
V!"#: A Protected Services Framework for Confidential Virtual
Machines

Adil Ahmad
Arizona State University

Botong Ou
Purdue University

Congyu Liu
Purdue University

Xiaokuan Zhang
George Mason University

Pedro Fonseca
Purdue University

Abstract
Con!dential virtual machines (CVM!) enabled by AMD SEV

provide a protected environment for sensitive computations on an
untrusted cloud. Unfortunately, CVM! are typically deployed with
huge and vulnerable operating system kernels, exposing the CVM!
to attacks that exploit kernel vulnerabilities. V"#$ is a versatile
CVM framework that e"ciently protects critical system services
like shielding sensitive programs, which cannot be entrusted to
the buggy kernel. V"#$ leverages a new hardware primitive, virtual
machine privilege levels (VMPL), to install a privileged security
monitor inside the CVM. We overcome several challenges in de-
signing V"#$, including (a) creating unlimited secure domains with
a limited number of VMPLs, (b) establishing resource-e"cient do-
main switches, and (c) maintaining commodity kernel backwards-
compatibility with only minor changes. Our evaluation shows that
V"#$ incurs no discernible performance slowdown during normal
CVM execution while incurring a modest overhead (2→ 64%) when
running its protected services across real-world use cases.

CCS Concepts
• Security and privacy↑ Trusted computing.

Keywords
Con!dential Virtual Machines, OS design, cloud security
ACM Reference Format:
Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca.
2023. V"#$: A Protected Services Framework for Con!dential Virtual Ma-
chines. In 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 4 (ASPLOS ’23), March
25–29, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3623278.3624763

1 Introduction
AMD Secure Encrypted Virtualization (SEV) is a promising hard-

ware mechanism to ensure the con!dentiality and integrity of sen-
sitive computations in cloud machines. SEV allows users to process
their sensitive data in virtual machines (VMs) that are inaccessible
to the cloud hypervisor and external devices, as well as encrypted

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci!c permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0394-2/23/03. . . $15.00
https://doi.org/10.1145/3623278.3624763

in physical memory. The standard industry terminology for such
VMs is con!dential virtual machines (CVMs) [31, 59]. Given the pop-
ularity of VMs in the cloud, SEV has been rapidly adopted by major
cloud providers like Microsoft Azure [93] and Google Cloud [58],
which now o#er CVM services to their users.

Unfortunately, a limitation of SEV is that an operating system
kernel is part of its trusted computing base (TCB). In particular,
although formally-veri!ed kernels [71] or micro-kernels [16] can
be used in a CVM, they typically require extensive system redesign,
and formal veri!cation is not an absolute guarantee of full system
correctness [51]. Hence, users tend to employ commodity kernels
made for convenience and compatibility, making the TCB partic-
ularly large. In fact, SEV o"cially only supports Linux [1], which
has more than 31 million code lines and has hundreds of discovered
vulnerabilities each year [4]. Given Linux’s monolithic design, an
attacker that leverages such vulnerabilities can steal sensitive user
information or harm computational integrity in a CVM.

The lack of trust in large monolithic operating system kernels
has driven a signi!cant body of research to design security monitors
that guarantee critical functionality despite kernel vulnerabilities.
Unfortunately, existing monitors have undesirable trade-o#s, espe-
cially for CVM!. Speci!cally, a common monitor design leverages
a hardware-enforced privilege layer outside a virtual machine, e.g.,
the virtual machine monitor (VMM), to transparently monitor and
control an untrusted operating system’s behavior [30, 40, 66, 77, 94].
Unfortunately, external security monitors are at odds with the fun-
damental hardware-enforced CVM guarantee, which ensures in-
tegrity and con!dentiality against outside software. While software
enforcement techniques [42, 43, 45, 46] have been proposed for a
security monitor, which could be leveraged within CVM!, these
techniques still su#er from performance overhead and capabilities
limitations that hinder deployment (§2).

