nature synthesis

Review article

https://doi.org/10.1038/s44160-024-00649-8

Reproducibility inautomated chemistry
laboratories using computer science

abstractions

Received: 25 April 2024

Accepted: 16 August 2024

Richard B. Canty ® & Milad Abolhasani®

Published online: 10 October 2024

W Check for updates

While abstraction is critical for the transferability of automated
laboratory science in (bio)chemical and materials sciences, itsimproper
implementationis a technical debt taken against the reproducibility of

experimental results. Over the decades, computer science has developed
guidelines and strategies for how abstractions are captured in programming
languages—particularly concerning the substitutability of implementations
of abstracted ideas and the clear definition of the contexts in which
abstractions are used. However, few programming languages developed

for automated experiments fully leverage the wisdom learned in computer
science. To achieve collaborative sharing of scientific knowledge via
automated laboratories, the way that experimental protocols are codified
and interpreted by machine agents must use abstractions responsibly

and with reproducibility, rather than solely transferability, atits core. This
Review discusses how computer science principles of abstraction can be
translated to create more reproducible automation as an enabler for the
acceleration of collaborative research with self-driving laboratories.

Reproducibility acts as a proxy measurement of truth and is central
to the scientific process. As experiments become more automated,
the standardization of process specification and execution is crucial
for enhancing experimental interoperability and reproducibility
in (bio)chemical and materials sciences. Inspired by the success of
cross-platform computer software, many efforts have been made to
codify laboratory processes such as Autoprotocol?, xDL?, the Emerald
Cloud Lab Symbolic Lab Language**, AnIML®, the MAOS language’
and LabVIEW®, among others’ 2. The creators of these programming
languages for laboratory automation have taken diverse approaches
for addressing how someone (or something) reading these languages
canproperly recreate an experiment without necessarily requiring an
exact copy of the original experimental set-up. These programming
languages are tools for recording and prescribing experiments, yet
they exist within ecosystems of other tools for writing and compre-
hending the language. The ways in which these tools interact can have
great consequencesinthe ultimate reproducibility of a codified experi-
mentin (bio)chemistry or materials science laboratories. This Review

Article will focus mainly on the qualities of programming languages
forlaboratory automationin (bio)chemical and materials sciences to
address how the abstraction permitted by the language caninfluence
both the reproducibility and transferability of the experiments between
laboratories with different experimental set-ups.

Abstractionis a powerful tool in specifying processes—for exam-
ple, a synthesis procedure can be templated and repeated for each
ligandinalibrary, the actuation of each motorinaroboticarm canbe
summarily specified with just the pick-up and drop-off locations. By
deferring specification or hiding unnecessary information, abstraction
reduces complexity and enables greater expressive power and transfer-
ability—traits which have made abstraction ubiquitous in computer
science. Recent efforts into codifying experimental procedures in
organic chemistry”" have demonstrated the power of portability
whereby the same high-level (abstracted) ‘code’ is executed using
different hardware. In general, the approach of abstracting related
implementations on the basis of the high-level objective that they
accomplishisa promising strategy to enable collaborating laboratories

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.

e-mail: abolhasani@ncsu.edu

Nature Synthesis | Volume 3 | November 2024 | 1327-1339

1327

http://www.nature.com/natsynth
https://doi.org/10.1038/s44160-024-00649-8
http://orcid.org/0000-0002-2347-2743
http://orcid.org/0000-0002-8863-3085
http://crossmark.crossref.org/dialog/?doi=10.1038/s44160-024-00649-8&domain=pdf
mailto:abolhasani@ncsu.edu

Review article

https://doi.org/10.1038/s44160-024-00649-8

a Frequency of result

Combustion Polymerization
Volumetric flask Beaker
Simulation Experiment
Caliper Ruler
GPS Sextant

More repeatable Less repeatable

Fig.1| Comparisons of the repeatability and reproducibility of experimental
results. a, Visual examination of repeatability as controlled by instrumental
precision and the inherent stochasticity of the system. GPS, global positioning
system navigation. b, Demonstration of the validity of procedural changes on

-2

Reactor
5 ml open stainless steel
0.2 ml open plastic

M 1 mlopen glass

I 1 ml sealed stainless steel

Truth

Frequency of result

Measured yield

the reproducibility of experimental results. In this example, the reaction yield is
more reproducible under minor volume changes (0.2-5.0 ml) and the material
of thereactor (metal, plastic or glass) than it is under atmospheric control
(openversus sealed).

toshare and validate experimental workflows®. Asit pertains to experi-
mental reproducibility, the level of abstraction represents the degree
to which modifications to an experiment are permitted to achieve
interoperability (for example, vague instructions to remove copper
fromasolution could beimplemented viaa colorimetric titration, ion
detectorsoraprecipitating reagent; conversely, a specificinstruction
to use spin coating rules out drop casting or sputtering). The misuse
of abstraction', therefore, can result in irreproducibility for experi-
ments—thereby hindering collective scientific advancements.

As the modification of experimental workflows is a requirement
fortransferring experimental protocols between different laboratories,
with acknowledgement of the diverse interpretations of reproducibil-
ity, repeatability, replicability and so on" ", the following discussions of
reproducibility and repeatability will be centred around the distribu-
tions of experimental results—with repeatability relating to the vari-
ance of a single distribution of results and reproducibility relating to
the overlap between multiple distributions of results. Repeatability
(Fig.1a), which applies when the experimental set-up is held constant,
is the lack of variance in measurements as determined by the innate
uncertainties of the experimental subject and the precision of the
experimental methods (for example, the droplet-to-droplet variability
ofyield and the selectivity inagiven flow reactor). Reproducibility is the
confidence of agreementbetweenresultdistributions and is subject to
changesin the experiment (Fig. 1b; for example, the variation in yield
between different reactors). When experimental modifications are
minimized, reproducibility provides a measure of how well an experi-
ment is specified and reported. When experimental modification is
permitted, as in the case of abstraction, reproducibility provides a
measure of the validity of these abstractions.

Evaluating repeatability and reproducibility is not absolute.
Experiments may have multiple goals, and different projects may
focus on different objectives. As aresult, metrics for repeatability and
reproducibility are goal-dependent and often multi-objective. For
example, it may be possible to achieve reproducible product yields
but not product distributions®, or to achieve repeatable support for
areaction mechanismbut not reproducible kinetic parameters. Simi-
larly, itis possible to reproducibly arrive at a final chemical or material
yet have inconsistent intermediates.

Reproducibility is often difficult to predict during development
and requires collaborators with similar experimental capabilities for
it to be properly measured. Proxy measurements (such as replicate
experimentsinterspaced with random experiments*?) are often used
to enable a single laboratory to estimate reproducibility. Evaluating
whether or not overabstraction has resulted in a loss of reproduc-
ibility requires exactnessin which observables are under scrutiny and
which statistical techniques are used. Ultimately, abstraction should
beleveraged for transferability without adversely impacting reproduc-
ibility, and should synergize with automation to produce both precise

(repeatable and reproducible) and accurate (close to the ground truth)
experimental results.

Languages for the programming and automation of experiments
are tailored towards specific objectives, philosophies and applica-
tions. Practical considerations can include having the language be
easily interpreted by a human (the user experience) or forbidding
dangerousactions (security and safety). For experimentalists, repro-
ducibility is paramount because confirming or refuting results sits
at the heart of scientific study and the pursuit of knowledge. Failures
of reproducibility in automated experimental systems can result
in a number of problems, which decelerate research. Failures to
reproduce, especially when the causes are hidden behind layers of
abstraction’, can create difficulties with troubleshooting, prolong
experimental campaigns with redundant experiments (wasting time
and resources) and deter the use and adoption of the technology to
accelerate science. Whereas discrepancies can result in discoveries,
edge cases and failures of the experimental automation can mislead
scientists—hiding discoveries or leading to doomed studies. Crucially,
failures to reproduce results or quickly resolve discrepancies (such
asthedisputeinresults produced by the A-Lab of Lawrence Berkeley
National Laboratory)* erodes trust and support in automated (and
autonomous) laboratory ecosystems®*. The proper codification of
experimental workflows into automatically executable codes should
enableacollaborative future for research where experimental results
can be reproduced with minimal troubleshooting, where automated
agents can participatein writing and adapting experiments and where
the translation between set-ups (such as between batch and flow
chemistry formats) can be automated”. Without expressive (Box 1)
andinterpretable languages that properly encode the reproduction of
fundamental operations (such as material transfers, reactions, separa-
tions and characterizations), such a collaborative and interoperable
future of research will not be achievable (Fig. 2).

In the following sections, we will discuss what abstraction can
mean in an experimental context centred around how abstraction
implies substitutability inimplementations and how these implementa-
tions canbe given aformalized interface to facilitate transferability. Fol-
lowing these definitions, approaches for responsibly using abstraction
seenincomputer science are translated to an experimentalist context.
Generally, these approaches involve (1) tailoring the programming
language to support communication with supplemental processes
which monitor experiments and (2) limiting the use of abstraction to
cases where implementations are truly interchangeable in practice.
Finally, welook to the future in how combinations of these approaches
may be leveraged to create (potentially multiple) programming lan-
guages for experimental specification that can deliver on the promise
forinteroperable and reproducible experiments and what that would
mean for massively collaborative scientificadvances in (bio)chemistry
and materials science.

Nature Synthesis | Volume 3 | November 2024 | 1327-1339

1328

http://www.nature.com/natsynth

Review article

https://doi.org/10.1038/s44160-024-00649-8

BOX1
Definition of key terms

Expressive power of a language. The gamut of ideas that can be
conveyed in a language. Often the definition is restricted to what is
easily conveyed®?’. For example, a language may be able to specify
distillations and reactions but not a reactive distillation.

Abstraction. A simplified but sufficient representation or model that
can be used for design.

Interface. The allowed interactions with an abstraction, often
specifying what can be asked of the abstraction and how it will
reply. An abstraction with a well-defined interface is known as a
‘type’; an ‘object’ is a concrete instance of a type (for reference,
these are the ‘objects’ in ‘object-oriented programming’). The
interface for an entire software package is commonly known as an
application programming interface (API).

