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ABSTRACT

This paper presents a new discretize-then-optimize (DTO) method for dynamic force inversion
in a two-dimensional (2D) linear elastic, damped solid based on Runge-Kutta (RK) explicit time
integration. Previous literature on DTO modeling for force or material inversion has predominantly
focused on inversion methods based on Newmark implicit time integration. However, because
implicit time integration may not be suitable for a problem with a large number of degrees of
freedom (e.g., 3D wave problems), there is a need to study an alternative DTO force-inversion
formulation that centers around the RK explicit time integration, leveraged by a diagonal mass
matrix. This paper attempts to fill this gap and present the full detail of the new RK-DTO

formulation for dynamic force inversion.
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Our computational examples demonstrate that the new RK-DTO inversion simulator effectively
reconstructs moving dynamic forces on the upper surface of the solid. It excels in efficiency when
dealing with a higher number of degrees of freedom (DOFs) and maintains accuracy even with
increased DOFs and observation durations. A smaller sensor spacing enhances the accuracy of the
inverted force profile in the RK-based inversion. The presented inversion method can effectively
identify the profiles of dynamic moving loads even when measurement data include noise or when

the values of material properties are not deterministic.

INTRODUCTION

Dynamic force inversion is useful in a wide range of engineering applications, including (i) the
identification of incoming seismic waves, which could be modeled as equivalent body forces, in a
truncated domain (Guidio and Jeong 2021a; Guidio et al. 2022) and (i) the inversion of moving
dynamic forces in modern infrastructure (e.g., smart highways) (Jiang et al. 2003; Au et al. 2004;
Jeong et al. 2017; Guidio and Jeong 2021b; Ni et al. 2023). Such inverse problems utilize dynamic
motions that are measured by sparsely spaced sensors.

Partial differential equation (PDE)-constrained optimization allows for the estimation of a very
large number of control parameters that discretize the unknown force over space and time. Thus,
forces of any profile can be identified without prior information. PDE-constrained optimization
requires the satisfaction of the first-order optimality conditions of a minimization functional, on
which a PDE is side-imposed. Traditionally, a continuous form of PDE is side-imposed, and its
adjoint and control equations are derived (via the variational method). Then, the continuous PDE
of the adjoint equation is discretized, and solving the discretized adjoint problem constitutes the
satisfaction of the optimal conditions. The order of this process is characterized as optimize-then-
discretize (OTD).

On the other hand, in the DTO process, a PDE’s discrete form is side imposed to the discrete
form of a minimization functional, and the discrete adjoint and control problems are derived. The
imposition of a PDE’s discrete form, which is the actual physics solved by a numerical model, leads
to the accurate evaluation of the gradient of a minimization functional by the numerical optimizer.
As a primary merit of the DTO modeling, the DTO method allows more compact modeling than the

OTD method even though the complex wave PDEs and boundary conditions are still considered.
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The DTO procedure was utilized for characterizing wave sources in solids (Walsh et al. 2013). Lloyd
and Jeong (2018) investigated the OTD modeling to identify the full profile of body force function
in space and time in a 1D solid bar, and its DTO counterpart (Lloyd and Jeong 2022). The authors
also tested DTO inverse modeling for the reconstruction of loads moving along the upper boundary
of a 2D solid (Lloyd et al. 2023). Guidio and Jeong (2021a) also investigated both OTD and DTO
for characterizing traction distribution in space and time in a 2D solid of anti-plane motion. Based
on the proven robustness and compactness of the DTO modeling, Guidio et al. (2022) studied
the DTO method for characterizing incoming seismic waves (modeled as traction on absorbing
boundary conditions) in a truncated domain of SH wave motion. It should be noted that all the
aforementioned DTO force inversion works are based on the Newmark implicit time integration
as a forward operator. However, the implicit time integration may be less suitable than explicit
time integration for a problem with a large number of DOFs (e.g., 3D wave problems) and large
matrices. In such problems, the amount of time needed to complete all of the computations can be
markedly large. While the implicit time integration uses the effective stiffness matrix, which cannot
be diagonalized, the explicit time integration uses the inverse matrix of a diagonalized mass matrix,
reducing the computation time. Thus, there is a need to study an alternative DTO force-inversion
formulation that centers around the explicit time integration, taking advantage of a diagonal mass
matrix. which could arise by virtue of the conventional finite element method (FEM) with mass
lumping or spectral element method (SEM) (Komatitsch and Tromp 1999; Tromp et al. 2008).
This paper attempts to meet this need and present the full detail of the new DTO formulation
for the force inversion using Runge-Kutta (RK) explicit time integration. The RK method has
been used for computationally efficient forward modeling in problems that involve dynamic moving
loads (Raftoyiannis et al. 2014; Lin and Trethewey 1990; Ding et al. 2012; Aloisio et al. 2022). To
implement RK in the DTO modeling presented in this study, a forward operator models the RK
explicit time integration and is side-imposed into a minimization functional via the multiplication
with an adjoint solution vector. Details of how the adjoint problem of a discretized form is derived
in the context of PDE-constrained optimization (i.e., the first-order optimality condition) and how
the adjoint solver is implemented are discussed in this paper. Included in this discussion are how

the gradient of the functional with respect to the discrete force parameter is derived in the DTO
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process, and how it is implemented in the numerical inversion solver. As an illustrative case, we
examine a force-inversion scenario aimed at determining the patterns of dynamic loads that travels
the upper boundary of a 2D solid.

To the merit of the presented RK-DTO formulation, it can be easily extended into various
inverse problems (e.g., force inversion (Oh et al. 2023), inversion of incoming seismic waves (Jeong
and Seylabi 2018; Ghahari et al. 2018a; Ghahari et al. 2018b), material characterization or geo-
physical inversion (Askan et al. 2007; Aguilé et al. 2010; Kallivokas et al. 2013; Pakravan et al.
2016), or inverse scattering (Jung et al. 2013; Jung and Taciroglu 2014; Jung and Taciroglu 2016;
Chatzi et al. 2011; Guzina et al. 2003; Aquino et al. 2019)) in 2D/3D settings where the forward
wave problems are solved by using the RK explicit time integration with diagonal mass matrices.
Because the discreized forward operator, which already includes boundary conditions, heterogene-
ity, and anisotropy, is side-imposed into a minization functional, the presented method is scalable

for various boundary conditions (e.g., absorbing boundary conditions) or material models.

PROBLEM DEFINITION

A 2D solid model (Fig. 1) of a rectangular shape with length, L, and height, H is employed to
present the RK-DTO method. The solid is fixed at the lower boundary (y = 0). The model can
have various configurations, including homogeneous or layered materials. It begins in a state of rest,
and dynamic distributed forces may be applied to the upper surface (y = H). The side surfaces are
not subject to traction. In numerical experiments conducted to test the presented inverse modeling
approach, the loads applied to the top surface are the target loads to be reconstructed by the
inverse model and can be moving or stationary. In the model, sensors at the top surface record
vibrational motion data, including both x and y components of wave responses. The inverse model is
evaluated using these sensor measurements in example cases. The presented dynamic force inversion
method aims to minimize the difference between measured displacements and model displacements
computed using predicted loads. Measured data may be acquired through the use of accelerometers,
distributed acoustic sensors (DAS) (Daley et al. 2013), or vision-based motion sensors (Ngeljaratan
and Moustafa 2020). In this computational study, synthetic measurement data, created via wave
simulations, are utilized. The solution of wave motions is numerically obtained via the FEM and

the RK explicit time integration. Then, a new DTO modeling is examined for the force inversion
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that includes the side imposition of the forward operator in the discrete form, the derivation of the

discrete adjoint equation, and the implementation of the adjoint equation.

