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Reproducibility in automated chemistry 
laboratories using computer science 
abstractions

Richard B. Canty     & Milad Abolhasani     

While abstraction is critical for the transferability of automated 
laboratory science in (bio)chemical and materials sciences, its improper 
implementation is a technical debt taken against the reproducibility of 
experimental results. Over the decades, computer science has developed 
guidelines and strategies for how abstractions are captured in programming 
languages—particularly concerning the substitutability of implementations 
of abstracted ideas and the clear definition of the contexts in which 
abstractions are used. However, few programming languages developed 
for automated experiments fully leverage the wisdom learned in computer 
science. To achieve collaborative sharing of scientific knowledge via 
automated laboratories, the way that experimental protocols are codified 
and interpreted by machine agents must use abstractions responsibly 
and with reproducibility, rather than solely transferability, at its core. This 
Review discusses how computer science principles of abstraction can be 
translated to create more reproducible automation as an enabler for the 
acceleration of collaborative research with self-driving laboratories.

Reproducibility acts as a proxy measurement of truth and is central 
to the scientific process. As experiments become more automated, 
the standardization of process specification and execution is crucial 
for enhancing experimental interoperability and reproducibility 
in (bio)chemical and materials sciences. Inspired by the success of 
cross-platform computer software, many efforts have been made to 
codify laboratory processes such as Autoprotocol1,2, χDL3, the Emerald 
Cloud Lab Symbolic Lab Language4,5, AnIML6, the MAOS language7 
and LabVIEW8, among others9–12. The creators of these programming 
languages for laboratory automation have taken diverse approaches 
for addressing how someone (or something) reading these languages 
can properly recreate an experiment without necessarily requiring an 
exact copy of the original experimental set-up. These programming 
languages are tools for recording and prescribing experiments, yet 
they exist within ecosystems of other tools for writing and compre-
hending the language. The ways in which these tools interact can have 
great consequences in the ultimate reproducibility of a codified experi-
ment in (bio)chemistry or materials science laboratories. This Review 

Article will focus mainly on the qualities of programming languages 
for laboratory automation in (bio)chemical and materials sciences to 
address how the abstraction permitted by the language can influence 
both the reproducibility and transferability of the experiments between 
laboratories with different experimental set-ups.

Abstraction is a powerful tool in specifying processes—for exam-
ple, a synthesis procedure can be templated and repeated for each 
ligand in a library, the actuation of each motor in a robotic arm can be 
summarily specified with just the pick-up and drop-off locations. By 
deferring specification or hiding unnecessary information, abstraction 
reduces complexity and enables greater expressive power and transfer-
ability—traits which have made abstraction ubiquitous in computer 
science. Recent efforts into codifying experimental procedures in 
organic chemistry7,13,14 have demonstrated the power of portability 
whereby the same high-level (abstracted) ‘code’ is executed using 
different hardware. In general, the approach of abstracting related 
implementations on the basis of the high-level objective that they 
accomplish is a promising strategy to enable collaborating laboratories 
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(repeatable and reproducible) and accurate (close to the ground truth) 
experimental results.

Languages for the programming and automation of experiments 
are tailored towards specific objectives, philosophies and applica-
tions. Practical considerations can include having the language be 
easily interpreted by a human (the user experience) or forbidding 
dangerous actions (security and safety). For experimentalists, repro-
ducibility is paramount because confirming or refuting results sits 
at the heart of scientific study and the pursuit of knowledge. Failures 
of reproducibility in automated experimental systems can result 
in a number of problems, which decelerate research. Failures to 
reproduce, especially when the causes are hidden behind layers of 
abstraction16, can create difficulties with troubleshooting, prolong 
experimental campaigns with redundant experiments (wasting time 
and resources) and deter the use and adoption of the technology to 
accelerate science. Whereas discrepancies can result in discoveries, 
edge cases and failures of the experimental automation can mislead 
scientists—hiding discoveries or leading to doomed studies. Crucially, 
failures to reproduce results or quickly resolve discrepancies (such 
as the dispute in results produced by the A-Lab of Lawrence Berkeley 
National Laboratory)23 erodes trust and support in automated (and 
autonomous) laboratory ecosystems24. The proper codification of 
experimental workflows into automatically executable codes should 
enable a collaborative future for research where experimental results 
can be reproduced with minimal troubleshooting, where automated 
agents can participate in writing and adapting experiments and where 
the translation between set-ups (such as between batch and flow 
chemistry formats) can be automated25. Without expressive (Box 1) 
and interpretable languages that properly encode the reproduction of 
fundamental operations (such as material transfers, reactions, separa-
tions and characterizations), such a collaborative and interoperable 
future of research will not be achievable (Fig. 2).

In the following sections, we will discuss what abstraction can 
mean in an experimental context centred around how abstraction 
implies substitutability in implementations and how these implementa-
tions can be given a formalized interface to facilitate transferability. Fol-
lowing these definitions, approaches for responsibly using abstraction 
seen in computer science are translated to an experimentalist context. 
Generally, these approaches involve (1) tailoring the programming 
language to support communication with supplemental processes 
which monitor experiments and (2) limiting the use of abstraction to 
cases where implementations are truly interchangeable in practice. 
Finally, we look to the future in how combinations of these approaches 
may be leveraged to create (potentially multiple) programming lan-
guages for experimental specification that can deliver on the promise 
for interoperable and reproducible experiments and what that would 
mean for massively collaborative scientific advances in (bio)chemistry 
and materials science.

to share and validate experimental workflows15. As it pertains to experi-
mental reproducibility, the level of abstraction represents the degree 
to which modifications to an experiment are permitted to achieve 
interoperability (for example, vague instructions to remove copper 
from a solution could be implemented via a colorimetric titration, ion 
detectors or a precipitating reagent; conversely, a specific instruction 
to use spin coating rules out drop casting or sputtering). The misuse 
of abstraction16, therefore, can result in irreproducibility for experi-
ments—thereby hindering collective scientific advancements.

As the modification of experimental workflows is a requirement 
for transferring experimental protocols between different laboratories, 
with acknowledgement of the diverse interpretations of reproducibil-
ity, repeatability, replicability and so on17–19, the following discussions of 
reproducibility and repeatability will be centred around the distribu-
tions of experimental results—with repeatability relating to the vari-
ance of a single distribution of results and reproducibility relating to 
the overlap between multiple distributions of results. Repeatability 
(Fig. 1a), which applies when the experimental set-up is held constant, 
is the lack of variance in measurements as determined by the innate 
uncertainties of the experimental subject and the precision of the 
experimental methods (for example, the droplet-to-droplet variability 
of yield and the selectivity in a given flow reactor). Reproducibility is the 
confidence of agreement between result distributions and is subject to 
changes in the experiment (Fig. 1b; for example, the variation in yield 
between different reactors). When experimental modifications are 
minimized, reproducibility provides a measure of how well an experi-
ment is specified and reported. When experimental modification is 
permitted, as in the case of abstraction, reproducibility provides a 
measure of the validity of these abstractions.

