

for a problem with the given number of degrees of freedom (DOFs), RK inversion is less time-462

consuming than Newmark inversion when the solid consists of Materials 1 to 3 but more time463

consuming than Newmark inversion when the solid consists of Material 4. However, there are other464

factors contributing to the elapsed time of the inversion. To clarify this aspect, Example 2 examines465

the relationship between the elapsed time of the RK and Newmark inversions and the number of466

DOFs in a problem.467
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Example 2: Elapsed time for RK and Newmark inversions468

In Example 2, the moving loads are applied to rectangular homogeneous solids of varied sizes469

and for varied durations to test the RK and Newmark inversions, thus, changing the force-function470

discretization in both space and time. The solid consists of Material 1, and the time step size and471

the element size are �t = 0.002 s and 1 m, respectively, in each case of Example 2. The sensors472

are spaced one every four meters. In Example 2, the RK and Newmark inversions reconstruct the473

sample moving loads with four di�erent durations, 1 to 4 seconds, modeled using 500 to 2000 time474

steps, respectively. Eight di�erent sizes of the domain are given to the solid, and their dimensions475

are listed in Table 2. The DOFs and time steps for each of the total 22 cases in Example 2 are476

listed in Table 2.477

Figure 8 shows plots of the error given 300 inversion iterations using the RK inversion for a set478

of cases. Figure 8a shows the progress in terms of the inversion error for the RK inversion for four479

cases that have the same duration using the same number of time steps but di�er with regard to480

the number of DOFs in the solid. Figure 8b shows how the RK inversion progresses for four cases,481

which have the same number of DOFs but di�er with regard to the number of time steps with the482

same time step sizes. Figures 8a and 8b show that the increased DOFs and observation durations483

do not a�ect the inversion accuracy.484

Additionally, increasing the DOFs leads to greater advantages in elapsed time for the RK485

inversion over the Newmark inversion. Figure 9a indicates that the elapsed time of the Newmark486

inversion increases with respect to the DOFs in the second order while that of the RK inversion487

grows in a linear fashion. Figure 9b shows that the elapsed time increases linearly with respect to488

increasing the number of time steps for both the RK and Newmark inversion methods. The plots489

in Fig. 9 present that the benefit of using the RK inversion, compared to the Newmark inversion,490

with respect to elapsed time significantly increases as the number of nodes increases in the problem491

and should be even more significant when 3D problems are considered. In Example 1, it was492

demonstrated that the RK method may require more time steps than the Newmark method if the493

RK model’s time step size is smaller in order to ensure stability. However, as the spatial DOFs494

are increased, the elapsed time grows quadratically for the Newmark method while increasing the495

number of time steps when using the RK method only increases the elapsed time linearly making496
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the RK inversion method preferable, even for problems that require more time steps, when the497

number of DOFs cause the Newmark inversion method to have very large run times.498

Example 3: Performance of RK and Newmark-based inversions with respect to499

sensor spacing500

To study the e�ect of sensor spacing, the RK inversion is examined for the same problem used501

in Example 1 but with an additional case where a sensor is positioned at every 1.5 meters instead502

of one sensor every three meters. The results show that decreasing the sensor spacing increases503

the inversion accuracy of our RK inversion. Figure 10a shows snapshots of horizontal and vertical504

components of the target loading and reconstructed loading produced after 300 iterations using505

the RK inversion when the sensors are spaced every three meters, as in Example 1, and when the506

sensors are spaced every one and a half meters. It shows that using a smaller sensor spacing, for the507

RK inversion, generally gives rise to an inverted force profile closer to the target profile. Figure 10b508

shows the error vs. iteration plots for the RK inversion when the sensors are spaced every three509

meters and when the sensors are spaced every one and half meters, and the error value is smaller510

for sensor spacing of 1.5 m than 3 m.511

Example 4: The e�ect of noise in sensor data on the performance of the RK512

inversion513

In the previous examples, the inversion takes perfect displacement data as input to reconstruct514

the applied moving sources. To test the RK inversion method when only imperfect data can515

be obtained, the problem presented in Example 1 is changed such that noise is added to the516

displacement data for each sensor in both x≠ and y≠ directions as follows:517

u
noised
m (t) = um(t) + A u

max
m ÷, (51)518

where A is an N -component-array of random numbers ranging from 0 to 1 with the normal distri-519

bution; u
max
m is the maximum value of measured displacement um at the sensor for either x or y520

direction; and ÷ is the noise level (e.g., ÷ = 0.05 for 5% noise level). Alternatively for the introduc-521

tion of noise, u
m-s
m may be used in Eq. (51) instead of u

max
m , where u

m-s
m denotes the mean square522

value of a signal um(t). Since the value of u
max
m is larger than u

m-s
m , using u

max
m in Eq. (51) makes523
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for a more severe condition at a given noise level than using u
m-s
m .524