Governing wave physics
The plane-strain setting for 2D models is used in this study, and the wave motion in the domain

Q) is governed by:

V.-o—at=pii in(, (1)

where o denotes the stress tensor, a denotes a damping coefficient, p is the mass density, and
u = [ug,u,| represents the displacements. The moving loads applied, on the upper surface, are
distributed forces on = [f;(x,t); fy(x,t)], where f,(x,t) and f,(z,t) denote traction functions for
0<x<Land0<t<T, and n denotes the outward normal unit vector on the boundaries.

It should be noted that while the boundary conditions for the model in this study repre-
sent a specific case, our DTO inversion can model various other boundary conditions, such as
wave-absorbing boundary conditions, to model the large extent of transportation infrastructure,
like perfectly-matched-layers (Fathi et al. 2015; Kucukcoban and Kallivokas 2011) and consistent

transmitting boundaries (Lee 2023).

FORWARD MODELING

The numerical solution of the wave motion is obtained through the Galerkin FEM. In pre-
vious force-inversion research (Lloyd and Jeong 2018; Lloyd and Jeong 2022; Lloyd et al. 2023),
the Newmark time integration scheme was used to compute displacements at discrete time steps.
However, this study focuses on the RK method to compute displacements at each discrete time
step. Because of the ease of inverting a diagonal mass matrix, the RK method generally requires
less computational time than the Newmark method when the number of the time steps are equal
to each other. The computational efficiency of the RK time integration, relative to the Newmark
time integration, becomes increasingly significant for larger models. However, for the given finite
element mesh, convergence using the RK method is conditional based on the time step size. It is
selected to satisfy the following Courant-Friedrichs-Lewy (CFL) condition for convergence, useful

Umaz (At)

for explicit time integration schemes, C = 222 =2 < (42, Where C is the Courant number; v,q;

Tmin
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is the largest wave speed of the material(s) used in the model; At is the time step size; rpy, is
smallest distance between nodes in the finite element model, and it decreases as the frequency
of wave increases; and Cpq, is the maximum allowable Courant number, typically equal to one.
Choosing Cppqr = 1, the time steps used in this study meet the following condition, At < ;’;’l‘ﬁ

The wave equation (1) for the solid can be expressed in a matrix form, by virtue of the finite

element approximation, as:

Ks(t) + C3(t) + M&(t) = £(t), 2)

where s(t) = [uy(t); uy(t)]; u,(t) and uy(t) are the solution vectors in all nodes at time ¢; and K,
C, and M are the global stiffness, damping, and mass matrices. The element mass matrices are
numerically integrated in each element by using the conventional Gauss quadrature and diagonalized
by using the mass lumping technique. While letting y(¢) = $§(t), the discrete form, Eq. (2), is

multiplied through by M~! such that:

—y(t) +5(t) =0 (3)
M 'Ks(t) + MICs(t) +8(t) = M (2). (4)

The discrete form equations (3) and (4) can be rearranged so that the derivatives of s(t) and y(t)

over time are alone on the left side of the equation gives:

s(t) = Js(t) + M (1), (5)

where

[ s(t . S(t

s(t) = " , S(t) = " ; (6)
| y(0) 0
i 0 —1I I 0 _ 0

J=- ) M_l - ) f(t) = (7)
MK M'C 0 M! f(t)

6 Lloyd and Jeong, October 15, 2023



164 For every discrete n-th time step, equation (5) can be written:

165 §n =Js, + M_lfn. (8)
166
167 The initial displacements and velocities are zero sg = 0, and
. 1= 0
168 so=Jsg+ M fy = . (9)
M~ (t = 0)
169
170 Using the fourth-order RK method, the vector §,, is computed each n-th time step, after the initial
171 time, with following equation:
1
172 Sp, =Sp_1 + Até (kl + 2ks + 2ks + k4) , (10)
173
174 where
0s -
175 k1 = a (tn—lugn—l) =J8,-1 +M71fn—1v (11)
s At _ At _ At 1=
176 ko = 5% (%1 + 58t 2k1> =J (Snl + 2k1> +M ', o5, (12)
0s At _ At _ At 1=
177 k3 = a (tn—l + 7, Sp—1 + 2k2> =J (Sn—l + 2k2> +M 1fn—0.57 (13)
s -
17 ky = a% (tnsSn_1 + Atks) = J (8,1 + Atks) + M'E,, (14)
179
180 and
I 0
181 M1, o5 = . (15)

MU (t =t + 5

182

183 By expressing ki, ks, k3, and k4 in terms of §,_1, f,_1, £,_05, and f, and substituting ki, ko,

184 ks, and k4 into the RK method, Eq. (10) results in the following RK method equation written in

7 Lloyd and Jeong, October 15, 2023
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terms of gnfl, fnfl, fn,0.5, and fni

At At
Sy = Sp_ 1+F(J+2L1+2L3+L6)Sn 1+?(I+2L2+2L4+L7) f 1

At - At —
+ 5 (204 2L + L) M7, o5 + ~= M, (16)
where
At At
Li=J+ 7.].] L, = 7‘], (17)
At At
Ly;=J+ JLl, Ly = 7.]142, (18)
At
Ls 7.] +1I, Lg=J+ AtJLs, (19)
L, — AtJLy, Lg— AtJLs. (20)

Appendix I shows a detailed description of deriving L; to Lg by expressing ki, ko, k3, and k4

in terms of 5,1, f,_1, f,_05, and f,. The RK method equation (16) can be written even more

compactly:
Sn—Sn_1— A1Sp—1 — Aof, 1 — Asf,_o5 — Auf, =0, (21)
where
At
A= 5 (J+2L; 4+ 2L3 + Lg) , (22)
At
Az =~ (1420 + 2Ly + L) M (23)
At
As = F (21 + 2Ls5 + Lg) M_ (24)
A
Ay = gM—l. (25)

The RK method can now be shown in the compact equation:

8 Lloyd and Jeong, October 15, 2023
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214
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217
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219
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where § and f are constructed for each time step as follows:

S0 f,
0 f0.5
51 f
0 fis
5 R f
s=| |, f=| " |, (27)

