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ARTICLE INFO ABSTRACT

Keywords: Seasonal snow cover is important in shaping ecosystem carbon uptake across many regions of the world, however
Photosynthesis forest responses to projected declines in snowpack remain uncertain. We studied the response of forest gross
GPP primary productivity (GPP) during the photosynthetically active season to interannual and spatial variability in
E::Ieisetr spring snow water equivalent (SWE), timing of snowmelt, and length of the active season. We combined carbon flux and
Snowmelt weather data from 14 temperate deciduous and evergreen forests in the US and southeast Canada with SWE and

SNODAS precipitation from the Snow Data Assimilation System to test these hypotheses: 1) earlier snowmelt leads to a
longer active season; 2) a longer active season is associated with higher total GPP, and 3) GPP during the active
season is dependent on peak SWE and timing of snowmelt the previous winter.

Regression and correlation analyses did not reveal meaningful environmental predictors of interannual vari-
ability in GPP, so linear mixed effects models were used to analyze broader scale spatiotemporal patterns. We
found that active season length was negatively correlated with total active season GPP in forests with drier
summers on average (based on mean annual summer climatic water deficit), but positively correlated in areas
with typically wetter summers. The magnitude of these effects decreased at forests with a higher percentage of
annual precipitation falling as snow. Our results showed that the capacity for plants to gain more carbon during a
longer active season appears to be dependent on soil water status determined by long-term climate, rather than
interannual fluctuations in weather. We found no evidence that the magnitude of total snowfall or peak SWE had
a legacy effect on subsequent active season GPP. Finally, we highlight that there was large interannual variability
both within and between sites that was not well explained by seasonal climate or phenology.
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Abbreviations and definitions

AIC Akaike information criterion

C carbon

CWD climatic water deficit (mm)

DBF deciduous broadleaf forest

DoY day of year (1-366)

ENF evergreen needleleaf forest

GPP gross primary productivity (umol m =2 s™1)

GPP1500 whole-forest photosynthetic capacity (GPP at high light) based
on light response of NEE (umol m~2 s~ 1)

MAT mean annual temperature (°C)

MAP mean annual precipitation (mm)

NEE net ecosystem exchange of CO, (umol m~2s™1)

PAR photosynthetically active radiation (pmol m 2 s™1)

R? coefficient of determination

RMSE root mean square error (units vary)

SWE snow water equivalent (mm)

Tair air temperature (°C)

VWC volumetric water content (m® m~%)

seasonal metrics and time periods:

SOS start of GPP season, the DoY in spring when GPP;gq first reaches
10% of summer capacity (DoY)

EOS end of GPP season, the DoY in autumn when GPP; g last reaches
10% of summer capacity (DoY)

AS active season for GPP, the period between SOS and EOS, inclusive

AS length length of active season for GPP - the number of days between SOS

and EOS, inclusive

the period between SOS and 90% date in spring (the DoY when
GPP; g first reaches 90% of summer capacity)

the period between the 90% date in autumn (the DoY when
GPP; g first reaches 90% of summer capacity) and EOS

spring ramp

autumn ramp

summer the period between 90% dates in spring and autumn, when forest
is at peak photosynthetic capacity
cumulative GPP during each season:

EGPPag sum of GPP during active season (g C m3)

ZGPPspring sum of GPP during spring ramp (g C m™2)

EGPPsymmer sum of GPP during summer (g C m3)

2GPPaytumn sum of GPP during autumn ramp (g C m~2)
SNODAS data products:

SNODAS U.S. National Weather Service Snow Data Assimilation Program

SAG the DoY when snow has fully disappeared (Snow All Gone, DoY)

peak SWE annual maximum SWE (mm)

day of peak SWE  timing of annual maximum SWE (DoY)

length of difference between DoY of annual maximum SWE and SAG
snowmelt (number of days)

PRLQ amount of liquid precipitation (rain, mm)

PRSL amount of solid precipitation (snow, mm)

solid fraction fraction of total annual precipitation falling as snow (%)

1. Introduction

A complete understanding of how the terrestrial carbon (C) cycle
responds to variability in environmental conditions is necessary for
making accurate projections of the global C budget under future climate
scenarios (Friedlingstein et al., 2022). Forecasting long-term C exchange
of terrestrial ecosystems depends on understanding the environmental,
biological, and biophysical controls of gross primary productivity (GPP),
ecosystem respiration, and their balance (net ecosystem exchange of
CO», NEE) across seasonal and interannual timescales. This is a serious
challenge, as the environmental controls of these fluxes are complex,
and vary on a region-by-region or even case-by-case basis more often
than universal relationships are found across ecological space (Baldoc-
chi et al., 2018). In this study our focus is on GPP.

Across boreal and temperate evergreen and deciduous forests, con-
trols of seasonal and interannual C exchange include phenological
variability associated with the start of photosynthesis in spring
(Richardson et al., 2009), fall senescence (Jeong et al., 2011; C. Wu
et al., 2012a), or both (Desai et al., 2022; Goulden et al., 1996; Keenan
and Richardson, 2015), environmental variability including seasonal
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temperature (Arain et al., 2022, 2002; Suni et al., 2003; Tanja et al.,
2003), moisture (Goldstein et al., 2000; Thomas et al., 2009), light
(Froelich et al., 2015), and disturbance (Aubinet et al., 2018; Finzi et al.,
2020). In general, while carbon fluxes respond in sync with the envi-
ronment on hourly to monthly time scales, the sensitivity of carbon
fluxes to variation in weather progressively declines or becomes more
difficult to detect seasonally and interannually (Richardson et al., 2007;
Stoy et al., 2009; J. Wu et al., 2012), except in the case of extreme
weather events (Zscheischler et al., 2014). It has been shown that less
than half of interannual variability in NEE can be attributed to climatic
factors, while the majority is due to variation in biological processes
(Richardson et al., 2007; Shao et al., 2015). These considerations,
combined with the effort and expense required to obtain multidecadal
records, make understanding climatic influence on interannual C ex-
change challenging.

An important feature of ongoing climate change is reduced snow
accumulation and related effects on water availability for plants. In
western North America, snowpack reduction and earlier snowmelt are
well documented (Hale et al., 2023; Mote et al., 2018; Siirila-Woodburn
et al., 2021), and their decline is projected to continue (Barnett et al.,
2005; Dierauer et al., 2019). Further, the amount of snow that melts
intermittently during winter is increasing (Musselman et al., 2021).
Continued reductions in snow may lead to longer seasons for photo-
synthesis. Here we refer to the photosynthetic period as the “active
season” (defined formally in Section 2.3) and avoid the term “growing
season”, which is vague at best when considering the complexities of
plant C allocation (Korner et al., 2023). Reduction in snow may also lead
to drier soils and increased fire risk (Westerling, 2016). A recent study
predicted that the number of snow-free days will increase from ~175 to
~250 by the end of the century in the central and northern Rocky
Mountain region (Wieder et al., 2022), and warming and earlier spring
snowmelt may extend the length of the active season. In many regions,
snowmelt is a first order determinant of water availability (Barnett et al.,
2005), and is particularly important for soil water infiltration and
recharge of deep soil and groundwater (Jasechko et al., 2014). The
timing of snowmelt tends to match the timing of peak soil water avail-
ability (Harpold and Molotch, 2015), which is important for transpira-
tion (Cooper et al., 2020). Water from the winter snowpack may be used
by plants well into the active season (Bailey et al., 2023; Goldsmith
et al., 2022; Hu et al., 2010). Thus, the coupling of snowmelt and soil
moisture is potentially important for interannual variability in C uptake
and ecohydrological response to climate change.

Two alternate and competing ecological impacts of reduced snow
amount and earlier melt have been proposed: the growth period effect and
the moisture effect (Wang et al., 2018). A number of studies have
investigated the implications of the growth period effect, which is defined
as increased active season length due to earlier melt, and hence a longer
period for growth. Some have reported increased C uptake with longer
active seasons in temperate deciduous broadleaf forests (DBF, Goulden
et al., 1996; Keenan et al., 2014; Richardson et al., 2009), as well as
boreal DBF and evergreen needleleaf forests (ENF, Barr et al., 2002;
Chen et al., 1999; Churkina et al., 2005). In DBF the potential for C
uptake is constrained by new leaf emergence, therefore earlier start of
the active season can increase the time the forest can function at
maximum leaf-area. If soils are cold in the period after snowmelt, de-
ciduous leaf emergence can be delayed (Desai et al., 2022), but warm
soils during this period can offset potential C uptake benefits (Sander-
s-DeMott et al., 2020). In ENF, there is minimal seasonal change in leaf
area, and instead photosynthetic function is subject to various envi-
ronmental and biochemical constraints such as temperature and mois-
ture availability, photoprotection, and photosynthetic downregulation,
particularly in winter (Bowling et al., 2018; Chang et al., 2021; Monson
et al., 2005; Verhoeven, 2014; Wolf et al., 2016). Therefore, in ENF, the
ability to capitalize on earlier spring onset depends on whether addi-
tional constraints to photosynthesis are relieved.