Contract. The formal definition of an interaction specified in an
interface: what information must be provided, what actions may be
taken and how the result will be communicated®.

Caller. The person, software or process that requests an action—the
‘contractee’ in the contract analogy.

State. The specific configuration and properties of a material,
machine, program or workflow.

Coupling. A measure of how interdependent systems are.

In the context of creating good abstractions, this will be the
extent to which an abstraction depends on other abstractions’
implementations.

Design pattern. A heuristic or best-practice for addressing a
common problem—often developed by identifying commonalities
across expert solutions to related problems. The design patterns
referenced in this work are detailed further in Supplementary
Section 1.

Imperative versus declarative programming. The extent to which
the procedure or control of a program is made explicit (imperative)
or implicit (declarative)®.

Prescriptive versus descriptive language. The extent to which

a language can specify instructions (prescriptive) or detail
observations (descriptive). Prescription may use instructions to
blindly control latent or hidden parameters; description, however, is
confined to only sensible or observable properties.

Compilers, interpreters and transpilers. Software that translates
instructions between languages (often between a human-readable
language and a machine-readable one) so that a machine can
execute the instructions.

Abstraction

Abstraction isameans by which processes and ideas are organized and
simplified by focusing on common qualities and behaviours®, through
hiding inconsequential differences” or by deferring specification. In
chemistry, materials are often referred to in the abstract (reactant,
solvent or catalyst rather than specific chemicals), as are processes

(workup and separation rather than neutralization and filtration). An
abstraction can focus on what a material or process is, what it does,
how it is best represented or combinations thereof. There are many
ways to abstract. Focusing on properties, phenol and isopropanol
are both alcohols as they both contain a hydroxyl group. Focusing on
behaviours, a pipette and pump are both liquid-transfer tools as both
transport liquids. Focusing on representations, a checklist, flowchart
or paragraph can describe how anew chemical or material was created,
and an experimental method can be simplified using sensible labels
(for example, ‘products P1-10 were synthesized using method Mland
substrates S1-10’). For laboratory automation, the power of abstrac-
tion shines in cases where a workflow can be developed for a general
case (for example, reagent source, transfer tool and reactor) rather
thanfor each potentialimplementation (for example, syringe, syringe
pump and packed bed reactor versus vial, pipette and heater shaker).
Despite the diversity of ways in which things can be abstracted?,
notallapproaches are equally appropriate. When devices or operations
are organized under the same abstraction, it is a statement that they
are interchangeable in a specific context (for example, isopropanol
and ethanol may be effectively interchangeable for disinfecting but not
imbibing). Owing to the diversity of contexts in chemical and materials
science, itis challengingto predict which details or distinctions matter.
The context determines the nature of interactions; and in codification,
theseinteractions are represented by agiven ‘interface’ (Box1). These
interfaces define whichinteractions are permissible by defining a set of
‘contracts™ (Box1) that can be invoked and must be honoured.

Contracts

Within an experimental procedure, every step outlines a set of inputs
and expected outputs, regardless of the level of abstraction present.
Inputs can include material from previous steps in addition to pro-
cess parameters (for example, reaction temperature and duration,
the degree of mixing and so on). Outputs can include materials and
observations or data as well as errors and side effects (for example,
transfers will contaminate pipetting tips, aroboticarm may rearrange
well plates when trafficking between instruments).

The creation of abstractions for experimental sciences requires
the construction of new contracts for the abstracted form. Forexample,
whenabstractinga pipette, pump and hopper to honour atransfer con-
tract, the contract could state that the source, destination and amount
of material must be specified and that the result will be either anerror
or the specified amount of material being added to the destination.
Note that this contract neglects the changesin the pipette or pump or
hopper’s state (Box1; for example, becoming contaminated) as well as
the changes in the source’s state (for example, losing material).

It may seem logical, then, to fully specify every potentiality in
the contract. However, as the number of entities that are involved
in a contract increases, the more interdependent (coupled; Box 1)
and, by extension, fragile the process may become. Coupling (Box 2),
especially in complex systems, is observed to make the maintenance
and analysis of code challenging and hinder the portability of code
as actions become dependent on other entities that may or may not
be present in another implementation®>?'. For example, using flow
rate to specify areactor residence time requires knowing the relevant
flow-path volumes to be translated to a reaction duration in a batch
set-up. Similarly, trying to make a contract sufficiently general without
involving other entities makes the contract less practical to use (con-
sider the hyperbolically unhelpful contract ‘something may happen’).

As an illustrative example, the considerations for a contract
between control software (contractee) and an HPLC controller (con-
tractor) are discussed. Broadly, the contractee wishes to provide a
sampleinavial or sampleloop and to receive an analysis. Contractors
and contractees can generally coordinate in three ways: providing
information, making assurances and providing tools. For information,
the contractee could provide the vial position, the HPLC method and

Nature Synthesis | Volume 3 | November 2024 | 1327-1339

1329

http://www.nature.com/natsynth

Review article

https://doi.org/10.1038/s44160-024-00649-8

Pipettes
Add T —fumes |
(Abstraction)
Robotic
arms
— —

(Implementations)

Fig.2|Various implementations of the same abstraction leading to different
results. The broad abstraction ‘Add’, without any further parameterization or
support can berealized in various ways. The fundamental qualities of these
implementations can lead to challenges in reproducing experimental

Lab1

Yield
(Reproducibility)

results—rendering these implementations as non-interchangeable. Without
reproducible transferability, the dream of collaborative, automated research will
notbe possible.

where to save the data; the contractor could provide the results of its
analysis and the status of the HPLC. For assurances, the contractee
could guarantee that the sample will be in the vial or loop, that the
method file exists and that the sample does not contain materials
which may damage or clog the HPLC; similarly, the contractor could
guarantee that, after each HPLC analysis, the column will be ready for
another injection. For tools, the contractee could provide the sample
valve controller (asubcontractor) so the contractor can properly time
the injection. Concerning subcontractors, when the contractor itself
makes asubcontractitbecomes coupled: ifthe contractor took direct
control of the sample valve, then this implementation could never
work on a system without a sample valve. By providing a subcontrac-
tor as input, the contractee can fill in the contract with information
it knows (or apply restrictions) and leave completing the contract
up to the contractor. This makes the implementation of the contrac-
tor more general but increases the overhead—each invocation of the
contractrequires preparing and providing a subcontractor, and each
subcontractor requires its own contract. Contracts must consider the
contractee’s goal and the contractor’s requirements. The contractee
could wantatable of concentrations per compound, the unprocessed
chromatogram or the selectivity and yield of a reaction. Given the
goal, the contract must consider what is possible for the contractor
and whatinformation and tools the contractor requires (for example,
to calculate thereactionyield, the contractee must provide the initial
concentrations of reactants). The contract must specify how inputsand
outputs are handled: should the contractor provide the data directly to
the contractee or save it to aspecific file or database; moreover, in what
format (row- or column-major order, in what unitsand so on)? Finally,
the contract must consider failures—which errors can be tolerated,
are any of the assurances compromised by a failure?—and how these
errors should be communicated between the contractor, contractee
and subcontractors.

Thebest contracts areiteratively refined until all parties can com-
plete their tasks by considering what information is known by each
party, which tools areaccessible to each party and what each party can
guarantee goinginto and coming out of the contract. Contracts can be

specific to an application (by only considering the answers to these
questions on a single experimental platform) or general (by thinking
about how others may have designed their experimental platforms).
A contract specifying that yield and selectivity must be outputtoafile
requires acomputer where the control program possesses the security
permissions for saving files and cannot be used by a different workflow
that needs concentrations per component. Conversely, if the contract
specifies the output to be a table of peak areas and retention times,
additional contractors (and contracts) will be required to translate
this table into what is needed by a different workflow.

Ultimately, contractsinvite thinking about what the responsibili-
ties of each component in a complex system are (and are not), what
information or conditions are necessary to fulfil these responsibilities
and how both successes and failures are to be detected and reported.
Whereas contracts are a useful tool in the development of code, and
by extension experimental procedures, they are not sufficient to guar-
antee reproducibility or interoperability.

Substitution

The ultimate purpose of abstractions which obey contracts is that
different executors of a contract (for example, different experimental
platforms) canbe substituted without affecting the validity of the con-
tract (for example, two collaborating laboratories observing the same
material properties or asingle laboratory migrating to anew vendor’s
hardware without needing to rewrite their experimental protocols).
In a computer science context, any two equivalent algorithms that
solve the same problem are interchangeable (despite differences in
implementation and performance).

For experiments, the pipette, pump and hopper may appear inter-
changeable for material transfer; however, the quirks* of their physical
implementation challenge the creation (or honouring) of contracts,
and by extension challenge the guarantee of reproducibility upon
substitution. As reported by Rauschen and colleagues', whereas the
same quantity of water was specified asaquench ona Chemputerand a
Kinova experimental systemusing XDL, the actual quantity dosed (and
thus the product distribution) was different, as shown viaNMR spectra;

Nature Synthesis | Volume 3 | November 2024 | 1327-1339

1330

http://www.nature.com/natsynth

Review article

https://doi.org/10.1038/s44160-024-00649-8

BOX2

Coupling

Coupling can extend beyond software to physical experimental
set-ups. A workstation where a central robotic arm transfers
materials between modules, such as in the set-up reported by
Gongora et al.'°, has each module mechanically coupled solely to
the robotic arm (see image). As a result, if the arm malfunctions, the
other modules may carry on (to an extent); similarly, if a single 3D
printer malfunctions, the others may continue to make progress.
Conversely, flow chemistry systems, although they provide
improved reproducibility through enhanced process control when
compared with batch chemistry, are highly coupled—for example,
without flow-path isolation, if a single fluid-delivery pump fails,
then all downstream processes and measurements are impacted.
Beyond architecture, unit operations can exhibit coupling.
Separations, chromatography in particular, are often highly
coupled: chromatography will remove material from both a sample
and from its solvent reservoirs, dilute and separate the sampled
material and deposit new material in new locations—such as waste
or a fraction collector. In addition, if the sample contains metals or is
strongly basic it can damage the chromatography column, altering
the efficacy of the chromatograph with future samples. Ultimately,
the minimization of coupling is what enables truly flexible, modular

experimental systems that are capable of diverse experiments'”'.