0 fos

SN-1 fv_1
0 ?N—0.5
SN fy

where N is the final time step. The vectors f, to fy are subvectors of the vector f and contain zeros
and forces at every node ordered as in equation (7) at each half time step. The vectors 5y to Sy
are subvectors of the vector § and contain the displacements and velocities at every node ordered
as in equation (6) at each full time step. Displacements and velocities at the half time steps are
not needed to solve the RK method equation (21), so the subvectors for the half time steps in § are
treated as zero vectors. There are z- and y-components of displacement, velocity and force so the
s and f subvectors each have the dimension 2(2jy) x 1 where jy is the number of nodes except for
those with Dirichlet boundary conditions. Since there are subvectors in § and f for the initial step,

each half time step, and each full time step, there are 2N 4+ 1 subvectors. Thus, § and f each have
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222

223

224

225

226

227
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230

the dimensions of 2(2j5)(2N + 1) x 1. The matrix Q is defined as:

i I 0 0 0 0O 0 00 -

0 0 0 0 00 0 00

-I-A; O I 0 0O 0 00

0 0 0 0 00 0 00

0 0 -I-A; 0I O 0 00

Q= (28)

0 0 0 0 0O 0 00

0 0 0 0 0O 1 00

0 0 0 0 00 0 00

I 0 0 0 000 .. -I-A; 0TI|]
The matrix R is defined as:
i 0 0 0 0 0O 0 0 0 0 ]
0 0 0 0 0 0 0 0 0
Ay, A5 A, 0O 0 O 0O 0 O
0 0 0 0 0 0 0 0 0
0 0 A, A3 A, O 0O 0 O
R = (29)
0 0 0 0 0 0 0 0 0
0 0 0 0 0O 0 ... Ay O 0
0 0 0 0 O 0 ... O 0 0
| 0 0 0 0 0 0 ... Ay Az Ay |

The Q and R matrices have the same order, 2(2jn)(2N + 1) x 2(2j5)(2N + 1).

INVERSE MODELING

To reconstruct wave sources, guessed loads are iteratively estimated to minimize the misfit

between the measured motions and the model wave responses that are computed by the forward
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model when the guessed loads are applied.

Discrete objective and Lagrangian functionals

The continuous form of the objective functional to be minimized is:

L= [ > (am, —uy) - (am, —ug)dt, (30)

where uy,, is the displacement recorded at the g-th measurement point, u, is its calculated coun-
terpart at the same location induced by guessed force, and gy is the total number of measurement

points. Equation (30) is rewritten with the temporal integration in the discrete fashion:

£= (3 — 8)"B(8m — 8), (31)
where §,,, is the vector, which contains measured displacements and velocities at sensors and discrete
points in time, and § is the vector of discrete displacements and velocities calculated using the

forward model and the guessed loading. The matrix, B, is a block diagonal matrix with B¢ on the

diagonal:
B, 0 O 0 0 O
0O 0 O 0 0 O
0 0 B, 0 0 O
0O 0 O . B, 0 O
0 O 0 0 O
0O 0 O 0 0 B,
where
AtB 0
0O O
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corresponding to
Sy = . (34)

The matrix B contains ones along its diagonal elements, which correspond to the horizontal and
vertical components of the nodes where sensors are positioned, while all other elements are zeros.
The configuration of B leads to the comparison of measured and computed displacements at sensor
locations being the basis for the determination of the misfit using the discrete objective functional,
Eq. (31). Even though the RK-based forward model computes velocities of particle motions at each
time step, the velocities are not considered in the objective functional in this work. Of course, the

velocities §, can potentially be considered in the objective functional by using the following:

0 0O
B, = . (35)
0 A¢B
In tests of the inversion method that include velocities in the object functional, it has been observed
that the inversion is much slower in terms of the number of iterations to achieve the same value of
the error norm per Eq. (50) than using just displacements. It is observed that the final inversion
accuracy is about the same for both displacement and velocity measurement-based approaches, and
only the displacements-based approach is used in the presented numerical examples.
Imposing Eq. (26), which is the compact expression of the considered RK time integration,
which arises after the global assembly of element matrices, onto the discrete objective functional

using a Lagrange multiplier XT gives the following discrete Lagrangian functional:
N T
A=(8n—8)"B@, -8 - A (Qs-RE), (36)

~T T
where A = | Xo7 0 X7 0 ... Av_iP 0 AT } The vector, A , has the order 1 X
«T
2(2jn)(2N +1). Like §, A contains subvectors that represent components at each time step with

zero vectors for subvectors at the half time steps.
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The first-order optimality conditions
The gradient of the objective functional is used to iteratively update guessed forces for all spatial
and temporal points in a given problem. To determine the gradient of the objective functional each
inversion iteration, the following optimality conditions are applied to the Lagrangian functional,

Eq. (36):

= 0. (37)

The first optimality condition
Taking the partial derivative of the Lagrangian functional, Eq. (36), over the Lagrange variable,
:\, and the optimality condition is satisfied since the discrete forward problem, Eq. (26), is resolved

by our forward wave solver:
- =-Q8+Rf=0. (38)

The second optimality condition
Enforcing the condition that the partial derivative of A with respect to the state solution §

must vanish reveals the adjoint equation in the discrete form to be:

A

%A —9B(3—8,) - QTA =0, (39)

discrete adjoint equation
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203 where QT is as follows:

I o (-I-A)" o 0 0 0 0 0
00 0 0 0 0 00 0
00 I 0o (-I-A)" o 0 0 0
00 0 0 0 0 00 0
T 00 0 0 0 0 00 0
294 Q' = (40)
00 0 0 I 0 00 0
00 0 0 0 0 I 0 (-I-A)"
00 0 0 0 0 00 0
00 0 0 0 0o ... 00 1
295 o -
296 The derivation of the discrete adjoint equation is straightforward so it is not shown in this paper

207 (the background of the derivation of the discrete adjoint problem is detailed by Guidio et al. (2022)).

208 A, can be determined for each time step in reverse order starting from the final time step, n = N:

299 >\N = QBS(SN — SmN). (41)

300

301 For time steps n =N — 1, N — 2 ... 0, this work computes:

302 An = 2B, (sp —sm, ) — (I — AT Ayt (42)

303

304 Namely, the adjoint solver is straightforwardly implemented via equations (41) and (42).

305 The third optimality condition

306 The partial derivative of A over f is:

DA <
307 {1 =RTX (43)
308 8f

14 Lloyd and Jeong, October 15, 2023
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The gradient of L over the control parameter vector, f, for all points in space in time can be

evaluated as:

g= RT}V (44)
where g has the order 2(2jx)(2N + 1) x 1, the same order as f, and contains gradient values for
all points in space and time (including even half time steps that are required in the RK forward

modeling).

The parameter-updating scheme

The estimated force is updated via the conjugate gradient method as follows:

fipr = £+ hid, (45)

where f; represents the estimated load at the i-th iteration, h; signifies a step size, and d; denotes
the search direction, determined through the subsequent conjugate-gradient computation: for i =0
and every 50-th iteration, d; = —g;, and for ¢ > 1 except every 50-th iteration, d; = —g +

gi&i

m&i,l. Thus, the search direction is reset at every 50-th iteration to —g; to avoid errors

potentially accumulated over the iterations of calculating the search direction (Kang and Kallivokas
2010).

