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GEOGRAPHY OF SYMPLECTIC LEFSCHETZ FIBRATIONS
AND RATIONAL BLOWDOWNS

R. INANC BAYKUR, MUSTAFA KORKMAZ, AND JONATHAN SIMONE

ABSTRACT. We produce simply-connected, minimal, symplectic Lefschetz fi-
brations realizing all the lattice points in the symplectic geography plane be-
low the Noether line. This provides a symplectic extension of the classical
works populating the complex geography plane with holomorphic Lefschetz
fibrations. Our examples are obtained by rationally blowing down Lefschetz
fibrations with clustered nodal fibers, the total spaces of which are poten-
tially new homotopy elliptic surfaces. Similarly, clustering nodal fibers on
higher genera Lefschetz fibrations on standard rational surfaces, we get ratio-
nal blowdown configurations that yield new constructions of small symplectic
exotic 4—manifolds. We present an example of a construction of a minimal
symplectic exotic CP2# 5CP? through this procedure applied to a genus-3
fibration.

1. INTRODUCTION

The symplectic geography problem, inspired by the study of compact complex
algebraic surfaces by Persson et al. [38,39,50], asks which pairs of integers (a,b)
can be realized as the holomorphic Euler characteristic x, = a and the first Chern
number ¢} = b of a closed minimal symplectic 4-manifold [22,28]. It is well-
known that these invariants depend only on the underlying homotopy type of the
4—manifold X, satisfying the identities x;, = i(x +0) and ¢? = 2x + 30, where
x and o are the Euler characteristic and the signature of X. Both coordinates
are positive for minimal simply-connected 4-manifolds of general type, which are
usually the focus of the geography problem.

In the case of compact complex algebraic surfaces, the geography plane was pop-
ulated almost exclusively by surfaces that are the total spaces of singular fibrations
over complex curves [8,9, 3840, 43, 50], where most lattice points in the region
8a > b > 2a — 6 are realized by minimal holomorphic Lefschetz fibrations; see e.g.
[50]. The associated invariants of a compact complex surface of general type satisfy
both the Bogomolov-Miayoka-Yau inequality 9xn > ¢ and the Noether inequality
C% > 2xn — 6.

Perhaps the most striking difference between the complex and symplectic geog-
raphy is that the Noether inequality fails for symplectic 4-manifolds [1,14, 22, 41].
However, in this case, there are only sporadic examples realizing lattice points in
the region 2a—6 > b > 0 as Lefschetz fibrations, which were suggested by Fintushel
and Stern in [16]; see Remark 9. The families of examples we produce in our first
theorem will in particular contain minimal simply-connected Lefschetz fibrations
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FIGURE 1. The lattice points in the shaded region R are populated
by our minimal simply-connected symplectic Lefschetz fibrations.

populating this entire region. The interested reader can refer to Remark 12 for a
further discussion on the geography of symplectic Lefschetz fibrations.

Before we formulate the theorem, let us recall the rational blowdown operation.
The rational blowdown is performed by cutting out a regular neighborhood of a
configuration of spheres, called a plumbing, embedded in an ambient 4-manifold
and replacing it with a rational homology 4—ball. Since the rational blowdown was
introduced by Fintushel-Stern in [15] and generalized by Park in [34], it has been
used to construct many exotic 4-manifolds; e.g. [33,35-37,45, 52], most of which
are symplectic due to Symington [47], [48]. The appeal of this construction, along
with other similar symplectic cut-and-paste operations (e.g. [23,42]), is that the
fundamental group and Seiberg-Witten invariant calculations are relatively routine.
The first step in this process is locating a suitable configuration of spheres in some
4-manifold. Partially because there is a well-known classification of singular fibers
on elliptic fibrations, elliptic fibrations have been the most popular starting place to
search for plumbings that can be symplectically rationally blown down (e.g. most of
the above referenced articles start with elliptic fibrations). More recently, Akhme-
dov and Sakalli utilized the classification of singular fibers on certain holomorphic
genus—2 Lefschetz fibrations for rational blowdowns [3].

In this article, our starting point will be genus g > 1 Lefschetz fibrations on
rational surfaces and homotopy elliptic surfaces, corresponding to positive factor-
izations in the mapping class group Mod(3,). The particular positive factorizations
we use allow us to cluster nodal singularities and obtain some extremal configura-
tions for our rational blowdown procedures. Thus, our first set of results will be on
clustering nodal singularities in genus—g Lefschetz fibrations on CP2#(4g + 5)CP?;
see Lemmas 4 and 6. Coupling these ideas with twisted fiber sums, for each g > 2,
we construct minimal symplectic genus—g Lefschetz fibrations (Zg41, fg+1), where
Zg41 is a homotopy elliptic surface E(g + 1). These will contain 2g + 2 disjoint
embedded symplectic (—4)-spheres on the fibers we can then rationally blow down
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to get our first result. Consider the region
R={(a,b)€Z* |a>3and 0 <b < 2a}
shown in Figure 1. We have:

Theorem 1. For each point (a,b) € R, there exists a minimal simply-connected
non-spin symplectic genus ¢ = a — 1 Lefschetz fibration (Zgp, fap) satisfying
Xu(Zap) = a and c3(Zap) = b obtained from (Z,, fa) by rationally blowing down b
many (—4)—spheres contained in the fibers.

Similar to the regular blowdown, each time we rationally blow down a (—4)-
sphere, ¢? increases by one whereas x; does not change. So, we see that the
portion of the geography plane highlighted in Figure 1 is populated by Z,; as we
vary (a,b) € R.

Curiously, the homotopy elliptic surfaces Z,,; we build are not diffeomorphic
to well-known homotopy elliptic surfaces obtained from F(g + 1) by logarithmic
transforms or knot surgery on an elliptic fiber for any g > 3; we show this in
Proposition 8. The symplectic 4-manifolds Z, ; with 0 < b < a — 3 are moreover
interesting in connection to a conjecture of Fintushel and Stern on the number of
basic classes recently proven by Feehan and Leness [13]; see Remark 11.