Image adapted from ref. 100 under a Creative Commons licence
CCBY 4.0.

moreover, foradifficult, stochastic crystallization step, two Chemputer
systems using different crystallization techniques produced different
yields (87 and 47%) for areactionintermediate.

Inmolecular discovery, where reactions are not optimized, alim-
ited yield is a concern for completing multi-step syntheses and char-
acterizations. If the well plate, batch platform reported by Koscher
etal.” were translated to apump-based system, such asa Chemputer,
material losses due to dead volumes or purges may jeopardize the
reproduction of afull experimental workflow. Either the entire process
willneed to be scaled up (incurring numerous experimental changes)
or the researcher must accept running fewer or partial experiments.
Conversely, aChemputer-based protocol may need to be scaled down
to run on a well plate system and adjusted for the inferior mixing of
the well plates. Treating pipettes and pumps as interchangeable can
result in problems with or discrepancies between the experimental

workflows being hidden until execution—when resources have already
been committed.

In a chemical synthesis context, consider the abstraction of ‘sol-
vent’. Both water and methanol are solvents; however, they are not
substitutable in all reactions. Solvent effects can result in different
activities, selectivities and yields in catalytic reactions. Inthe example
provided by D’Agostino and co-workers*, whereas the reaction will
progress under water or methanol (interchangeable), they are not
interchangeable in terms of yield and selectivity (even despite the
two solvents being polar protic solvents, the same specific subtype of
solvent). When specifying procedures executed by machines, care must
be taken to use the correct level of abstraction (for example, does the
reactionrequireasolvent oranacidic polar protic solvent?; by analogy,
doesthe method require pumps or water-free, high-pressure pumps?).

Ideally, the side effects of using (overly) abstracted interfaces for
differentimplementations could be resolved by making better imple-
mentations—for example, developing pumps with no dead volume,
identifying chemically neutral and universally immiscible backing
fluids for pipettes or developing a transfer technique that works with or
without transfer solvents and can handle gases, liquids, solids, slurries,
suspensions, foams and so on. In reality, however, such technologies
donot, and may never, exist. Moreimmediate improvements to repeat-
ability may come from the development of more adaptive process
control systems that leverage machine learning®® . In addition, the
repeatability of a chemical process can be improved by discovering
moreselective® or more fault-tolerant reactions*’. Current laboratory
automation technologies for (bio)chemistry and materials science
can, and should, improve to address concerns of interoperability and
reproducibility”, but the language used to abstractly describe them
must also shoulder some of that burden. To this end, improvements to
automationwillimprove accuracy and repeatability, whereas improve-
ments to the communication of experimental workflows willimprove
repeatability and reproducibility—and together will make automated
experimentation more reliable. In addition, technologies and strate-
gies forimproving reproducibility which stem from outside the field of
automation will still need to be communicated between (automated)
laboratories. This communication (if written or digital) will require
some level of abstraction to summarize material provenance®, the
procedure, the controller settings and expected behaviours.

Treating real devices as necessarily interchangeable because they
are conceptually related can cause headaches as outcomes fail to be
reproduced and problems are not identified until during execution of
the experiments. Fundamentally, abstraction permits modifications
to an experiment, and which changes areimmaterial cannot be known
a priori without a deep understanding of the underlying process: as
thestepsinaprocess become more abstracted, the guarantee of their
reproducibility is diminished.

Exercise

Table 1 provides a prompt for the complexity of defining a sufficient
but minimally coupled contract for the substitution of two different
transfer tools. As an exercise, consider how a contract developed for
the transfer of a material may change with the addition of (1) a hop-
per that operates on granulated or powdered solids and may not be
able to pick up material (instead relying on a reservoir), (2) gravimet-
ric (instead of volumetric) approaches that use partial-transfer or
check-weight-differential cycles, (3) arobotic hand that can manipu-
late existing laboratory tools, such as beakers, scoopulas and gas bags,
as would a human chemist or (4) the inclusion of slurries, which may
interact negatively with tip diameters or pump heads.

Lessons learned from abstractionin computer
science

The problem of granting interoperability through abstraction while
incurring challenges to reproducibility is neither new nor solved. The

Nature Synthesis | Volume 3 | November 2024 | 1327-1339

1331

http://www.nature.com/natsynth
https://creativecommons.org/licenses/by/4.0/

Review article

https://doi.org/10.1038/s44160-024-00649-8

Table 1| Prompts for consideration in the design of a
substitutable abstraction of material-transfer techniques

Liquid-backed pipette

Pump

Valid source or
destination®

Often deployed on a
robot that can address
source and destination
independently.

Destinations and
sources may be
combinations of fixed
or free, depending
on the supporting
equipment.

Valid transfer

Tip and syringe sizes.

Source or destination

volume or mass Source or destination volumes.

volumes.
Precision or Tip and syringe sizes. Tip contact (above or
accuracy of transfer Tip contact (above or submerged, touching

submerged, touching a
wall).

Syringe motor precision
and speed.

Material viscosity, vapour
pressure, surface tension
and compressibility.
Leading and trailing air
gaps.

a wall).

Motor precision.
Material
compressibility.

Amount of material

Same as deposited in

At least as deposited in

taken from source destination. destination, depending
on implementation.
Method of Residual material on Mixing with pump

contamination

pipettes, contact with

fluid (if amount taken

backing fluid. from source and
amount deposited are
equivalent).
Valid material phase Liquid Liquid

Example contract Input: a source, destination, desired volume and
routing subcontractor.

Actions: use the subcontractor to locate the source
or configure valves, remove material from the source,
use the subcontractor to locate the destination or
configure valves, deposit the specified quantity of
material.

Output: a destination with the specified volume of
material.

Errors: clogs, any error from the subcontractor.

The volumetric units, the format of the locations and
the interface for the subcontractor are not specified.
The use of a subcontractor to configure valves or
position pipettes is a good way of ensuring that the
contract can be used by both flow and liquid handler
set-ups.

This contract fails to consider assurances such

as there being sufficient material in the source or
available space in the destination.

In addition, there are no assurances about
contamination—the actions could be modified to
wash after every transfer to ensure no contamination.
More complex cleaning (such as only cleaning when
the transferred material changes) requires additional
information about the material (not just its location),
records of the history of transfers and information on
how the material is transferred.

Notes

“The dependence on supporting equipment implies, perhaps surprisingly, that the selection
of sources and destinations should not be a responsibility of a transfer tool—in other words,
a higher-order abstraction that can coordinate both material transfer and location selection
is necessary.

conditions for the interchangeability of objects (formally, behavioural
subtyping*’) were developed by Liskov and Wing three decades ago
and aresstillunder investigation***. Despite a mathematical (abstract)
equivalence, an implementation-specific bug (Fig. 3) was found in
Javasorting algorithmsin 2006 (after avoiding detection for years)*.
Enterprise systems”, the Internet*® (of things***°) and robotics™ face a
similar problem where related elements cannot be abstracted to their
core concept due to specific implementation details. Fortunately,

Abstraction

Average —> X+Y)/2 = Y+(X-Y)/2

X =30,000 .
Y = 20,000 Implementation

o # 25,000 25,000

&

3

B

@©

I # -7,768 25,000

Fig.3|Disparity between abstractly equivalent but hardware-dependent
implementations for aJava sorting algorithm. The sorting algorithm involves
calculating the midpoint between a highindex, X, and alow index, Y (both
positive integers); the error arises because the intermediate term (X + ¥) can
exceed the maximum value the hardware can store even when X, Yand their
average are all valid numbers.

experimentalists aiming to have codified experimental procedures
canstand on the shoulders of these giants.

Below, we review some abstract programming language features
which have been useful in computer science for addressing the prob-
lems that experimentalists face. These features centre around two
ideas: (1) providing more operational detail than success or failure
enables more nuanced control; and (2) experimental instructions
(for example, ‘heat at 90 °C and stir for 45 min’) can be augmented
by the results (for example, ‘until solution turns clear’). Whereas the
core lesson to be learned is that two implementations should not be
grouped under one abstraction (for example, all material transfersinto
one standard ‘transfer’ instruction) unless the implementations are
functionally identical in result, the more a language can support and
communicate situational awareness (for example, sensor readouts,
supplemental measurements or reports of observations) the better
it can adjust a workflow to ensure the reproducibility of the results.
A programming language for experiments should make the commu-
nicating intent, the technique and the expected results easy without
involving clever (ofteninelegant orimpenetrable) tricks.

Reactive approaches

Traditionally, experimental procedures are given imperatively (for
example, do these steps in this order, and if something goes wrong,
start over; Fig.4) as this strategy suits the descriptive approachusedin
literature. However, with digital procedures, more nuanced, prescriptive
workflows are possible. Rather than each operation reporting either suc-
cessoranerror, operations can be expected to report back with details
of their operation—indicating complete or partial success and their
observed changes of state®***%, As a result, the reporting of expected
problems is incorporated into the contract without coupling to the
manner by which the problems are addressed. A language that utilizes
thisapproach of direct response needs to provide a way for responses
to be captured and handled—the contract of abstracted operations
must include sending a response. In existing automation languages
(Fig. 5), the examples Fig. 5a-d,fare checklists without explicit syntax
to handle errors—error handling is hidden within each step or by the
coordinator going through the checklist, which prevents the user from
implementing specialized recovery procedures. The examplein Fig.5g
(LabVIEW) has ‘wires’ which show the transfer of results and error mes-
sages betweeninstructions (non-graphical languages will typically usea
‘result=instruction’ syntax). Capturing responses is frequently achieved
by having operations publish results to the caller (Box 1) oracommunal
resource (such asadatabase) (Fig. 4b) where somereactive logic canbe
implemented to course correct if necessary. Inmany ways, this approach
ismirrored by laboratory technicians using a scale to measure 100 mg
of reactant and then recording the actual amount (98.7 mg).