Assuming that the target load is reasonably situated on the solid’s upper surface, equation (45)
for parameter updates can be adjusted to modify the guessed loading exclusively at surface nodes
rather than every node throughout the solid domain. The modified parameter update equation is

the following:

fip1 = £ + DA, (46)

Herein D represents a diagonal matrix with ones at its diagonal elements corresponding to nodes
situated on the upper surface and zeros elsewhere. It was found in a previous investigation of
Newmark-based moving-force inversion (Lloyd et al. 2023) that updating the guessed forces at the

top surface of the solid, as in equation (46), yields more accurate results than determining the
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guessed forces at all nodal points in the solid. The ideal step size h;, which corresponds to the
one causing the greatest reduction in the objective functional upon updating the estimated load, is
calculated using Newton’s scheme as detailed by Lloyd and Jeong (2018). Parameter updating is
stopped if the total number of iterations reaches a limit (e.g., 300). Alternatively, it can be stopped
if the value of the misfit functional, £, at a given iteration decreases less than 1% of that at a

previous iteration over three consecutive times.

NUMERICAL EXPERIMENTS

This paper compares the performance of the inversion algorithm for reconstructing moving loads
using the RK forward simulation with that of the reference algorithm using the Newmark forward
simulation. In each numerical experiment, moving loads serve as target loads to reconstruct. The
FEM models in the numerical experiments use 9-node square, quadratic elements of an element
size of 1 m. Using equation (46), it is assumed that the y-position of all moving loads is known to
be at the top surface of the solid prior to beginning the reconstruction of the loading.

However, all other information about the target—e.g., the distributions of f,(x, H,t) and
fy(z, H,t) over space and time—is unknown prior to reconstruction. An initial guess is fo= 0, ie.,

the components of force in all space and time are initially predicted to be zero.

Targeted dynamic forces

The targeted moving loads, for 0 < ¢ < T, are defined as:

_@=b(t)p)?

o(z, H, ) ZP 214 0<z<L (47)
_(@=b(t))?

y(z, H, t) ZP 24, 0<z <L (48)

where ky denotes the number of the forces in motion; P,(t); and Py(t); denote the horizontal and
vertical amplitudes at the peak location of the k-th force, respectively; b(t)y is the time-varying
position of the peak of the k-th force; and dj, determines the horizontal width of the k-th force. The

full width at a tenth of the maximum (FWTM), as illustrated in Figure 2, is employed to estimate
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the distribution width of the k-th load. It is related to dj as follows:

& — FWTM of the k-th force targeted (49)
b 2v/21n 10 '

In this study, the presented inversion method is tested using example cases in which a set
of three (i.e., ky = 3) targeted moving forces are exerted to the upper boundary of 2D solids
with varied material properties. The three targeted moving loads (Loads A, B, and C) have
vertical and horizontal components with spatial distributions, which vary in time, along the upper
boundary where the FWTM of each load is 4.29 m (d = 1.0 m) as shown in Figs 4a and 4b. The
horizontal component for each moving force has the same position and width of a central peak as
its corresponding vertical one. Loads A, B, and C have different accelerations, initial velocities,

initial positions, and amplitudes as shown below.

o The vertical component of force A is Py (t); = —[400sin(27(15)t)+18000] N/m. Its horizontal
counterpart is Py (t); = —[400sin(27(15)t) + 5504.59 + (2700 + 1.225(25 + 3t)?)] N/m. The
z-location of the central peak for both Py (t); and P,(t); is b(t); = [8 + 25¢ + 0.5(3)¢?] m.
Plugging Py(t)1, Px(t)1, and b(t): into Eqgs. (47) and (48) fully characterize Load A.

o Load B has P,(t)2 = —[300sin(27(10)t) 4+ 22000] N/m and P, (t)2 = —[300sin(27(10)t) —
6727.83 — (3300 + 1.225(—30 — 3t)?)] N/m with the central peak location b(t)y = [33 — 30t —
0.5(3)#%] m.

o Load C has Py(t)3 = —[600sin(27(5)t) + 32000] N/m and P,(t)3 = —[600sin(27(5)t) —
19571.9 + (4800 + 1.225(40 — 6t)?)] N/m with the central peak location b(t)3 = [—45 — 40t —

0.5(6)t?] m.

The time-varying amplitudes, P,(t) and P,(t), have static and dynamic components. When it
comes to the identification of moving loads on a roadway, the static part of P,(t) may represent
the weight of a vehicle while its dynamic part can model vertical forces such as those induced by

the powertrain vibrations.
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Assessment of the inversion error
To evaluate the inversion performance, the discrepancy between the guessed and targeted force

is determined by the normalized mean absolute error equation:

N .
. n=1 Z;il |fnjtargct - fnjestimate |

N -
ZTL:]. Z;il |fnjtarget |

£ , (50)

where fj,..... denotes a targeted nodal force at n-th timestep and j-th node that is resulted from
the finite element approximation of the targeted traction in Eqgs. (47) and (48). frjeimae denotes
its estimated counterpart. It has been observed that the errors computed using the normalized
mean absolute error equation (50) may have large values even when plots of the reconstructed
loads visually compare well to plots of the target loads. Nonetheless, the normalized mean absolute
error serves as a useful metric for assessing the progression of inversion results over iterations and

for comparing results across various cases that share the same target loads.

Example 1: In-depth inspection of the performance of RK-based inversion and
Newmark-based inversion

For Example 1, the accuracy of the RK-based inversion is compared to that of the Newmark-
based inversion. Herein the three target moving loads are applied to a 2D solid that is 30 m wide
and 10 m in height and is layered with two material layers representing multi-layered ground soil.
In the initial test, Layer 1, at the upper part (y = 5 to 10 m) of the solid, consists of Material 1
listed in Table 1 with a damping constant of o = 2000 kg/(m?s), and Layer 2, at the lower part
(y = 0 to 5 m), consists of Material 2 in Table 1 with a damping constant of a = 2500 kg/(m?s).
At = 0.002 s is used for both the RK and Newmark-based models in Example 1. Using 1000
time steps, the forward models have a duration of 2 s. Based on the maximum wave speed in the
problem, vy,q, = 178.23 m/s, and the minimum distance between nodes, 7, = 0.5 m, the CFL
condition requires that Aty = 0.00281 s, which is met by At of 0.002 s. Sensors are spaced every
three meters along the top surface of the solid.

First, the results of the forward model using the RK method and the Newmark method are
compared. Figure 3 shows the displacements computed at the top center point on the rectangular

solid, (15,10) m, by the forward model for the target loading using the Newmark method with
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no lumping of the mass matrix and the RK method with the lumped mass matrix. They are in
excellent agreement with each other.

Figure 4 shows the contour plots of force in the x- and y-directions in space and time for the
target and identified loads produced after 300 iterations by both the RK and Newmark inversions.
Fig. 4 shows that, after 300 iterations, both the Newmark-based inversion and the RK-based
inversion produce reconstructions of the loading that capture the number of loads, the changing
positions and widths of the loads, and whether they are positively or negatively directed. In
Example 1, the values of the error norm, &£, after 300 iterations are 0.73 for the Newmark inversion
and 0.70 for the RK inversion.