While a longer active season can enhance GPP, increased spring or
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summer water stress due to reduced snow accumulation and/or earlier
melt (the moisture effect) can outweigh the potential gains in GPP. A case
study at a high-elevation subalpine forest near Niwot Ridge, Colorado
(US-NR1) showed that earlier snowmelt leads to longer active seasons,
but those years had decreased GPP due to late season soil moisture
limitation (Hu et al., 2010). A more recent study at Niwot Ridge and
other sites indicated that, in contrast to Hu et al. (2010), the interannual
variability in net carbon exchange was not strongly related to active
season length (Barnard et al., 2018). Stable isotope analyses have shown
that in some regions, the water used by trees even late into the growing
season originates primarily from soil moisture derived from snow melt
(Allen et al., 2019; Berkelhammer et al., 2020; Hu et al., 2010; Martin
etal., 2018; Phillips and Ehleringer, 1995). There is a growing consensus
that increases in temperature and decreases in moisture associated with
longer active seasons (the moisture effect) may decrease forest carbon
sequestration (Knowles et al., 2018; Trujillo et al., 2012; Winchell et al.,
2016).

While the moisture effect (also referred to as the seasonal compensation
effect, Buermann et al., 2018) appears important in water-limited,
snow-dominated ecosystems, such as the Rocky Mountains, water lim-
itation is becoming increasingly characteristic of historically
energy-limited temperate and boreal forests (Buermann et al., 2014;
Butterfield et al., 2020; Denissen et al., 2022; Girardin et al., 2016; Peng
et al., 2011). Terrestrial carbon cycle models overpredict the beneficial
growth period effect and underpredict the adverse moisture effect that
follows warmer springs (Buermann et al., 2018). Over the Northern
Hemisphere, the strength and direction of the relationship between
remotely-sensed snow and vegetation greenness is highly variable, and
dependent on the relative dominance of the moisture and growth period
effects (Wang et al., 2018). Additional remote sensing studies similarly
show that the response of vegetation to changing snowpack is variable in
magnitude and direction, and also spatially (Buermann et al., 2018;
Xiong et al., 2019). Which of these controls dominates at any given site
may be a function of ecosystem type, average moisture conditions, the
legacy effect of snowmelt on summer soil moisture, seasonality of pre-
cipitation, and/or the degree of water limitation of vegetation.

Investigations of the impact of changes in snowpack on interannual
carbon dynamics are unfortunately hampered by a lack of observations
of snowpack characteristics at most flux towers. The water contained in
the snowpack, referred to as snow water equivalent (SWE), is ecologi-
cally quite important. Combinations of ground-based observations that
include SWE with remote sensing have led to progress in understanding
interannual variation of forest greening (Knowles et al., 2017; Trujillo
et al., 2012), but long-term SWE records co-located at eddy covariance
flux tower sites are rare. Passive microwave remote sensing is quite
helpful for estimating SWE (Kelly et al., 2003; Pulliainen et al., 2017),
but at present has coarse spatial resolution, and accuracy is limited in
the presence of forest canopies, deep snow, and mountainous terrain
(Dozier et al., 2016; Mortimer et al., 2020; Vander Jagt et al., 2013).

As an alternative and/or addition to remote sensing, gridded climate
reanalysis approaches can include assimilation of observational snow
data and combine them with physical models to provide high-quality
SWE estimates (Cho et al., 2020; Girotto et al., 2020; Zeng et al.,
2018). This includes the Snow Data Assimilation System (SNODAS),
developed by the US National Operational Hydrologic Remote Sensing
Center (NOHRSC) and archived at the National Snow and Ice Data
Center (NSIDC). SNODAS provides a 1 km? daily gridded estimate of
SWE and related snow metrics over the contiguous US (since 2003) and
southeast Canada (since 2010). SNODAS works by first ingesting data
from the Rapid Update Cycle numerical weather prediction model,
which are then downscaled and used to drive a physically based
energy-balance and mass-balance snow accumulation and ablation
model. The modeled output is then adjusted by data assimilation of all
available ground, airborne, and satellite observations to produce a
gridded estimate of daily SWE (Rutter et al., 2008). SNODAS generally
works well to estimate SWE in forested areas (Artan et al., 2013; Clow
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et al., 2012), but has been primarily used for hydrologic applications. Its
usefulness for ecological applications remains unexplored despite its
relatively high spatiotemporal resolution.

In this study, we synthesized flux-tower observations of carbon
fluxes and weather data from fourteen forest sites in the US and south-
east Canada with gridded SWE and precipitation estimates from SNO-
DAS. We used these data to study the potential legacy effects of
snowpack dynamics on subsequent active season GPP, and which
environmental controls might determine the relative dominance of the
growth period vs. moisture effects of earlier snowmelt. We tested three
hypotheses: H1) Earlier snowmelt leads to a longer active season for
GPP, H2) Active season GPP is higher in years with longer active season,
and H3) Active season GPP is dependent on peak SWE and timing of
snowmelt (a winter to summer moisture legacy from the snowpack).
These hypotheses provided a coherent framework to examine complex
biophysical processes related to forest-atmosphere carbon exchange
statistically, using linear regression and correlation analyses, and mixed
effects models.

2. Material and methods
2.1. Site selection

Very few flux towers include instruments to measure SWE or other
snowpack parameters, so our analysis was limited to the region of
SNODAS data availability (forests within the contiguous US and south-
east Canada). Site selection criteria included seasonal snow cover,
distinct periods of photosynthetic activity and dormancy, no recent
disturbance, and 4 or more years overlap with SNODAS. Fourteen flux
towers with 145 site-years of data met these criteria (Table 1). The
forests are primarily in the Koppen-Geiger climate classification of Dfb
(warm summer continental), with one exception classified as Dfc (US-
NR1, subarctic/boreal, Peel et al., 2007). Mean annual air temperature
ranged from 1.5 to 8 °C, mean annual precipitation 800-1250 mm, with
mean annual maximum SWE (from SNODAS, Section 2.4) varying from
50 to 400 mm. The percentage of annual precipitation falling as snow
(solid fraction, SNODAS) varied across sites 11-51% (Table B1), and the
climatic water deficit (from TerraClimate, Section 2.5) during the active
season ranged from below 10 to above 50 mm (Fig. 1). The forests are
evergreen needleleaf (ENF, 7 forests), deciduous broadleaf (DBF, 6), and
mixed (1) which we analyzed with the DBF group. Most sites are natural
vegetation except CA-TP3 and CA-TP4 which were originally planted as
monocultures (in 1974 and 1939, respectively, Arain et al., 2022).

2.2. Eddy covariance data processing

Flux tower data were primarily obtained from the AmeriFlux data-
base (https://ameriflux.lbl.gov/). The R package REddyProc (version
1.3.2) was used to remove periods of low turbulence using a site-specific
friction velocity threshold, to gap-fill NEE and weather data (Wutzler
et al., 2018), and to partition NEE (REddyProc variable NEE_U50 f) into
GPP (GPP_U50_f) and ecosystem respiration using the nighttime method
(Reichstein et al., 2005). We avoided the daytime method of Lasslop
et al. (2010) due to erroneous GPP in winter (Bowling et al., 2024),
which would lead to inaccurate determination of the timing of seasonal
transitions. Failure of the algorithms to identify suitable friction velocity
thresholds occurred in a few cases, leading to entire site-years failing the
REddyProc gap-filling process. Switching to the FLUXNET2015 database
(https://fluxnet.org/data/fluxnet2015-dataset/) for US-UMB and the
AmeriFlux FLUXNET product (https://ameriflux.lbl.gov/data/flux-data
-products/oneflux-processing/) for CA-Cbo and CA-TP3 alleviated this
site-dependent problem and enabled the use of longer records at these
sites.

Half-hourly GPP was summed to calculate total GPP during partic-
ular seasons (Section 2.3). Because cumulative GPP is sensitive to data
gaps, years with unfilled gaps during the active season were not
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Table 1
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Characteristics of forest flux tower sites used in this study. Sites are ordered by mean annual air temperature for each forest type: ENF=evergreen needleleaf forest,
DBF=deciduous broadleaf forest. Additional site details can be found in Table B1.