Nature Synthesis | Volume 3 | November 2024 | 1327-1339

1332

http://www.nature.com/natsynth

Review article

https://doi.org/10.1038/s44160-024-00649-8

Example pseudo-code

a
Caller ————— Hardware —»_ transfer (device, source, destination, amount)
b
Caller Hardware —»- result = transfer(...)
1 analyze (result)
Reactive R
[B5ic May involve sensors
c .
Manager < Optional sensors with manager:
T transfer(...)
other operations
Calllar Heic e - result = manager.get result ()
d
Package Proactive logic details = {material properties, technique, etc.}
l l transfer (..., details)
Caller - Hardware —»-
e
Caller)
J—> Hardware —»_ pipette transfer(...)
Caller - # compare:
Hardware ——— Effect # acoustic transfer(...)
Caller L =
pump_transfer(...)
Caller AT i # manual transfer(...)
f .
tolerances = 5%
Uncertainties . .
uncertainties = transfer(..., tolerances)
Either:
Caller — > Hardware '- # Check uncertainties meet tolerances

—J !
Uncertainties |+

Fig. 4| Visualizations of the approaches described. Generally, a caller (the part
of the language that invokes some piece of hardware) sends acommand to the
hardware which, inturn, causes some effects (good, bad and neutral). An ellipsis
is used for brevity on what information the callers may need. a, The status quo,
animperative approach where commands either succeed or fail. b, Commands
report back with what happened. ¢, A supervised approach, where an external
process can observe the reality of what happened. d, Aninterpretive approach,

I

Or propagate uncertainties

where specification details are processed in the context of the current hardware.
e, Avariant approach, where abstraction is limited to implementation assuming
interchangeability between the hardware of thatimplementation (for example,
all pipetting liquid handlers are interchangeable for pipetting transfers).

f, Atolerance or uncertainty approach, where the limitations of the hardware
and the tolerances of the workflow are processed along with the experiment.
Throughout, lines preceded with a hash symbol (#) indicate comments.

In looking to design good contracts for abstracted operations,
any sufficiently general contract will leave aspects of the experimental
workflow underspecified; however, this slack can be picked up else-
where. In many cases, acontext manager>** or error checker*® (super-
visor) is sufficient to address problems of a single operation changing
the states of multiple entities. A supervisor is a separate process
that takes notice of how an experiment’s state may change between
operations (such as checking the feasibility of transfers, recording
the changes of materialin atransfer orinserting proper washing and
preparation steps on contamination), as shown in Fig. 4c. Inaddition,
supervisors can manage metadata or environmental observations
(ambient temperatures and humidity, for example). The use of con-
text monitoring has seen success in languages such as Erlang®, which
adopts a‘letit crash’ideology for processes to defer error handling
to higher-level processes that may be better suited for handling the
error; similarly, Python*® implements a ‘with manager(details) as
name:’ syntax specifically to handle contractee assurances (such as
checking for afile, opening it, monitoring for errors and closing the
file). A single platform may also have multiple managers, enabling
specialization in data-, hardware- and workflow-management'>*’.
The ORGANA system*®®, for example, uses multiple computer vision

processestoactas asupervisor for locating and positioning resources
and for detecting anomalies toimprove operational robustness. Inthe
space between manual and automated experimentation, the rules and
features of electronic laboratory notebooks®' simulate some aspects
ofasupervisor but for human operators. Within extant languages for
laboratory automation, those which use supervisors either provide
global supervisors or hide single-step-specific supervisors within
each operation. Future languages should consider providing syntax
to handle more intermediate management (for example, the follow-
ing steps must occur within a glovebox, using the same pipette tip
or concurrently).

Although supervisors do not solve every problem, they doreduce
the frequency (or impact) of errors during an experiment and may
help detecterrorsinsimulated operating modes. Inthisapproach, the
language needs a way toinvoke and communicate with the supervisor.
The monitoring or describing of operations provides aid in diagnos-
ing problems and can enhance safeguards for the reproducibility of
experimental results, although this may come at the cost of added
complexity and inertia (one cannot proceed with just a hotplate for a
pilot reaction: now a digital twin, database or sensor suite is needed).
These techniques may synergize well with ontology- and event-based

Nature Synthesis | Volume 3 | November 2024 | 1327-1339

1333

http://www.nature.com/natsynth

Review article

https://doi.org/10.1038/s44160-024-00649-8

@ ARChemist language b Koscheretal.33 C xDL d Autoprotocol (via Python)
process: ‘127 <Repeat repeats = "3"> LH = LiquidHandle
- state_name: stir_ samples agent: robotic_arm <Add LH.builders.transport(
station: operation: move_wellplate vessel = "reactor" volume=Unit(1l, "uL"),
type: IkaPlateDigital completed: ‘no’ reagent "acid" density=None,
id: 23 container: hplc_plate volume = "1 mL" pump_override_volume=Unit(2, "uL"),
operation: details: stir = "True" flowrate=LH.builders.flowrate(
type: IKAStirringOp target_destination: autosampler /> target=Unit (10, "uL/s")
properties: time_est: 30 <Monitor),
stirring_speed: 1000 start_time: null target = "reactor" delay_time=Unit (0.5, "s"),
duration: 300 end_time: null quantity = "pH" mode_params=LH.builders.mode_params (
transitions: 137 min = "5" liquid_class="air",
on_success: shake_samples agent: liquid_chromatograph max = "7" position_z=LH.builders.position_z(
on_fail: end_ state operation: run_analytical_batch /> reference="preceding_position”
- state_name: shake_samples completed: ‘no’ </Repeat>)
station: container: hplc_plate <Add)
type: ShakerPlateStation details: vessel = "reactor")
id: 22 queue_number : reagent = "dichloromethane"
operation: -3 volume = "30 mL"
type: ShakeOp -4 stir = "True"
properties: update_plates: />
duration: 300 - filtrate_plate <Transfer
transitions: - hplc_plate from vessel = "reactor"
on_success: analyse time_est: 11200 to_vessel = "separator"
on_fail: end_state start_time: null volume = "all"
end_time: null />
€ MAOS language f BioBlocks
MAOS code BioBlocks code

PL|(Pc+SP3+R4+SP4) xHxC
where Pc=
[R3%+SFx A+ (Ri*SP1+R2+SP2) x (AU V) x (AUGU O)]

Flow diagram

Set [CNEERRA to CONTAINER LIST i CONTAINER

Name
Type
Initial volume [oY8]

LLLE A store at ambient ¥

Initial volume [oX¢]
Density [FICEN

for each iter [T in List

NaN-null

continuous transfer ~

Source CONTAINER

LEL S Media |
Type
100}
Density
cont mixing ll
flow rate /
Destination
Time of operation [
Settings ll
DITEELY 1 EMinutes - |

Schematic

gl g
&UUUW &UUU-" Yy~

Legend

PL (assay) Photoluminescence

Pc (variable) Reactor effluent

Xy (operation) Transfer reagent x viay

x+y (operation) Combine reagents xandy

xxy (operation) React xin environmenty

x|y (operation) Characterize y viax

xUy (operation) Combine environments xandy
g LabVIEW

Code Schematic

Digital Bool , Digital Bool ,

Fig. 5| Example excerpts of different languages for prescribing automated
experiments. Excerpts focus on the operations of the workflow and omit the
declaration of materials and resources in their respective workflows for brevity.
a, Thelanguage used on the ARChemist platform to describe the stirring and
shaking of samples. The use of ‘on_success’ and ‘on_fail’, which point to which
step is performed next, enable branching workflows, although in this version,
however, there are no protections against infinite loops. Code from refs. 91,92.
b, The language used by Koscher et al. to describe the transfer of a well plate

into achromatograph and subsequent analytical separation. Each step may

use conditional logic and loops by modifying the workflow via Python scripts,
increasing the language’s expressive power but making the workflow opaque.
Code fromref. 33. ¢, An excerpt of xDL to describe the neutralization of asample
before transfer to a separator. Loops are given a well-defined structure that
permits exits on the experimental conditions and attempt limit. Code from
ref.93.d, Autoprotocol (in Python) to describe the liquid-transfer parameters for
aliquid handler. The source of the material in the transfer step is inferred from
the 'preceding_location’ specification. Code from ref. 94. e, The MAOS language
to describe an entire flow chemistry system with mathematical-like abstraction’
(the flow system is provided as areference). PL, photoluminescence; Pc, reactor

effluent; SP, syringe pump; R, reagent; R®, solid reagent; H, heating module;

C, cooling module; SF, solid feeding module; A, reactor module;

V,vacuum pump; G, gas supplier; O, gas treatment; ODE, 1-octadecene; OA, oleic
acid; T, temperature; CdO, cadmium oxide; Th, heating temperature; th, heating
time; TOP, trioctylphosphine; Se, selenium. f, A visual BioBlocks description of
administering media to multiple cell cultures™. Aspects of the interfaces between
operations are visualized by the puzzle-piece connectors between statements
and the selection boxes within statements. g, Example LabVIEW® code that
describes a half-second relay pulse to trigger the start of achromatographic
analysis. The dashed purple line contains information about which relay to

use; the dotted yellow line carries error messages. This language enables a

more flowchart description of operations (as opposed to the more linear
representations of the previous examples) and represents hardware and software
interfaces with connection ports on each block, which the user connects with
‘wires’. DAQ, National Instruments Data Acquisition system; DAQmx, a DAQ API
for LabVIEW; T, the boolean value 'True'; F, the boolean value 'False’. Comparisons
between these, and additional, languages for the same operation are provided in
Supplementary Section 2. Panel e adapted from ref. 7 under a Creative Commons
licence CCBY 4.0.

Nature Synthesis | Volume 3 | November 2024 | 1327-1339

1334

http://www.nature.com/natsynth
https://creativecommons.org/licenses/by/4.0/

Review article

https://doi.org/10.1038/s44160-024-00649-8

approachestolaboratory automation datamanagement*>****, through
their alignment with the publishing of results to supervising processes.