Although there are known exotic symplectic 4-manifolds in the homeomorphism
classes of CP2#mCP? for as small as m = 2 [2] (also see [20]), to date, the smallest
symplectic exotic 4-manifold produced using the rational blowdown operation is
an exotic CP?#5CP? [32,33] (also see [19,37,52] for examples that are not known
to be symplectic). Despite the first breakthroughs in constructions of small exotic
rational surfaces all being via rational blowdowns [19, 35, 37, 45], and a massive
amount of literature on applications of rational blowdowns and their generalizations
over two decades, Question 2 is still open:

Question 2. Is there an exotic CP?#mCP? with m < 5 that can be obtained from
a standard rational surface via rational blowdowns? If so, what is the smallest such
m?

In principle, by expanding our view to higher genus Lefschetz fibrations, we open
the door to finding larger configurations of spheres that can be rationally blown
down, leading to possibly smaller exotic 4-manifolds. Adapting this approach, we
tackled this problem and we discovered many new constructions of examples right
on the border. To illustrate, we will present a relatively simple construction, where
we will start with a particular genus-3 Lefschetz fibration on CP2#17CP2. We
construct this Lefschetz fibration by refactoring the monodromy associated to the
hyperelliptic Lefschetz fibration on CP2#17CP? by clustering nodes; see Lemma 6.
After some blow-ups and one blow-down, we find a fairly simple configuration of
spheres embedded in CP?#32CP? that can be rationally blown down. We then
prove the following.

Theorem 3. There exists a minimal symplectic exotic CP2#5CP? obtained by
rationally blowing down a blow-up of a genus—-3 Lefschetz fibration on a standard
rational surface.

Peculiarly, yet another reason for us to choose this example is that only a slight
potential improvement of the positive factorization we employed in the proof of
this theorem would result in an exotic CP?#4CP?; see Remark 17. In fact, we
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expect the answer to the existence part of Question 2 to be yes, despite our own
efforts thus far falling short, noting that our investigation has mostly focused on
configurations in low genera fibrations.

Our paper is organized as follows. In Section 2, we construct positive factoriza-
tions for Lefschetz fibrations with clusters of nodes; see Lemmas 4 and 6. We use
these factorizations to then prove Theorem 1 and Proposition 8 in Section 3, and
Theorem 3 in Section 4. Throughout the article, any 4-manifold we consider will
be compact, connected, smooth, oriented and without boundary, unless explicitly
stated otherwise.

2. CLUSTERING NODES IN HIGHER GENERA LEFSCHETZ FIBRATIONS

Let ¥7" denote a compact connected orientable surface of genus g with m bound-
ary components and let Mod(E;”) be its mapping class group, the group of isotopy
classes of orientation-preserving diffeomorphisms of ¥7* that restrict to the identity
on the boundary 9X7". We write X, for Zg. For a simple closed curve ¢ on X7,
we denote the positive (right-handed) Dehn twist along ¢ by t.. The conjugation
of a group element 1 by ¢, namely ¢ ¢!, will be written as ¥?. A conjugate
of a positive Dehn twist satisfies t? = Lg(c), SO it is also a positive Dehn twist, for
any ¢ € Mod(X7"). The reader should not confuse the power t* of a Dehn twist
with the conjugate element t?, which can be differentiated by k always denoting an
integer and ¢ a mapping class.

Any product of positive of Dehn twists P that is equal to the identity in Mod(3,)
gives rise to a (symplectic) Lefschetz fibration with generic fiber 3,. A lifting of
P =1 to Mod(X}") specifies m sections together with their self intersections. If a
subfactor of P contains Dehn twists along disjoint curves, then, after a small per-
turbation, we get an associated singular fiber with clustered nodes. Topologically,
clustering nodes in certain ways gives rise to many 2—spheres embedded in the sin-
gular fibers (e.g. a string of (—2)-spheres intersecting transversely). Our strategy
is to manipulate particular positive factorizations in order to cluster nodes; in doing
so, we are able to construct Lefschetz fibrations containing desirable configurations
of spheres that can be further manipulated into configurations that can be ratio-
nally blown down. Often most of the rational blowdown configurations we seek for
will be contained in a just a few singular fibers with clustered nodes.

Let c1,...,co4+1 denote the curves on X, depicted in Figure 2 and let us set
t; = t., for a short-hand notation. The element

h =tity - -taglogritagritag - - - taty

is the hyperelliptic involution on ¥, which fixes each ¢; setwise. We thus obtain a
positive factorization of a genus—g Lefschetz fibration from h? = 1, which is known
to be a genus—g hyperelliptic Lefschetz fibration on CP2#(4g + 5)CP2.

Lemma 4. Let g > 1. For any integers p,q > 0 satisfying p + q = 4g + 4, there
are positive factorizations in Mod(X,) of the form

t€~t§ : Dp,q,g =1,

where Dy, 4.4 is a product of 4g positive Dehn twists, and t; = t., for ¢; as in
Figure 2.
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FIGURE 2. Curves on X,.

Proof. The statement will follow from a sequence of manipulations in Mod(3,):
1 = h?

=h- (t1t2 R t29+1t29+1 e f2t1)

=tity - togr1 - h-togir - -taty

=t1to - -togr1 - (tata - - togritager - - - tate) - taggr - - - taly,
which follows from h fixing every ¢; and therefore commuting with every ¢.,. Since
t1 commutes with ¢; for all j > 2, the two ¢; elements on the ends of the factorization
(tite - - -tagritaget - - -tot1) in the middle of the last equation above can be moved
outward to the third and third-to-last positions, obtaining the equation

=t (tat1)ts - -togyr - (ta- - togpitagyr -~ -t2) - tagyr - - - ta(tita)ts.

Iterating the same step for each t;, for i =1, ..., 2g, yields the next equality:

= t1(tat1)(tsta) - - - (tagr1tag)tagtt - tagy1(tagtagr1) - - - (tats)(trta)ts.

After a cyclic permutation we can bring ¢; on the left to the far right, recalling that
the whole product is equal to the identity. Applying a sequence of braid relations
titiv1ti = tiy1titiy1 we can then carry each o441 in the middle of the factorization
all the way to the right to derive

(tat1)(tsta) - - (tagitag)tagst - tagr1(bagtagin) - - - (tats)(trte) - £
(tat1)(tsta) - - (tagritag) - (tagtagr1) - - (tats)(tata) - t1.

Now, conjugating t; with t5, we obtain

= 112ty (tsta) - (tagritag) - (taglags) - - (tats)(tata) - £1.