Figure 5 shows the snapshots of the target loading compared with the identified one produced
after 300 iterations using the RK-based inversion and the Newmark-based inversion at two different
time steps. Figure 6 shows plots of the amplitude for the loading at all time steps at two points on
the top surface, (15,10) m (16.5,10) m, for the duration of the simulation. The point (15,10) m is
the location of one of the sensors, and the point (16.5,10) m is a point on the top surface midway
between two sensors. While both inversion methods show a greater tendency to underestimate the
amplitudes of the distributed loads at points the more distant they are from the sensors, the RK-
based inversion tends to underestimate the loading even more than the Newmark-based inversion
does. It should be considered that the force parameters in every half time step are inverted when
the RK-based inversion is performed, while the Newmark inversion updates force parameters at
every whole time step only. Thus, the control-variable space of the force inversion problem becomes
larger for a given observation duration when the RK inversion is used than when the Newmark
inversion is used. The more control parameters lead to stronger solution multiplicity. Namely,
122,000 parameters (=61 nodes on the top surface x 1,000 time steps X 2 (counting every half time
steps) are inverted in the RK inversion in contrast to 61,000 parameters for the Newmark inversion.
The tendency for the inverted force profile to underestimate the target profile more when we use
the RK inversion than the Newmark inversion could be due to the increased solution multiplicity.

Overall, the results for the two inversion methods have many similarities to each other and
predict the existence of the moving loads, their numbers, and their positions well. However, the

average elapsed time per iteration for this example using the RK inversion is 15.81 s/iteration which
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is a 75.91 percent decrease from the 65.67 s/iteration average for the Newmark inversion. For all
simulations in this paper, we used a desktop computer, of which CPU is 2.71 GHz, in a non-parallel
mode on MATLAB.

To investigate the effect of material properties and damping on inversion results, the RK and
Newmark-based inversion methods are tested for cases in which the solid is homogeneous with
varying the material and damping conditions. The plots in Fig. 7 show that while the number of
inversion iterations it takes for the change in error to become level off increases as the wave speeds
increase (i.e., Material 2 vs 3) but decreases as the damping coefficient increases for both the
RK and Newmark inversions. The comparison between the performance of the RK and Newmark
inversions in Fig. 7 also shows that the accuracy of the RK inversion is close to the Newmark
inversion regardless of the value of the damping coefficient of the solid.

As shown in Table 1, keeping the element size the same while increasing the wave speed of
the material in the model may require decreasing the time step size in the RK method in order to
satisfy the CFL condition. Decreasing the time step size for the RK inversion as the wave speeds
in the example cases increase requires increasing the number of time steps in the model to model
the same duration. Changing the time step size is not required when using the Newmark-based
inversion method. Therefore, the number of parameters to invert each iteration may be greater
using RK inversion than Newmark inversion for the same problem, and, when the wave speeds are
sufficiently large, the elapsed times may be less for the Newmark inversion than the RK inversion
method. Testing the inversion methods when the solid consists of different materials shows that,
for a problem with the given number of degrees of freedom (DOFs), RK inversion is less time-
consuming than Newmark inversion when the solid consists of Materials 1 to 3 but more time
consuming than Newmark inversion when the solid consists of Material 4. However, there are other
factors contributing to the elapsed time of the inversion. To clarify this aspect, Example 2 examines
the relationship between the elapsed time of the RK and Newmark inversions and the number of

DOFs in a problem.
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Example 2: Elapsed time for RK and Newmark inversions

In Example 2, the moving loads are applied to rectangular homogeneous solids of varied sizes
and for varied durations to test the RK and Newmark inversions, thus, changing the force-function
discretization in both space and time. The solid consists of Material 1, and the time step size and
the element size are At = 0.002 s and 1 m, respectively, in each case of Example 2. The sensors
are spaced one every four meters. In Example 2, the RK and Newmark inversions reconstruct the
sample moving loads with four different durations, 1 to 4 seconds, modeled using 500 to 2000 time
steps, respectively. Eight different sizes of the domain are given to the solid, and their dimensions
are listed in Table 2. The DOFs and time steps for each of the total 22 cases in Example 2 are
listed in Table 2.

Figure 8 shows plots of the error given 300 inversion iterations using the RK inversion for a set
of cases. Figure 8a shows the progress in terms of the inversion error for the RK inversion for four
cases that have the same duration using the same number of time steps but differ with regard to
the number of DOFs in the solid. Figure 8b shows how the RK inversion progresses for four cases,
which have the same number of DOFs but differ with regard to the number of time steps with the
same time step sizes. Figures 8a and 8b show that the increased DOFs and observation durations
do not affect the inversion accuracy.

Additionally, increasing the DOFs leads to greater advantages in elapsed time for the RK
inversion over the Newmark inversion. Figure 9a indicates that the elapsed time of the Newmark
inversion increases with respect to the DOFs in the second order while that of the RK inversion
grows in a linear fashion. Figure 9b shows that the elapsed time increases linearly with respect to
increasing the number of time steps for both the RK and Newmark inversion methods. The plots
in Fig. 9 present that the benefit of using the RK inversion, compared to the Newmark inversion,
with respect to elapsed time significantly increases as the number of nodes increases in the problem
and should be even more significant when 3D problems are considered. In Example 1, it was
demonstrated that the RK method may require more time steps than the Newmark method if the
RK model’s time step size is smaller in order to ensure stability. However, as the spatial DOFs
are increased, the elapsed time grows quadratically for the Newmark method while increasing the

number of time steps when using the RK method only increases the elapsed time linearly making
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the RK inversion method preferable, even for problems that require more time steps, when the

number of DOFs cause the Newmark inversion method to have very large run times.

Example 3: Performance of RK and Newmark-based inversions with respect to
sensor spacing

To study the effect of sensor spacing, the RK inversion is examined for the same problem used
in Example 1 but with an additional case where a sensor is positioned at every 1.5 meters instead
of one sensor every three meters. The results show that decreasing the sensor spacing increases
the inversion accuracy of our RK inversion. Figure 10a shows snapshots of horizontal and vertical
components of the target loading and reconstructed loading produced after 300 iterations using
the RK inversion when the sensors are spaced every three meters, as in Example 1, and when the
sensors are spaced every one and a half meters. It shows that using a smaller sensor spacing, for the
RK inversion, generally gives rise to an inverted force profile closer to the target profile. Figure 10b
shows the error vs. iteration plots for the RK inversion when the sensors are spaced every three
meters and when the sensors are spaced every one and half meters, and the error value is smaller

for sensor spacing of 1.5 m than 3 m.