Site Biome  Lat. Long. Elev. Mean Mean Dominant Tree Citation Data DOI
CN) W) (m) Annual Annual  Species
Tair Precip.
(°0 (mm)
US-Syv DBF 46.2  89.3 540 3.8 826 Tsuga canadensis, Acer saccharum Desai et al. (2005) https://doi.org/10.17190/
AMF/1,246,106
US-WCr 45.8 90.1 520 4.0 787 Tilia americana, Acer saccharaum, Cook et al. (2004) https://doi.org/10.17190/
Fraxinus pennsylvanica AMF/1,246,111
US-Bar 441 713 272 5.6 1245 Fagus grandifolia, Acer saccharaum, A. Ouimette et al. (2018) https://doi.org/10.17190/
rubrum AMF/1,246,030
US-UMB 45.6 847 234 5.8 803 Populus grandidentata, P. tremuloides, Gough et al. (2008) https://doi.org/10.18140/
others FLX/1,440,093
US-Hal 42.5 72.2 340 6.6 1071 Quercus rubra, Acer rubrum Finzi et al. (2020) https://doi.org/10.17190/
AMF/1,871,137
CA-Cbo 44.3  79.9 120 6.7 876 Populus grandidentata, Acer rubrum Lee et al. (1999) https://doi.org/10.17190/
AMF/1,854,365
CA-TPD 42.6 80.6 260 8.0 1036 Quercus alba, others Arain et al. (2022) https://doi.org/10.17190/
AMF/1,246,152
US-NR1 ENF 40.0 1055 3050 1.5 800 Pinus contorta, P. engelmannii, Abies Burns et al. (2015) https://doi.org/10.17190/
lasiocarpa AMF/1,246,088
US-Ho2 45.2  68.7 91 5.1 1064 Picea rubens, Tsuga canadensis Hollinger et al. (2021) https://doi.org/10.17190/
AMF/1,246,062
US-Hol 45.2  68.7 60 5.3 1070 Picea rubens, Tsuga canadensis Hollinger et al. (2021) https://doi.org/10.17190/
AMF/1,246,061
US-Vem 35.9 106.5 3030 6.4 646 Picea engelmannii, Picea pungens, Abies Anderson-Teixeira et al. https://doi.org/10.17190/
lasiocarpa (2010) AMF/1,246,121
US-Ha2 425 722 360 6.6 1071 Tsuga canadensis, Pinus strobus Finzi et al. (2020) https://doi.org/10.17190/
AMF/1,246,059
CA-TP3 42.7  80.3 184 8.0 184 Pinus strobus Arain et al. (2022) https://doi.org/10.17190/
AMF/1,881,566
CA-TP4 46.2  80.4 184 8.0 184 Pinus strobus Arain et al. (2022) https://doi.org/10.17190/
AMF/1,246,152
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Fig. 1. Distribution of study forests in climate space, including mean annual temperature (MAT), mean annual precipitation (MAP), mean annual solid precipitation
fraction (percent, see Section 2.4), and multi-year mean of climatic water deficit (CWD, Section 2.5) during the photosynthetically active season (color axis). De-
ciduous broadleaf forests (DBF, circles) and evergreen needleleaf forests (ENF, triangles) are shown separately. See Table 1 and Appendix B for more site details.

included, and data from all REddyProc quality flag categories were used.
Years with high cumulative GPP quality flag sums (>1000) indicating
poor data quality were removed. In addition, we found no association
between the quality flag sum and outliers of cumulative GPP during the

active season (see list of Abbreviations). Processed 30-min flux data
were de-spiked by binning half hourly data into 13-day windows and
identifying data above or below the median + 4x the median absolute
deviation, separately for day and night (Papale et al., 2006). These
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spikes were replaced by the average GPP of that day before calculating
seasonal sums.

2.3. Determination of phenological transition dates

The method of Bowling et al. (2024) was used to determine the timing
of seasonal transitions for photosynthesis. Full details and code to
calculate transitions may be found in that paper. Briefly, the method
evaluates the response of NEE to photosynthetically active radiation
(PAR) in 5-day moving windows to calculate the seasonal pattern of
whole-forest photosynthetic capacity at high light, which we refer to as
GPP;300. This quantity is the value of a fitted curve (not shown) between
NEE and PAR during each 5-d window at a PAR level of 1800 umol m 2
s~1, after adjusting for respiration. The annual pattern of GPP;ggg is
shown in Fig. 2a for one site (US-Hal). The annual GPP;gg time series
were fitted with 2 logistic equations (not shown), and the 10 and 90%
thresholds between baseline and summer maximum of the logistic fits
were used to define dates of transition between seasons (SOS and EOS at
10% threshold, and transitions with the active season at 90%, Fig. 2a).
We define the active season (AS) for GPP as the time period between SOS
and EOS (this is the main period of carbon uptake), and further divide
this into three periods (spring ramp, summer, and autumn ramp) based on
the 90% threshold crossings.
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To test hypotheses, we calculated cumulative GPP (g C m™2) in each
portion of the active season (full active season, spring ramp, summer,
autumn ramp). Years with missing seasonal transition dates (SOS, EOS,
etc.) due to missing data or poor-quality logistic fits prevented seasonal
identification and were excluded from the analysis. The active season
length was defined as the number of days between the SOS and EOS,
inclusive. Cumulative GPP in each season is referred to as GPP with a
subscript indicating season (XGPPas, GPPspring ramps €tc.).

2.4. Snow data assimilation system

The Snow Data Assimilation System (SNODAS) is a data-constrained
reanalysis product that combines satellite, airborne, and ground data
with models of weather prediction and snow energy and mass balance
(Barrett, 2003). Daily, 1km? gridded SNODAS data were obtained
(accession date June 15, 2022) from the National Snow and Ice Data
Center (National Operational Hydrologic Remote Sensing Center, 2004).
For sites in the contiguous US, SNODAS data were available from 2004-
present; for sites in southeast Canada, data were available from 2010-
present. To reduce the impact of random uncertainty associated by
using a single pixel for each flux tower, we averaged SNODAS precipi-
tation (solid and liquid) and SWE variables for all pixels contained or
partially-contained within a 2 km radius of the flux tower with similar

active season
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Fig. 2. Overview of our phenological framework and associated seasonal definitions, using data for the 2013 active season and prior dormant season from Harvard
Forest (US-Hal). a) Time series of the light response of photosynthesis, evaluated at high light (GPP;go0), were analyzed, using the method of Bowling et al. (2024),
defining start of season (SOS, pink circle), start and end of summer (yellow circles, binding the yellow box highlighting "summer"), and end of season (EOS, pink
circle). The period between SOS and the start of summer defines the "spring ramp" (green box). The "autumn ramp" (gold box) is the period between the end of
summer (yellow circle) and EOS (pink circle). The "active season" for photosynthesis is the combination of spring ramp, summer, and autumn ramp periods (top olive
box). The "dormant season" is the cold-season period between EOS in autumn and SOS in the subsequent spring (blue box). b) Time series of snow water equivalent
(SWE), directly observed at US-Hal (gray) and from the SNODAS SWE model product (blue). The DoY and magnitude of peak SWE and the date when snow has fully
disappeared (snow all gone, SAG) were obtained from the SNODAS data (arrows).
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vegetation cover class, based on MODIS IGBP land cover. We overlaid
these pixels with a digital elevation model (Amante and Eakins, 2009)
before taking the average weighted by similarity in elevation to the flux
tower, where each pixel’s weight = 1/ absolute value of (elevation of
pixel — elevation of tower). Alternate buffer sizes and weighting
schemes, as well as filtering for outliers based on slope, aspect and leaf
area index were also considered. We selected the final processing
method after comparing how these variations influenced comparison
with in-situ SWE data at three sites where snowpack data were available:
US-Hal, US-NR1, and US-GLE (see Appendix A). The latter site was used
for SNODAS evaluation but not included in GPP analyses due to major
insect disturbance (Frank et al., 2014).

The SNODAS data were used to calculate metrics of the magnitude
and timing of snowmelt for each flux tower. Date of snow disappearance,
or snow all gone (SAG), was defined as the first day after which no new
SWE was present (see Fig. 2b for a comparison of SNODAS and in-situ
SWE hydrographs). Comparison of SAG determined from SNODAS
versus in-situ data show a slight overestimation of SNODAS SAG at US-
NR1 and US-GLE, and at US-Hal a few years exhibited discrepancy
between SNODAS and in-situ SAG (Fig. A2a-c). This discrepancy was
caused by years where snowpack disappearance was followed by a few
small, isolated snowfall events not present in the SNODAS product
(Fig. A2d), however the SNODAS product appears to give a good indi-
cation of when the primary snowpack has disappeared. Total snowfall
(mm) was calculated as the sum of the SNODAS variable solid precipi-
tation (PRSL). Total rain (mm) was calculated for each season as the sum
of liquid precipitation (PRLQ). Peak SWE (mm) was determined as the
annual maximum SWE from SNODAS (SWEM variable), and the timing of
peak SWE as the day of year (DoY) on which it occurred. The length of the
melt period was defined as the number of days between peak SWE and
SAG, inclusive. Solid fraction (percentage of annual precipitation falling
as snow) was calculated as 100xPRSL/(PRSL+PRLQ).

2.5. Soil moisture and climatic water deficit

Soil moisture data were used to examine water availability for plants.
All available soil volumetric water content (VWC) data for each forest
were accessed from AmeriFlux, or obtained directly from site scientists.
For sites that included observations across a soil depth profile, we
assessed whether the use of profile-integrated VWC significantly
affected our results compared to the use of single depth measurements.
We found that there was no improvement with integrated profile mea-
surements, and therefore in favor of consistency across sites, we used
VWC data from a depth of 15 cm which were available at all but 1 site.
VWC data were not available for all years at all sites, and were not
available for US-Vem.