Using braid relations again, we then carry this ¢, first to the very center as tog41
and then to far right as t; as follows

= 112 (t3ta) - - (tagaitog) - togr1 - (tagtagsr) - - (tats)(tita) - 1
=112 (tsta) - - - (tagy1tag) - (taglagr1) - - - (tats)(trta) - 1.

Repeating the same steps this time for the leftmost 3 we obtain

= 15215 (tats) - - (faga1tag) - (tagtagr1) - - (tats)(tata) - 15
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Iterate the same sequence of modifications for each t;y; that appears in a pair
(ti4+1t;) (each grouped in separate parentheses) on the left half of the factorization,
fori=1,2,...,2g9 4+ 1, in this order. Then repeat for each ¢; that appear in pairs
(t;t;+1) on the right half of the factorization, for ¢ = 2g,...,2,1, in this order. We
obtain
R WO TR

Finally we observe that (£52t5')t, = t3(t5t5") by braid relations. For p+q = 4g+4,
repeating this ¢ times we get

_ qlagtzgty lag+1  4l2g t3  4q o4ty p
—t1t2t3"'t2_q ~t2g+1-~-t4~t3-(t3t2)-t1
__ gtaglsgty tag41 lag ty  t2ts tit] q 4P
—t1t2t3"'t29 't2g+1"'t4't3 ly 7 -tg- 1y
__ 4P 4q

- tl : t3 ’ Dp,q,gv

where the very last equation is obtained by cyclic permutation and also that ¢] and
t4 commute with each other. O

Remark 5. We expect that the positive factorizations ¢197*D = 1 in Mod(%,)
we obtained above to be optimal for any g > 2, that is, one cannot perturb the
given Lefschetz fibration on X := CP?# (4g + 5)CP? to cluster any more identical
nodes (i.e. with isotopic vanishing cycles) on a single singular fiber. In fact, a
cluster corresponding to the ¥ factor yields a chain of k — 1 (—2)-spheres which
span a negative-definite subspace of V' of Ho(X;R) for the intersection form Qx.
Moreover, for the symplectic regular fiber F, we have [F] # 0 in Hz(X;R) and
[F] € V+, the orthogonal complement of V' with respect to Qx. Because Qx|+
is nondegenerate, there is an additional class in V' with negative square. Hence
49 +5 = b (X) > k, which demonstrates that we are at most one off from clus-
tering the maximal number of nodes. Generally, we conjecture that for a fiber sum
indecomposable (see e.g. [4] for the definition) genus g > 2 Lefschetz fibration,
the maximal number of nodes one can cluster like this is 4g + 4, realized by the
fibrations we get on the rational surface CP2# (4g + 5)CP2. Note that this number
is 49 + 5 when g = 1.

We will now construct a particular positive factorization for a genus—3 Lefschetz
fibration. In this case, for the rational blowdown configurations we desire to get, it
will be essential to identify some sections as well. We will thus produce a positive
factorization of the boundary multi-twist ts,ts, in Mod(¥3). (See e.g. [6] for how
boundary twists yield sections.)

FIGURE 3. Curves on ¥3.
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Lemma 6. There is a positive factorization in Mod(X3)

(4 tatytats) - (titststy) 5l - Dg =ty ts, ,
where Dg is a product of 6 positive Dehn twists, t; = t.,, and ¢;,a,b,c,0; are as in
Figure 3.

Proof. The statement will follow from a sequence of manipulations this time in
Mod(%2). We start with the well-known 7-chain relation:

tsyts, = (t7 -+ taty)®
= (t7 .. 't2t1)(t7 . t2t1)(t7 .. 't2t1)(t7 - t2t1)
. (t7 .. -tgtl)(t7 e tztl)(,j? .. 't2t1)(t7 L t2t1).

Note that t;(t7 - -taty) = (7 -taty)t;4q for each i = 1,...,6. We can thus move
the ¢; in the first parentheses over the next six (t7---tatq) factors, so it becomes
t7. We then move the ¢; in the second parentheses over the next five (t7---tatq)
factors, so it becomes tg. Repeating this for each ¢; in the first six parentheses, we
get:

= (t7-- ~t3t2)7 (tity - - -tety - totg - - - toty).
By the same method, we can now move o factors to arrive at the factorization
= (trtetstats)® - (tats - tety - trtg - tata) - (tita -« -toly - trtg - - taty).

Using the 5-chain relation to substitute (t7tgtstats)® with t,t,, and braid relations
to rewrite the rest of the factorization, we obtain

= (tatp) - (trta - -tety - tita - - - t5te - tels - - - taty - trte - - - tat1).
We can then use commutativity relations to rearrange the factorization into
= (tatpty) - (tat1)(tste)(tats)(tste)(tets)(trte) - (tetr)(tste)(tals)(tata)(tats)(t1ta)ty.

Now, employing the same argument we had in the proof of Lemma 4, through a
sequence of conjugations and braid relations, we can cluster ¢;s on the right we
obtain

= (tatpty) -7 -5 -5t o - tlo g -t tls b P 2l 1R

We then bring all the t; factors together by cyclic permutation of ¢}* and the
commutativity of the remaining ¢, factor with t,t;, which yields

= (1 aty) - 52 - bt tlp otttk a2l

Next carry the ¢ factor all the way to the right (note that it commutes with ¢5')
to obtain

tq
= (t'taty) 177 45 - 151 A 8 851 A - () -ty

By cyclic permutation and commutativity of t’é“ with t}*t,ty, we can then carry the
t& factor and place it in the first cluster to obtain

t
= (ot 10 -t ()

By moving away the Dehn twists in between by conjugations, we create a second
cluster as follows

= ('tatots') - (EF15T 1515 - D,
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where Dy denotes the product of the remaining six positive Dehn twists. Here t§3
and t?" commute, so we can move the latter into the first cluster to get

= (' tatot5'ts) - (828515’ t) - D
In the next step, we repeatedly make use of the following observation: if z and y

intersect at one point, then the braid relation ¢,t,t, = t,t,t, implies that ¢ 1tmty =
. " . .
tytyt; !, and in turn, we have t;/ = t;m. So we can rewrite the last factorization as