Evaluating repeatability and reproducibility is not absolute. 
Experiments may have multiple goals, and different projects may 
focus on different objectives. As a result, metrics for repeatability and 
reproducibility are goal-dependent and often multi-objective. For 
example, it may be possible to achieve reproducible product yields 
but not product distributions20, or to achieve repeatable support for 
a reaction mechanism but not reproducible kinetic parameters. Simi-
larly, it is possible to reproducibly arrive at a final chemical or material 
yet have inconsistent intermediates.

Reproducibility is often difficult to predict during development 
and requires collaborators with similar experimental capabilities for 
it to be properly measured. Proxy measurements (such as replicate 
experiments interspaced with random experiments21,22) are often used 
to enable a single laboratory to estimate reproducibility. Evaluating 
whether or not overabstraction has resulted in a loss of reproduc-
ibility requires exactness in which observables are under scrutiny and 
which statistical techniques are used. Ultimately, abstraction should 
be leveraged for transferability without adversely impacting reproduc-
ibility, and should synergize with automation to produce both precise 

Combustion
Volumetric flask
Simulation
Caliper
GPS

Polymerization
Beaker

Experiment
Ruler

Sextant

Fr
eq

ue
nc

y 
of

 re
su

lt

TruthReactor
5 ml open stainless steel
0.2 ml open plastic
1 ml open glass
1 ml sealed stainless steel

Measured yield
More repeatable

a b

Less repeatable

Frequency of result

Fig. 1 | Comparisons of the repeatability and reproducibility of experimental 
results. a, Visual examination of repeatability as controlled by instrumental 
precision and the inherent stochasticity of the system. GPS, global positioning 
system navigation. b, Demonstration of the validity of procedural changes on 

the reproducibility of experimental results. In this example, the reaction yield is 
more reproducible under minor volume changes (0.2–5.0 ml) and the material  
of the reactor (metal, plastic or glass) than it is under atmospheric control  
(open versus sealed).
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Abstraction
Abstraction is a means by which processes and ideas are organized and 
simplified by focusing on common qualities and behaviours26, through 
hiding inconsequential differences27 or by deferring specification. In 
chemistry, materials are often referred to in the abstract (reactant, 
solvent or catalyst rather than specific chemicals), as are processes 

(workup and separation rather than neutralization and filtration). An 
abstraction can focus on what a material or process is, what it does, 
how it is best represented or combinations thereof. There are many 
ways to abstract. Focusing on properties, phenol and isopropanol 
are both alcohols as they both contain a hydroxyl group. Focusing on 
behaviours, a pipette and pump are both liquid-transfer tools as both 
transport liquids. Focusing on representations, a checklist, flowchart 
or paragraph can describe how a new chemical or material was created, 
and an experimental method can be simplified using sensible labels 
(for example, ‘products P1–10 were synthesized using method M1 and 
substrates S1–10’). For laboratory automation, the power of abstrac-
tion shines in cases where a workflow can be developed for a general 
case (for example, reagent source, transfer tool and reactor) rather 
than for each potential implementation (for example, syringe, syringe 
pump and packed bed reactor versus vial, pipette and heater shaker).

Despite the diversity of ways in which things can be abstracted28, 
not all approaches are equally appropriate. When devices or operations 
are organized under the same abstraction, it is a statement that they 
are interchangeable in a specific context (for example, isopropanol 
and ethanol may be effectively interchangeable for disinfecting but not 
imbibing). Owing to the diversity of contexts in chemical and materials 
science, it is challenging to predict which details or distinctions matter. 
The context determines the nature of interactions; and in codification, 
these interactions are represented by a given ‘interface’ (Box 1). These 
interfaces define which interactions are permissible by defining a set of 
‘contracts’29 (Box 1) that can be invoked and must be honoured.

Contracts
Within an experimental procedure, every step outlines a set of inputs 
and expected outputs, regardless of the level of abstraction present. 
Inputs can include material from previous steps in addition to pro-
cess parameters (for example, reaction temperature and duration, 
the degree of mixing and so on). Outputs can include materials and 
observations or data as well as errors and side effects (for example, 
transfers will contaminate pipetting tips, a robotic arm may rearrange 
well plates when trafficking between instruments).

The creation of abstractions for experimental sciences requires 
the construction of new contracts for the abstracted form. For example, 
when abstracting a pipette, pump and hopper to honour a transfer con-
tract, the contract could state that the source, destination and amount 
of material must be specified and that the result will be either an error 
or the specified amount of material being added to the destination. 
Note that this contract neglects the changes in the pipette or pump or 
hopper’s state (Box 1; for example, becoming contaminated) as well as 
the changes in the source’s state (for example, losing material).

It may seem logical, then, to fully specify every potentiality in 
the contract. However, as the number of entities that are involved 
in a contract increases, the more interdependent (coupled; Box 1) 
and, by extension, fragile the process may become. Coupling (Box 2), 
especially in complex systems, is observed to make the maintenance 
and analysis of code challenging and hinder the portability of code 
as actions become dependent on other entities that may or may not 
be present in another implementation30,31. For example, using flow 
rate to specify a reactor residence time requires knowing the relevant 
flow-path volumes to be translated to a reaction duration in a batch 
set-up. Similarly, trying to make a contract sufficiently general without 
involving other entities makes the contract less practical to use (con-
sider the hyperbolically unhelpful contract ‘something may happen’).

As an illustrative example, the considerations for a contract 
between control software (contractee) and an HPLC controller (con-
tractor) are discussed. Broadly, the contractee wishes to provide a 
sample in a vial or sample loop and to receive an analysis. Contractors 
and contractees can generally coordinate in three ways: providing 
information, making assurances and providing tools. For information, 
the contractee could provide the vial position, the HPLC method and 

Box 1

Definition of key terms
Expressive power of a language. The gamut of ideas that can be 
conveyed in a language. Often the definition is restricted to what is 
easily conveyed96,97. For example, a language may be able to specify 
distillations and reactions but not a reactive distillation.

Abstraction. A simplified but sufficient representation or model that 
can be used for design.