This paper introduces V"#$, a CVM security monitor framework
that e"ciently protects critical system services—from preserving
kernel code to enabling robust forensics—without trusting the ker-
nel. V"#$ leverages virtual machine privilege levels (VMPL!), a new
hardware isolation mechanism available in all the latest AMD Mi-
lan server CPUs [27], to create a hardware-enforced privilege layer
inside the CVM. V"#$ only requires minor changes to commodity
CVM kernels, none of which are related to core operating system
functionality. Finally, the framework incurs a modest slowdown
(up to 18%) when protected services are used while showing no
discernible slowdown under normal execution.

VMPL! complement x86 rings to enforce additional memory
isolation within a CVM. In particular, a VMPL (from 0 → 3) can
be assigned to a virtual CPU (VCPU) during its initialization. VC%
PU! assigned higher privilege levels (e.g., VMPL%0) can de!ne what

https://doi.org/10.1145/3623278.3624763
https://doi.org/10.1145/3623278.3624763

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

memory region is read, written, or executed by VCPU! executing at
lower privilege levels (e.g., VMPL%3). Once initialized, a VCPU can-
not change its level, even if it can execute code in supervisor mode
(CPL%0). This allows supervisor computations (e.g., the kernel) on
such VCPU! to execute normally within their allowed regions while
still enforcing memory isolation outside those regions.

Designing a security monitor framework using VMPL! requires
addressing several challenges. First, VMPL provides a limited set of
privilege levels, which are insu"cient to support all needed services.
Second, a security monitor and protected services must execute
on all VCPU! (e.g., like the kernel), but VMPL only allows a VCPU
instance to execute permanently at one privilege level. Third, in the
presence of a security monitor, the operating system must execute
at a lower privilege level where it is architecturally restricted by
the hardware to leverage critical system features.

V"#$ overcomes the aforementioned challenges (§5). In particu-
lar, V"#$ carefully uses the limited VMPL! and combines them with
traditional protection rings to enforce isolation between potentially-
unlimited services. Instead of statically partitioningVCPU! between
trusted and untrusted software, V"#$ replicates a single VCPU into
copies that each executes a di#erent software layer at a speci!c
VMPL. Finally, V"#$ delegates all operating system functionality
that is architecturally-restricted at lower privilege levels to its
higher-privileged security monitor to maintain compatibility.

V"#$ can protect critical system services that require both con!-
dentiality and integrity (§6). In particular, we show the $exibility of
V"#$ by implementing three services, two of which require strong in-
tegrity guarantees to protect kernel code and system logs from cor-
ruption, while the third requires both con!dentiality and integrity
to shield sensitive user computations in protected enclaves [32, 92].

We built a V"#$ prototype (§7) to evaluate its practicality, secu-
rity, and performance. Our prototype suggests that the CVM Linux
kernel and host hypervisor can support V"#$ with minor (less than
1200 lines) code changes, making it easy to adopt. The framework
and protected services required ↓4100 code lines, small enough
to be rigorously tested. We also analyzed and experimentally vali-
dated V"#$’s security (§8) to show that it can successfully defend
itself against a broad class of attacks from the operating system.
Finally, we evaluated the performance of V"#$ and its protected
services using carefully-crafted custom benchmarks and real-world
case-studies (§9). Our evaluation results show that V"#$ increases
CVM boot time by less than 2 seconds, introduces a modest perfor-
mance overhead between 2% → 64% to real-world programs that
utilize a protected service, and has a negligible impact on system
performance under normal CVM execution.

2 A Security Monitor for CVM!

Convenience and backwards-compatibility typically drive the
use of commodity operating system kernels inside CVMs, resulting
in a vulnerable software TCB [4]. One way to avoid this problem
is to leverage a security monitor, a tiny software root-of-trust that
enforces security invariants (e.g., sensitive data protection). This
section describes current security monitor approaches and their
trade-o#s, which guide our CVM security monitor principles.