The climatic water deficit (CWD) was used to examine the combined
effects of water availability and vapor pressure saturation deficit of air
on moisture limitation for plants, obtained from TerraClimate (Abat-
zoglou et al., 2018) at 4 km resolution. The CWD is calculated as the
difference (mm) between reference evapotranspiration and actual
evapotranspiration. Reference evapotranspiration is calculated by Ter-
raClimate assuming standard parameters for a grass surface (e.g., Allen
et al., 1998), which can be problematic applied to forests and is likely
overestimated (Sun et al., 2016). Actual evapotranspiration is calculated
by TerraClimate using a Thornthwaite-Mather water balance model
(Dobrowski et al., 2013), with additional uncertainty. However, the
CWD is biologically meaningful (Stephenson, 1998) and has been shown
to be a robust metric of plant water relations in studies of productivity
and forest mortality (e.g., Anderegg et al., 2015; Hoylman et al., 2019).
The CWD data were available monthly, so to match the timing of sea-
sonal transitions, we calculated the average CWD of all months con-
tained within a season (active season, spring ramp, etc.), weighting each
month by its proportion contained in the season (e.g. if SOS occurred on
April 25, then April CWD was weighted to be 5/30ths of the overall
mean spring ramp CWD).
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2.6. Statistical analysis

Linear regression, correlation analysis, and mixed effects models
were used to test hypotheses. To test H1, we examined simple linear
regressions between active season length and SOS, SAG, and EOS. To test
H2, we regressed XGPP,g versus active season length and SAG. Corre-
lation analysis was used to quantify bivariate relations between cumu-
lative GPP (XGPP4s) and active season length, active season CWD, mean
T,ir during active season, length of snowmelt, peak SWE, SAG, total
snowfall, spring rain, and summer rain (to test H2). We also examined
correlations between cumulative GPP during the spring and autumn
ramp and summer seasons with cumulative rainfall in each season
(providing moisture-based alternatives that might help explain H2).

2.6.1. Mixed effects models

Mixed effects models were further used to test hypotheses, con-
structed using a top-down model selection process (Zuur et al., 2009),
which uses iterative backwards selection to find those models that
explain the most variation with the minimum necessary parameters. The
ENF and DBF forest types were analyzed separately. Separate models
were built with XGPPag and active season length as response variables,
and applied separately for each hypothesis.

To test H1, we built linear mixed effect models separately for ENF
and DBF with active season length as the response variable. First, we fit a
saturated fixed-effects-only model with all possible terms that represent
biologically real hypotheses, and their interactions. For H1, starting
variables included: mean Ty, PAR, and VPD for each season (spring
ramp, summer, autumn ramp), total rainfall in each of these and active
season, timing of SAG, amount of peak SWE, timing of peak SWE, total
snowfall, mean VWC for each season, timing of spring maximum
(VWChayx), summer VWCi,, and mean active season CWD. We used the
dredge function in the MuMIn package in R (Barton, 2023) to determine
the relative importance of each candidate fixed effect variable based on
the ranked Akaike information criteria (AIC). This estimate of variable
importance is made by summing the AIC weights across all candidate
models which contain that variable (Burnham and Anderson, 2004).
Fixed effects variables with high importance (> 0.8) were then used to
construct a less saturated model with both ‘site” and ‘year’ considered as
possible random effects. Next, we used the step function in the ImerTest
package in R (Kuznetsova et al., 2017) to perform backward elimination
of random-effect terms followed by backward elimination of fixed-effect
terms to find the most parsimonious model, as follows. First, random
effects (site and/or year) were eliminated based on the likelihood ratio
test. In all cases, the best random effect structure was a random intercept
model with ‘site” as a random effect. Random slopes led to overfitting in
all cases and were therefore not included. Then, fixed effects were
eliminated based on ANOVA with p-values calculated using Sat-
terthwaite’s method (Kuznetsova et al., 2017). In some cases, the
selected model resulted in singular gradient errors or convergence fail-
ures indicating overfitting; for these cases, fixed effect variables were
dropped one at a time using likelihood ratio tests of nested models to
determine the final model. All final models were tested for collinearity
among independent variables, such that the variance inflation factor
was < 2 for all retained variables. All model comparisons were made
using maximum likelihood (ML) fitting, then final models were pre-
sented using restricted maximum likelihood (REML) estimation, with
marginal and conditional R? calculated using Nakagawa and Schiel-
zeth’s (2013) method for mixed models.

To test H2, we followed the model selection method above to
determine the most important explanatory variables for SGPPpgs and
build parsimonious models for ENF and DBF. For H2, starting candidate
variables included: the timing and magnitude of peak SWE, total
snowfall, SAG, total rainfall in each season, mean T,;;, PAR, and VPD in
each season, length of spring ramp, SOS, active season CWD, active
season length, mean active season VWG, and the days of year of spring
VWCpax and summer VWCin.
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In addition, we tested H2 and H3 spatially using mean annual con-
ditions for each site rather than values subject to interannual variability.
All data from both ENF and DBF were combined to construct the model
(including biome as a fixed effect did not provide any significant
improvement based on likelihood ratio testing of AIC). We tested H2
using a mixed effects model with ZGPPxg as the response, and the three-
way interaction between active season length, mean annual summer
CWD, and mean annual solid fraction. Other interannually-averaged
candidate variables that were considered but did not show improve-
ment (based on likelihood ratio testing of AIC) were MAT, MAP, mean
active season precipitation, mean annual peak SWE, and mean active
season CWD. We then used the same approach for H3, where SAG was
used in place of active season length—with total XGPP,g the response,
and SAG, mean annual summer CWD, and mean annual solid fraction as
fixed effects.

3. Results
3.1. Active season length

Interannual variation in active season length was significantly
correlated with SOS (the date when GPP first reached 10% of maximum
photosynthetic capacity) at most of our study forests (Fig. 3a, Table 2).
This is not surprising as SOS and EOS define the active season length.
This pattern was also present when all sites were analyzed together (a
single regression combining all sites in Fig. 3a was highly significant
with R2 of 0.87). However, the active season length was not significantly
correlated with EOS at any individual sites, though they were correlated
with sites combined (Table 2). These results indicate that the initiation
of photosynthesis in spring was the primary determinant of variability in
active season length. This is a necessary requirement supporting H1
(variation in active season length is related to variation in SOS), but full
support for H1 requires linkage between active season length and date of
full snow disappearance (SAG). Regressions of active season length with
SAG from SNODAS generally had negative slope (Fig. 3b, testing H1),
but the correlations were weak and slopes were not significantly
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different from zero (Table 2, CA-TPD was an exception). Regressions of
SOS with SAG were also weak and mostly non-significant (Table 2),
except when all sites within a forest type were analyzed together. These
results do not support HI1.

3.2. Environmental drivers of interannual cumulative GPP

3.2.1. Correlation analysis

Bivariate correlation analysis was used to examine how active season
length and environmental variables influenced interannual cumulative
GPP at each site (Fig. 4). Many significant correlations were present,
both positive and negative, and were highly site-specific. In general,
rainfall in each season was correlated with the GPP for that season, but
clear patterns were not present at all sites. There were significant
negative correlations between timing of snowmelt (SAG) and ZGPPxg at
2 sites (US-Hal, US-Ha2), indicating earlier melt led to higher produc-
tivity (some support for H3). In other sites, that relationship was not
significant (not supporting H3). The XGPPyg was significantly correlated
with active season length at 3—4 sites (US-Hal, US-Ho2, and US-Vcm at p
< 0.05, US-Hol at p < 0.1) but not others (mixed support for H2). Peak
SWE positively influenced XGPPyg at US-Wer only, correlations for other
sites were not significant (general lack of support for H3). There did not
appear to be uniform consistency in the direction or strength of re-
lationships due to biome or site average active season CWD. There was
strong correlation between XGPP,uymn and autumn rain (Fig. 4),
perhaps due to warmer autumns being wetter (anomalies of Ty;; and GPP
were both positively and significantly correlated with autumn rain, data
not shown).

3.2.2. Linear mixed effects model selection

Overall, the data in Fig. 4 indicate that the environmental drivers of
active season cumulative GPP differed by site, and GPP was in general
not well characterized by interannual variation in weather. Therefore,
we performed cross-site analyses to test the hypotheses, and present
them separately here. We employed a model selection approach using
linear mixed effects models. The inclusion of site as a random effect

300 4

250 1

200 4

AS Length (days)

150 1

significance

75 100 125
DoY SOS

90 120 150 180
DoY SAG

Fig. 3. Active season length (AS length) compared to the timing (day of year, DoY) of initiation of photosynthesis (SOS) and full disappearance of snow (SAG). Data
are shown for each site, with DBF (circles) and ENF (triangles) shown separately. Statistically significant regressions (p < 0.05) are shown with solid lines, regression

details can be found in Table 2.
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Table 2
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Results of linear regressions for data in Fig. 3. Statistically significant regressions (p < 0.05) are bolded.