Interface. The allowed interactions with an abstraction, often 
specifying what can be asked of the abstraction and how it will 
reply. An abstraction with a well-defined interface is known as a 
‘type’; an ‘object’ is a concrete instance of a type (for reference, 
these are the ‘objects’ in ‘object-oriented programming’). The 
interface for an entire software package is commonly known as an 
application programming interface (API).

Contract. The formal definition of an interaction specified in an 
interface: what information must be provided, what actions may be 
taken and how the result will be communicated98.

Caller. The person, software or process that requests an action—the 
‘contractee’ in the contract analogy.

State. The specific configuration and properties of a material, 
machine, program or workflow.

Coupling. A measure of how interdependent systems are. 
In the context of creating good abstractions, this will be the 
extent to which an abstraction depends on other abstractions’ 
implementations.

Design pattern. A heuristic or best-practice for addressing a 
common problem—often developed by identifying commonalities 
across expert solutions to related problems. The design patterns 
referenced in this work are detailed further in Supplementary 
Section 1.

Imperative versus declarative programming. The extent to which 
the procedure or control of a program is made explicit (imperative) 
or implicit (declarative)99.

Prescriptive versus descriptive language. The extent to which 
a language can specify instructions (prescriptive) or detail 
observations (descriptive). Prescription may use instructions to 
blindly control latent or hidden parameters; description, however, is 
confined to only sensible or observable properties.

Compilers, interpreters and transpilers. Software that translates 
instructions between languages (often between a human-readable 
language and a machine-readable one) so that a machine can 
execute the instructions.
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where to save the data; the contractor could provide the results of its 
analysis and the status of the HPLC. For assurances, the contractee 
could guarantee that the sample will be in the vial or loop, that the 
method file exists and that the sample does not contain materials 
which may damage or clog the HPLC; similarly, the contractor could 
guarantee that, after each HPLC analysis, the column will be ready for 
another injection. For tools, the contractee could provide the sample 
valve controller (a subcontractor) so the contractor can properly time 
the injection. Concerning subcontractors, when the contractor itself 
makes a subcontract it becomes coupled: if the contractor took direct 
control of the sample valve, then this implementation could never 
work on a system without a sample valve. By providing a subcontrac-
tor as input, the contractee can fill in the contract with information 
it knows (or apply restrictions) and leave completing the contract 
up to the contractor. This makes the implementation of the contrac-
tor more general but increases the overhead—each invocation of the 
contract requires preparing and providing a subcontractor, and each 
subcontractor requires its own contract. Contracts must consider the 
contractee’s goal and the contractor’s requirements. The contractee 
could want a table of concentrations per compound, the unprocessed 
chromatogram or the selectivity and yield of a reaction. Given the 
goal, the contract must consider what is possible for the contractor 
and what information and tools the contractor requires (for example, 
to calculate the reaction yield, the contractee must provide the initial 
concentrations of reactants). The contract must specify how inputs and 
outputs are handled: should the contractor provide the data directly to 
the contractee or save it to a specific file or database; moreover, in what 
format (row- or column-major order, in what units and so on)? Finally, 
the contract must consider failures—which errors can be tolerated, 
are any of the assurances compromised by a failure?—and how these 
errors should be communicated between the contractor, contractee 
and subcontractors.

The best contracts are iteratively refined until all parties can com-
plete their tasks by considering what information is known by each 
party, which tools are accessible to each party and what each party can 
guarantee going into and coming out of the contract. Contracts can be 

specific to an application (by only considering the answers to these 
questions on a single experimental platform) or general (by thinking 
about how others may have designed their experimental platforms). 
A contract specifying that yield and selectivity must be output to a file 
requires a computer where the control program possesses the security 
permissions for saving files and cannot be used by a different workflow 
that needs concentrations per component. Conversely, if the contract 
specifies the output to be a table of peak areas and retention times, 
additional contractors (and contracts) will be required to translate 
this table into what is needed by a different workflow.

Ultimately, contracts invite thinking about what the responsibili-
ties of each component in a complex system are (and are not), what 
information or conditions are necessary to fulfil these responsibilities 
and how both successes and failures are to be detected and reported. 
Whereas contracts are a useful tool in the development of code, and 
by extension experimental procedures, they are not sufficient to guar-
antee reproducibility or interoperability.

Substitution
The ultimate purpose of abstractions which obey contracts is that 
different executors of a contract (for example, different experimental 
platforms) can be substituted without affecting the validity of the con-
tract (for example, two collaborating laboratories observing the same 
material properties or a single laboratory migrating to a new vendor’s 
hardware without needing to rewrite their experimental protocols). 
In a computer science context, any two equivalent algorithms that 
solve the same problem are interchangeable (despite differences in 
implementation and performance).

For experiments, the pipette, pump and hopper may appear inter-
changeable for material transfer; however, the quirks32 of their physical 
implementation challenge the creation (or honouring) of contracts, 
and by extension challenge the guarantee of reproducibility upon 
substitution. As reported by Rauschen and colleagues13, whereas the 
same quantity of water was specified as a quench on a Chemputer and a 
Kinova experimental system using χDL, the actual quantity dosed (and 
thus the product distribution) was different, as shown via NMR spectra; 

‘Add’
(Abstraction)

Pipettes

Robotic
arms

Pumps

Yield
(Reproducibility)

(Implementations)

Lab 3

Lab 1Lab 2

Fig. 2 | Various implementations of the same abstraction leading to different 
results. The broad abstraction ‘Add’, without any further parameterization or 
support can be realized in various ways. The fundamental qualities of these 
implementations can lead to challenges in reproducing experimental  

results—rendering these implementations as non-interchangeable. Without 
reproducible transferability, the dream of collaborative, automated research will 
not be possible.

http://www.nature.com/natsynth


Nature Synthesis | Volume 3 | November 2024 | 1327–1339 1331

Review article https://doi.org/10.1038/s44160-024-00649-8

moreover, for a difficult, stochastic crystallization step, two Chemputer 
systems using different crystallization techniques produced different 
yields (87 and 47%) for a reaction intermediate.

In molecular discovery, where reactions are not optimized, a lim-
ited yield is a concern for completing multi-step syntheses and char-
acterizations. If the well plate, batch platform reported by Koscher 
et al.33 were translated to a pump-based system, such as a Chemputer34, 
material losses due to dead volumes or purges may jeopardize the 
reproduction of a full experimental workflow. Either the entire process 
will need to be scaled up (incurring numerous experimental changes) 
or the researcher must accept running fewer or partial experiments. 
Conversely, a Chemputer-based protocol may need to be scaled down 
to run on a well plate system and adjusted for the inferior mixing of 
the well plates. Treating pipettes and pumps as interchangeable can 
result in problems with or discrepancies between the experimental 

workflows being hidden until execution—when resources have already 
been committed.