= (a1 ) (@ ) g,
Since t1%t,t, commutes with tgl, t1t3 commutes with tgl, and t5t7 commutes with
ty !, we obtain
= (Yt tytate)'s - (tatststr)2 o - D
We can conjugate this expression with ¢5 to obtain:

= (t}4tatbt4t6) . (t1t3t5t7)t5t;1tﬁt1 D,

Finally, noting that t5 commutes with ¢, ', the factorization in the statement of the
lemma follows. U

Remark 7. Halfway through the proof of Lemma 6, we arrive at
ts o, = (taty) - (titg - -~ toty - tato -+~ tsle - tats - - - taty - brtg - - toty)

via the 5-chain and 7-chain relations. Notice that if the two boundary components
¥2 are capped off, we get t, = t, = t; so that this relation reduces to a relation
that is Hurwitz equivalent to the relation in Lemma 4 for ¢ = 3, p = 16, ¢ = 0.
Since the remaining manipulations in the proof of Lemma 6 involve commutativity,
conjugation, and braid relations, the total space of the Leschetz fibration with
monodromy factorization given in the statement of Lemma 6 is CP2#17CP?.

3. GEOGRAPHY OF MINIMAL SYMPLECTIC LEFSCHETZ FIBRATIONS

Consider the genus g > 2 Lefschetz fibration on CP?#(4g +5)CP? corresponding
to the positive factorization ¢391% . 13972 . D, = 1 in Mod(%,) derived in Lemma
4, where Dy := Dggi29442,9. Performing an untwisted fiber sum of this fibration
with itself is known to yield the complex surface E(g + 1). (To see it note that
this fibration on CP?#(4g + 5)CP?, after a small perturbation, is isomorphic to a
holomorphic fibration and the untwisted fiber sum of two copies can be realized as
a double branched cover ramified along two copies of the regular fiber.)

Instead, we are interested in the result of a twisted fiber sum, which yields a
homotopy E(g + 1). After a global conjugation, the monodromy factorization of
the above fibration can be written as

Ag - t29%2 42972 = 1 and also as t12>1g+2 -tif” -B, =11in Mod(%,),

where a1, as,bi,b3 are the curves shown in Figure 4 and A, and B, are each
products of 4g positive Dehn twists. Then, let (Zg41, fg+1) denote the Lefschetz
fibration with monodromy factorization

Ay 'tifﬂ ’ tfzgw 't12>1g+2 -t§f+2 - By = 1in Mod(%,),

which is a {wisted fiber sum of two copies of the fibration we had on
CP?#(4g + 5)CP2.
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We claim that Z,,; is simply-connected. One way to see this is the following:
our Lefschetz fibration on CP?# (4g + 5)CP?, after a small perturbation, becomes
isomorphic to the standard holomorphic Lefschetz fibration, which has many sec-
tions; see e.g. [49]. Therefore, by Seifert Van-Kampen, the complement of the
regular fiber in the simply-connected 4-manifold CP?# (4g + 5)CP? is necessarily
simply-connected, and in turn, the twisted fiber sum Z,,; obtained by gluing the
two complements is also simply-connected.

Easy FEuler characteristic and signature calculations show that we have

\(Zy1) = 12 +12 = X(E(g +1)) and 0(Zy41) = —8g — 8 = a(E(g + 1)), 5o
that x5 (Zy+1) = g+ 1 and ¢3(Z,41) = 0. Moreover, the fiber sum Z,;1 is minimal
by [51] (also see [4]). When g is even, Z 4 is certainly not spin, for instance by
Rokhlin’s theorem. On the other hand, when g is odd, with some extra care, one
can show that Z,; is spin using the spin criterion for monodromy factorizations of
Lefschetz fibrations in [5,46]. (Here the twisting matters; one may for instance take
the second positive factorization in the fiber sum as the image of the first factoriza-
tion under the obvious hyperelliptic involution, followed by a cyclic permutation.)
Hence by Freedman [21], Z,; is homeomorphic to E(g + 1) for all g > 2.

FIGURE 4. Lantern curves in the twisted fiber sum (Zgy1, fg+1)-

We will next show that Z1 is not diffeomorphic to E(g+1). A natural followup
question is whether it is diffeomorphic to a well-known homotopy elliptic surface in
the literature. Recall that a homotopy F(n) obtained by logarithmic transforma-
tions for relatively prime p,q > 1 is denoted by E(n), 4, and the one obtained by
knot surgery along a generic elliptic fiber is denoted by E(n)r. While any E(n), 4
is symplectic, E(n)y, is symplectic if and only if L is fibered, and when that is the
case, F(n)r, admits a genus 2] + (n — 1) Lefschetz fibration [15,17, 18], where [ is
the genus of L.

Proposition 8. If g > 3, then Z,11 is not diffeomorphic to E(g+ 1), 4 for any
p,q > 1 or E(g+ 1)1 for any knot L. In particular, Zgy1 is not diffeomorphic to
E(g+1).

Proof. Let K denote the canonical class of Z,1; and let S denote an embedded
symplectic sphere with square —4. By the adjunction equality, (K, S) = —x(S) —
[S]? = 2. Suppose Z,41 is diffeomorphic to E(g + 1),4. Then K = ((g + 1)pq —
p—q)f, where f is a primitive class such that pgf = F is the elliptic fiber class in
E(g+1). Thus2=(K,S) = ((g+1)pg—p—q)f-S. Thus (¢g+1)pg—p—q € {1,2}.
Now since pg —p — ¢ > —1 and pg > 1 for all integers p, ¢ > 1, we necessarily have
that g < 3.
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Next suppose Zg41 = E(g+ 1)r. If L is not a fibered knot, then E(g + 1)1,
does not admit a symplectic structure [17], so Z441 cannot be diffeomorphic to
it. Assume L is a fibered knot of genus [ > 0. We first claim that the canonical
class must be of the form K = (21 + g — 1)F, where F is the elliptic fiber class of
E(g+ 1) and [ is the genus of L. Let ¥ denote a generic fiber of the symplectic
Lefschetz fibration on E(g + 1)1, which has genus 2] + ¢ and square 0. From the
construction, we know that F' is a bisection of this fibration and F' -3 = 2. By the
adjunction equality, (K,X) = 2(20 4+ g) — 2 = 4l + 29 — 2. By [17], SWgg+1), =
SWEe(g+1) - Ak (t?), where t = exp (F) and Ay is the symmetrized Alexander
polynomial of L; consequently, the canonical class K must be of the form mF for
some integer m. Thus we have 4l +2g —2 =m(F,¥X) =2m and som =2l +¢g — 1,
as claimed. Finally, 2 = (K,S) = (21 + g — 1)F - S, which implies g < 3.