2.1 Current Approaches and Trade-O!s

Existing approaches implement security monitors by (a) leverag-
ing a privileged hardware-enforced layer or (b) deprivileging the op-
erating system using software techniques. We call these techniques
external hardware-based enforcement and internal software-based
enforcement, respectively, and discuss them below.
External hardware-based enforcement. Several systems [38,
40, 65, 66, 94, 112] leverage the introspection and control capabili-
ties of VM monitors (VMM) to implement security monitors. For
instance, the BlackBox system [65] leverages a tiny VMM and uses
nested page tables (NPT) to restrict the operating system’s access
to a protected container’s memory. Unfortunately, VMM-based se-
curity monitors are incompatible with CVM!, which prevent VM
introspection because components outside CVM are not trusted.

In non-x86 systems, researchers have also leveraged software-
controlled privileged layers (e.g., ARM TrustZone [30, 49], RISC-V
machine mode [77]) that are both external to the VM and VMM
for security monitors. Unfortunately, in practice, these layers are
designed for machine management and are too privileged for cloud
providers to allow access to cloud users. For instance, a cloud user
that executes their security monitor in ARM TrustZone has access
to all memory regions and could leak information from other users.
While virtualization of the TrustZone layer is possible [67], it would
still require trusting the cloud provider and their system admins.
Internal software-based enforcement. A security monitor can
reside in the same hardware-enforced privilege layer as the operat-
ing system inside the CVM if the operating system is deprivileged
using compilers [42, 43, 46] or source code instrumentation [45].
The remaining paragraphs in this section explain the trade-o#s of
these approaches in terms of performance and security.

Compiler approaches instrument the operating system’s code to
(a) implement bound checks on memory access operations to avoid
corruption of trusted regions and (b) enforce control-$ow integrity
(CFI) to prevent unauthorized jumps to trusted regions. While these
approaches can be ubiquitously applied to any system, they unfor-
tunately incur non-negligible overheads even under normal system
execution by requiring software checks on a signi!cant number of
memory accesses and branch instructions. For instance, the Virtual
Ghost system increases system call latency for all computations by
3.9 times on average [42] which is undesirable.

In contrast to compiler approaches, the Nested Kernel [45] manu-
ally instruments the kernel’s source code to force a security monitor
call for sensitive operations (e.g., page table changes). The integrity
of code instrumentation is ensured using binary code scanning and
the x86 write-protection feature (CR0.WP [68]).

While the Nested Kernel is faster than compiler approaches, it is
only designed to enable integrity by leveraging CR0.WP, and not
con!dentiality. Hence, the Nested Kernel (in its proposed form)
cannot provide services like shielding sensitive programs from
untrusted operating systems, since such services require con!-
dentially keeping secret keys (e.g., for a secure communication
channel between an application and a remote user). In fact, even
services like system log tampering prevention that on the surface
only seem to require integrity, indirectly require con!dentiality for
secure authentication [21] if the logs must be sent to remote parties
through untrusted channels (e.g., the untrusted kernel’s network

V!"#: A Protected Services Framework for Confidential Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Operating system
Con

Fig. 1: Communication between a CVM and hypervisor on
non-automatic exits (e.g., I/O-related).

stack [52]). Note that the Nested Kernel system can be updated to
enable memory con!dentiality (e.g., by mapping and unmapping
regions from kernel page tables which are controlled by the Nested
Kernel). However, this comes at an additional performance cost.

2.2 CVM Security Monitor Principles
Given existing security monitor approaches and their trade-

o#s, we decide on two principles for our framework: (a) internal
hardware-based enforcement and (b) versatile con!dentiality and
integrity protection. In particular, hardware-based enforcement has
the potential to obviate the high overhead of software mechanisms
and avoid signi!cant kernel changes for deprivileging. However,
since CVM! only trust their protected context, the hardware-based
enforcement must result in a security monitor internal to the VM.
Additionally, a security monitor framework for CVM! should have
both con!dentiality and integrity guarantees, since it increases the
versatility of protected services that the framework can support.