In a chemical synthesis context, consider the abstraction of ‘sol-
vent’. Both water and methanol are solvents; however, they are not 
substitutable in all reactions. Solvent effects can result in different 
activities, selectivities and yields in catalytic reactions. In the example 
provided by D’Agostino and co-workers35, whereas the reaction will 
progress under water or methanol (interchangeable), they are not 
interchangeable in terms of yield and selectivity (even despite the 
two solvents being polar protic solvents, the same specific subtype of 
solvent). When specifying procedures executed by machines, care must 
be taken to use the correct level of abstraction (for example, does the 
reaction require a solvent or an acidic polar protic solvent?; by analogy, 
does the method require pumps or water-free, high-pressure pumps?).

Ideally, the side effects of using (overly) abstracted interfaces for 
different implementations could be resolved by making better imple-
mentations—for example, developing pumps with no dead volume, 
identifying chemically neutral and universally immiscible backing 
fluids for pipettes or developing a transfer technique that works with or 
without transfer solvents and can handle gases, liquids, solids, slurries, 
suspensions, foams and so on. In reality, however, such technologies 
do not, and may never, exist. More immediate improvements to repeat-
ability may come from the development of more adaptive process 
control systems that leverage machine learning36–38. In addition, the 
repeatability of a chemical process can be improved by discovering 
more selective39 or more fault-tolerant reactions40. Current laboratory 
automation technologies for (bio)chemistry and materials science 
can, and should, improve to address concerns of interoperability and 
reproducibility41, but the language used to abstractly describe them 
must also shoulder some of that burden. To this end, improvements to 
automation will improve accuracy and repeatability, whereas improve-
ments to the communication of experimental workflows will improve 
repeatability and reproducibility—and together will make automated 
experimentation more reliable. In addition, technologies and strate-
gies for improving reproducibility which stem from outside the field of 
automation will still need to be communicated between (automated) 
laboratories. This communication (if written or digital) will require 
some level of abstraction to summarize material provenance42, the 
procedure, the controller settings and expected behaviours.

Treating real devices as necessarily interchangeable because they 
are conceptually related can cause headaches as outcomes fail to be 
reproduced and problems are not identified until during execution of 
the experiments. Fundamentally, abstraction permits modifications 
to an experiment, and which changes are immaterial cannot be known 
a priori without a deep understanding of the underlying process: as 
the steps in a process become more abstracted, the guarantee of their 
reproducibility is diminished.

Exercise
Table 1 provides a prompt for the complexity of defining a sufficient 
but minimally coupled contract for the substitution of two different 
transfer tools. As an exercise, consider how a contract developed for 
the transfer of a material may change with the addition of (1) a hop-
per that operates on granulated or powdered solids and may not be 
able to pick up material (instead relying on a reservoir), (2) gravimet-
ric (instead of volumetric) approaches that use partial-transfer or 
check-weight-differential cycles, (3) a robotic hand that can manipu-
late existing laboratory tools, such as beakers, scoopulas and gas bags, 
as would a human chemist or (4) the inclusion of slurries, which may 
interact negatively with tip diameters or pump heads.

Lessons learned from abstraction in computer 
science
The problem of granting interoperability through abstraction while 
incurring challenges to reproducibility is neither new nor solved. The 

Box 2

Coupling
Coupling can extend beyond software to physical experimental 
set-ups. A workstation where a central robotic arm transfers 
materials between modules, such as in the set-up reported by 
Gongora et al.100, has each module mechanically coupled solely to 
the robotic arm (see image). As a result, if the arm malfunctions, the 
other modules may carry on (to an extent); similarly, if a single 3D 
printer malfunctions, the others may continue to make progress. 
Conversely, flow chemistry systems, although they provide 
improved reproducibility through enhanced process control when 
compared with batch chemistry, are highly coupled—for example, 
without flow-path isolation, if a single fluid-delivery pump fails, 
then all downstream processes and measurements are impacted. 
Beyond architecture, unit operations can exhibit coupling. 
Separations, chromatography in particular, are often highly 
coupled: chromatography will remove material from both a sample 
and from its solvent reservoirs, dilute and separate the sampled 
material and deposit new material in new locations—such as waste 
or a fraction collector. In addition, if the sample contains metals or is 
strongly basic it can damage the chromatography column, altering 
the efficacy of the chromatograph with future samples. Ultimately, 
the minimization of coupling is what enables truly flexible, modular 
experimental systems that are capable of diverse experiments101.
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Image adapted from ref. 100 under a Creative Commons licence  
CC BY 4.0.
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conditions for the interchangeability of objects (formally, behavioural 
subtyping43) were developed by Liskov and Wing three decades ago 
and are still under investigation44,45. Despite a mathematical (abstract) 
equivalence, an implementation-specific bug (Fig. 3) was found in 
Java sorting algorithms in 2006 (after avoiding detection for years)46. 
Enterprise systems47, the Internet48 (of things49,50) and robotics51 face a 
similar problem where related elements cannot be abstracted to their 
core concept due to specific implementation details. Fortunately, 

experimentalists aiming to have codified experimental procedures 
can stand on the shoulders of these giants.

Below, we review some abstract programming language features 
which have been useful in computer science for addressing the prob-
lems that experimentalists face. These features centre around two 
ideas: (1) providing more operational detail than success or failure 
enables more nuanced control; and (2) experimental instructions 
(for example, ‘heat at 90 °C and stir for 45 min’) can be augmented 
by the results (for example, ‘until solution turns clear’). Whereas the 
core lesson to be learned is that two implementations should not be 
grouped under one abstraction (for example, all material transfers into 
one standard ‘transfer’ instruction) unless the implementations are 
functionally identical in result, the more a language can support and 
communicate situational awareness (for example, sensor readouts, 
supplemental measurements or reports of observations) the better 
it can adjust a workflow to ensure the reproducibility of the results. 
A programming language for experiments should make the commu-
nicating intent, the technique and the expected results easy without 
involving clever (often inelegant or impenetrable) tricks.