If we take p =g =1 for E(g+ 1), 4 or L the unknot for E(g+ 1)1, we get back
the standard E(g+1). So the arguments above show in particular that Z,; is not
diffeomorphic to E(g + 1). O

The monodromy factorization of (Z,41, fg+1) can be rewritten as
1 Ay - (ta tasty, t,)%972 - B, =1 in Mod(X,),
g9 17a3"vb1 %03 g9 g9

where a1, as,b1,b3 can be seen to create a lantern configuration; see Figure 4.
Equivalently, clustering the corresponding four nodes on the same singular fiber
we get a symplectic (—4)-sphere contained in the regular fiber. By [11], lantern
substitution along this configuration will provide a new positive factorization for
a symplectic Lefschetz fibration that would be obtained from the former by ra-
tionally blowing down the corresponding (—4)-sphere. As the above monodromy
factorization shows, there are 2¢g + 2 of these (—4)-spheres in Z,44.

Set a = g — 1. For each pair of integers (a,b) with ¢ > 3 and 0 < b < 2aq, let
(Zaps fap) denote the symplectic Lefschetz fibration obtained by rationally blowing
down b of the above (—4)-spheres in (Z,, f,). All Z,; are minimal by [10] and we
have xn(Zap) = Xn(Za) = a and ¢3(Zyp) = ¢3(Z,) + b =b. Thus the collection

{Za4p | a>3and 0 < b < 2a}

of minimal symplectic 4-manifolds fills the region of the geography plane R in
Figure 1.

The claim that Z, ; is non-spin follows from the following observation: Each time
we apply a lantern substitution along a (tq,tq,ts, ts,) subfactor in the monodromy
factorization, we get a new vanishing cycle that separates the pairs {aq,b;} and
{as,b3}. This is a separating curve, and after a small perturbation of the fibration,
we get a reducible fiber that contains a genus—1 (and a genus g—1) fiber component
with self-intersection —1. Hence, the intersection form of the ambient manifold has
to be odd.

It remains to show that Z,; are all simply-connected. This is fairly easy when
b < 2a. Recall that if {v;} are the vanishing cycles of a genus—g Lefschetz fibration
(X, f) with a section, the fundamental group of X is equal to m;(X,) /N where N
is the subgroup of 71 (X,) normally generated by {v,}. Therefore, the vanishing cy-
cles of the Lefschetz fibration we started with on the simply-connected 4-manifold
CP%# (4g + 5)CP? should normally generate all of 71 (3,). In turn, the vanish-
ing cycles in the factor Agt,, te, (or in tp,tp, By) would alone normally generate
all of m1(X4). But observe that until we make substitutions along all t,, te,ts, to,
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factors, the original collection of the vanishing cycles for the Lefschetz fibration
on CP?# (4g + 5)CP? (obviously after a global conjugation) are still part of the
monodromy, which implies that Z, ; we get for b < 2a is simply-connected. For the
remaining b = 2a case, one can similarly check that there are still an abundant col-
lection of vanishing cycles in Z, 2, that normally generate the fundamental group
of the fiber. (In fact, it suffices to observe that if we remove a1 and a3 from the col-
lection, but add c3, which is one of the curves we get after the lantern substitution,
the vanishing cycles in hand still kill the entire fundamental group of the fiber.)
This concludes the proof of Theorem 1.

Remark 9. There is at least one more example we can quickly cook up in the region
R below the Noether line. Consider the genus—3 Lefschetz fibration on CP?#17CP?
with monodromy factorization:

(titatstatstettetstatstat;)> =1 in Mod(X3),

where t; = t., and ¢; are as shown in Figure 2. This factorization can be re-written
as
(t1t3t5t7)4D = 1 iIl MOd(Eg),

where D is a product of positive Dehn twists. Applying one lantern substitution
along the factor t1tstst7 results in a genus—3 Lefschetz fibration, the total space of
which can be shown to be CP2#16CP2. If we now take the fiber sum of these two
fibrations, we get a genus—3 Lefschetz fibration whose total space is a minimal [4,51]
symplectic 4-manifold with y; =4 and ¢ = 1, violating the Noether inequality.

The only other examples of relatively minimal Lefschetz fibrations in the litera-
ture we know of which realize some lattice points in the region below the Noether
line (and above ¢? = 0) are the ones described by Fintushel and Stern in [16]. By
taking fiber sums of two different holomorphic genus—g Lefschetz fibrations on ratio-
nal surfaces, they get examples on the line ¢ = x;, — 3 for any x > 3 with x5, Z 0
(mod 3). Provided one determines the topological invariants that are only implic-
itly expressed in [16], one can obtain more examples following their construction
scheme, but still with several limitations in the way of populating a large region;
for example, one needs to have g = 1(p —1)(¢ — 2) = 3(p’ — 1)(¢’ — 2) for pairs of
relatively prime positive integers p, ¢ and p’, ¢’ with {p,q} # {p’, ¢'}. In particular,
for every prime g, there is only one lattice point with y;, = g + 1 realized by this
construction.

Moreover, a common aspect of all these sporadic examples is that they are fiber
sums. In contrast, we suspect that most (perhaps all) of our examples (Z,p, fob)
with @ > 4 and b > 0 are fiber sum indecomposable, and not diffeomorphic to any
of these other examples.

Remark 10. Recall that Z,, is a homotopy E(g + 1) for all a > 3; in particular,
Zg41 is spin when g + 1 is even. However, we can populate all lattice points on
the line ¢? = 0 (with x;, > 3) with non-spin minimal simply-connected symplectic
genus—g Lefschetz fibrations as well. This can be achieved by using a different
twisted fiber sum than the one used to form Z,i 1. Let (Yy41,hg41) denote the
Lefschetz fibration with monodromy factorization

Ag - 292 42012 2042 42972 D) =1 in Mod(3,),

where A, ¢2972.120%2 = 1 and ¢797%-13%"?. D, = 1 are the monodromy factorizations
described previously. Rewriting this monodromy as (tq,te,t3) - D = 1, where D is a
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product of positive Dehn twists, it is clear that there is a fiber containing a sphere
with self-intersection —3, implying that the intersection form of Y,; is odd.