3 AMD SEV-SNP Background
This section describes how AMD’s latest SEV product, SEV-SNP

(Secure Nested Paging), protects CVM! and the workings of its new
hardware feature, VMPL.
CVM protection at runtime. SEV-SNP prevents several direct
and indirect attacks against CVM! from external software, includ-
ing the hypervisor and BIOS, at runtime. This is achieved during
address translation by checking the reverse map (RMP) table, which
tracks the CVM’s physical pages and their corresponding virtual
addresses [23]. Direct attacks are prevented by ensuring CVMmem-
ory cannot be read to or written from outside. Indirect attacks are
prevented by ensuring that a CVM’s page tables (controlled by the
hypervisor) remain consistent throughout the CVM’s execution.
CVM protection at exits. A CPU executing a virtual machine,
also called a virtual CPU (VCPU), must exit the virtual machine and
invoke the hypervisor at hardware interrupts and hypercalls. For
CVM!, SEV-SNP ensures that the VCPU state (e.g., general-purpose
and control registers) is protected when an exit occurs. This state is
saved in the virtual machine save area (VMSA), a per-VCPUmemory
region inside the CVM. When the VCPU resumes the CVM, its state
is restored from the protected VMSA.
CVM-hypervisor communication. The hypervisor needs a por-
tion of a VCPU’s register state to service some hypercalls (e.g.,

IO-related). Hence, SEV-SNP allows the CVM to voluntarily pro-
vide this information to the hypervisor. This is achieved using a
new instruction, VMGEXIT, and a shared memory region called the
guest-hypervisor communication block (GHCB) [25]. Prior to the
start of the communication, the CVM provides the GHCB’s loca-
tion to the hypervisor by writing this location to a model-speci!c
register (MSR) that can be read by the hypervisor.

Fig. 1 illustrates the communication process. Before executing a
hypercall, the CVM VCPU stores required information in its shared
GHCB (1). Then, it executes a VMGEXIT to exit to the hypervi-
sor (2). At this exit, the hardware stores the VCPU’s state in its
VMSA. The hypervisor reads the GHCB and provides the relevant
hypercall service (3). Finally, the hypervisor executes VMENTER to
resume the VCPU’s context from its stored VMSA (4).

Importantly, this new communication mechanism is only needed
for exits that require some state to be sent to the hypervisor (e.g.,
IO calls), which AMD calls non-automatic exits [23]. For other
exits (e.g., timer interrupts) where no guest state is needed, called
automatic exits, the VCPU directly exits (like a normal VMEXIT).
Virtual machine privilege levels (VMPL) This is a new privilege
isolation mechanism available in SEV-SNP. It complements the
existing computer privilege levels (CPL)—also called protection rings
in x86—and allows the CVM to enforce what memory regions are
accessible to any software running on a VCPU.

SEV-SNP provides four VMPL!, i.e., VMPL%0 to VMPL%3, where
lower numbered levels are more privileged (like CPL). When a
VCPU instance is created, its VMPL is assigned in its created VMSA
and remains constant throughout the VCPU’s lifetime. Note that
apart from the boot VCPU instance, which is always created by
the hypervisor at VMPL%0, all remaining VCPU instances (and
their VMSAs) are created by the operating system in the CVM [25].
Hence, a CVM can freely assign any VMPL to its non-boot VCPU!.

Memory access control policies for VMPL! are hierarchical and
expressive. For instance, privileged software on a VMPL%0 VCPU
can specify access permissions for all VCPU! at lower levels, while
software executing at VMPL%1 can only specify access permis-
sions for VMPL%2 and VMPL%3. Additionally, an expressive set of
permissions—read, write, user-execution, and supervisor-execution—
can be assigned or restricted at each VMPL. Permissions are tracked
in the RMP. A VMPL%0 privileged software (e.g., operating system)
can modify permissions using a new instruction, RMPADJUST.

4 V"#$ Overview
Built on our guiding principles (§2.2), V"#$ is a general, trust-

worthy security monitor framework that ensures the correct execu-
tion of critical system services in the presence of a buggy untrusted
CVM operating system. Inspired by the services enabled by prior
work [42, 43, 45, 66], we show that V"#$ is general enough to im-
plement three major services in CVM!: (a) ensuring kernel code
integrity, (b) protecting sensitive user computations in isolated exe-
cution contexts (commonly called enclaves [92]), and (c) preserving
system logs for forensic analysis and attack reconstruction.