Example 4: The effect of noise in sensor data on the performance of the RK
inversion

In the previous examples, the inversion takes perfect displacement data as input to reconstruct
the applied moving sources. To test the RK inversion method when only imperfect data can
be obtained, the problem presented in Example 1 is changed such that noise is added to the

displacement data for each sensor in both z— and y— directions as follows:

ubS e (6) = (1) + Al (51)

where A is an N-component-array of random numbers ranging from 0 to 1 with the normal distri-

max

max is the maximum value of measured displacement u,, at the sensor for either z or y

bution; u
direction; and 7 is the noise level (e.g., n = 0.05 for 5% noise level). Alternatively for the introduc-

m-S
m

max

tion of noise, u o

may be used in Eq. (51) instead of upmn®*, where uj,™® denotes the mean square

max
m

m-s, using up® in Eq. (51) makes

is larger than u s

value of a signal u,,(¢). Since the value of u
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for a more severe condition at a given noise level than using umn™®.

The RK inversion method is tested given the case presented in Example 1 but with sensor data
having noise levels of 2%, 5%, and 10%. Figure 11a shows that the error decreases in each case but
the decrease in the error stalls earlier the greater the noise level is. The reconstructed loading tends
to underestimate the target loading more when more noise is added which can be seen in Fig. 11b
presenting the reconstructed forces in the x— direction over time at a point on the upper boundary
after 300 iterations for various noise level cases. Figs. 13a and 13b show the target forces in the z—
and y— directions respectively while Figs. 13c and 13d show the reconstructed loading after 300
iterations given sensor data with 10% noise. Figure. 13 shows that although the error, when the
sensor data noise level is 10%, does not diminish to the same extent that the error diminishes when
noise is not introduced, the contour plot of the reconstructed loading still captures the number of

moving sources applied as well as their directions, locations, and the timing of their movements.

Example 5: The effect of the uncertainty in a material property on the perfor-
mance of the RK inversion

In all previous examples, the material properties in the problems are considered to be known
for the purpose of inverse modeling. To test the RK inversion method when the uncertainty in a
material property is introduced, the inversion is tested for the problem considered in Example 1
for various true material property values, shown in Table 1, while assuming in the inverse model

that the solid is homogeneous and consists of Material 1.

e In Example 5, Case ba gives a case in which the sensor data, used as input for the inversion,
are the displacements produced by the target loading when the solid is homogeneous and
consists of Material 1. The inverse model, then, assumes correctly that the solid is homoge-
neous and consists of Material 1. Case 5a presents a case without model error in modeling
the solid material.

e In Case bb, the sensor data are produced by the target loading when the solid is homogeneous
and consists of Material 2. Since the inverse model assumes that the solid consists of Material
1, the error modeling v, and v is 1.96% and -3.87% respectively.

« In Case 5c, the sensor data are produced by the target loading when the solid is homogeneous
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and consists of Material 5. The inverse model, again, assumes that the solid consists of

Material 1 and the error modeling v, and v is -6.21% and -11.6% respectively.

The error plot in Fig. 12a compares the error over 300 iterations for Case 5a, Case bb, and Case bc.
Increasing the discrepancies in the material properties leads to more error in the inversion results
which can be seen in the amplitudes of the reconstructed forces plotted over time for various model
error cases in Fig. 12b. Figs. 13e and 13f indicate that the reconstructed loading even for Case
5c¢ after 300 iterations reconstructs the number of moving sources, their directions, their locations,

and the timing of their movements well.

SUMMARY

As the core contribution of this paper, the DTO inversion formulation based on the RK forward
time integration is fully described for the first time. The RK forward simulation is represented by
a discrete forward operator, centered around the Q matrix, and its detail is fully disclosed in this
paper. The forward operator is side-imposed into a minimization functional via the multiplication
with an adjoint solution vector, and the formulation of the adjoint and control equations are de-
tailed. Thus, experienced users can understand the formulation and implement it straightforwardly.
The presented numerical scheme will be scalable to a wider array of inverse problems where the
forward problems are resolved via the RK wave simulation.

The numerical experiments demonstrate the robustness of the RK-inversion in a 2D plane-strain
solid. The force parameters are inverted for every half-time step when the RK-based inversion is
performed while the Newmark inversion identifies those in every time step. As the spatial DOFs
are increased, the elapsed time grows quadratically for the Newmark method while increasing the
number of time steps when using the RK method only increases the elapsed time linearly making
the RK inversion method preferable, even for problems that require more time steps, when the
number of DOFs cause the Newmark inversion method to have very large run times. Thus, the
RK-based source inversion is more efficient than the Newmark inversion when the number of DOFs
becomes larger in problems. The increased DOFs and observation durations do not affect the
inversion accuracy. Using a smaller sensor spacing, for the RK inversion, generally gives rise to an

inverted force profile closer to the target profile. The presented inversion method can effectively
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identify the profiles of dynamic moving loads even when measurement data include noise or when
the values of material properties are not accurately modeled in the inversion simulator.

The presented RK-DTO formulation can be easily extended into other inverse problems in
2D/3D settings, where various boundary conditions (e.g., truncated boundary) and material mod-
els (e.g., heterogeneity, anisotropy, and damping) are comprehensively modeled in the presented
forward operator Q matrix, and the forward wave problems are solved by using the fourth-order

RK explicit time integration.
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APPENDIX I. ON THE DERIVATION OF L; TO Lg

To get the compact form of the RK method equations (26), first, the expressions for ki, ko,
ks, and k4 are written in terms of §,_1, 8,,_1, Sn_o0.5, and S, and substituted into the RK method
equation (10). This results in a RK method equation (21) written in terms of 8,1, Sp,—1, Sn—0.5,
and S, and then the compact form of the RK method (26). The expressions for ki, ko, k3, and ky
are written in terms of §,,_1, §,_1, Sn_0.5, and S,, the following way:

s _
= £ (tnflygnfl) = J§n,1 + M_lfnfl- (Il)
s At At At -
=+ s, 4+ ok ) =T (5, 1+ —k M,
e (t 1+ —5>Sp-1+ 2 1) J<S 1+ > 1>+ 0.5

2
At _ _
~3 {gn_l + (T80 + len_l)} M 05

ky

ko

At At - .
=J |:<I + 2J) Sn_1+ 2M_1fn1] +M_1fn70.5

At At _ _
_ (J + 2JJ) Su1+ SIM T M o

= L1§n71 + L2M_1fn71 + M_lfnfO.En (12)

where

At At
Ly =J+ 33 and Ly = —-J. (13)

k3

0s ( At At
2

_ _ At 1%

= a tn—1+ —Sp—1+ 2k2) =J <Sn1 + 2k2> +M lfn70.5
_ At _ 1 —1F ~1F

=J [su-1+ 5 (L1 + LoM ' Fumy + M F05) | + Mo

At _ At = At - 1=
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(J 44
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where

At At At
Ls=J+ ?JLl, Ly, = ?JLQ, and L5 = 7.] + 1. (15)

Js

k4:a(

tn,Sn_1 + Atks) = J (5,_1 + Atks) + M 'f,

= I [(T+ AtLg)S, 1+ ALM ',y + AtLsM ', o5] + M7,
= (J+ AtJL3)s, 1 + AtJLM ', | + AtJLsM'f, o5 + M 'f,

=LeSp—1 + LM ', + LsM £, o5+ M ', (L.6)
where

L =J + AtJL3, L; = AtJLy4, and Lg = AtJLs. (17)
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o MATLAB datasets (.mat format) of the simulation data.