One may wonder if we can as well generate spin symplectic Lefschetz fibrations
in the region R, and this too is possible by varying our construction and using
the spin substitution techniques developed in [5]. In this case, we would instead
start with a twisted fiber sum (Y], , f/,,) on the ¢} = 0 line with a monodromy
factorization

tagt 97 Dl =1 in Mod (),
for ¢ > 3 and odd, where {as,bs} is the next pair of curves one can imagine in
Figure 4, which cobound a subsurface ¥3 of ¥,. One can then perform 5-chain
substitions along each ¢, t,, factor to create the desired examples; cf. the proof of
Theorem A in [5].

Remark 11. Let X be a simply-connected, almost complex 4—manifold of Seiberg-
Witten simple type. Fintushel and Stern conjectured that if the characteristic
numbers of X satisfy 0 < ¢? < x5 —3 then X has at least x —c? —2 Seiberg-Witten
basic classes. This conjecture was first confirmed for 4—manifolds of superconformal
simple type in a physics paper [27], and was later completely proved by Feehan and
Leness in [13]. Note that any symplectic X is of Seiberg-Witten simple type by
work of Taubes. Moreover, in [12] Feehan and Leness, building on the examples in
[14] with ¢2 = x}, — 3, observed that there are non-minimal symplectic 4-manifolds
at all the lattice points with 0 < c% < xn — 3 for which the bound on the number
of basic classes is sharp. While it is beyond the scope of our work here, it would
be interesting to determine if the same can be true for minimal examples, and in
particular seeing if the number of basic classes of Z, ;, with 0 <b < a—3isa—b—2.

Remark 12. Although there is an extensive literature on the geography of (semi-
stable) holomorphic fibrations on compact complex surfaces, the situation in the
symplectic case has not been understood well, at least until very recently; see e.g.
[30,44]. The recent works of [7,29] showed the existence of simply-connected Lef-
schetz fibrations violating Xiao’s famous slope inequality, which is always satisfied
by holomorphic fibrations. Most recently, it was established in [5] that there are
simply-connected Lefschetz fibrations with positive signatures—whereas it is still
not known if such examples exist in the holomorphic case. Our examples in this
article demonstrate further contrast between the geography of complex and sym-
plectic Lefschetz fibrations.

4. A MINIMAL SYMPLECTIC ExoTic CP2#5CP?

Consider the Lefschetz fibration with monodromy factorization

(994 by tate) - (trtatstn)'Z 5% - Dg = 1 in Mod(Ss)
given by Lemma 6. As mentioned in Remark 7, the total space is CP2#17CP2.
Moreover, this fibration includes two singular fibers given by the clusters t1%t,tytsts
and (titststr)'z tt | along with the two (—1)-sections corresponding to the
boundary components §; and Jo in Figure 3. The first singular fiber Fj is com-
prised of a string of 15 transversely intersecting embedded (—2)-spheres and an
immersed (—2)-sphere that transversely intersects the first and last (—2)-spheres

of the string. The second singular fiber F» is comprised of two (—4)—spheres inter-
secting each other transversely four times. The (—1)-sections intersect Fj in the
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first and fifteenth (—2)-spheres and intersect F5 in each of the (—4)-spheres. This
configuration is depicted schematically in Figure 5a.

Starting with this configuration of spheres, we will perform 16 blowups and a
single blowdown to locate a plumbing P symplectically embedded CP?#32CP? that
can be symplectically rationally blown down to a symplectic exotic CP?#5CP2.
To prove that the blown down manifold X is homeomorphic to CP?#5CP2, we
will apply Freedman’s Theorem. To prove X is not diffeomorphic to CP2#5CP?,
we will consider its symplectic Kodaira dimension. To this end, we first need to

understand the homology classes of the fibers and sections of our Lefschetz fibration
on CP2417CP2.

& i6
4h-2e;- Ye-2 e,
=2 " k1o
£

€y
-1 9
-4 €56y t 2}1-31 -Eei
€rés =32
K
- E3E4
h-ereref
Ex€1p
JEgey
K i7
ei5€g 3h-2ere;-2 ¢
e5eprf =
- ] -4 < 317
(A) Configuration of spheres (B) Homology classes
in CP2#17CP?
FIGURE 5.

Proposition 13. Let {h,ey,...,e17} denote the standard basis of Hy(CP2#17CP?).
The homology classes of the configuration of spheres in Figure ba are the homology
classes shown in Figure 5b.

Proof. To determine these homology classes, we first symplectically blow down the
configuration of spheres in CP?#17CP? 16 times. Upon doing so, the ambient 4-
manifold is either CP?#CP? or 52 x S2. We first show that it is the latter. Starting
with the configuration shown in the first diagram of Figure 6, blow down the two
(—1)-sections to obtain the next diagram in the figure. Starting with either green
(—1)-sphere, sequentially blow down seven times. Then repeat starting with the
other green (—1)-sphere. The result will be the configuration of spheres A, B, C,
and D depicted in the last diagram. With abuse of notation, let A, B, C, and
D denote both the spheres and their homology classes. It is clear that A% = 12,
B?2=0,C?=D?=4,B-C=B-D=1,and C-D = 4. Note that when we blew
down the green (—1)-spheres in the second diagram, we introduced triple points.
We then sequentially blow down at these triple points six times each. Thus we have
that A-C=A-D=T.

Suppose this configuration lives in CP?#CP? and let {h, e} be the standard basis
for Hy(CP24#CP?). Then its canonical class is K = PD(—3h+e¢). Let B = xh+ye.
Then B? = 22 —y?> = 0 and (—K,B) = 3z +y. Moreover, by the adjunction
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-1

-4

-3

12

-3

0|B 4

g af each

green -1-sphere,
blow down 7 times

D4

FIGURE 6. Blowing down to S? x S2.

equality, (—K, B) = B2+ 2 — 2¢g(B) = 2. Combining these equations, we find that
x=1,y=—1and so B =h —e. A similar computation shows that C' = 2h. This
implies that C' - B = 2, which is not the case. Thus the configuration of spheres
must be in S? x S2.