Reactive approaches
Traditionally, experimental procedures are given imperatively (for 
example, do these steps in this order, and if something goes wrong, 
start over; Fig. 4) as this strategy suits the descriptive approach used in 
literature. However, with digital procedures, more nuanced, prescriptive 
workflows are possible. Rather than each operation reporting either suc-
cess or an error, operations can be expected to report back with details 
of their operation—indicating complete or partial success and their 
observed changes of state33,52,53. As a result, the reporting of expected 
problems is incorporated into the contract without coupling to the 
manner by which the problems are addressed. A language that utilizes 
this approach of direct response needs to provide a way for responses 
to be captured and handled—the contract of abstracted operations 
must include sending a response. In existing automation languages 
(Fig. 5), the examples Fig. 5a–d,f are checklists without explicit syntax 
to handle errors—error handling is hidden within each step or by the 
coordinator going through the checklist, which prevents the user from 
implementing specialized recovery procedures. The example in Fig. 5g 
(LabVIEW) has ‘wires’ which show the transfer of results and error mes-
sages between instructions (non-graphical languages will typically use a 
‘result = instruction’ syntax). Capturing responses is frequently achieved 
by having operations publish results to the caller (Box 1) or a communal 
resource (such as a database) (Fig. 4b) where some reactive logic can be 
implemented to course correct if necessary. In many ways, this approach 
is mirrored by laboratory technicians using a scale to measure 100 mg 
of reactant and then recording the actual amount (98.7 mg).

Table 1 | Prompts for consideration in the design of a 
substitutable abstraction of material-transfer techniques

Liquid-backed pipette Pump

Valid source or 
destinationa

Often deployed on a 
robot that can address 
source and destination 
independently.

Destinations and 
sources may be 
combinations of fixed 
or free, depending 
on the supporting 
equipment.

Valid transfer 
volume or mass

Tip and syringe sizes.
Source or destination 
volumes.

Source or destination 
volumes.

Precision or 
accuracy of transfer

Tip and syringe sizes.
Tip contact (above or 
submerged, touching a 
wall).
Syringe motor precision 
and speed.
Material viscosity, vapour 
pressure, surface tension 
and compressibility.
Leading and trailing air 
gaps.

Tip contact (above or 
submerged, touching 
a wall).
Motor precision.
Material 
compressibility.

Amount of material 
taken from source

Same as deposited in 
destination.

At least as deposited in 
destination, depending 
on implementation.

Method of 
contamination

Residual material on 
pipettes, contact with 
backing fluid.

Mixing with pump 
fluid (if amount taken 
from source and 
amount deposited are 
equivalent).

Valid material phase Liquid Liquid

Example contract Input: a source, destination, desired volume and 
routing subcontractor.
Actions: use the subcontractor to locate the source 
or configure valves, remove material from the source, 
use the subcontractor to locate the destination or 
configure valves, deposit the specified quantity of 
material.
Output: a destination with the specified volume of 
material.
Errors: clogs, any error from the subcontractor.

Notes The volumetric units, the format of the locations and 
the interface for the subcontractor are not specified.
The use of a subcontractor to configure valves or 
position pipettes is a good way of ensuring that the 
contract can be used by both flow and liquid handler 
set-ups.
This contract fails to consider assurances such 
as there being sufficient material in the source or 
available space in the destination.
In addition, there are no assurances about 
contamination—the actions could be modified to 
wash after every transfer to ensure no contamination. 
More complex cleaning (such as only cleaning when 
the transferred material changes) requires additional 
information about the material (not just its location), 
records of the history of transfers and information on 
how the material is transferred.

aThe dependence on supporting equipment implies, perhaps surprisingly, that the selection 
of sources and destinations should not be a responsibility of a transfer tool—in other words, 
a higher-order abstraction that can coordinate both material transfer and location selection 
is necessary.

Average

X = 30,000
Y = 20,000

(X + Y)/2 = Y + (X – Y)/2

25,000 25,000

–7,768 25,000

Abstraction

Implementation

H
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dw
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e

32
bit

16
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Fig. 3 | Disparity between abstractly equivalent but hardware-dependent 
implementations for a Java sorting algorithm. The sorting algorithm involves 
calculating the midpoint between a high index, X, and a low index, Y (both 
positive integers); the error arises because the intermediate term (X + Y) can 
exceed the maximum value the hardware can store even when X, Y and their 
average are all valid numbers.
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In looking to design good contracts for abstracted operations, 
any sufficiently general contract will leave aspects of the experimental 
workflow underspecified; however, this slack can be picked up else-
where. In many cases, a context manager54,55 or error checker56 (super-
visor) is sufficient to address problems of a single operation changing 
the states of multiple entities. A supervisor is a separate process 
that takes notice of how an experiment’s state may change between 
operations (such as checking the feasibility of transfers, recording 
the changes of material in a transfer or inserting proper washing and 
preparation steps on contamination), as shown in Fig. 4c. In addition, 
supervisors can manage metadata or environmental observations 
(ambient temperatures and humidity, for example). The use of con-
text monitoring has seen success in languages such as Erlang57, which 
adopts a ‘let it crash’ ideology for processes to defer error handling 
to higher-level processes that may be better suited for handling the 
error; similarly, Python58 implements a ‘with manager(details) as 
name:’ syntax specifically to handle contractee assurances (such as 
checking for a file, opening it, monitoring for errors and closing the 
file). A single platform may also have multiple managers, enabling 
specialization in data-, hardware- and workflow-management12,59. 
The ORGANA system60, for example, uses multiple computer vision 

processes to act as a supervisor for locating and positioning resources 
and for detecting anomalies to improve operational robustness. In the 
space between manual and automated experimentation, the rules and 
features of electronic laboratory notebooks61 simulate some aspects 
of a supervisor but for human operators. Within extant languages for 
laboratory automation, those which use supervisors either provide 
global supervisors or hide single-step-specific supervisors within 
each operation. Future languages should consider providing syntax 
to handle more intermediate management (for example, the follow-
ing steps must occur within a glovebox, using the same pipette tip 
or concurrently).