active season length vs. SOS

active season length vs. SAG

active season length vs. EOS

Biome Site Slope Intercept p-value R? Slope Intercept p-value R? Slope Intercept p-value R?
@ddh @ ddhH @ ddh @
DBF CA-Cbo —2.20 450 0.02 0.67 -0.77 270 0.17 0.34 30 +0.52 0.74 0.02
CA-TPD —0.45 250 0.16 0.43 —0.60 250 0.02 0.80 390 —0.64 0.08 0.57
US-Bar —0.92 290 <0.01 0.66 —0.52 240 0.15 0.19 300 —0.38 0.49 0.05
US-Hal —0.80 290 0.01 0.40 —0.39 240 0.07 0.23 140 +0.20 0.35 0.07
US-Syv —0.79 270 0.02 0.60 +0.28 140 0.5 0.07 17 +0.52 0.11 0.37
US-UMB —0.83 280 <0.01 0.76 -0.10 190 0.65 0.02 290 —0.39 0.50 0.05
US-Wer —1.20 310 0.04 0.42 —0.26 180 0.24 0.17 230 —0.30 0.49 0.06
ENF Ca-TP3 390 —1.50 0.01 0.74 —0.21 290 0.88 0.00 270 —0.01 0.99 0.00
CA-TP4 400 —1.60 0.02 0.71 +0.09 260 0.90 0.00 240 +0.07 0.92 0.00
US-Ha2 340 —0.91 0.02 0.38 —0.39 310 0.17 0.14 480 —0.60 0.09 0.21
US-Hol 310 —0.65 0.09 0.20 —0.37 290 0.18 0.14 320 —0.18 0.59 0.02
US-Ho2 340 —0.97 0.03 0.37 —0.61 330 0.08 0.25 450 —-0.52 0.24 0.12
US-NR1 290 —0.78 <0.01 0.48 —0.62 310 0.12 0.16 390 —0.58 0.17 0.13
US-Vem 340 -1.10 0.14 0.74 —0.68 340 0.36 0.42 450 —0.62 0.61 0.15
overall NA 410 —-1.9 <0.01 0.87 280 —0.53 <0.01 0.093 —260 +1.5 <0.01 0.66
SOS vs. SAG
Biome Site Slope Intercept p-value R?
dd™ (d)
DBF CA-Cbo 0.38 73.7 0.03 0.63
CA-TPD 0.69 53.1 0.12 0.50
US-Bar 0.26 86.0 0.43 0.06
US-Hal 0.21 87.4 0.23 0.11
US-Syv -0.17 144.8 0.68 0.03
US-UMB 0.22 101.5 0.34 0.10
US-Wer 0.08 125.0 0.51 0.06
ENF Ca-TP3 0.18 65.5 0.81 0.01
CA-TP4 0.01 83.5 0.99 0.00
US-Ha2 0.27 49.2 0.16 0.14
US-Hol 0.37 48.1 0.04 0.28
US-Ho2 0.33 44.5 0.14 0.19
US-NR1 0.30 57.6 0.41 0.05
US-Vem 0.17 57.6 0.79 0.05
overall NA 0.25 —6.77 <0.01 0.10

accounted for the large degree of inter-site variation that was not well
characterized by phenological or climatic drivers, such as species
composition, forest age, soil type, nutrient limitations, etc.

H1) Earlier snowmelt leads to a longer active season for GPP

To assess the importance of snowmelt and other climatic drivers on
active season length, linear mixed effect models were built separately for
ENF and DBF with active season length as the response variable. Starting
candidates included: mean Ty, PAR, and VPD for each season (spring,
summer, fall), total precipitation in each season and the entire active
season, timing of SAG, amount of peak SWE, timing of peak SWE, total
snowfall, mean VWC for each season, timing of spring maximum
(VWCpay), summer VWCp,in, and mean active season CWD.

Final models selected with standardized coefficients are shown in
Table 3, and their graphical representation is shown as marginal effects
plots in Fig. 5. Marginal effects plots show the partial residuals for each
fixed effect term after holding all the other terms constant at their me-
dian. One can consider the X and Y axes of a marginal effects plot as ‘X
and Y after all other predictors from the model have been accounted for,’
and the slope of each line in Fig. 5. represents the partial regression
coefficients (see Table 3). In addition, in Table 3 it is useful to compare
the variance explained by fixed effects (marginal R?) with the variance
explained by both fixed and random effects (conditional R?).

For the ENF biome, variables with high importance (> 0.8) were the
date of peak SWE, SAG, mean spring T,i;, mean autumn PAR, total
autumn rain, and AS CWD. (See Appendix B for information about the

interannual variability of parameters important in the mixed model
results.) The selected model included (in order of standardized effect
size) mean autumn PAR, total autumn rain, the timing of SAG, and the
timing of peak SWE (Table 3, marginal R?=0.75, conditional R2=0.85).
That AS length declined with timing of SAG and timing of peak SWE
provides some support for H1 for ENF. It appears that, in addition to the
timing of snowmelt, autumn conditions have a degree of control over AS
length after partial pooling of sites, though this was not true at indi-
vidual sites (see Fig. 4 and AS length vs EOS in Table 2).

For the DBF biome, variables with high importance were mean
spring and autumn Ty, total spring and autumn rain, mean VWCaytumn,
and timing of spring VWCp,ax. The final model was built, in order of
effect size, using mean spring Ty, total autumn rain, and timing of
spring VWCp,ax (Fig. 5, Tables 3, B1). Longer active seasons had cooler
springs on average (Fig. 5a). Similar to ENF, longer active seasons were
associated with more autumn rain (Fig. 5c,e). The marginal explanatory
power was low and the conditional power was high (R?= 0.32 and R?=
0.85, respectively), indicating that the random effect due to site
accounted for more variance than the fixed effects. Thus, the length of
the active season in DBF was poorly constrained by these environmental
predictors, despite being the most parsimonious model found. This does
not support H1 for DBF. That warmer springs were associated with
shorter active seasons does not necessarily say that warming shortened
the active season, but simply reflects that later SOS results in warmer
spring temperature. Rather, it would be expected that warmer air will
increase the length of the active season in DBF (Baldocchi et al., 2018).
As a caveat, note that the length of seasons varies between years and
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Fig. 4. Pearson correlation coefficients (r) of the cumulative GPP during each season (XGPPps, ZGPPgpring, XGPPsymmer, ZGPPautumn) and environmental and
phenological variables. The color axis indicates magnitude and direction of the correlation, and significant correlations are shown with asterisks (p < 0.05). Sites are
ranked based on mean climatic water deficit (CWD) in summer, and forest type (ENF, green, DBF yellow) distinguished with colored site codes.

Table 3

Mixed effects model predictor coefficients for the response variable active sea-
son length (days) in both ENF and DBF (see Fig. 5). The coefficients are stan-
dardized to compare the magnitude of fixed effects within the model. Values in
parentheses are standard errors. T is the random effects variance, and o2 is the
model residual variance. Marginal R? is the variance explained by fixed effects,
while conditional R? is the variance explained by both fixed and random effects.
p-values * (p < 0.05), ** (p < 0.01), *** (p < 0.001).

ENF DBF

mean PAR autumn
total autumn rain
DoY SAG

DoY peak SWE
mean spring Taj,
DoY spring VWCpax

—0.132*** (0.033)
0.066*** (0.016)
—0.293** (0.104)
—0.153** (0.052)

0.049*** (0.014)

—4.438*** (0.675)
—0.246** (0.083)

Groups: Site 7 7

Too 103.8 214.48
o2 152.4 63.24
marginal R? 0.75 0.32
conditional R? 0.85 0.85
Observations 77 66

Akaike Information Criterion 642.626 496.864

sites, and thus variables that are summed (such as autumn rain here) are
somewhat problematic to interpret as a result.

H2) Active season GPP is higher in years with longer active season

We followed the above approach for H2 to determine the most
important explanatory variables for XGPPps (as response variable),

separately for ENF and DBF. Starting candidate variables included:
active season length, the timing and magnitude of peak SWE, total
snowfall, SAG, total rainfall in each season, mean T,;; in each season,
length of spring ramp, SOS, active season CWD, mean active season
VWG, DoY of spring VWCp,ax, and summer VWC,,. For the ENF biome,
variables with high importance included active season length, SAG,
mean active season Ty, and active season CWD. The final model was
built using active season length and active season CWD (Fig. 6b,c, Ta-
bles 4, B1). For the DBF biome, variables with high importance were
active season length, the timing of peak SWE, mean active season VWC,
mean active season Taj;, and the length of spring ramp, however the final
model included only the effect of active season length (Fig. 6a, Tables 4,
B1).

For both ENF and DBEF, active season productivity increased with the
length of the active season (Fig. 6a,b), providing support for H2 for both
forest types. The effect of active season length was larger in DBF
compared to ENF (3.9 + 1.8 gCm 2 d~! versus 2.0 +—0.8 gCm 2d "},
respectively), and in ENF XGPP,g also declined with increasing active
season CWD (Fig. 6¢, Table 4). For comparison, Launiainen et al. (2022)
found increasing trends in GPP with lengthening active season over
many years (~ 8 g Cm~2year™1), and Baldocchi et al. (2001) reported a
general interannual pattern of higher GPP with longer active season of
5.7 g Cm~2 d~! across temperate DBF sites, which were not constrained
to seasonally-snow covered sites. For both ENF and DBF models, how-
ever, the explanatory power of these fixed effects was very low (mar-
ginal R%2=0.11 and R?=0.06, respectively), while site as a random effect
explained most of the variance (conditional R?= 0.90 and R2:0.72,
respectively; Table 4).
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Fig. 5. Marginal effects plots for paired relationships within the final mixed effects model testing H1 (see also Table 3) with active season (AS) length as the response
variable and fixed effects in DBF: (a) Mean spring Taj;, (b) Timing of spring VWCmax, and (c) total autumn rain. Fixed effects in ENF: d) mean autumn PAR, e) total
autumn rain, f) DoY snow all gone (SAG), and g) DoY peak SWE. The slope represents the unstandardized partial regression coefficients, while the points are partial
residuals after holding all other terms constant at their median. Shading indicates the 95% confidence interval for the slope.
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Fig. 6. Marginal effects plots for the mixed effects model testing H2 (see also Table 4). Marginal effects plots are shown for the final model with XGPP,g as the
response variable, for DBF (a) and ENF (b,c). The slope represents the unstandardized partial regression coefficients, while the points are partial residuals after
holding all other terms constant at their median. Shading indicates the 95% confidence interval for the slope.
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Table 4

Mixed effects model predictor coefficients for the response variable ZGPP,s (g C
m ~ 2) in both ENF and DBF (see Fig. 6). Coefficients are unstandardized to
facilitate comparison of the fixed effect size of active season length between the
two models. Values in parentheses are standard errors. T is the random effects
variance, and o is the model residual variance. Marginal R? is the variance
explained by fixed effects, while conditional R? is the variance explained by both
fixed and random effects. p-values * (p < 0.05), ** (p < 0.01), *** (p < 0.001).