4.1 Threat Model and Assumptions
We trust that the AMD processor is correctly implemented. In

particular, we trust it to correctly prevent direct access into theCVM
from the outside world (e.g., other VMs), implement protection

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

features (e.g., VMPL), and perform all necessary operations for the
remote CVM attestation protocol [47]. We follow the typical SEV
threat model and assume that a hypervisor like InkTag [66] cannot
be trusted since it is installed by untrusted cloud administrators.

Thanks to SEV remote attestation, a user can attest the load-time
correctness of an installed operating system [47]. Hence, we assume
that the attacker initially only controls all software and hardware
external to the CVM (e.g., hypervisor, host machine BIOS). How-
ever, since the operating system contains exploitable vulnerabilities,
we assume that the attacker will interact with the CVM (through
network packets or hypervisor communication) and eventually
compromise the CVM’s operating system kernel. The attacker will
use the compromised operating system and try to extract sensitive
user information provided to the CVM or harm its integrity.

SEV does not guarantee availability and neither does our system.
We also exclude data leaks through side channels [79, 89, 124, 127,
130], micro-architectural defects [34, 72, 87], and physical attacks
(e.g., memory bus snooping [76], voltage scaling [33, 97]). Finally,
we do not consider software bugs in the toolchain (e.g., CVM BIOS)
provided by AMD to create CVM! [1].

4.2 Key Observation and Challenges

Our observation is that virtualmachine privilege levels (VMPL) (§3)
can be employed to design a CVM security monitor framework based
on our principles (§2.2). In particular, if V"#$ executes its trusted soft-
ware (e.g., a monitor) at a higher-privileged VMPL (e.g., VMPL%0)
and the operating system at a lower-privileged VMPL (e.g., VMPL%
3), it can leverage VMPL’s protection to ensure correct execution of
trusted software. This makes V"#$ a hardware-enforced privilege
layer inside the CVM with the ability to leverage e"cient hardware
checks. Also, VMPL protection can be enabled for both read and
write accesses, ensuring both con!dentiality and integrity.

Unfortunately, leveraging VMPL for our framework introduces
several challenges as noted below:
C1: Insu"cient implemented VMPLs. In theory, V"#$ requires
a separate VMPL to isolate each protected service or enclave, but
the limited (4) VMPL! severely limit the number of implementable
services or enclaves. A naive solution is to have a VMPL for all
trusted components and one for all operating system components.
However, this is insecure. For instance, the operating system might
create a malicious enclave to run at the VMPL of trusted software.
C2: Resource-hungry VMPL assignment. A VCPU can switch
between protection rings during execution (e.g., using SYSENTER to
switch to the operating system’s code at a system call), but itsVMPL
is statically assigned during creation (§3). Naively, all services and
sensitive user computations must all have separate VCPU!, which
is highly wasteful and severely limiting in terms of resources.
C3: Legacy kernel incompatibility. Since the kernel cannot exe-
cute at VMPL%0 anymore, it becomes architecturally-restricted for it
to perform two essential functionalities: (a) boot additional VCPU!
and (b) collaborate with the hypervisor for memory allocations [25].
Without proper care, this breaks CVM kernel compatibility.

5 V"#$ Framework

V"#$ has four components, namely the monitor (V"#$M&’), pro-
tected services, enclaves, and the untrusted software (collectively

Hypervisor

CPL 0

VMPL-1VMPL-0 VMPL3VMPL-2

VeilMon (§5)
Domain manager

(§5.1)
VCPU replicat.

(§5.2)
Kernel compat.

(§5.3)

Enclave
(§6.2)Application

VeilS-LOG
(§6.3)

VeilS-ENC
(§6.2)

VeilS-KCIProt.
Services (§6.1)

Operating System

Application
CPL 3

Con

Fig. 2: An illustration of V"#$’s system components with
implemented multi-factor privilege domains.

called the operating system) (Fig. 2). V"#$ ensures that each com-
ponent executes in a secure environment depending on their trust-
worthiness (§5.1). To avoid splitting VCPU! between di#erent com-
ponents, V"#$ creates a replica of each VCPU for every compo-
nent (§5.2). Finally, V"#$ delegates all VMPL%0 functionality from
the kernel to V"#$M&’ to ensure legacy kernel compatibility (§5.3).