28

Lloyd and Jeong, October 15, 2023



629

630

631

632

633

634

635

ACKNOWLEDGMENT

This material is based upon work supported by the National Science Foundation under Award
CMMI-2044887 and CMMI-2053694. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of
the National Science Foundation. The authors are also grateful for the support by the Faculty
Research and Creative Endeavors (FRCE) Research Grant-48058 at Central Michigan University.

The authors appreciate the reviewers for their reviews and insightful comments.

29 Lloyd and Jeong, October 15, 2023



636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

664

REFERENCES

Aguil6, M., Aquino, W., Brigham, J. C., Fatemi, M., et al. (2010). “An inverse problem approach
for elasticity imaging through vibroacoustics.” Medical Imaging, IEEE Transactions on, 29(4),
1012-1021.

Aloisio, A., Rosso, M. M., and Alaggio, R. (2022). “Experimental and analytical investigation into
the effect of ballasted track on the dynamic response of railway bridges under moving loads.”
Journal of Bridge Engineering, 27(10).

Aquino, W., Bunting, G., Miller, S. T., and Walsh, T. F. (2019). “A gradient-based optimiza-
tion approach for the detection of partially connected surfaces using vibration tests.” Computer
Methods in Applied Mechanics and Engineering, 345, 323 — 335.

Askan, A., Akcelik, V., Bielak, J., and Ghattas, O. (2007). “Full Waveform Inversion for Seismic
Velocity and Anelastic Losses in Heterogeneous Structures.” Bulletin of the Seismological Society
of America, 97(6), 1990-2008.

Au, F., Jiang, R., and Cheung, Y. (2004). “Parameter identification of vehicles moving on contin-
uous bridges.” Journal of Sound and Vibration, 269(1), 91-111.

Chatzi, E. N., Hiriyur, B., Waisman, H., and Smyth, A. W. (2011). “Experimental application and
enhancement of the XFEM—-GA algorithm for the detection of flaws in structures.” Computers
& Structures, 89(7), 556-570.

Daley, T. M., Freifeld, B. M., Ajo-Franklin, J., Dou, S., Pevzner, R., Shulakova, V., Kashikar,
S., Miller, D. E., Goetz, J., Henninges, J., et al. (2013). “Field testing of fiber-optic distributed
acoustic sensing (das) for subsurface seismic monitoring.” The Leading Edge, 32(6), 699-706.

Ding, H., Chen, L.-Q., and Yang, S.-P. (2012). “Convergence of galerkin truncation for dynamic
response of finite beams on nonlinear foundations under a moving load.” Journal of Sound and
Vibration, 331(10), 2426-2442.

Fathi, A., Poursartip, B., and Kallivokas, L. F. (2015). “Time-domain hybrid formulations for wave
simulations in three-dimensional PML-truncated heterogeneous media.” International Journal for
Numerical Methods in Engineering, 101(3), 165-198.

Ghahari, S., Abazarsa, F., Jeong, C., Kurtulus, A., and Taciroglu, E. (2018a). “Blind identification

of site effects and bedrock motion from surface response signals.” Soil Dynamics and Farthquake

30 Lloyd and Jeong, October 15, 2023



665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

Engineering, 107, 322 — 331.

Ghahari, S., Abazarsa, F., and Taciroglu, E. (2018b). “Probabilistic blind identification of site
effects from ground surface signals.” Bulletin of Earthquake Engineering, 16, 1079-1104.

Guidio, B. and Jeong, C. (2021a). “Full-waveform inversion of incoherent dynamic traction in a
bounded 2D domain of scalar wave motions.” Journal of Engineering Mechanics, 147.

Guidio, B. and Jeong, C. (2021b). “On the feasibility of simultaneous identification of a material
property of a timoshenko beam and a moving vibration source.” Engineering Structures, 227,
111346.

Guidio, B., Jeremié¢, B., Guidio, L., and Jeong, C. (2022). “Passive seismic inversion of SH wave
input motions in a truncated domain.” Soil Dynamics and Earthquake Engineering, 158, 107263.

Guzina, B. B., Fata, S. N., and Bonnet, M. (2003). “On the stress-wave imaging of cavities in a
semi-infinite solid.” International Journal of Solids and Structures, 40(6), 1505-1523.

Jeong, C., Peixoto, A. C. S., Aquino, A., Lloyd, S., and Arhin, S. (2017). “Genetic algorithm-
based acoustic-source inversion approach to detect multiple moving wave sources of an arbitrary
number.” Journal of Computing in Civil Engineering, 31(5), 04017020.

Jeong, C. and Seylabi, E. E. (2018). “Seismic input motion identification in a heterogeneous halfs-
pace.” Journal of Engineering Mechanics, 144(8), 04018070.

Jiang, R., Au, F., and Cheung, Y. (2003). “Identification of masses moving on multi-span beams
based on a genetic algorithm.” Computers and Structures, 81(22), 2137-2148.

Jung, J., Jeong, C., and Taciroglu, E. (2013). “Identification of a scatterer embedded in elas-
tic heterogeneous media using dynamic XFEM.” Computer Methods in Applied Mechanics and
Engineering, 259, 50-63.

Jung, J. and Taciroglu, E. (2014). “Modeling and identification of an arbitrarily shaped scatterer
using dynamic XFEM with cubic splines.” Computer Methods in Applied Mechanics and Engi-
neering, 278, 101-118.

Jung, J. and Taciroglu, E. (2016). “A divide-alternate-and-conquer approach for localization and
shape identification of multiple scatters in heterogeneous media using dynamic XFEM.” Inverse
Problems and Imaging, 10(1).

Kallivokas, L. F., Fathi, A., Kucukcoban, S., Stokoe, K. H., Bielak, J., and Ghattas, O. (2013). “Site

31 Lloyd and Jeong, October 15, 2023



694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

characterization using full waveform inversion.” Soil Dynamics and Farthquake Engineering, 47,
62-82.

Kang, J. W. and Kallivokas, L. F. (2010). “The inverse medium problem in 1D PML-truncated
heterogeneous semi-infinite domains.” Inverse Problems in Science and Engineering, 18(6), 759—
786.

Komatitsch, D. and Tromp, J. (1999). “Introduction to the spectral element method for three-
dimensional seismic wave propagation.” Geophysical Journal International, 139(3), 806-822.

Kucukcoban, S. and Kallivokas, L. F. (2011). “Mixed perfectly-matched-layers for direct transient
analysis in 2D elastic heterogeneous media.” Computer Methods in Applied Mechanics and En-
gineering, 200, 57-76.

Lee, J. H. (2023). “Consistent transmitting boundaries for time-domain analyses of wave propaga-
tion in layered anisotropic waveguides.” International Journal for Numerical Methods in Engi-
neering, 124(8), 1883-1907.

Lin, Y.-H. and Trethewey, M. W. (1990). “Finite element analysis of elastic beams subjected to
moving dynamic loads.” Journal of Sound and Vibration, 136(2), 323-342.