Let s and f denote the standard section and fiber generators of Ha(S? x S2).
The canonical class is K = PD(—2s — 2f). Let A = s+ yf. Then A? = 2xy = 12
and (— K, A) = 22+ 2y. Moreover, since the homology class of A can be represented
by a genus—2 surface, the adjunction equality gives us (—K, A) = 10. Combining
these equations, we easily see that (z,y) = (2,3) or (3,2). We may assume the
former so that A = 2s+3f. Now let B = xs+ yf. A similar argument shows that
(x,y) = (0,1) or (1,0). Since A - B = 2, we must have the former and so B = f.
Continuing in this way, we see that C = D = s+ 2f.

Now that we know the homology classes of A, B, C, and D, we will reverse
the blowdown process via blowups to recover the original configuration of spheres
in CP2#17CP? along with their homology classes. This blowup process is shown
in Figure 7. The first diagram shows the configuration of spheres A, B, C, D in
52 x 82. Consider the intersection between A, B, and C, which is marked by a red
point. We blow up this point seven times and call the exceptional spheres dy, ..., d.
The resulting configuration is shown in the second diagram of Figure 7. Next, blow
up seven times in the same way starting at the red point in the second diagram to
obtain the third diagram and call the new exceptional spheres dy, ..., d;5. Finally,
blow up at the final two red points to obtain the fourth diagram, which is the
original configuration of spheres provided by the Lefschetz fibration. Call these
last two exceptional spheres dg and dig. The homology classes of the spheres in
this final configuration is shown in the fourth diagram of Figure 7.
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e
16
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FIGURE 7. Blowing up S? x S? to recover the homology classes of
the original Lefschetz fibration configuration.

Let {h,e1,...,e17} be the standard basis for Hy(CP?4#17CP?). By performing
the change of basis f — h —e1, s +— h—eq, di — h—e; —eq, and d; — e;41 for all
2 < i <16, we obtain the homology classes shown in Figure 5b. (Il

Let P be the linear plumbing with weights

(=2,...,—2,-3,-2,...,-2,-20,-2,...,—2,—6,—7).
5 3 15

By symplectically blowing up the Lefschetz fibration on CP2#17CP? sixteen times,
and blowing down once, we can find P symplectically embedded in CP2#32CP2.
This process is shown in Figure 8. Let ug, ..., us7 denote the homology classes of
the spheres of P, as shown in Figure 9a. These homology classes are found explicitly
in Figure 8, but for simplicity, they are recorded in the table in Figure 9b.

The boundary of P is the lens space L(5852%,291914), which bounds a rational
homology 4-ball B, by Lisca [26]. Moreover, by Park [34] and Symington [48], P
can be symplectically rationally blown down. Let Z = CP2#32CP? \ P and let
X = Z U B be the result of the symplectic rational blowdown.

Proposition 14. X is homeomorphic to CP245CP?.

Proof. We first show that X is simply connected. By the Seifert Van-Kampen
Theorem, m1(X) = 71(Z) *,9p) m1(B). Since CP?#32CP? is simply connected,
the map 7 (0P) — m1(Z) induced by inclusion is surjective. Moreover, the map
m1(OP) = Zsgsz — m1(B) = Zsss induced by inclusion is surjective ([34]). Thus,
it suffices to show that Z is simply connected. Now since w1 (OP) is abelian, so is
m1(Z); consequently, 71 (Z) = Hq(Z) and so it suffices to show that H;(Z) is trivial.
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FIGURE 8. Sixteen blowups and one blowdown.

For 1 < i <27, let u; € H1(OP) denote the homology class of the meridian of
the ith surgery curve in the obvious surgery diagram for 0P. Let ; denote the
image of p; in Hy(Z). Then Hy(OP) = Zsgs2 is generated by p; and the elements
W1, -, p1o satisfy the relations
2u1 = pa, 24 = pi—1 + piyp1 for 2 <i<5and 6 <i <9, and 3ug = pus + 7.
Combining these relations, we have that ug = 6p1 and p1g = 34p1. Since Hq(OP)
surjects onto Hi(Z), H1(Z) is generated by iy and satisfies the relations fig = 671
1o = 3477

In Z, T1g can be represented by the equator of the exceptional sphere esy; thus
i = 0 and so 6fi7 = fig = 0. Similarly, iy and fi7p can be represented by circles
on the exceptional sphere esg which cobound an annulus; hence iy = —Ji7g and so
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(A) The linear plumbing P

Sphere Homology Class Sphere Homology Class
Uy €27 — €28 U1s €12 — €13
Uz €26 — €27 U1e €11 — €12
u3 €25 — €26 ui7 €10 — €11
Uy €24 — €25 u1s €2 — €10
Us €23 — €24 U19 h—e—ex—e3
Ug €22 — €23 — €30 U20 €3 — €4
U7 €21 — €22 U21 €4 — €5
ug €20 — €21 U22 €5 — €6
Ug €19 — €20 U23 €6 — €7
8 16 29
Uu10 4]7,726] 726,’7 26172618726197 Zei U24 €7 — ey
i=2 i=10 i=20
Uit €16 — €17 Uzs €8 — €29
8 33
U12 €15 — €16 U6 2h — e — Ze,- — Z e;
i=3 i=31
17 33
u13 €14 — €15 ug7 | 3h—2e; —ez — Z €; — Z €;
i=10 i=31
Uiq €13 — €14
(B) The homology classes of u1, ..., ua7

FIiGURE 9. The plumbing P and its homology classes.

1 = f1o = 34pu7, or 3507 = 0. Since 6 and 35 are relatively prime, we readily
obtain iy = 0, proving that Hy(Z) is trivial. Thus X is simply connected.

Now, 0(X) = 0(CP?4#32CP?)—o(P)+0(B) = —4 = o(CP?4#5CP?) and x(X) =
X(CP2#32CP?) — x(P) + x(B) = x(CP?45CP?). Since the signatures of X and
CP?2#5CP? are not divisible by 16, both manifolds are odd. Thus, by Freedman’s
theorem [21], X is homeomorphic to CP?#5CP2. O

Proposition 15. X is not diffeomorphic to CP?4#5CP2.