Interpretive approaches

In contrast to the aforementioned, reactive, techniques, a more pro-
active approach can be taken. It is possible to provide each operation
with as muchinformation (but not necessarily instruction) as possible
(Fig. 4d) at the onset of a task. This information can be sent explic-
itly at the invocation of the operation or implicitly by providing a link
to aresource, such as a database or sensor, instead. The executor of
the operation can filter (if the command is overspecified) or enrich
(provided with sufficient information) these data as needed* and
adapt its approach (strategize®) to meet operational objectives. This
strategizing caninclude choosing between differentimplementations
(for example, performing a separation via filtration or liquid-liquid
extraction). The explicit approach, where supplemental information
is sent directly, can be simplified using conveniently formatted data
packages®’; theimplicitapproach can utilize lightweight messages and
keep the writing of instructions simple* but requires the consolidation
of details elsewhere such as a database.

The automation control architectures of Koscher et al.* (Fig. 5b)
and Statt et al.** demonstrate convergent evolution towards the same
design patterns (Box 1), where devices communicate to acentral server
instead of each other. The two differ in how messages are transferred:
the former has ablend of forwarding messages and has systems check
forupdates, whereas the latter has allmembers checking for notifica-
tions. Such centralization of information is seen in other automation
architectures™®® as it enables a simplification of intersystem commu-
nication and better isolates modules (reduces coupling).

Laboratory automation languages such as Autoprotocol (Fig. 5d),
AnIML and PyLabRobot, for example, provide highly detailed opera-
tional parameters with their commands. Thisinformation canthenbe
used to construct a functionally identical operation (aiding in repro-
ducibility). Unactionable information may optionally be ignored,
hindering reproducibility but extending interoperability—for example,
ignoring a pipette aspiration speed parameter because the hardware
does not provide that level of control. Leveraging the potential for
graphical languages®" (Fig. 5f,g), ahighly detailed, hierarchical struc-
ture such as that of Community Resource for Innovation in Polymer
Technology (or CRIPT)* could, with modification, enable workflows
to be abstracted or replicated as needed by having implementations
only explore details to a desired depth.

Highly descriptive laboratory automation languages need astand-
ardized way to contain and interpret these instructions as well as a
way to understand the capabilities of each executor. Towards the aim
of implementation-agnostic reproducibility in (bio)chemical and
materials sciences, the descriptions could be shifted in focus from
the implementation of actions (that is, ‘imperative programming’
(Box 1); for example, Autoprotocol’s ‘provision’ specifies a quantity
of material to be added to a well®) to the results of those actions (that
is, ‘declarative programming’ (Box 1); for example, the platform of
Koscher et al. specifies the target concentration profiles of awell and
has the liquid handler's controller solve for what quantities of mate-
rial need to be added®). Between versions 0.5 and 2.0, xDL imple-
mented theidea of ‘do until’ (monitor) as a half-way point between these
approaches: for example, adding acid 1 ml at a time until a specified
pH s reached®® (Fig. 5¢). A declarative paradigm would, in theory, be
excellent at ensuring reproducible results and could take inspiration
from existing declarative languages (for example, HTML, SQL, Lisp,
Prolog and mathematical notation); in practice, however, this would
require the creation of some programthat could solve howto achieve
those results with the given hardware (and the problem of ensuring
that reproducibility and transferability loops back on itself). There is
potential for first-generation declarative paradigms in flow systems,
whereby simple processes can be specified in terms of dimensionless

parameters and models for which mathematical formulae exist to
perform the solving step—or determine a priori if an experiment is
even possible on the system.

Limited abstraction

A language could compromise out-of-the-box interoperability for
robust and safe abstraction by restricting abstractions only as far
as they are interchangeable. In this approach, rather than a single
abstracted ‘transfer’ operation, there may be multiple (Figs. 4e and
5a).Inthis model, any changes made to the experimental workflow so
thatit canbe executed on different hardware must be made consciously.
When these changes are recorded, it enables a scientist-programmer
to properly characterize experimental reproducibility with respect to
the changes made to the workflow.

Unfortunately, this approach is most similar to the status quo
and suffers from a known major setback: curation. To compensate
for the reduction in interoperability, a community-accessible library
comprising each versionof an operation must be created, validated and
maintained. Moreover, the number of versions must be kept manage-
able and each version must have good and proper documentation for
each version to be found and used correctly.

Should the curation problem be addressed, however, this mini-
mally abstracted approach holds three notable benefits. First, it enables
problemsinaworkflow tobe detected before execution (for example,
receiving a warning for missing or incompatible hardware). Second,
as there are fewer layers of abstraction, errors during execution are
more concretely tied to the operation on whichthey occur—facilitating
troubleshooting. Third, prototype methods can be developed and used
freely—reducing the friction to starting up an automated laboratory
or continually evolving new capabilities.

Emulating unreliability

From a hardware perspective, it can be possible to catalogue the
capabilities (and lack thereof) of each implementation. Similar to
cloud-computing strategies®, these labels can be taken to develop
alowest-common-denominator implementation such that diverse
hardware will all produce the same (if suboptimal) results. Crucially,
thisapproach should provide the ability to turn thisemulation on (when
reproducibility is the focus) or off (when exploration or optimization
is the focus). For example, while dual-syringe pumps from different
manufacturers allow each syringe to operate at different flow rates
and directions and to start and stop independently, the dual-syringe
pumps from one manufacturer cannot configure a syringe while the
other is running. As such, any collaboration between two research
laboratories that use these syringe pumps would need to follow the
order of operations set by the hardware that does not allow simultane-
ous configuration.

Alternatively, these labels of capability can be taken torecord the
experimental precision/tolerance and bias of eachimplementation”.
This approach embeds repeatability information into the procedure,
whichinturncanaidinenhancingreproducibility (or at least quantifi-
ably explaining failures of reproducibility) (Fig. 4f). Not many program-
ming languages today use this strategy, as the reliability of processors
has greatly increased since the days of vacuum tubes and as unreli-
abilities in network hardware could be tolerated or circumvented with
best-practice standards or heuristics and powerful support systems
beyond the programming language itself—for example, compilers or
interpreters (Box 1), integrated developer environments””' and emula-
tors. However, with the stochasticity inherent in chemical and mate-
rial processes and the variable precision and accuracy of commercial
automation hardware, this specification of code reliability becomes
increasingly relevantin laboratory automation.

Aproactive application of this approachis hindered by the unfor-
tunate reality that the precision and accuracy of automated systems
are not necessarily known—a liquid handler may be very precise with

Nature Synthesis | Volume 3 | November 2024 | 1327-1339

1335

http://www.nature.com/natsynth

Review article

https://doi.org/10.1038/s44160-024-00649-8

aqueoussolutions but not with low-surface-tension (for example, hex-
anes) or volatile (for example, chloroform) solvents. To proactively use
uncertainties and propagate estimated errors, automated systems will
firstneed toberigorously characterized for each application. Whereas
itis reasonable to expect a laboratory to characterize the pipetting
accuracy of its liquid handler with one or two relevant solvents, for
platforms that use complex mixtures or handle the products of other
transformations and treatments, the relevant space rapidly becomes
too large to fully characterize. This problem would imply that aretro-
active approachis more appropriate: such as pulling random samples
tovalidate that the systemis operating within tolerances. To thisend,
uncertainty-oriented languages could be combined with reactive or
supervised approaches to better qualify experimental workflows. As
previously mentioned, instructions may specify one mass (100 mg)
but the actual mass (98.7 mg) may be different. In this case, predicting
uncertainty is unnecessary as the actual error can be measured instead.
Strict encoding of tolerances would enable arobust determination of
whether this -1.3% error is acceptable. This issue does raise the ques-
tion of whether someone seeking to replicate this study should target
100 mgor 98.7 mg—and how dependent quantities should be adjusted.
Languages that focus on unreliability may need to shift from represent-
ing quantities as asingular number (100 mg) to amore general object
that encodes the specified and realized values of each parameter.

Outlook
Therole of programming languages that can standardize the communi-
cation of experimental workflows for automated platformsisto provide
bothtransferability and reproducibility of experimental results. With
reproducible, digitalized experiments, efforts towards collaborative
research (such as networks of self-driving laboratories’) can be real-
ized—acceleratingresearch and cultivating trustinautomated labora-
tory technologies. Whereas the guarantee of reproducibility should be
amajor goal of any language for codifying experimental procedures
inthe (bio)chemical and materials sciences, it is not the only goal that
must be considered. A language must also be accessible and efficient.
Non-computer scientists seeking to codify an experimental procedure
needtobeabletoread, write and understand alanguage without spend-
ing years studying. There are undoubtedly more lessons that could be
extracted from computer science for automated experimentation.
The lessons presented here are not mutually exclusive, and multiple
strategies canbe combined to meet the challenges of the community.
Inthe context of larger studies using codified experimental work-
flows, such as cloud, self-driving, autonomous or high-throughput
laboratories, the nature of what is needed of a programming language
can change®”*, Autonomous exploration, automated optimization
and cross-validation workflows each implicate different allowable
changes to an experimental workflow. Autonomous systems need
freedom (ambiguity) to design and optimize their approach to realize
(or abandon) goals”; conversely, when the objective is to leverage exist-
ing work to save time or to cross-validate another laboratory’s work,
concrete specifics are needed instead. A singular, unified language
would need to simultaneously describe goals and implementations,
instructions and expectations, and uncertainties and tolerances. Much
as how programming languages have continued to be invented and
developed, itis likely that multiple languages will form the basis of the
laboratory automation ecosystem. It would be beneficial, given the
development and diversity of laboratory automation languages and
architectures, to survey the academic community and industry part-
ners at this nascent stage as towhy each group elected to use existing
work or create something new, and what alternatives were considered
and why they were ultimately adopted or passed up. With such infor-
mation, the evolution of the laboratory automation ecosystem canbe
guided towards a minimal set of maximally useful languages.
Software can leverage a small, standardized number of highly
reliable central-processing-unit-level commands to create general

translators between programming languages and machine instruc-
tions. Laboratory automation, however, has a plurality of vendor inter-
faces (and, moreimportantly, capabilities), which require users tofirst
build their own controllers for everything that is being automated*?,
and which fundamentally challenge the ability to create contracts that
canbe honoured regardless of the hardware vendor.