Although supervisors do not solve every problem, they do reduce 
the frequency (or impact) of errors during an experiment and may 
help detect errors in simulated operating modes. In this approach, the 
language needs a way to invoke and communicate with the supervisor. 
The monitoring or describing of operations provides aid in diagnos-
ing problems and can enhance safeguards for the reproducibility of 
experimental results, although this may come at the cost of added 
complexity and inertia (one cannot proceed with just a hotplate for a 
pilot reaction: now a digital twin, database or sensor suite is needed). 
These techniques may synergize well with ontology- and event-based 
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transfer(device, source, destination, amount)

result = transfer(...)
analyze(result)

with manager:
    transfer(...)
    # other operations
result = manager.get_result()

details = {material properties, technique, etc.}
transfer(..., details)

pipette_transfer(...)
# compare:
#   acoustic_transfer(...)
#   pump_transfer(...)
#   manual_transfer(...)

tolerances = 5%
uncertainties = transfer(..., tolerances)
# Either:
#   Check uncertainties meet tolerances
#   Or propagate uncertainties

Example pseudo-code

Fig. 4 | Visualizations of the approaches described. Generally, a caller (the part 
of the language that invokes some piece of hardware) sends a command to the 
hardware which, in turn, causes some effects (good, bad and neutral). An ellipsis 
is used for brevity on what information the callers may need. a, The status quo, 
an imperative approach where commands either succeed or fail. b, Commands 
report back with what happened. c, A supervised approach, where an external 
process can observe the reality of what happened. d, An interpretive approach, 

where specification details are processed in the context of the current hardware. 
e, A variant approach, where abstraction is limited to implementation assuming 
interchangeability between the hardware of that implementation (for example, 
all pipetting liquid handlers are interchangeable for pipetting transfers).  
f, A tolerance or uncertainty approach, where the limitations of the hardware 
and the tolerances of the workflow are processed along with the experiment. 
Throughout, lines preceded with a hash symbol (#) indicate comments.
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Fig. 5 | Example excerpts of different languages for prescribing automated 
experiments. Excerpts focus on the operations of the workflow and omit the 
declaration of materials and resources in their respective workflows for brevity. 
a, The language used on the ARChemist platform to describe the stirring and 
shaking of samples. The use of ‘on_success’ and ‘on_fail’, which point to which 
step is performed next, enable branching workflows, although in this version, 
however, there are no protections against infinite loops. Code from refs. 91,92. 
b, The language used by Koscher et al. to describe the transfer of a well plate 
into a chromatograph and subsequent analytical separation. Each step may 
use conditional logic and loops by modifying the workflow via Python scripts, 
increasing the language’s expressive power but making the workflow opaque. 
Code from ref. 33. c, An excerpt of χDL to describe the neutralization of a sample 
before transfer to a separator. Loops are given a well-defined structure that 
permits exits on the experimental conditions and attempt limit. Code from  
ref. 93. d, Autoprotocol (in Python) to describe the liquid-transfer parameters for 
a liquid handler. The source of the material in the transfer step is inferred from 
the 'preceding_location' specification. Code from ref. 94. e, The MAOS language 
to describe an entire flow chemistry system with mathematical-like abstraction7 
(the flow system is provided as a reference). PL, photoluminescence; Pc, reactor 

effluent; SP, syringe pump; R, reagent; Rs, solid reagent; H, heating module;  
C, cooling module; SF, solid feeding module; A, reactor module;  
V, vacuum pump; G, gas supplier; O, gas treatment; ODE, 1-octadecene; OA, oleic 
acid; T, temperature; CdO, cadmium oxide; Th, heating temperature; th, heating 
time; TOP, trioctylphosphine; Se, selenium. f, A visual BioBlocks description of 
administering media to multiple cell cultures95. Aspects of the interfaces between 
operations are visualized by the puzzle-piece connectors between statements 
and the selection boxes within statements. g, Example LabVIEW8 code that 
describes a half-second relay pulse to trigger the start of a chromatographic 
analysis. The dashed purple line contains information about which relay to 
use; the dotted yellow line carries error messages. This language enables a 
more flowchart description of operations (as opposed to the more linear 
representations of the previous examples) and represents hardware and software 
interfaces with connection ports on each block, which the user connects with 
‘wires’. DAQ, National Instruments Data Acquisition system; DAQmx, a DAQ API 
for LabVIEW; T, the boolean value 'True'; F, the boolean value 'False'. Comparisons 
between these, and additional, languages for the same operation are provided in 
Supplementary Section 2. Panel e adapted from ref. 7 under a Creative Commons 
licence CC BY 4.0.
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approaches to laboratory automation data management42,62–64, through 
their alignment with the publishing of results to supervising processes.

Interpretive approaches
In contrast to the aforementioned, reactive, techniques, a more pro-
active approach can be taken. It is possible to provide each operation 
with as much information (but not necessarily instruction) as possible 
(Fig. 4d) at the onset of a task. This information can be sent explic-
itly at the invocation of the operation or implicitly by providing a link 
to a resource, such as a database or sensor, instead. The executor of 
the operation can filter (if the command is overspecified) or enrich 
(provided with sufficient information) these data as needed47 and 
adapt its approach (strategize65) to meet operational objectives. This 
strategizing can include choosing between different implementations 
(for example, performing a separation via filtration or liquid–liquid 
extraction). The explicit approach, where supplemental information 
is sent directly, can be simplified using conveniently formatted data 
packages47; the implicit approach can utilize lightweight messages and 
keep the writing of instructions simple47 but requires the consolidation 
of details elsewhere such as a database.

The automation control architectures of Koscher et al.33 (Fig. 5b) 
and Statt et al.64 demonstrate convergent evolution towards the same 
design patterns (Box 1), where devices communicate to a central server 
instead of each other. The two differ in how messages are transferred: 
the former has a blend of forwarding messages and has systems check 
for updates, whereas the latter has all members checking for notifica-
tions. Such centralization of information is seen in other automation 
architectures2,66 as it enables a simplification of intersystem commu-
nication and better isolates modules (reduces coupling).

Laboratory automation languages such as Autoprotocol (Fig. 5d), 
AnIML and PyLabRobot, for example, provide highly detailed opera-
tional parameters with their commands. This information can then be 
used to construct a functionally identical operation (aiding in repro-
ducibility). Unactionable information may optionally be ignored, 
hindering reproducibility but extending interoperability—for example, 
ignoring a pipette aspiration speed parameter because the hardware 
does not provide that level of control. Leveraging the potential for 
graphical languages8,11 (Fig. 5f,g), a highly detailed, hierarchical struc-
ture such as that of Community Resource for Innovation in Polymer 
Technology (or CRIPT)67 could, with modification, enable workflows 
to be abstracted or replicated as needed by having implementations 
only explore details to a desired depth.