The RK inversion method is tested given the case presented in Example 1 but with sensor data525

having noise levels of 2%, 5%, and 10%. Figure 11a shows that the error decreases in each case but526

the decrease in the error stalls earlier the greater the noise level is. The reconstructed loading tends527

to underestimate the target loading more when more noise is added which can be seen in Fig. 11b528

presenting the reconstructed forces in the x≠ direction over time at a point on the upper boundary529

after 300 iterations for various noise level cases. Figs. 13a and 13b show the target forces in the x≠530

and y≠ directions respectively while Figs. 13c and 13d show the reconstructed loading after 300531

iterations given sensor data with 10% noise. Figure. 13 shows that although the error, when the532

sensor data noise level is 10%, does not diminish to the same extent that the error diminishes when533

noise is not introduced, the contour plot of the reconstructed loading still captures the number of534

moving sources applied as well as their directions, locations, and the timing of their movements.535

Example 5: The e�ect of the uncertainty in a material property on the perfor-536

mance of the RK inversion537

In all previous examples, the material properties in the problems are considered to be known538

for the purpose of inverse modeling. To test the RK inversion method when the uncertainty in a539

material property is introduced, the inversion is tested for the problem considered in Example 1540

for various true material property values, shown in Table 1, while assuming in the inverse model541

that the solid is homogeneous and consists of Material 1.542

• In Example 5, Case 5a gives a case in which the sensor data, used as input for the inversion,543

are the displacements produced by the target loading when the solid is homogeneous and544

consists of Material 1. The inverse model, then, assumes correctly that the solid is homoge-545

neous and consists of Material 1. Case 5a presents a case without model error in modeling546

the solid material.547

• In Case 5b, the sensor data are produced by the target loading when the solid is homogeneous548

and consists of Material 2. Since the inverse model assumes that the solid consists of Material549

1, the error modeling vp and vs is 1.96% and -3.87% respectively.550

• In Case 5c, the sensor data are produced by the target loading when the solid is homogeneous551
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and consists of Material 5. The inverse model, again, assumes that the solid consists of552

Material 1 and the error modeling vp and vs is -6.21% and -11.6% respectively.553

The error plot in Fig. 12a compares the error over 300 iterations for Case 5a, Case 5b, and Case 5c.554

Increasing the discrepancies in the material properties leads to more error in the inversion results555

which can be seen in the amplitudes of the reconstructed forces plotted over time for various model556

error cases in Fig. 12b. Figs. 13e and 13f indicate that the reconstructed loading even for Case557

5c after 300 iterations reconstructs the number of moving sources, their directions, their locations,558

and the timing of their movements well.559

SUMMARY560

As the core contribution of this paper, the DTO inversion formulation based on the RK forward561

time integration is fully described for the first time. The RK forward simulation is represented by562

a discrete forward operator, centered around the Q matrix, and its detail is fully disclosed in this563

paper. The forward operator is side-imposed into a minimization functional via the multiplication564

with an adjoint solution vector, and the formulation of the adjoint and control equations are de-565

tailed. Thus, experienced users can understand the formulation and implement it straightforwardly.566

The presented numerical scheme will be scalable to a wider array of inverse problems where the567

forward problems are resolved via the RK wave simulation.568

The numerical experiments demonstrate the robustness of the RK-inversion in a 2D plane-strain569

solid. The force parameters are inverted for every half-time step when the RK-based inversion is570

performed while the Newmark inversion identifies those in every time step. As the spatial DOFs571

are increased, the elapsed time grows quadratically for the Newmark method while increasing the572

number of time steps when using the RK method only increases the elapsed time linearly making573

the RK inversion method preferable, even for problems that require more time steps, when the574

number of DOFs cause the Newmark inversion method to have very large run times. Thus, the575

RK-based source inversion is more e�cient than the Newmark inversion when the number of DOFs576

becomes larger in problems. The increased DOFs and observation durations do not a�ect the577

inversion accuracy. Using a smaller sensor spacing, for the RK inversion, generally gives rise to an578

inverted force profile closer to the target profile. The presented inversion method can e�ectively579
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identify the profiles of dynamic moving loads even when measurement data include noise or when580

the values of material properties are not accurately modeled in the inversion simulator.581