Standardizing the capabilities of commercial hardware and soft-
wareis not feasible—the improvement, addition and specialization of
featuresis crucial for these businesses tosurvive. Asaresult, workflows
thatrely on established (common) techniques may be able to change
vendors more freely than workflows that leverage cutting-edge or
specialized technology to achieve mission-specific goals. Consequen-
tially, much attention has shifted to the standardization of interfaces
with commercial laboratory automation hardware and software (also
known as the API).

Atpresent, laboratory automationsolutions have internally con-
sistent interfaces'>’*® (which often leverage existing interfacing tools
suchasFastAPI”””?, SiLA (Standardization in Lab Automation)®’ or ROS
(Robot Operating System)* ") but require users to build the connective
tissue between the vendor’s APl and the controller’s interface—often
requiring supplemental code to ensure that the user-made code can
fulfil the contracts requested by the controller. Laboratory automa-
tion vendors may struggle to abide by a universal standard—given
the diversity of users, namely, the diversity of contexts (which extend
beyond academic research), a solution for one group may create a
problem for another®. Moreover, changes to interfaces and data for-
matsrequires the rewriting of existing contracts—a massive effort and
risk for a business. Even if all vendors used the same interface, many
users would still need to write code to connect these interfaces to their
preferredlanguage (such as Python, LabVIEW or abespoke language).
Whereas consistent interfaces or APIs would represent a considerable
quality-of-life improvement, standardized APIs are ultimately sec-
ondary to documentation. Proper documentation for an instrument,
APl and data formats is what formally describes both how to interact
(interface information) and the underlying capabilities (contractual
information). By providing better documentation and exposing more
of the ‘under the hood’ features of the equipment, it would make it
easier forindividuals to write and share case-specific solutions. On the
pain point ofimpenetrable data formats, if commercial software can-
not provide datain an open-source format, the documentation should
explain how to read the proprietary format. To this end, continued
collaboration withindustry partners to produce official and accurate
documentation, which covers all of a system’s underlying functional-
ity,and to use less opaque data-transfer protocols will help toadvance
laboratory research automation.

As afinal example, abstractions that aid in modularization (min-
imal coupling and true interchangeability) facilitate the testing of
unit operations. When each process can be isolated, it enables core
functionality and the specific connections between processes to be
thoroughly examined. In the laboratory setting, this can permit the ‘a
la carte’ validation of different reproducibility metrics—for example,
doestheobserved productdistributionofagivenreactor depend onthe
subsequent separation technique?, how do the accuracy and precision
of aflow system’s pumps depend on fluid properties?, what is the quality
of mixing or dispersionin and between modules? andsoon. Takenasa
whole, the community caninspect the dominant abstractions in (bio)
chemical and materials sciences to develop general test suites that can
help to catch problems early during development, help to communi-
cate expectations of repeatability and reproducibly to the public’>>%¢,
inform and guide the development of improvements to laboratory
automation and, for self-driving laboratories, act as a driver’s test®.

Towards characterizing reproducibility, there are two gen-
eral approaches. Laboratories could collaborate such that they
cross-validate their workflows before publication. Alternatively,
automated workflows could be required to report estimations for

Nature Synthesis | Volume 3 | November 2024 | 1327-1339

1336

http://www.nature.com/natsynth

Review article

https://doi.org/10.1038/s44160-024-00649-8

reproducibility before publication—similarly to how achemist report-
inganovel compound must provide mass spectrometry and NMR spec-
troscopy datain mostjournals. The former approach has the benefit of
fostering collaborations and bringingin more diverseideas forimprov-
ing automated experimental platforms. This approach, however, may
be difficult to properly fund, given current grant structures, and risks
over-centralizing power to a handful of established laboratories. The
latter approach, the empirical estimations of reproducibility, could
include performing tests where components of an automated set-up
are replaced—such as changing the backing fluid of a liquid handler;
using different pipette sizes, tube diameters or well plate geometries;
or changing chemical vendors or intentionally spiking reagents with
impurities. By analysing the overlap in repeatability test results between
the two configurations, the reproducibility between similar platforms
canbeestimated. Thisapproachisrestricted to affordable changes—it
would be prohibitively expensive to purchase duplicates of substantial
hardware, such as syringe pumps or liquid handlers, especially for labo-
ratories attemptingto enter into the space of experimental automation.

Thereproducibility of results must be addressed in the automated
laboratory sciences. Before larger questions of democratization or
federalization of self-driving experimentation canbe approached®**¥,
the basic unit operations of experiments need robust digital repre-
sentations. Given the diversity of hardware capabilities, the creation
of laboratory languages (and the computer processes that translate
theminto machineinstructions) may require that their interpretersare
extensibly configured for each laboratory—such as software requiring
hardware-specific compilation. Evenif fundamental differencesin con-
trol may necessitate different languages for batch and flow chemistry or
forsingle- versus federated-laboratory workflows, once reproducibility
can be addressed in each domain, then it may be possible to develop
‘transpilers’—devices that translate code between languages. In this
regard, the success of machine learning for programming language
translation>>%%° presents a tantalizing opportunity for learning the
mappings betweenbatch and flow chemistry, solid-and solution-phase
processes or local and decentralized orchestration.

Given the precedent of multiple languages in computer science
and language translators, this may represent the most reasonable
future for laboratory automation. The design of a universal program-
ming language would probably be too complicated (or too cumber-
some) for the average user. Instead, by relying on translation, an
experimentalist can express their ideas in a manner that is familiar
to them but still share these ideas with others—thus inviting diverse
perspectives on matters of experimentation.

References

1. Autoprotocol (Strateos Inc., 2021); https://autoprotocol.org/

2. Pendleton, I. M. et al. Experiment Specification, Capture and
Laboratory Automation Technology (ESCALATE): a software
pipeline for automated chemical experimentation and data
management. MRS Commun. 9, 846-859 (2019).

3. Leonoy, A.I. et al. An integrated self-optimizing programmable
chemical synthesis and reaction engine. Nat. Commun. 15, 1240
(2024).

4. Documentation center. Emerald Cloud Lab https://www.
emeraldcloudlab.com/documentation/ (Emerald Cloud Lab, Inc,
2023).

5. Boiko, D. A., MacKnight, R., Kline, B. & Gomes, G. Autonomous
chemical research with large language models. Nature 624,
570-578 (2023).

6. Schéfer, B. A., Poetz, D. & Kramer, G. W. Documenting laboratory
workflows using the Analytical Information Markup Language.
JALA 9, 375-381(2004).

7. Li,J,Tu, Y., Liu, R, Lu, Y. & Zhu, X. Toward “on-demand” materials
synthesis and scientific discovery through intelligent robots. Adv.
Sci. 7,1901957 (2020).

8.

9.

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

LabVIEW. LabVIEW Wiki (National Instruments, 2024) https://
labviewwiki.org/wiki/LabVIEW

Bartley, B. et al. Building an open representation for biological
protocols. ACM J. Emerg. Technol. Comput. Syst. 19, 1-21 (2023).
Ananthanarayanan, V. & Thies, W. Biocoder: a programming
language for standardizing and automating biology protocols. J.
Biol. Eng. 4,13 (2010).

Gupta, V., Irimia, J., Pau, I. & Rodriguez-Patén, A. BioBlocks:
programming protocols in biology made easier. ACS Synth. Biol.
6, 1230-1232 (2017).

Wierenga, R. P, Golas, S. M., Ho, W., Coley, C. W. & Esvelt, K. M.
PyLabRobot: an open-source, hardware-agnostic interface for
liquid-handling robots and accessories. Device 1, 100111 (2023).
Rauschen, R., Guy, M., Hein, J. E. & Cronin, L. Universal chemical
programming language for robotic synthesis repeatability. Nat.
Synth. 3, 488-496 (2024).

Leong, C. J. et al. An object-oriented framework to enable
workflow evolution across materials acceleration platforms.
Matter 5, 3124-3134 (2022).

Canty, R. B., Koscher, B. A., McDonald, M. A. & Jensen, K. F.
Integrating autonomy into automated research platforms. Digit.
Discov. 2, 1259-1268 (2023).

Alexandron, G., Armoni, M., Gordon, M. & Harel, D.
Scenario-based programming: reducing the cognitive

load, fostering abstract thinking. In Companion Proc. 36th
International Conference on Software Engineering 311-320
(Association for Computing Machinery, 2014); https://doi.
org/10.1145/2591062.2591167

Fidler, F. & Wilcox, J. in The Stanford Encyclopedia of Philosophy
(ed. Zalta, E. N.) (Metaphysics Research Lab, Stanford University,
2021).

Mandel, J. Repeatability and reproducibility. J. Qual. Technol. 4,
74-85 (1972).

Feitelson, D. G. From repeatability to reproducibility and
corroboration. ACM SIGOPS Oper. Syst. Rev. 49, 3-11 (2015).
Pijper, B. et al. Addressing reproducibility challenges in
high-throughput photochemistry. JACS Au https://doi.org/10.1021/
jacsau.4c00312 (2024).

Epps, R. W. et al. Artificial chemist: an autonomous quantum dot
synthesis bot. Adv. Mater. 32, 2001626 (2020).

Bateni, F. et al. Smart Dope: a self-driving fluidic lab for
accelerated development of doped perovskite quantum dots.
AdVv. Energy Mater. 14, 2302303 (2024).

Leeman, J. et al. Challenges in high-throughput inorganic
materials prediction and autonomous synthesis. PRX Energy 3,
011002 (2024).