Highly descriptive laboratory automation languages need a stand-
ardized way to contain and interpret these instructions as well as a 
way to understand the capabilities of each executor. Towards the aim 
of implementation-agnostic reproducibility in (bio)chemical and 
materials sciences, the descriptions could be shifted in focus from 
the implementation of actions (that is, ‘imperative programming’ 
(Box 1); for example, Autoprotocol’s ‘provision’ specifies a quantity 
of material to be added to a well2) to the results of those actions (that 
is, ‘declarative programming’ (Box 1); for example, the platform of 
Koscher et al. specifies the target concentration profiles of a well and 
has the liquid handler's controller solve for what quantities of mate-
rial need to be added33). Between versions 0.5 and 2.0, χDL imple-
mented the idea of ‘do until’ (monitor) as a half-way point between these 
approaches: for example, adding acid 1 ml at a time until a specified 
pH is reached68 (Fig. 5c). A declarative paradigm would, in theory, be 
excellent at ensuring reproducible results and could take inspiration 
from existing declarative languages (for example, HTML, SQL, Lisp, 
Prolog and mathematical notation); in practice, however, this would 
require the creation of some program that could solve how to achieve 
those results with the given hardware (and the problem of ensuring 
that reproducibility and transferability loops back on itself). There is 
potential for first-generation declarative paradigms in flow systems, 
whereby simple processes can be specified in terms of dimensionless 

parameters and models for which mathematical formulae exist to 
perform the solving step—or determine a priori if an experiment is 
even possible on the system.

Limited abstraction
A language could compromise out-of-the-box interoperability for 
robust and safe abstraction by restricting abstractions only as far 
as they are interchangeable. In this approach, rather than a single 
abstracted ‘transfer’ operation, there may be multiple (Figs. 4e and 
5a). In this model, any changes made to the experimental workflow so 
that it can be executed on different hardware must be made consciously. 
When these changes are recorded, it enables a scientist-programmer 
to properly characterize experimental reproducibility with respect to 
the changes made to the workflow.

Unfortunately, this approach is most similar to the status quo 
and suffers from a known major setback: curation. To compensate 
for the reduction in interoperability, a community-accessible library 
comprising each version of an operation must be created, validated and 
maintained. Moreover, the number of versions must be kept manage-
able and each version must have good and proper documentation for 
each version to be found and used correctly.

Should the curation problem be addressed, however, this mini-
mally abstracted approach holds three notable benefits. First, it enables 
problems in a workflow to be detected before execution (for example, 
receiving a warning for missing or incompatible hardware). Second, 
as there are fewer layers of abstraction, errors during execution are 
more concretely tied to the operation on which they occur—facilitating 
troubleshooting. Third, prototype methods can be developed and used 
freely—reducing the friction to starting up an automated laboratory 
or continually evolving new capabilities.

Emulating unreliability
From a hardware perspective, it can be possible to catalogue the 
capabilities (and lack thereof) of each implementation. Similar to 
cloud-computing strategies69, these labels can be taken to develop 
a lowest-common-denominator implementation such that diverse 
hardware will all produce the same (if suboptimal) results. Crucially, 
this approach should provide the ability to turn this emulation on (when 
reproducibility is the focus) or off (when exploration or optimization 
is the focus). For example, while dual-syringe pumps from different 
manufacturers allow each syringe to operate at different flow rates 
and directions and to start and stop independently, the dual-syringe 
pumps from one manufacturer cannot configure a syringe while the 
other is running. As such, any collaboration between two research 
laboratories that use these syringe pumps would need to follow the 
order of operations set by the hardware that does not allow simultane-
ous configuration.

Alternatively, these labels of capability can be taken to record the 
experimental precision/tolerance and bias of each implementation70. 
This approach embeds repeatability information into the procedure, 
which in turn can aid in enhancing reproducibility (or at least quantifi-
ably explaining failures of reproducibility) (Fig. 4f). Not many program-
ming languages today use this strategy, as the reliability of processors 
has greatly increased since the days of vacuum tubes and as unreli-
abilities in network hardware could be tolerated or circumvented with 
best-practice standards or heuristics and powerful support systems 
beyond the programming language itself—for example, compilers or 
interpreters (Box 1), integrated developer environments7,9,71 and emula-
tors. However, with the stochasticity inherent in chemical and mate-
rial processes and the variable precision and accuracy of commercial 
automation hardware, this specification of code reliability becomes 
increasingly relevant in laboratory automation.

A proactive application of this approach is hindered by the unfor-
tunate reality that the precision and accuracy of automated systems 
are not necessarily known—a liquid handler may be very precise with 
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aqueous solutions but not with low-surface-tension (for example, hex-
anes) or volatile (for example, chloroform) solvents. To proactively use 
uncertainties and propagate estimated errors, automated systems will 
first need to be rigorously characterized for each application. Whereas 
it is reasonable to expect a laboratory to characterize the pipetting 
accuracy of its liquid handler with one or two relevant solvents, for 
platforms that use complex mixtures or handle the products of other 
transformations and treatments, the relevant space rapidly becomes 
too large to fully characterize. This problem would imply that a retro-
active approach is more appropriate: such as pulling random samples 
to validate that the system is operating within tolerances. To this end, 
uncertainty-oriented languages could be combined with reactive or 
supervised approaches to better qualify experimental workflows. As 
previously mentioned, instructions may specify one mass (100 mg) 
but the actual mass (98.7 mg) may be different. In this case, predicting 
uncertainty is unnecessary as the actual error can be measured instead. 
Strict encoding of tolerances would enable a robust determination of 
whether this −1.3% error is acceptable. This issue does raise the ques-
tion of whether someone seeking to replicate this study should target 
100 mg or 98.7 mg—and how dependent quantities should be adjusted. 
Languages that focus on unreliability may need to shift from represent-
ing quantities as a singular number (100 mg) to a more general object 
that encodes the specified and realized values of each parameter.

Outlook
The role of programming languages that can standardize the communi-
cation of experimental workflows for automated platforms is to provide 
both transferability and reproducibility of experimental results. With 
reproducible, digitalized experiments, efforts towards collaborative 
research (such as networks of self-driving laboratories72) can be real-
ized—accelerating research and cultivating trust in automated labora-
tory technologies. Whereas the guarantee of reproducibility should be 
a major goal of any language for codifying experimental procedures 
in the (bio)chemical and materials sciences, it is not the only goal that 
must be considered. A language must also be accessible and efficient. 
Non-computer scientists seeking to codify an experimental procedure 
need to be able to read, write and understand a language without spend-
ing years studying. There are undoubtedly more lessons that could be 
extracted from computer science for automated experimentation. 
The lessons presented here are not mutually exclusive, and multiple 
strategies can be combined to meet the challenges of the community.