ENF

DBF

2.027** (0.751)
—3.214** (1.245)

active season length 3.921* (1.808)

active season CWD

Groups: Site 7 7

Too 86,887 74,666
o2 10,518 31,838
marginal R? 0.11 0.06
conditional R* 0.90 0.72
Observations 77 69
Akaike Information Criterion 954.750 925.053

3.3. Effect of mean annual site conditions on interannual cumulative GPP

Next, we evaluated whether variation in seasonal precipitation
influenced the linkage between active season length and XGPPjs.
Through the above correlation analysis between active season length
and GPP within individual sites (Fig. 4), as well as model selection
within biomes with partial pooling across sites, we were unable to find
consistent patterns that supported or refuted H2, due to the large
amount of unexplained interannual variability within and across sites
(Figs. 5,6). Therefore, we tested H2 spatially, using mean annual con-
ditions for each site rather than including interannual variation.

Shown in Fig. 7 (and Table 5) are linear regressions of ZGPPxg with
active season length and SAG, as a function of mean summer CWD
averaged across all years for each site (color axis). Sites that had a higher
mean annual summer CWD tended to have a less positive, or even
negative, GPP response to active season length (Fig. 7a) and a less
negative, or positive, response to SAG (Fig. 7b). These results indicate
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that summer moisture deficit potentially explains some of the variation
in the linkage between XGPP,s and active season length (caveats to
allow support for H2). Since water from the winter snowpack might
influence summer soil moisture availability for plants (via the moisture
effect), and thus influence summer CWD, we built a mixed effects model
with £GPPys as the response variable, and the three-way interaction
between active season length, mean annual summer CWD, and mean
annual solid fraction. Other interannually-averaged candidate variables
that were considered but did not show improvement were MAT, MAP,
mean annual active season rainfall, mean annual peak SWE, and mean
annual active season CWD. Data from both ENF and DBF biomes were
combined to construct the model, and including biome as a fixed effect
did not provide any significant improvement based on likelihood ratio
testing of AIC. Partial effects of the three-way interaction are shown in
Fig. 8. All terms and interactions in the model were statistically signif-
icant (p < 0.05) and it was the most parsimonious combination variables
(lowest AIC) based on nested likelihood ratio tests.

The model (Fig. 8) significantly improved the prediction of ZGPPyg
(marginal R2= 0.50, conditional R>=0.88) compared to the previous
models (Fig. 5, Table 3) that did not account for site average climate
conditions. For sites with higher mean annual CWD (those with drier
summers on average), GPP decreased with longer active seasons (red
lines in Fig. 3.8). For sites with wetter summers on average, GPP
increased with longer active seasons (blue lines in Fig. 3.8). The
magnitude of these effects decreased as solid fraction increased, and
YGPPys became less dependent (shallow slopes) on the active season
length. These results provide mixed support for H2, based on CWD.

H3) Active season GPP is dependent on peak SWE and timing of snowmelt

To test H3, we used a similar approach as for H2, with SAG used in
place of active season length. We used £GPPyg as the response variable,
and SAG, mean annual summer CWD, and mean annual solid fraction as
candidate fixed effects. Rather than a three-way interaction, however,
only the interaction between SAG and summer CWD was significant (p <
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Fig. 7. Cumulative GPP during the active season (EGPP,s) compared to the length of the active season (AS length) and date of full disappearance of snow (SAG).
Data are shown for each site, with DBF (circles) and ENF (triangles) shown separately. Statistically significant regressions (p < 0.05) are shown with solid lines,
regression details can be found in Table 5. Colors indicate multi-year mean summer climatic water deficit.
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Table 5

Agricultural and Forest Meteorology 353 (2024) 110054

Results of linear regressions for data in Fig. 7. Statistically significant regressions (p < 0.05) are bolded.

ZGPPyg vs. active season length

XGPPys vs. SAG

Biome Site Slope Intercept p-value R? Slope Intercept p-value R?
(gCm=2dY (gCm?) (gCm2d™h (gCm™
DBF CA-Cbo 1.7 1800 0.85 0.01 4.3 1700 0.71 0.03
CA-TPD -7.6 2900 0.49 0.13 8.2 650 0.24 0.32
US-Bar 1.5 970 0.52 0.04 0.6 1200 0.84 0.00
US-Hal 8.5 250 0.03 0.30 —-6.7 2200 0.04 0.29
US-Syv -5.8 2300 0.41 0.12 -0.4 1300 0.96 0.00
US-UMB 2.7 850 0.38 0.09 -1.9 1500 0.32 0.11
US-Wer 9.6 200 0.21 0.19 -3.4 1600 0.51 0.06
ENF Ca-TP3 -0.7 2000 0.79 0.02 -3.9 2200 0.57 0.07
CA-TP4 -3.0 2500 0.23 0.27 8.4 860 0.24 0.26
US-Ha2 3.6 490 0.13 0.16 -5.0 2000 0.04 0.29
US-Hol 2.1 950 0.09 0.20 -2.4 1700 0.06 0.26
US-Ho2 4.1 550 0.03 0.36 -3.8 2000 0.12 0.21
US-NR1 1.5 520 0.10 0.18 1.3 620 0.39 0.05
US-Vem —4.6 2000 0.05 0.91 4.0 330 0.20 0.06
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Fig. 8. Marginal effects plots for the three-way interaction between active season length, mean annual summer CWD and mean annual solid fraction of the total
precipitation (%solid), with ZGPP,s as the response variable. Slopes represent partial regression coefficients, while the points are partial residuals after holding all
other terms constant. CWD and%solid grouping moderator values represent the mean + 1 standard deviation. Shading indicates the 95% confidence interval on

the slopes.

0.05). The partial residuals of the interaction between SAG and summer
CWD are shown in Fig. 9, with the partial residuals of mean annual solid
fraction shown in the inset. The explanatory power of the model was
similar but slightly lower than the corresponding model with active
season length (marginal R?=0.45 and conditional R?=0.86). These re-
sults demonstrate that in areas with low summer CWD (favorable
moisture conditions), later snow disappearance has a negative effect on
active season GPP, but this relationship diminishes with increasing
CWD. Peak SWE never exhibited high importance in our models. These
results provide mixed support for H3, based on CWD.

4. Discussion

Studying ecosystem dynamics on interannual scales is challenging
conceptually and statistically. Conceptually, there are many environ-
mental and biotic drivers of interannual variability in C fluxes operating
at different timescales with unknown lags and legacy effects (Richardson
et al.,, 2010). However, it is difficult to distinguish between the inde-
pendent effects of particular drivers on carbon fluxes. The sensitivity of
carbon fluxes to climatic variability appears to progressively decline or
become more difficult to detect at increasing timescales, and our results
support the general consensus in the literature that interannual variation
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in GPP is not well-represented by direct responses to fluctuating envi-
ronmental conditions (De Pue et al., 2023; Richardson et al., 2007; Stoy
et al., 2009; Urbanski et al., 2007; J. Wu et al., 2012). GPP and other
ecosystem processes respond to environmental variation in changing
ways throughout the annual cycle (Launiainen et al., 2022). Statistically,
it is difficult to obtain records of sufficient length to find significant
relationships, as interannual variability in ecosystem C fluxes is large
relative to any trend driven by a specific environmental variable (Bal-
docchi et al., 2018). Although the lengths of many eddy covariance re-
cords are now multi-decadal, the statistical significance of reported
relationships between anomalies in active season length and carbon
fluxes often remains weak (Richardson et al., 2009).