The presented RK-DTO formulation can be easily extended into other inverse problems in582

2D/3D settings, where various boundary conditions (e.g., truncated boundary) and material mod-583

els (e.g., heterogeneity, anisotropy, and damping) are comprehensively modeled in the presented584

forward operator Q matrix, and the forward wave problems are solved by using the fourth-order585

RK explicit time integration.586
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APPENDIX I. ON THE DERIVATION OF L1 TO L8587

To get the compact form of the RK method equations (26), first, the expressions for k1, k2,588

k3, and k4 are written in terms of s̄n≠1, s̄n≠1, s̄n≠0.5, and s̄n and substituted into the RK method589

equation (10). This results in a RK method equation (21) written in terms of s̄n≠1, s̄n≠1, s̄n≠0.5,590

and s̄n and then the compact form of the RK method (26). The expressions for k1, k2, k3, and k4591

are written in terms of s̄n≠1, s̄n≠1, s̄n≠0.5, and s̄n the following way:592

k1 = ˆs̄
ˆt

(tn≠1, s̄n≠1) = Js̄n≠1 + M≠1f̄n≠1. (I.1)593

k2 = ˆs̄
ˆt

3
tn≠1 + �t

2 , s̄n≠1 + �t

2 k1

4
= J

3
s̄n≠1 + �t

2 k1

4
+ M≠1f̄n≠0.5594

= J
5
s̄n≠1 + �t

2
1
Js̄n≠1 + M≠1f̄n≠1

26
+ M≠1f̄n≠0.5595

= J
53

I + �t

2 J
4

s̄n≠1 + �t

2 M≠1f̄n≠1

6
+ M≠1f̄n≠0.5596

=
3

J + �t

2 JJ
4

s̄n≠1 + �t

2 JM≠1f̄n≠1 + M≠1f̄n≠0.5597

= L1s̄n≠1 + L2M≠1f̄n≠1 + M≠1f̄n≠0.5, (I.2)598
599

where600

L1 = J + �t

2 JJ and L2 = �t

2 J. (I.3)601
602

603

k3 = ˆs̄
ˆt

3
tn≠1 + �t

2 , s̄n≠1 + �t

2 k2

4
= J

3
s̄n≠1 + �t

2 k2

4
+ M≠1f̄n≠0.5604

= J
5
s̄n≠1 + �t

2
1
L1s̄n≠1 + L2M≠1f̄n≠1 + M≠1f̄n≠0.5
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+ M≠1f̄n≠0.5605

= J
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2 L1

4
s̄n≠1 + �t

2 L2M≠1f̄n≠1 + �t

2 M≠1f̄n≠0.5

6
+ M≠1f̄n≠0.5606

=
3

J + �t

2 JL1

4
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=
3

J + �t
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4
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2 JL2M≠1f̄n≠1 +
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2 J + I
4

M≠1f̄n≠0.5608

= L3s̄n≠1 + L4M≠1f̄n≠1 + L5M≠1f̄n≠0.5, (I.4)609
610
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where611

L3 = J + �t

2 JL1, L4 = �t

2 JL2, and L5 = �t

2 J + I. (I.5)612
613

614

k4 = ˆs̄
ˆt

(tn, s̄n≠1 + �tk3) = J (̄sn≠1 + �tk3) + M≠1f̄n615

= J
Ë
s̄n≠1 + �t

1
L3s̄n≠1 + L4M≠1f̄n≠1 + L5M≠1f̄n≠0.5

2È
+ M≠1f̄n616

= J
Ë
(I + �tL3) s̄n≠1 + �tL4M≠1f̄n≠1 + �tL5M≠1f̄n≠0.5

È
+ M≠1f̄n617

= (J + �tJL3) s̄n≠1 + �tJL4M≠1f̄n≠1 + �tJL5M≠1f̄n≠0.5 + M≠1f̄n618

= L6s̄n≠1 + L7M≠1f̄n≠1 + L8M≠1f̄n≠0.5 + M≠1f̄n, (I.6)619
620

where621

L6 = J + �tJL3, L7 = �tJL4, and L8 = �tJL5. (I.7)622
623
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TABLE 1. Material properties and related RK method’s maximum allowable time step

conditions (rmin = 0.5 m).

Material E (GPa) fl (kg/m3) ‹ vp (m/s) vs (m/s) �tmax (s)
Material 1 0.045 1,700 0.25 178.23 102.90 0.00281
Material 2 0.055 2,000 0.20 174.80 107.04 0.00286
Material 3 0.550 2,000 0.20 552.77 338.50 0.00091
Material 4 2.500 2,000 0.20 1178.51 721.69 0.00042
Material 5 0.065 2,000 0.20 190.03 116.37 0.00263
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TABLE 2. Example 2: Domain dimensions for cases.