Proof. Let Kpo 45cp2 denote the canonical class of CP24#5CP2. By Theorem D in
[25], CP?#5CP? has a unique symplectic structure up to diffeomorphism and de-
formation. Consequently, since the standard symplectic structure v on CP2#5CP?
satisfies (K po #5@2) v < 0, CP2#5CP? does not admit a symplectic structure v
satisfying (Kp2 #5@2) -v > 0. Let Kx denote the canonical class of X and let wx
denote the symplectic class of X. We will show that Kx - wx > 0, proving that X
is not diffeomorphic to CP?#5CP?.

The canonical class of CP2#32CP? is given by K = PD(—3h + ZZ% ei). It

is well-known that CP2#32CP? admits a symplectic structure compatible with K
and whose cohomology class can be represented by w = PD(ah — 2?7%1 bie;), where
i#9
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a>by>-->bsz and a > Z?%l b; (see, for example, Lemma 5.4 in [23]). Note
i#9
that K - w = —3a + Zf’% b;.
i#9

Give Hy(P) the basis {u1,...,us;} and give H?(P) the hom-dual basis
{7,727} Then K|p = Zf;(K “u;)Yi = Y6 + 18710 + 4726 + 5727 and
27

wlp =Y (w-u)v

im1
= (bar — bag)v1 + (bas — ba7)y2 + - - + (bag — baua) 75
+ (bag — ba3 — 530)76 + (bzl — ba)yr 4 - - (b19 — b20)79

+ (4a — 2by — Zb —Zb —2b18—2b19—zb )10

=10 1=20
+ (b1 — b17)711 + o+ (bio — bi1)ya7 + (b2 — bio)11s
+(a—by —by— 53)719 + (bg — ba)y20 + - - - + (b7 — bs)’724 + (bs — b29) Y25

+ (2a — by — Zb —Zb 726 + ( 3a—2b1—b2—Zb —Zb Yyar.

=31 =10 =31

Let @ denote the matrix for the intersection form of P with respect to the basis
{u1,...,u27}. Then

Klp-wlp=Q ' (K|p,w|p)

1
_ %( — 5544a + 3309b1 + 1082(by + by + - - + brr

+ 1153(b3 + -+ bg + bgg) + 1168b1g + 601(b19 + -+ b22)
+ 670(1)23 + -4 bgg) + 516b3g + 1067(1)31 + -4 bgg)).
Finally, we have that

Kx~wX:(Kx)‘z~(wX)|Z:K|Z'w‘Z:K~w—K|p'w|p

1
= (3789a — 2724by — 497 (by + bio + -+ + bi7)
— 568(b3 + -+ bg + bag) — 583by3g

— 16(b19 —+ -+ 622) — 85(b23 + -+ bgg)

+ 69b39 — 482(b31 —+ -+ b33))

1 33
—(a—N b
> == (a z_; )>0
i£9

Proposition 16. X is minimal.

Proof. Following the strategy of Ozsvath-Szabd in [31], we will show that X has
a unique basic class (up to sign), which implies that X is minimal. The following
calculations were completed in Matlab. Because the efficacy of this type of com-
putation is well-documented (c.f. [31], [45],[23]), we will only highlight the main
steps.
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We first find the following basis for Hy(Z;Z):

Ai=h—e1—eig—e31, As=h—e —eig—e32, Az =h—e —eg— ess,

22
Ay =3h —3e1 +2e15 — Z 2e; — 2e39 — €31 — €32 — €33,
i=19
28
As =3e1s — Y ei + eso,
i=23
8 17
Ag = 36h —2le; —Tey — > 8e; — ¥ Te; + 2e1s
i=3 i=10
28
+ Z e; — 8eg9 — €30 — €31 — €32 — €33.
i=23

Notice that Ay, As, A3 and As can be represented by spheres, A4 can be represented
by a torus, and Ag can be represented by a surface of genus 387 ([24]). Moreover,
A2 A3 A2 = -2 A2 = —27, A5 = —16, and Ag = —48.

We would like to find the number of basic classes L on X satisfying the additional
criterion: |L(A;)] < —A? and L(A;) = A2 (mod 2). Such classes are called adjunc-
tive classes. There are 9,317,700 possible adjunctive classes. If L a basic class, then
*=30(X)=2x(X) _ L’—4 - () and

1 i =

by the Seiberg-Witten dimension formula, d = L
d =0 (mod 2). Thus L? > 4 and L = 4 (mod 8). This restriction leaves us with
13,960 possible adjunctive basic classes.

Now, if L is a basic class on X, then by the gluing formula ([34]), there is a
basic class L on CP?#32CP? inducing L such that (L|p)? = —27. Moreover, the
set of basic classes on CP?#32CP? inducing L contains an element L such that
u? +2 < EP(Ui) < —u? for all 1 <4 < 27 (where u; are the homology classes of
the spheres in P shown in Figure 9b). There are 585 classes on P satisfying these
conditions. Thus we have a total of 8,166,600 classes on CP2#32CP? that could
give rise to adjunctive basic classes on X. These are given by (L|z, L|p).

Let H = (2,0,0,0,1,1,0,...,0) € Ho(CP?#32CP?;Q), written in the basis
{Ay,..., Ag,u1,...,ug7}. Then H(u;) = 0 for all 4, H?> > 0, and H - PD(h) > 0.
By the wall-crossing formula, if L is a basic class on CP2#32CP? inducing a basic
class on X, then sign(L - H) # sign(L - h). There are 1788 such classes. Finally,
we find that only 2 of these 1788 classes are integral. They are £ K (the canonical
class). Consequently, X has a two adjunctive basic classes.

Finally following the argument in [31], it is easy to see that every basic class on
X must be adjunctive. Thus X has a unique basic class (up to sign). O

Remark 17. Tt is worth highlighting that we derived our rational blowdown config-
uration only using the first two clusters in the positive factorization (1% t,tptats) -
(tytststr)t2 't - Dg = t5,ts, in Mod(32), where the key point is the topological
configuration of the disjoint Dehn twist curves in each cluster. Curiously, if one
can get a similar positive factorization but with another cluster, such as a factor
conjugate to (tqtststr), rationally blowing down a disjoint (—4)-sphere there would
yield an exotic CP?# 4CP?. In our factorization, we can find two of the desired
Dehn twist factors in Dg, but not all four.
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