Lloyd, F. and Jeong, C. (2018). “Adjoint equation-based inverse-source modeling to reconstruct
moving acoustic sources in a 1D heterogeneous solid.” Journal of Engineering Mechanics, 144(9),
04018089.

Lloyd, S. and Jeong, C. (2022). “Identifying moving vibrational sources in a truncated, damped,
heterogeneous solid.” International Journal of Computational Methods, 20(1), 2250030.

Lloyd, S., Schaal, C., and Jeong, C. (2023). “Inverse modeling and experimental validation for
reconstructing wave sources on a 2d solid from surficial measurement.” Ultrasonics, 128, 106880.

Ngeljaratan, L. and Moustafa, M. A. (2020). “Structural health monitoring and seismic response as-
sessment of bridge structures using target-tracking digital image correlation.” Engineering Struc-
tures, 213, 110551.

Ni, F., Zhang, J., and Taciroglu, E. (2023). “Development of a moving vehicle identification frame-
work using structural vibration response and deep learning algorithms.” Mechanical Systems and
Signal Processing, 201, 110667.

Oh, S., uk Ahn, C., Ahn, K., and Kim, J.-G. (2023). “Implicit inverse force identification method

32 Lloyd and Jeong, October 15, 2023



723

724

725

726

727

728

729

730

731

732

733

for vibroacoustic finite element model.” Journal of Sound and Vibration, 117713.

Pakravan, A., Kang, J. W., and Newtson, C. M. (2016). “A Gauss-Newton full-waveform inversion
for material profile reconstruction in viscoelastic semi-infinite solid media.” Inverse Problems in
Science and Engineering, 24(3), 393-421.

Raftoyiannis, I. G., Avraam, T. P., and Michaltsos, G. T. (2014). “Analytical models of floating
bridges under moving loads.” Engineering Structures, 68, 144-154.

Tromp, J., Komattisch, D., and Liu, Q. (2008). “Spectral-element and adjoint methods in seismol-
ogy.” Communications in Computational Physics, 3(1), 1-32.

Walsh, T., Aquino, W., and Ross, M. (2013). “Source Identification in Acoustics and Struc-
tural Mechanics using SIERRA/SD.” Report no., Sandia National Laboratories, <https://prod-

ng.sandia.gov /techlib-noauth /access-control.cgi/2013/132689.pdf>.

33 Lloyd and Jeong, October 15, 2023



734

735

736

737

List of Tables

1

2

Material properties and related RK method’s maximum allowable time step

conditions (7, =0.5m). . . . . . ...

Example 2: Domain dimensions for cases

34

Lloyd and Jeong, October 15, 2023



TABLE 1. Material properties and related RK method’s maximum allowable time step
conditions (7, = 0.5 m).

Material | E (GPa) p (kg/m3) v [w, (m/s) vs (m/s) Atmes (3)
Material 1 0.045 1,700 0.25 | 178.23 102.90 0.00281
Material 2 0.055 2,000 0.20 | 174.80 107.04 0.00286
Material 3 0.550 2,000 0.20 | 552.77 338.50 0.00091
Material 4 2.500 2,000 0.20 | 1178.51 721.69 0.00042
Material 5 0.065 2,000 0.20 | 190.03 116.37 0.00263
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TABLE 2. Example 2: Domain dimensions for cases.

Horizontal

Vertical

Spatial

Size Width (m) Height (m) nodes nodes  nodes DOF | Number of time steps
Size 1 8 7 17 15 255 510 | 500, 1500
Size 2 8 8 17 17 289 578 | 500, 1000, 1500, 2000
Size 3 8 9 17 19 323 646 | 500, 1500
Size 4 8 10 17 21 357 714 | 500, 1500
Size 5 8 11 17 23 391 782 | 500, 1500
Size 6 16 16 33 33 1089 2178 | 500, 1000, 1500, 2000
Size 7 24 24 49 49 2401 4802 | 500, 1000, 1500, 2000
Size 8 32 32 65 65 4225 8450 | 500, 1500
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@ : Sensors to monitor vibrational motions.
. X Moving direction
Moving dynamic force -~ -——p

in 2D solids

(0,0

Fig. 1. A stratified solid subjected to a dynamic distributed load in motion on its upper
surface. The lower boundary of the solid is immovably fixed, and wave movements are
recorded at an upper boundary.
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Moving or stationary

,/ vibrational traction
/

Maximu/\
______ ¢ 1/10 of maximum

> force amplitude

Fig. 2. A distributed moving or stationary traction. FWTM denotes the full width at a
tenth of the maximum force amplitude.
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Fig. 3. Example 1: Displacement vs. time plots for displacements computed by the forward
model at point (15,10) m for the target loading using the Newmark method and the RK
method: (a) u, and (b) wu,.
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Fig. 4. Example 1: (a) and (b) the target forces in the x and y directions; (c) and (d)

the inverted counterparts using the Newmark method; (e) and (f) the inverted counterparts
using the RK method.
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Fig. 5. Example 1: The target and inverted loads in the x and y directions at (a) t = 0.5 s
and (b) t = 1.5 s after 300 iterations.
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Fig. 6. Example 1: The target and predicted force over time at (a) (15,10) m, a surficial
point where there is a sensor, and (b) (16.5,10) m, a surficial point midway between two
neighboring sensors, after 300 iterations.
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Fig. 7. Example 1: Error vs. iteration plots comparing the effects of damping on perfor-
mance when using the RK and Newmark inversions: (a) Material 2 and (b) Material 3.
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Fig. 8. Example 2: Sample error vs. iteration plots for the RK inversion for 300 iterations
including (a) error plotted for four cases with the same number of time steps but increasing

spatial DOFs, and (b) error plotted for four cases with the same DOFs but increasing duration
leading to more time steps.
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Fig. 9. Example 2: Plots of elapsed time as the number of parameters change specifically
(a) elapsed time vs. DOFs for cases with 500 and 1500 time steps in the model and (b)
elapsed time vs. the total number of time steps for cases with 578, 2178, and 4802 DOFs.
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Fig. 10. Example 3: The performance of the RK inversion with respect to the sensor spacing
(a) Snapshot of x— and y—components for the targeted and inverted loads at t = 1.68 s
after 300 iterations. (b) Error vs. iteration up to 300 iterations.
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Fig. 11. Example 4: Results of tests on the effect of noise in the sensor data on RK
inversion outcomes including (a) error plotted for cases with various noise levels, and (b) the
reconstructed force in the z— direction at a point on the upper boundary, (15, 10) m, at 300
iterations for various noise levels.
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Fig. 12. Example 5: Results of tests on the effect of material property value’s uncertainty
on RK inversion outcomes including (a) error plotted for various cases of material property
value’s uncertainties, and (b) the reconstructed force in the z— direction at a point on the
upper boundary, (15, 10) m, at 300 iterations for the cases.
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Fig. 13. Examples 4 and 5: (a) and (b) the target forces in the z and y directions; (c) and
(d) the inverted forces after 300 iterations using the RK inversion method with 10% noise
introduced in the measurement input in Example 4; (e) and (f) the inverted forces after

300 iterations using the RK inversion method for Case 5b with material property value’s
uncertainty.
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