Size Width (m) Height (m) Horizontal
nodes

Vertical
nodes

Spatial
nodes DOF Number of time steps

Size 1 8 7 17 15 255 510 500, 1500
Size 2 8 8 17 17 289 578 500, 1000, 1500, 2000
Size 3 8 9 17 19 323 646 500, 1500
Size 4 8 10 17 21 357 714 500, 1500
Size 5 8 11 17 23 391 782 500, 1500
Size 6 16 16 33 33 1089 2178 500, 1000, 1500, 2000
Size 7 24 24 49 49 2401 4802 500, 1000, 1500, 2000
Size 8 32 32 65 65 4225 8450 500, 1500
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Waves

in 2D solids 

: Sensors to monitor vibrational motions. 

Moving dynamic force

(0,0)

Moving direction 

Fig. 1. A stratified solid subjected to a dynamic distributed load in motion on its upper

surface. The lower boundary of the solid is immovably fixed, and wave movements are

recorded at an upper boundary.
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Moving or stationary 
vibrational traction

Maximum
1/10 of maximum 
force amplitude

FWTM

Fig. 2. A distributed moving or stationary traction. FWTM denotes the full width at a

tenth of the maximum force amplitude.
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Fig. 3. Example 1: Displacement vs. time plots for displacements computed by the forward

model at point (15,10) m for the target loading using the Newmark method and the RK

method: (a) ux and (b) uy.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Example 1: (a) and (b) the target forces in the x and y directions; (c) and (d)

the inverted counterparts using the Newmark method; (e) and (f) the inverted counterparts

using the RK method.
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Fig. 5. Example 1: The target and inverted loads in the x and y directions at (a) t = 0.5 s

and (b) t = 1.5 s after 300 iterations.
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Fig. 6. Example 1: The target and predicted force over time at (a) (15, 10) m, a surficial

point where there is a sensor, and (b) (16.5, 10) m, a surficial point midway between two

neighboring sensors, after 300 iterations.
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Fig. 7. Example 1: Error vs. iteration plots comparing the e�ects of damping on perfor-

mance when using the RK and Newmark inversions: (a) Material 2 and (b) Material 3.

45 Lloyd and Jeong, October 15, 2023



0 50 100 150 200 250 300
iteration

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15
Error vs. iteration: 500 time steps

578 DOFs
2178 DOFs
4802 DOFs
8450 DOFs

(a)

0 50 100 150 200 250 300
iteration

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15
Error vs. iteration: 578 DOFs

500 time steps
1000 time steps
1500 time steps
2000 time steps

(b)

Fig. 8. Example 2: Sample error vs. iteration plots for the RK inversion for 300 iterations

including (a) error plotted for four cases with the same number of time steps but increasing

spatial DOFs, and (b) error plotted for four cases with the same DOFs but increasing duration

leading to more time steps.
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Fig. 9. Example 2: Plots of elapsed time as the number of parameters change specifically

(a) elapsed time vs. DOFs for cases with 500 and 1500 time steps in the model and (b)

elapsed time vs. the total number of time steps for cases with 578, 2178, and 4802 DOFs.
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Fig. 10. Example 3: The performance of the RK inversion with respect to the sensor spacing

(a) Snapshot of x≠ and y≠components for the targeted and inverted loads at t = 1.68 s

after 300 iterations. (b) Error vs. iteration up to 300 iterations.
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Fig. 11. Example 4: Results of tests on the e�ect of noise in the sensor data on RK

inversion outcomes including (a) error plotted for cases with various noise levels, and (b) the

reconstructed force in the x≠ direction at a point on the upper boundary, (15, 10) m, at 300

iterations for various noise levels.
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Fig. 12. Example 5: Results of tests on the e�ect of material property value’s uncertainty

on RK inversion outcomes including (a) error plotted for various cases of material property

value’s uncertainties, and (b) the reconstructed force in the x≠ direction at a point on the

upper boundary, (15, 10) m, at 300 iterations for the cases.
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Fig. 13. Examples 4 and 5: (a) and (b) the target forces in the x and y directions; (c) and

(d) the inverted forces after 300 iterations using the RK inversion method with 10% noise

introduced in the measurement input in Example 4; (e) and (f) the inverted forces after

300 iterations using the RK inversion method for Case 5b with material property value’s

uncertainty.
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