5.1 Secure Dual-Factor Privilege Domains

V"#$ implements four CVM privilege domains to securely exe-
cute its trusted software. We de!ne a privilege domain as a new
mode of execution within a VCPU formed by the combined priv-
ileges of traditional protection rings and VMPL!. The rest of this
section explains how V"#$ leverages domains.
DomM!" (VMPL%0 +CPL%0). This is the highest privileged domain
and it is occupied by V"#$M&’. It allows V"#$M&’ to execute any
user or supervisor instruction and control VMPL memory access
permissions for all domains. It is also the only domain that is af-
forded the architectural capabilities to create additional domains
within the CVM (§5.2). The next paragraphs explain how V"#$M&’
is securely loaded into memory and initialized in DomM!".

The memory contents (code and initial data) of V"#$M&’ are
measured during CVM launch and sent to the remote user for veri-
!cation. In particular, these contents are compiled within the CVM
boot image, a software component that initializes the CVM. During
CVM launch, a SHA-256 hash of the boot disk image is generated
and sent in a signed digest to a remote user for attestation [26]. In
the attestation digest, the CPU also reports the VMPL of the soft-
ware that requested the digest and additional data (e.g., information
to establish a Di"e-Hellman shared key). Hence, the remote user
can establish a secure communication channel with V"#$M&’ by
requesting an attestation digest from VMPL%0 software.

V"#$ modi!es the CVM boot process to ensure that V"#$M&’
executes atDomM!". In particular, under native CVM execution, the
hypervisor creates a single VCPU to set up initial boot and run the
kernel at the highestCVM privilege (i.e.,DomM!").V"#$ replaces the
kernel in this process with V"#$M&’. As needed, V"#$M&’ creates
new domains for protected services, the kernel, and enclaves.

V!"#: A Protected Services Framework for Confidential Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

DomS#$ (VMPL%1 + CPL%0). Protected services execute within
this domain. Compared to DomM!", this domain restricts access
to VMPL%0 regions (where V"#$M&’ resides) and the creation of
additional domains. V"#$M&’ achieves the former by executing
RMPADJUST on all memory regions in this domain, while the latter
is architecturally-restricted. None of the restricted functionality is
required by the protected services, since they can rely on V"#$M&’.
Hence, to better adhere to the principle of least privilege, we chose
this domain for protected services. Finally, like V"#$M&’, protected
services are also included in the CVM boot image.
DomE"% (VMPL%2 + CPL%3). Enclaves use this domain, which is
con!gured for mutual protection of both enclaves and the operat-
ing system. In particular, the protected service V"#$S%E’(uses the
domain’s higher VMPL to prevent the operating system from ac-
cessing enclave memory. At the same time, V"#$S%E’(ensures that
enclave cannot execute supervisor (CPL%0) instructions or access
unauthorized memory regions (DomS#$, DomM!", and the operat-
ing system). If an enclave can execute supervisor code, it can remap
the page table entries and access a di#erent enclave’s pages since
all enclaves execute at DomE"% (with VMPL%2). Moreover, the oper-
ating system can protect itself from an unprivileged enclave using
traditional address space isolation and retain control of core priv-
ileged functionality (e.g., memory allocations and management).
We provide more details about enclaves in §6.2.
Dom&"’ (VMPL%3 + CPL%0/3). Finally, the untrusted domain is
used by the operating system and all its created processes. Execut-
ing at the least-privileged VMPL, the operating system is restricted
from accessing memory regions of higher VMPL software. Speci!-
cally, V"#$M&’ executes RMPADJUST to remove access to all sensi-
tive memory and states from Dom&"’. These permissions cannot be
changed by the operating system: if it calls RMPADJUST for pages that
are restricted in Dom&"’, the CPU raises a nested page fault (#NPF)
which leads to a system halt [25]. Additionally, at Dom&"’, the
kernel cannot execute a few architectural features (§5.3). However,
they are only required during initialization and can be mediated
by V"#$M&’; hence, the kernel’s execution in Dom&"’ results in a
typically negligible overhead (§9.1).