In the context of larger studies using codified experimental work-
flows, such as cloud, self-driving, autonomous or high-throughput 
laboratories, the nature of what is needed of a programming language 
can change33,73–75. Autonomous exploration, automated optimization 
and cross-validation workflows each implicate different allowable 
changes to an experimental workflow. Autonomous systems need 
freedom (ambiguity) to design and optimize their approach to realize 
(or abandon) goals15; conversely, when the objective is to leverage exist-
ing work to save time or to cross-validate another laboratory’s work, 
concrete specifics are needed instead. A singular, unified language 
would need to simultaneously describe goals and implementations, 
instructions and expectations, and uncertainties and tolerances. Much 
as how programming languages have continued to be invented and 
developed, it is likely that multiple languages will form the basis of the 
laboratory automation ecosystem. It would be beneficial, given the 
development and diversity of laboratory automation languages and 
architectures, to survey the academic community and industry part-
ners at this nascent stage as to why each group elected to use existing 
work or create something new, and what alternatives were considered 
and why they were ultimately adopted or passed up. With such infor-
mation, the evolution of the laboratory automation ecosystem can be 
guided towards a minimal set of maximally useful languages.

Software can leverage a small, standardized number of highly 
reliable central-processing-unit-level commands to create general 

translators between programming languages and machine instruc-
tions. Laboratory automation, however, has a plurality of vendor inter-
faces (and, more importantly, capabilities), which require users to first 
build their own controllers for everything that is being automated32, 
and which fundamentally challenge the ability to create contracts that 
can be honoured regardless of the hardware vendor.

Standardizing the capabilities of commercial hardware and soft-
ware is not feasible—the improvement, addition and specialization of 
features is crucial for these businesses to survive. As a result, workflows 
that rely on established (common) techniques may be able to change 
vendors more freely than workflows that leverage cutting-edge or 
specialized technology to achieve mission-specific goals. Consequen-
tially, much attention has shifted to the standardization of interfaces 
with commercial laboratory automation hardware and software (also 
known as the API).

At present, laboratory automation solutions have internally con-
sistent interfaces12,76–78 (which often leverage existing interfacing tools 
such as FastAPI77,79, SiLA (Standardization in Lab Automation)80 or ROS 
(Robot Operating System)59,81) but require users to build the connective 
tissue between the vendor’s API and the controller’s interface—often 
requiring supplemental code to ensure that the user-made code can 
fulfil the contracts requested by the controller. Laboratory automa-
tion vendors may struggle to abide by a universal standard—given 
the diversity of users, namely, the diversity of contexts (which extend 
beyond academic research), a solution for one group may create a 
problem for another82. Moreover, changes to interfaces and data for-
mats requires the rewriting of existing contracts—a massive effort and 
risk for a business. Even if all vendors used the same interface, many 
users would still need to write code to connect these interfaces to their 
preferred language (such as Python, LabVIEW or a bespoke language). 
Whereas consistent interfaces or APIs would represent a considerable 
quality-of-life improvement, standardized APIs are ultimately sec-
ondary to documentation. Proper documentation for an instrument, 
API and data formats is what formally describes both how to interact 
(interface information) and the underlying capabilities (contractual 
information). By providing better documentation and exposing more 
of the ‘under the hood’ features of the equipment, it would make it 
easier for individuals to write and share case-specific solutions. On the 
pain point of impenetrable data formats, if commercial software can-
not provide data in an open-source format, the documentation should 
explain how to read the proprietary format. To this end, continued 
collaboration with industry partners to produce official and accurate 
documentation, which covers all of a system’s underlying functional-
ity, and to use less opaque data-transfer protocols will help to advance 
laboratory research automation.

As a final example, abstractions that aid in modularization (min-
imal coupling and true interchangeability) facilitate the testing of 
unit operations. When each process can be isolated, it enables core 
functionality and the specific connections between processes to be 
thoroughly examined. In the laboratory setting, this can permit the ‘a 
la carte’ validation of different reproducibility metrics—for example, 
does the observed product distribution of a given reactor depend on the 
subsequent separation technique?, how do the accuracy and precision 
of a flow system’s pumps depend on fluid properties?, what is the quality 
of mixing or dispersion in and between modules? and so on. Taken as a 
whole, the community can inspect the dominant abstractions in (bio)
chemical and materials sciences to develop general test suites that can 
help to catch problems early during development, help to communi-
cate expectations of repeatability and reproducibly to the public73,83,84, 
inform and guide the development of improvements to laboratory 
automation and, for self-driving laboratories, act as a driver’s test85.

Towards characterizing reproducibility, there are two gen-
eral approaches. Laboratories could collaborate such that they 
cross-validate their workflows before publication. Alternatively, 
automated workflows could be required to report estimations for 
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reproducibility before publication—similarly to how a chemist report-
ing a novel compound must provide mass spectrometry and NMR spec-
troscopy data in most journals. The former approach has the benefit of 
fostering collaborations and bringing in more diverse ideas for improv-
ing automated experimental platforms. This approach, however, may 
be difficult to properly fund, given current grant structures, and risks 
over-centralizing power to a handful of established laboratories. The 
latter approach, the empirical estimations of reproducibility, could 
include performing tests where components of an automated set-up 
are replaced—such as changing the backing fluid of a liquid handler; 
using different pipette sizes, tube diameters or well plate geometries; 
or changing chemical vendors or intentionally spiking reagents with 
impurities. By analysing the overlap in repeatability test results between 
the two configurations, the reproducibility between similar platforms 
can be estimated. This approach is restricted to affordable changes—it 
would be prohibitively expensive to purchase duplicates of substantial 
hardware, such as syringe pumps or liquid handlers, especially for labo-
ratories attempting to enter into the space of experimental automation.

The reproducibility of results must be addressed in the automated 
laboratory sciences. Before larger questions of democratization or 
federalization of self-driving experimentation can be approached83,86,87, 
the basic unit operations of experiments need robust digital repre-
sentations. Given the diversity of hardware capabilities, the creation 
of laboratory languages (and the computer processes that translate 
them into machine instructions) may require that their interpreters are 
extensibly configured for each laboratory—such as software requiring 
hardware-specific compilation. Even if fundamental differences in con-
trol may necessitate different languages for batch and flow chemistry or 
for single- versus federated-laboratory workflows, once reproducibility 
can be addressed in each domain, then it may be possible to develop 
‘transpilers’—devices that translate code between languages. In this 
regard, the success of machine learning for programming language 
translation5,12,88–90 presents a tantalizing opportunity for learning the 
mappings between batch and flow chemistry, solid- and solution-phase 
processes or local and decentralized orchestration.

Given the precedent of multiple languages in computer science 
and language translators, this may represent the most reasonable 
future for laboratory automation. The design of a universal program-
ming language would probably be too complicated (or too cumber-
some) for the average user. Instead, by relying on translation, an 
experimentalist can express their ideas in a manner that is familiar 
to them but still share these ideas with others—thus inviting diverse 
perspectives on matters of experimentation.
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