Sayre, F. & Riegelman, A. The reproducibility crisis and academic
libraries. Coll. Res. Libr. https://doi.org/10.5860/crl.79.1.2 (2018).
Leins, D. A., Haase, S. B., Eslami, M., Schrier, J. & Freeman, J. T.
Collaborative methods to enhance reproducibility and accelerate
discovery. Digit. Discov. 2, 12-27 (2023).

Liskov, B. & Zilles, S. Programming with abstract data types. ACM
SIGPLAN Not. 9, 50-59 (1974).

Parnas, D. L. On the criteria to be used in decomposing systems
into modules. Commun. ACM 15, 1053-1058 (1972).

Parnas, D. L., Shore, J. E. & Weiss, D. Abstract types defined as
classes of variables. ACM SIGPLAN Not. 11, 149-154 (1976).
Meyer, B. Applying ‘design by contract’. Computer 25, 40-51
(1992).

Stevens, W. P., Myers, G. J. & Constantine, L. L. Structured design.
IBM Syst. J. 13, 115-139 (1974).

Taube-Schock, C., Walker, R. J. & Witten, I. H. Can we avoid high
coupling? In ECOOP 2011 - Object-Oriented Programming (ed.
Mezini, M.) 204-228 (Springer, 2011); https://doi.org/10.1007/978-
3-642-22655-7_10

Nature Synthesis | Volume 3 | November 2024 | 1327-1339

1337

http://www.nature.com/natsynth
https://autoprotocol.org/
https://www.emeraldcloudlab.com/documentation/
https://www.emeraldcloudlab.com/documentation/
https://labviewwiki.org/wiki/LabVIEW
https://labviewwiki.org/wiki/LabVIEW
https://doi.org/10.1145/2591062.2591167
https://doi.org/10.1145/2591062.2591167
https://doi.org/10.1021/jacsau.4c00312
https://doi.org/10.1021/jacsau.4c00312
https://doi.org/10.5860/crl.79.1.2
https://doi.org/10.1007/978-3-642-22655-7_10
https://doi.org/10.1007/978-3-642-22655-7_10

Review article

https://doi.org/10.1038/s44160-024-00649-8

32.

33.

34.

35.

36.

37.

38.

39.

40.

4.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

Christensen, M. et al. Automation isn't automatic. Chem. Sci. 12,
15473-15490 (2021).

Koscher, B. A. et al. Autonomous, multiproperty-driven molecular
discovery: from predictions to measurements and back. Science
382, eadi1407 (2023).

Karafiludis, S., Ryll, T. W., Buzanich, A. G., Emmerling, F. &
Stawski, T. M. Phase stability studies on transition metal
phosphates aided by an automated synthesis. CrystEngComm 25,
4333-4344 (2023).

D’Agostino, C. et al. Understanding the solvent effect on the
catalytic oxidation of 1,4-butanediol in methanol over Au/TiO,
catalyst: NMR diffusion and relaxation studies. Chem. Eur. J. 18,
14426-14433 (2012).

Pomberger, A. et al. Automated pH adjustment driven by robotic
workflows and active machine learning. Chem. Eng. J. 451,
139099 (2023).

Nian, R., Liu, J. & Huang, B. A review on reinforcement learning:
introduction and applications in industrial process control.
Comput. Chem. Eng. 139, 106886 (2020).

Maffettone, P. M. et al. Gaming the beamlines—employing
reinforcement learning to maximize scientific outcomes at
large-scale user facilities. Mach. Learn. Sci. Technol. 2, 025025
(2021).

Martens, J. A., Perez-Pariente, J., Sastre, E., Corma, A. & Jacobs, P. A.
Isomerization and disproportionation of m-xylene: selectivities
induced by the void structure of the zeolite framework. Appl.
Catal. 45, 85-101(1988).

Molyneux, S. & Goss, R. J. M. Fully aqueous and air-compatible
cross-coupling of primary alkyl halides with aryl boronic species:
a possible and facile method. ACS Catal. 13, 6365-6374

(2023).

Jessop-Fabre, M. M. & Sonnenschein, N. Improving reproducibility
in synthetic biology. Front. Bioeng. Biotechnol. 7,18 (2019).

Bai, J. et al. From platform to knowledge graph: evolution of
laboratory automation. JACS Au 2, 292-309 (2022).

Liskov, B. H. & Wing, J. M. A behavioral notion of subtyping. ACM
Trans. Program. Lang. Syst. 16, 1811-1841 (1994).

Héhnle, R., Kamburjan, E. & Scaletta, M. in Active Object
Languages: Current Research Trends (eds de Boer, F. et al.)
289-322 (Springer, 2024); https://doi.org/10.1007/978-3-031-
51060-1_11

Giordano, G. et al. On the adoption and effects of source code
reuse on defect proneness and maintenance effort. Empir. Softw.
Eng. 29, 20 (2023).

Bloch, J. Extra, extra - read all about it: nearly all binary searches
and mergesorts are broken. Google Research https://blog.
research.google/2006/06/extra-extra-read-all-about-it-nearly.
html (2006).

Hohpe, G. & Woolf, B. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions (Addison-Wesley,
2003).

Melloul, L. & Fox, A. Reusable functional composition patterns
for Web services. In Proc. IEEE International Conference on Web
Services (IEEE, 2004); https://ieeexplore.ieee.org/abstract/
document/1314775

Tkaczyk, R. et al. Cataloging design patterns for internet of things
artifact integration. In 2018 IEEE International Conference on
Communications Workshops (ICC Workshops) 1-6 (IEEE, 2018);
https://doi.org/10.1109/ICCW.2018.8403758

Ramadas, A., Domingues, G., Dias, J. P., Aguiar, A. & Ferreira, H. S.
Patterns for things that fail. In Proc. 24th Conference on Pattern
Languages of Programs 1-10 (The Hillside Group, 2017).

Nesnas, I. A. D. in Software Engineering for Experimental

Robotics (ed. Brugali, D.) 31-70 (Springer, 2007); https://doi.
org/10.1007/978-3-540-68951-5_3

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

7.

Rees-Hill, J. A. Error Handling Approaches in Programming
Languages (Oberlin College, 2022).

Erwig, M. & Ren, D. Monadification of functional programs.

Sci. Comput. Program. 52, 101-129 (2004).

Salvaneschi, G., Ghezzi, C. & Pradella, M. Context-oriented
programming: a software engineering perspective. J. Syst. Softw.
85, 1801-1817 (2012).

Cardozo, N. & Mens, K. Programming language implementations
for context-oriented self-adaptive systems. Inf. Softw. Technol.
143, 106789 (2022).

Carbin, M., Misailovic, S. & Rinard, M. C. Verifying quantitative
reliability for programs that execute on unreliable hardware. In
Proc. 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications

33-52 (Association for Computing Machinery, 2013); https://doi.
org/10.1145/2509136.2509546

Armstrong, J. Making Reliable Distributed Systems in the Presence
of Software Errors. PhD thesis, Royal Institute of Technology,
Stockholm (2003).

The Python Language Reference (Python Software Foundation,
2024); http://python.org

Fakhruldeen, H., Pizzuto, G., Glowacki, J. & Cooper, A. I.
ARChemist: Autonomous Robotic Chemistry system
architecture. In Proc. 2022 International Conference on Robotics
and Automation (ICRA) 6013-6019 (IEEE, 2022); https://doi.
org/10.1109/ICRA46639.2022.9811996

Darvish, K. et al. ORGANA: a robotic assistant for automated
chemistry experimentation and characterization. Preprint at
https://arxiv.org/abs/2401.06949 (2024).

Higgins, S. G., Nogiwa-Valdez, A. A. & Stevens, M. M.
Considerations for implementing electronic laboratory notebooks
in an academic research environment. Nat. Protoc. 17, 179-189
(2022).

Statt, M. J. et al. ESAMP: event-sourced architecture for materials
provenance management and application to accelerated
materials discovery. Digit. Discov. 2, 1078-1088 (2023).

Duke, R., McCoy, R., Risko, C. & Bursten, J. R. S. Promises and
perils of big data: philosophical constraints on chemical
ontologies. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.3c11399
(2024).

Statt, M. J., Rohr, B. A., Guevarra, D., Suram, S. K. & Gregoire, J. M.
Event-driven data management with cloud computing for
extensible materials acceleration platforms. Digit. Discov. 3,
238-242 (2024).

Jung, E., Cho, I. & Kang, S. M. An agent modeling for overcoming
the heterogeneity in the loT with design patterns. In Mobile,
Ubiquitous, and Intelligent Computing: MUSIC 2013 (eds Park, J. J.
et al.) 69-74 (Springer, 2014); https://doi.org/10.1007/978-3-642-
40675-1_1

Green, D. V. S. et al. BRADSHAW: a system for automated
molecular design. J. Comput. Aided Mol. Des. 34, 747-765 (2020).
Walsh, D. J. et al. Community Resource for Innovation in Polymer
Technology (CRIPT): a scalable polymer material data structure.
ACS Cent. Sci. 9, 330-338 (2023).

XDL Documentation (Cronin Group, University of Glasgow, 2022);
https://croningroup.gitlab.io/chemputer/xdl/

John, W. et al. The future of cloud computing: highly distributed
with heterogeneous hardware. Ericsson Technology Review

(12 May 2020).