We tested three hypotheses, with mixed results for all. We found that
a longer active season for GPP occurred when photosynthesis started
earlier in the year, but interannual variation in GPP was not directly
affected by timing of snowmelt at individual sites (Fig. 3, Table 2). When
sites were considered together with the use of mixed effects models,
results indicated that later snowmelt timing had a negative effect on
total active season length for ENF, but was not important for DBF
(Fig. 5f, Table 3). We found significant correlations between environ-
mental variables and £GPPxg at some sites, but not others, and there was
large variability in direct predictors of interannual GPP even among sites
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Fig. 9. Marginal effects plot for the interaction between SAG and mean annual summer CWD with ZGPP,g as the response variable. Slopes represent partial
regression coefficients, while the points are partial residuals after holding all other terms constant. CWD grouping moderator values represent the mean =+ 1 standard
deviation. Shading indicates the 95% confidence intervals on the slopes. The inset plot shows the marginal effect of mean annual solid fraction (%solid).

that were in the same functional class and climate zone, and relatively
close geographically (Fig. 4). Mixed effects models indicated that, when
sites were combined, £XGPP,s was significantly and positively affected
by active season length (Fig. 6) in both forest types. Further exploration
with mixed effects models indicates that this pattern is dependent on
long-term average CWD and solid fraction (Figs. 7, 8, 9). These results,
taken together, highlight the complicated nature of the controls on
interannual variability of forest carbon sinks. Our attempt to find direct
predictors of interannual variation of GPP within sites was limited.
Relationships that were found differed from site to site with no evident
patterns between sites. That relationships were highly site-specific is
consistent with other studies (see review by Baldocchi et al., 2018).

Evidence suggests that recent warming trends have led to earlier SOS
over the last few decades (Badeck et al., 2004; Jiang et al., 2023;
Richardson et al., 2006). It is well established that delayed spring onset
results in shorter active seasons for GPP (C. Wu et al., 2012b), and in the
present study this was true at almost all sites (Fig. 3), capturing both
interannual variability, as well as spatial (R2 = 0.87). We did not
however find that autumn senescence was correlated with interannual
variability in the active season length at individual sites (Table 2), in
contrast with previous studies (Desai et al., 2022; Fu et al., 2017; Keenan
and Richardson, 2015; C. Wu et al., 2012a). At US-NRI1, interannual
variation in the active season length was determined more by the
duration of snow melt than the timing of senescence (Monson et al.,
2005).

We did not find that peak SWE or timing of full melt (SAG) were
useful to explain interannual variability in active season length using
simple correlation at each site. However, SAG and timing of peak SWE
were the most important variables for explaining interannual variability
in the length of the active season across sites in ENF (Fig. 5). This was not
true for DBF, however the inclusion of spring VWCp,,x timing suggests
some importance of spring hydrology (Fig. 5). Overall, active season
length in DBF was less responsive to environmental drivers with a low
marginal R? (see Table 3) indicating that fixed effects explained a very
low proportion of variability. This perhaps reflects the general under-
standing that while ENF active season length is contingent on the sea-
sonal relief of environmental constraints (Bowling et al., 2018; Monson
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etal., 2005), in DBF the carbon uptake period can also be constrained by
new leaf emergence (Barr et al., 2007; Desai et al., 2022; Gu et al.,
2003).

The active season length was the most important predictor for vari-
ation in £GPPys for both ENF and DBF across sites, despite only being a
significant predictor of interannual variation at three sites (Fig. 4).
Similarly, Wu et al. (2012b) found that active season length was a good
indicator of spatial variability in annual net ecosystem productivity of
North American forests, but that predictors which had strong spatial
correlation were not good predictors of interannual variability.
Numerous past studies have demonstrated positive relationships be-
tween NEE and active season length in ENF (Danielewska et al., 2015),
DBF (Baldocchi et al., 2001; Desai et al., 2022; Finzi et al., 2020; Gu
et al., 2003; Richardson et al., 2010, 2009; White et al., 1999), or both
(Churkina et al., 2005; Fu et al., 2017). In agreement, our results showed
a positive association in both biomes (Fig. 6), and the effect of prolonged
active season length on XGPPyg was stronger in DBF than ENF (Table 4).
Our model selection suggested that this could be attributed to the
mediating negative relationship between GPP and CWD in ENF (Fig. 6b,
). Because CWD accounts for both reference and actual evapotranspi-
ration, it has the benefit of integrating over both the effects of soil
moisture supply and atmospheric water vapor demand, which are often
correlated and difficult to disentangle. However, the CWD is not a
measure of actual stand water use with respect to water availability, and
ignores species and stand-level controls on evapotranspiration (e.g., Fu
et al., 2022; Launiainen et al., 2016). That CWD was better suited in the
role of mediator compared to snow, rain, or soil moisture metrics alone,
agrees with previous studies that have highlighted the importance of the
vapor pressure deficit to limiting canopy conductance in mesic forests
(Novick et al., 2016). Regardless, we found the relationship between
active season length and XGPP,g had very weak marginal explanatory
power for both ENF and DBF, while the site-level variation (explained by
random intercepts in the statistical model) was extremely dominant
(compare marginal and conditional R?, Table 4). These results highlight
the large degree of variability between sites that is not well represented
by seasonal or annual weather.

In all instances where snowpack variables were important in
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determining the active season length and XGPP,g, there was a greater
importance of snow timing metrics compared to the magnitude of peak
SWE or total snowfall amount, in agreement with Knowles et al. (2018).
This included 1) the importance of SAG in determining the active season
length in ENF (Fig. 5¢); 2) the appearance of timing metrics as statisti-
cally important for ZGPPxg in ENF and DBF (though they did not end up
in the final models); and 3) the finding that SAG was related to XGPPg
across sites after accounting for site differences in mean annual pre-
cipitation solid fraction and summer CWD (Fig. 9). We would expect that
snowmelt timing would be an important factor for active season length
and XGPP,pg, under the premise that in some locations soil moisture is
highest in spring and declines after snow is fully gone. In western U.S.
conifer forests it was shown that peak annual soil moisture coincides
with the date of snow disappearance (Harpold et al., 2015; Harpold and
Molotch, 2015), yet we found this to be true only at the snow-dominated
high-elevation subalpine forest site US-NR1 (R?=0.69, p < 0.001, data
not shown). And although all sites showed a decline in mean VWC from
spring to summer, mean spring VWC did not show significant increase
compared to mean winter VWC at 8 of the 13 sites with available soil
moisture data (not shown). These sites did not follow the textbook hy-
drologic dynamics of seasonally snow-covered forests that have stable
dormant season soil moisture followed by a clear spring melt period (e.
g., Maurer and Bowling, 2014), but rather experienced influxes of
snowmelt and rain during the winter. These patterns complicate at-
tempts to understand the impact of snowmelt timing at these sites, and
likely contribute to the variability in the interannual explanatory power
of SAG at individual sites (Fig. 3, A2). Nevertheless, it appears that the
timing of peak SWE and SAG is still important when considered across
sites, despite the lack of coincidence with peak soil moisture.

We did not find that peak SWE was important for GPP. At the site
level, only US-WCr had a significant relationship between interannual
2GPP,g and peak SWE (Fig. 4), as previously documented by Desai et al.
(2022), though they attributed this to a soil temperature rather than
moisture effect. Wang et al. (2018) suggest that the dependence of
summer productivity on snowmelt is determined by both the legacy
effect of winter SWE on active season soil moisture and by the degree to
which vegetation growth is water limited. Regarding the former, there
were mixed, inconsistent results as to whether there was a legacy effect
of the amount of SWE on summer soil moisture at the site level (data not
shown). For instance, total solid precipitation was significantly corre-
lated with minimum summer VWC at US-NR1 and CA-Cbo, however we
did not find that this translated into a legacy effect of total snow on
active season or summer GPP at these sites (Fig. 3). Similarly,
Richardson et al. (2009) found that the lagged effect of spring pheno-
logical anomalies on summer fluxes was weak and non-significant, due
to the larger influence of summer weather. Alternatively, there may be
important seasonal moisture legacies associated with land-atmosphere
teleconnections that we are missing. For example, high snow years in
the Rocky Mountains are associated with lower North American
Monsoon rainfall in the subsequent summer (Lo and Clark, 2002; Notaro
and Zarrin, 2011). Patterns of seasonal water use by trees differ across
the western US due to the spatial gradient in monsoon rainfall (Szejner
et al., 2016).

A primary goal was to determine whether we could detect which
environmental controls determine the relative dominance of the mois-
ture vs. growth period effects of earlier snowmelt. We found that after
accounting for the interannual variability at each site, mean annual
summertime CWD and mean annual solid fraction mediated the
response of XGPPyg to variation in active season length and SAG, and
this was not dependent on forest type (Fig. 8). For sites with higher mean
summer CWD (those with drier summers on average), XGPPg decreased
with longer active seasons (red lines in Fig. 8). For sites with wetter
summers on average, YGPP,g increased with longer active seasons (blue
lines in Fig. 8). The magnitude of these effects decreased as solid fraction
increased, and active season GPP became less dependent on the active
season length (Fig. 9). In forests with low summer CWD (sufficient
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moisture), later SAG had a negative effect on active season production,
and this relationship diminished with increasing CWD (Fig. 9). These
average climatic conditions were found to be more important in deter-
mining the magnitude and direction of the relationship between active
season length and £GPP,g than when CWD or the annual precipitation
solid fraction were examined interannually (Fig. 3). Thus, the oppor-
tunity for forests to capitalize on the C production potential of longer
active seasons appears to be dependent on the degree of reliance of
vegetation to average moisture conditions determined by long-term
climate characteristics rather than interannual fluctuations in weather.
For natural vegetation this may be a result of competition and adapta-
tion to local microclimate. This highlights the importance of considering
longer-term ecological and demographic processes when trying to pre-
dict how vegetation will respond to future changes in climate. Previous
studies have also found that average factors acting over long time scales,
such as water table depth (Dunn et al., 2007), mean annual temperature
(White et al., 1999), or the average vertical distribution of soil moisture
(Martin et al., 2018), mediate sensitivity to changes in active season
length. Our results add to the growing body of literature which has
shown that drier sites are vulnerable to increasing summer drying in
response to longer active seasons (Knowles et al., 2018; Parida and
Buermann, 2014), and that this is true across different biomes (Buer-
mann et al., 2018; Butterfield et al., 2020; Xu et al., 2020).