5.2 Replicated VCPU! for Domain Switch

Instead of resource-hungry static partitioning of VCPU! between
domains (§4.2), V"#$ creates replicas of every VCPU and assigns
them to di#erent domains for e"cient utilization. Static partitioning
wastes VCPU resources since a VCPU instance can only securely
execute one domain due to permanent VMPL assignment during
initialization (§3). For instance, if a VCPU initialized at DomM!"
directly transitions into a lower-privileged software (e.g., kernel),
the software will gain all privileges of the security monitor. Replica-
tion ensures that the same VCPU can context switch to a di#erent
software by transitioning to a VCPU instance initialized at the soft-
ware’s domain. As we explain in the next paragraphs, this switch
is completed using the hypervisor, and communication between
domains is through shared memory.
Per-domain VCPU replication. V"#$M&’ follows four steps to
create a copy of a VCPU instance and assign it to a di#erent do-
main. First, it allocates a new VMSA with the same VCPU-ID and
target domain VMPL. Second, for DomS#$ and DomE"%, it initializes

important architectural structures (e.g., stack, page tables, global
and interrupt descriptor tables). This is not needed for the Dom&"’,
since the operating system kernel automatically initializes these
structures. Third, V"#$M&’ sets addresses for initialized structures
(e.g., location of the page tables) and the correct software entry
point (rip) in the VMSA. Finally, V"#$M&’ executes a hypercall
(VMGEXIT) to ask the hypervisor to execute the new domain.
Inter-domain communication blocks (IDCBs). These are shared
memory regions used for bi-directional domain communication.
For any two domains, IDCBs are allocated in the less privileged
domain’s memory to ensure all parties can access it. For instance,
IDCBs between the operating system and V"#$M&’ are allocated
in a reserved part of the kernel’s memory. Additionally, IDCBs are
assigned at a per-VCPU granularity to avoid contention.
Hypervisor-relayed domain switch. Switching a domain re-
quires exiting the VCPU context and re-entering using a di#erent
domain’s VMSA; hence, it must be performed with the hypervisor’s
help. Fig. 3 shows inter-domain communication between V"#$M&’
and the operating system. In particular, the operating system !rst
transcribes its required service from V"#$M&’ in the IDCB (1).
Then, the operating system writes a message to the hypervisor in
GHCB (2) asking for a domain switch to DomM!". It exits to the
hypervisor using VMGEXIT (3) and allows the hypervisor to process
the message (4). The hypervisor resumes theVCPU (with VMENTER)
but it uses DomM!"’s VMSA (5). Hence, V"#$M&’ executes (on
the same VCPU), reads the message in IDCB, and processes the
operating system’s request (6).
5.3 Privileged Functionality Delegation

Since the operating system kernel executes at Dom&"’, it be-
comes architecturally-infeasible for it to perform two functional-
ities: (a) boot VCPU! during initial system boot or hotplugging
scenarios and (b) accept pages from the hypervisor or change the
current page state. Hence, V"#$ delegates these functionalities to
V"#$M&’, which checks for correctness.
VCPU boot delegation. VCPU! can be hot-plugged into a CVM
at any time. Like domain creation, this process requires VMPL%0
software to create a new VMSA (using RMPADJUST) and start the
VCPU’s execution through a hypercall. We modify the kernel to
handle initialization of the required VCPU state, but perform a
domain switch to V"#$M&’ for VMSA creation. V"#$M&’ generates
the VMSA and boots the VCPU at Dom&"’ (VMPL%3). For every new
hotplugged VCPU, V"#$ also creates replicas of the VCPU instance
to execute trusted domains (e.g., DomS#$) (§5.2).
Page state change delegation. A CVM can receive additional
memory pages from the hypervisor and share some of its pages
with the hypervisor (e.g., to use as a software bounce bu#er for
device I/O). However, before a page state occurs, the CVM must
execute PVALIDATE on that page. We modify the kernel to redirect
all PVALIDATE calls to V"#$M&’, which checks that these calls are
not made for trusted memory regions, then executes them.