Carbin, M. & Misailovic, S. in Foundations of Probabilistic
Programming (eds Silva, A. et al.) 533-568 (Cambridge Univ.
Press, 2020); https://doi.org/10.1017/9781108770750.016

Craven, M., Keenan, G., Khan, A., Lee M. & Wilbraham L. ChemIDE
(Cronin Group, University of Glasgow, 2021); https://croningroup.
gitlab.io/chemputer/xdlapp/

Nature Synthesis | Volume 3 | November 2024 | 1327-1339

1338

http://www.nature.com/natsynth
https://doi.org/10.1007/978-3-031-51060-1_11
https://doi.org/10.1007/978-3-031-51060-1_11
https://blog.research.google/2006/06/extra-extra-read-all-about-it-nearly.html
https://blog.research.google/2006/06/extra-extra-read-all-about-it-nearly.html
https://blog.research.google/2006/06/extra-extra-read-all-about-it-nearly.html
https://ieeexplore.ieee.org/abstract/document/1314775
https://ieeexplore.ieee.org/abstract/document/1314775
https://doi.org/10.1109/ICCW.2018.8403758
https://doi.org/10.1007/978-3-540-68951-5_3
https://doi.org/10.1007/978-3-540-68951-5_3
https://doi.org/10.1145/2509136.2509546
https://doi.org/10.1145/2509136.2509546
http://python.org
https://doi.org/10.1109/ICRA46639.2022.9811996
https://doi.org/10.1109/ICRA46639.2022.9811996
https://arxiv.org/abs/2401.06949
https://doi.org/10.1021/jacs.3c11399
https://doi.org/10.1007/978-3-642-40675-1_11
https://doi.org/10.1007/978-3-642-40675-1_11
https://croningroup.gitlab.io/chemputer/xdl/
https://doi.org/10.1017/9781108770750.016
https://croningroup.gitlab.io/chemputer/xdlapp/
https://croningroup.gitlab.io/chemputer/xdlapp/

Review article

https://doi.org/10.1038/s44160-024-00649-8

72. Delgado-Licona, F. & Abolhasani, M. Research acceleration in
self-driving labs: technological roadmap toward accelerated
materials and molecular discovery. Adv. Intell. Syst. 5, 2200331 (2023).

73. Bennett, J. A. et al. Autonomous reaction Pareto-front mapping
with a self-driving catalysis laboratory. Nat. Chem. Eng. 1,
240-250 (2024).

74. Fitzpatrick, D. E., Battilocchio, C. & Ley, S. V. A novel
internet-based reaction monitoring, control and autonomous
self-optimization platform for chemical synthesis. Org. Process
Res. Dev. 20, 386-394 (2016).

75. Li, J. et al. Autonomous discovery of optically active chiral
inorganic perovskite nanocrystals through an intelligent cloud
lab. Nat. Commun. 11, 2046 (2020).

76. Gromski, P. S., Granda, J. M. & Cronin, L. Universal chemical
synthesis and discovery with ‘the Chemputer’. Trends Chem. 2,
4-12 (2020).

77. Rahmanian, F. et al. Enabling modular autonomous
feedback-loops in materials science through hierarchical
experimental laboratory automation and orchestration. Adv.
Mater. Interfaces 9, 2101987 (2022).

78. Sim, M. et al. ChemOS 2.0: an orchestration architecture for
chemical self-driving laboratories. Matter https://doi.org/10.1016/].
matt.2024.04.022 (2024).

79. Ramirez, S. FastAPI (MIT, 2018); https://fastapi.tiangolo.com/

80. Consortium for Standardization in Lab Automation Standards.
SiLA Rapid Integration https://sila-standard.com/standards/
(SILA, 2017).

81. Zhang, L., Merrifield, R., Deguet, A. & Yang, G.-Z. Powering the
world’s robots—10 years of ROS. Sci. Robot. 2, eaar1868 (2017).

82. Munroe, R. Standards. xkcd (2011); https://xkcd.com/927/

83. Volk, A. A. & Abolhasani, M. Performance metrics to unleash the
power of self-driving labs in chemistry and materials science. Nat.
Commun. 15,1378 (2024).

84. Volk, A. A. et al. AlphaFlow: autonomous discovery and
optimization of multi-step chemistry using a self-driven fluidic lab
guided by reinforcement learning. Nat. Commun. 14, 1403 (2023).

85. Snapp, K. L. & Brown, K. A. Driving school for self-driving labs.
Digit. Discov. 2,1620-1629 (2023).

86. Abolhasani, M. & Kumacheva, E. The rise of self-driving labs in
chemical and materials sciences. Nat. Synth. 2, 483-492 (2023).

87. Epps, R.W., Volk, A. A., Ibrahim, M. Y. S. & Abolhasani, M. Universal
self-driving laboratory for accelerated discovery of materials and
molecules. Chem 7, 2541-2545 (2021).

88. Yang, Z. et al. Exploring and unleashing the power of large
language models in automated code translation. In Proc. ACM on
Software Engineering 585-1608 (ACM, 2024).

89. Bran, A. M. et al. Augmenting large language models with
chemistry tools. Nat. Mach. Intell. 6, 525-535 (2024).

90. Yoshikawa, N. et al. Large language models for chemistry
robotics. Auton. Robot. 47, 1057-1086 (2023).

91. Lunt, A. M. et al. Modular, multi-robot integration of laboratories:
an autonomous workflow for solid-state chemistry. Chem. Sci. 15,
2456-2463 (2024).

92. Lunt, A. sgalunt/Thesis_Amy_Lunt (GitHub, 2023); https://github.
com/sgalunt/Thesis_Amy_Lunt/blob/main/Appendix%204%20
ARChemist%20code/Recipe%20Files/yumi_recipe.yaml

93. Clarke, E. tests/files/orgsyn_v83p0184a.xdl (GitLab, 2021);
https://gitlab.com/croningroup/chemputer/xdl/-/blob/master/
tests/files/orgsyn_v83p0184a.xdl

94. autoprotocol-python (GitHub, 2023); https://github.com/
autoprotocol/autoprotocol-python/tree/master

95. Laboratory of Artificial Intelligence. BioBlocks. GitHub
https://github.com/liaupm/BioBlocks (2020).

96. Felleisen, M. On the expressive power of programming
languages. In ESOP '90 (ed. Jones, N.) 134-151 (Springer, 1990);
https://doi.org/10.1007/3-540-52592-0_60

97. Cunningham, K., Ericson, B. J., Agrawal Bejarano, R. &

Guzdial, M. Avoiding the Turing tarpit: learning conversational
programming by starting from code’s purpose. In Proc. 2021
CHI Conference on Human Factors in Computing Systems 1-15
(Association for Computing Machinery, 2021); https://doi.
org/10.1145/3411764.3445571

98. Meyer, B. Object-Oriented Software Construction (Pearson
Education, 2023).

99. Fahland, D. et al. Declarative versus Imperative Process Modeling
Languages: the issue of understandability. In Enterprise,
Business-Process and Information Systems Modeling (eds Halpin,
T. et al.) 353-366 (Springer, 2009); https://doi.org/10.1007/978-3-
642-01862-6_29

100. Gongora, A. E. et al. A Bayesian experimental autonomous
researcher for mechanical design. Sci. Adv. 6, eaaz1708 (2020).

101. MaclLeod, B. P, Parlane, F. G. L., Brown, A. K., Hein, J.E. &
Berlinguette, C. P. Flexible automation accelerates materials
discovery. Nat. Mater. 21, 722-726 (2022).

Acknowledgements

We would like to thank H. Moran (North Carolina State University)

for discussions around making the computer science jargon more
accessible. M.A. gratefully acknowledges financial support from

the University of North Carolina Research Opportunities Initiative
(UNC-ROI) and National Science Foundation (award nos. 1940959 and
2208406).

Author contributions
R.B.C. conceived and draughted the work. M.A. and R.B.C. reviewed
and edited the manuscript.

Competinginterests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s44160-024-00649-8.

Correspondence and requests for materials should be addressed to
Milad Abolhasani.

Peer review information Nature Synthesis thanks Xiaonan Wang
and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. Primary Handling Editor: Peter Seavill, in
collaboration with the Nature Synthesis team.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© Springer Nature Limited 2024

Nature Synthesis | Volume 3 | November 2024 | 1327-1339

1339

http://www.nature.com/natsynth
https://doi.org/10.1016/j.matt.2024.04.022
https://doi.org/10.1016/j.matt.2024.04.022
https://fastapi.tiangolo.com/
https://sila-standard.com/standards/
https://xkcd.com/927/
https://github.com/sgalunt/Thesis_Amy_Lunt/blob/main/Appendix%204%20ARChemist%20code/Recipe%20Files/yumi_recipe.yaml
https://github.com/sgalunt/Thesis_Amy_Lunt/blob/main/Appendix%204%20ARChemist%20code/Recipe%20Files/yumi_recipe.yaml
https://github.com/sgalunt/Thesis_Amy_Lunt/blob/main/Appendix%204%20ARChemist%20code/Recipe%20Files/yumi_recipe.yaml
https://gitlab.com/croningroup/chemputer/xdl/-/blob/master/tests/files/orgsyn_v83p0184a.xdl
https://gitlab.com/croningroup/chemputer/xdl/-/blob/master/tests/files/orgsyn_v83p0184a.xdl
https://gitlab.com/croningroup/chemputer/xdl/-/blob/master/tests/files/orgsyn_v83p0184a.xdl
https://github.com/autoprotocol/autoprotocol-python/tree/master
https://github.com/autoprotocol/autoprotocol-python/tree/master
https://github.com/liaupm/BioBlocks
https://github.com/liaupm/BioBlocks
https://doi.org/10.1007/3-540-52592-0_60
https://doi.org/10.1145/3411764.3445571
https://doi.org/10.1145/3411764.3445571
https://doi.org/10.1007/978-3-642-01862-6_29
https://doi.org/10.1007/978-3-642-01862-6_29
https://doi.org/10.1038/s44160-024-00649-8
https://doi.org/10.1038/s44160-024-00649-8
http://www.nature.com/reprints

	Reproducibility in automated chemistry laboratories using computer science abstractions

	Definition of key terms

	Abstraction

	Contracts

	Coupling

	Substitution

	Exercise

	Lessons learned from abstraction in computer science

	Reactive approaches

	Interpretive approaches

	Limited abstraction

	Emulating unreliability

	Outlook

	Acknowledgements

	Fig. 1 Comparisons of the repeatability and reproducibility of experimental results.
	Fig. 2 Various implementations of the same abstraction leading to different results.
	Fig. 3 Disparity between abstractly equivalent but hardware-dependent implementations for a Java sorting algorithm.
	Fig. 4 Visualizations of the approaches described.
	Fig. 5 Example excerpts of different languages for prescribing automated experiments.
	Table 1 Prompts for consideration in the design of a substitutable abstraction of material-transfer techniques.