Some limitations apply to our study. First, our hypotheses are almost
certainly too simplistic, particularly given the seasonal nature of rain
and snowfall. Patterns of forest productivity in response to seasonal
hydrologic variation, and its future change, are likely to vary for
different seasonally snow-covered climates, such as those influenced by
large-scale continental patterns of precipitation in the western US
(Trujillo and Molotch, 2014), Europe (Beniston et al., 2018), and the
Asian and North American monsoons (Adams and Comrie, 1997; Wu and
Qian, 2003). Second, present availability of snowpack and related
moisture data at flux towers is quite limited. We recommend that flux
tower scientists in seasonally-snow-covered biomes consider the addi-
tion of continuous electronic snow depth and SWE instrumentation, and
snow temperature (which indicates the melt process, Burns et al., 2014)
as a part of the standard suite of environmental observations. We also
share the building enthusiasm to include observations of soil and plant
water potential, which are among the most useful metrics of plant
physiological response to water availability (Novick et al., 2022). Third,
geographical representation of SNODAS products severely limited the
number of flux towers used and their representation across climate space
(most of our study forests were similar in climate, Fig. 1, and they were
all in North America). Fourth, the spatial resolution of the gridded
SNODAS (1km2) and TerraClimate (4km2) products is coarse relative to
flux tower footprints (Chu et al., 2021). These data-availability limita-
tions were a constraint on the breadth to which we were able to test our
general hypotheses. Finally, we acknowledge that we have ignored un-
certainty in the standardized GPP products. In general there is large
interannual variation in NEE, GPP, and ecosystem respiration, when
compared to the multi-year mean at any site (Baldocchi et al., 2018),
and there is likely to additional variation among the many GPP products
available (Pastorello et al., 2020). Future analyses that examine the
growth period and moisture effects in the context of climate and envi-
ronmental change will be strengthened if we can alleviate these
challenges.

5. Conclusions

We synthesized 145 site years of eddy covariance flux data from 14
deciduous and evergreen forest sites in the US and southeast Canada
with gridded SWE and precipitation estimates from SNODAS. We used
these data to study the spatiotemporal response of active season GPP to
interannual and spatial variability in active season length, timing of
snowmelt, and the date of disappearance of snow. We found that the
relative dominance of the moisture and growth period effects of earlier
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Appendix A. Evaluation of SNODAS SWE Product

We used SNODAS data to characterize the snowpack, to overcome the general lack of observations of snowpack physical characteristics (such as
SWE) at most flux towers. The SNODAS data are created using data assimilation and models, and comparisons with in-situ observations are necessary
where possible, but are not independent. The data from the US Dept of Agriculture, Natural Resources Conservation Service, Snow Telemetry Program
(SNOTEL stations), as well as airborne SWE data, are ingested as part of the assimilation process, so comparisons with SNOTEL data are helpful, but
meaningful only in the sense that they test the accuracy of our processing methods. Nevertheless, we found that SNODAS estimates of SWE provided
good 1:1 fits with in situ peak SWE at all three sites, which encompassed a wide range of SWE (Fig. A1).

A few studies have performed snow surveys explicitly for the purpose of SNODAS validation and have confirmed that SNODAS performed well in
forested areas, explaining 77% of the variance in SWE (Artan et al., 2013; Clow et al., 2012), and that SNODAS biases are relatively larger in alpine
areas with exceptionally deep snowpack, but otherwise the model performs reasonably well and is generally consistent with other reference datasets
(Anderson, 2011; Hedrick et al., 2015; Wrzesien et al., 2017). The comparison with in-situ observations at Niwot Ridge (Fig. A1) is favorable even with
a deep snowpack.

Fig. A2
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Fig. A1l. Comparison of April 1 SWE in multiple years of the SNODAS SWE product and in-situ observations using snow pillows. The SNODAS data were weighted by
elevation as explained in Section 2.4. In-situ data for US-GLE are from Brooklyn Lake SNOTEL site (site 367), https://wcc.sc.egov.usda.gov/nwee/site?sitenum=367,
and for US-NR1, Niwot USDA SNOTEL site (site 663) https://wcc.sc.egov.usda.gov/nwee/site?sitenum=663. This site is ~ 400 m from the flux tower at the same
elevation. Data provided by the United States Department of Agriculture, Natural Resources Conservation Service. In-situ data for US-Hal are from https://doi.org/
10.6073/pasta/cf7f702f1a3019662ef575a4b2b78102. The black dashed line is the 1:1 line, and error bars represent 1 standard deviation of pixel averaging.
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anomalous data points at US-Hal were found and illustrated in detail in d) which shows that a year with snowpack disappearance followed by a few small, isolated

snowfall events can in a discrepancy in the SAG estimate.
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Appendix B. Additional Site Information

Table B1
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Interannual variability of active season cumulative GPP and active season length, important dates, and variables found to be important for the mixed models in Tables 3
and 4. Data shown as the interannual mean and standard deviation (in parentheses). Actual years analyzed were smaller than the full range available for some sites,
based on data availability (particularly SNODAS and flux data overlap) and quality assurance. Exact years analyzed can be found in the supplemental dataset. Mean
annual peak SWE and mean annual solid fraction were calculated from SNODAS, all other data were obtained from the literature cited. Sites are ordered by mean

annual temperature for each forest type as in Table 1.

Site Biome  Number EGPPas AS SAG SOS EOS peak DoY Mean DoY of AS Mean
of Years (gCm~ length (DoY) (DoY) (DoY) SWE of Annual Mean Spring  Climatic ~ Autumn Sum
Analyzed 2 @ (mm) peak Solid Spring Max. Water PAR Autumn
SWE Fraction Ty VWC Deficit (pmol m Rain
(DoY) (%) (°©) (DoY)  (mm) 2T (mm)
US-Syv DBF 8 898 178 123 124 248 172 69 30 12.9 147 6.9 252 130
(127) 9 (©)] ©)] a4 (58) (20) (0.05) 1.9) (©)] (4.5) (32) (84)
US-WCr 10 883 144 120 135 245 116 63 23 15.2 140 7.5 306 91
(122) ) (13) (5) (10) (49) (21) (0.05) (1.9) (5) 4.7) (32) (57)
US-Bar 12 869 185 115 116 245 181 69 23 12.1 126 85 286 226
(113) a4 (12) (12) 17) (67) (13) (0.06) (1.3) (16) 8.7) (58) (68)
US-UMB 11 973 176 103 124 256 112 42 24 135 140 25.3 253 133
(132) @ 13) 9 an (36) (31) (10) 1.5) (©)] (11.2) (32) (68)
US-Hal 15 927 203 101 109 245 85 43 17 13.0 124 10.7 273 194
(215) (12) (16) (10) (20) (45) (30) (0.05) (1.8) (12) (10.8) (51) (110)
CA-Cbo 7 1449 193 103 113 253 146 73 21 13.5 133 16.4 243 161
(276) an 13) (6) as) (49) (18) (0.05) (1.6) (22) 9.7) (40) (100)
CA-TPD 6 949 191 99 121 239 44 35 11 15.2 132 22.2 255 231
(110) (5) @) %) (13) (24) (30) (0.04) 0.9) 9 (13.7) (29) (52)
US-NR1 ENF 16 561 207 169 108 254 367 110 51 35 146 49.9 321 43
(69) (12) 8 (10) (16) (63) (18) (13) 1.2) 11 12.9 (29) (30)
US-Ho2 13 981 266 102 78 264 114 44 19 7.9 111 8.4 180 265
(161) (16) 13) (10) (16) (57) (32) (0.07) (1.1) a4 (8.2) 37) (101)
US-Hol 15 883 255 104 86 264 127 55 21 9.6 111 9.3 186 247
(93) 14) (14) (10) (©) (56) (28) (0.07) (0.9) (13) (7.6) a7 97)
US-Vem 4 523 247 132 80 270 175 43 36 5.1 NA 52.6 364 35
(100) (16) (15) 12) (6) 77) (25) (0.08) (2.3) (NA) (11.1) (e2))] 9)
US-Ha2 15 836 271 98 76 256 87 42 17 9.1 105 9.1 203 252
(146) 17) 17) (12) (20) (45) (30) (0.06) (1.3) (22) (8.3) (42) (85)
CA-TP3 7 1301 269 99 83 285 49 38 12 8.8 92 16.8 157 203
(159) (19) @ 1n (32) (26) (26) (0.04) (2.0) (13) (8.3) (59) (105)
CA-TP4 7 979 267 99 85 256 48 38 12 11.1 93 16.4 213 313
(175) (20) (@] (10) (23) (25) (26) (0.04) (1.9) (10) (8.4) (48) (95)
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