6 V"#$ Protected Services
V"#$ ensures the correct execution of system services in the

presence of an untrusted CVM operating system. Any service can
leverage such protection usingV"#$. We implemented three services
to showcase di#erent applications of V"#$.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

 Operating system
 Con

Fig. 3: An illustration of inter-domain communication be-
tween the operating system and V"#$M&’.

6.1 V"#$S%K(#: Kernel Code Integrity
Kernel code injection allows attackers to arbitrarily modify the

kernel. Hence, operating systems likeWindows [94] and Samsung’s
Android OS [30] use an external privileged security monitor (e.g.,
at the VMM [111]) to enforce kernel code integrity—only approved
kernel code executes inCPL%0. Fortunately, even though external se-
curity monitors are incompatible with CVM! (§2), V"#$ can enforce
kernel code integrity using a protected service, V"#$S%K(#.
Kernel memory W↔X protection. V"#$S%K(# ensures that the
write-or-execute (W↔X) semantic is upheld for kernel memory re-
gions at Dom&"’ using VMPL. Hence, even if the attacker tricks the
kernel into disabling its own prevention measures (e.g., by using a
write gadget to unset the Not-eXecutable bit of a page table entry),
they still cannot run malicious code in supervisor mode. V"#$S%
K(# achieves W↔X by executing RMPADJUST and disabling (a) write
permissions on all kernel code pages and (b) supervisor execution
permissions from all kernel data pages.
Module signature veri#cation and loading. Operating systems
are designed to execute signed loadable kernel modules (e.g., addi-
tional device drivers) at runtime. V"#$S%K(# securely supports this
functionality in CVM!. A naive implementation would be for V"#$S%
K(# to only check signature integrity of a kernel module. This is
insecure because it results in a classical time-of-check-to-time-of-use
(TOCTOU) vulnerability. In particular, an attacker that has gained
root privilege can modify module contents after the signature is
veri!ed. Hence, except for memory allocation which is left to the
operating system, V"#$S%K(# performs the remaining module ini-
tialization steps. This includes verifying the signature on a kernel
module, loading the module in memory, relocating symbols using
a protected symbol table, and write-protecting the prepared text
region (by executing RMPADJUST).

6.2 V"#$S%E’(: Shielded Program Execution
CVM! run sensitive computations containing user’s personal

information. We designed the V"#$S%E’(service to provide addi-
tional protection to such sensitive computations from an untrusted

CVM operating system. This approach creates a nested trusted exe-
cution environment for sensitive computations inside the CVM that
is protected from the hypervisor and operating system.

V"#$S%E’(shields sensitive computations through the in-process
isolation model, which has been particularly successful in the cloud
given the wide availability of Intel’s Software Guard eXtensions
(SGX) [92]. This model allows an application to create a protected
context (or an enclave) inside its address space, which is inaccessible
to all software outside the enclave. All sensitive code and data
are stored in the enclave’s memory. The enclave has well-de!ned
protected entry points (e.g., starting functions), and it must exit to
the untrusted application to execute code outside its context (e.g.,
on system calls and interrupts). V"#$S%E’(’s provided design and
security abstractions are functionally-equivalent to SGX’s (as we
discuss in the remaining paragraphs of the section and §10).
Enclave initialization andmeasurement. The operating system
lays out the initial memory regions of the enclave. Then, V"#$S%E’(
protects the enclave region from further direct modi!cations by
the operating system and measures the region’s initial state. This
measurement is provided to the remote user for enclave attestation.

The program to be shielded inside an enclave is provided as a self-
contained binary (e.g., with its own C library) with no outside calls.
Using IOCTL to a kernel module (§7), the process asks the operating
system to install the binary within an enclave. The operating system
copies the binary into memory, relocates its symbols, and initializes
other needed memory regions (e.g., stack). After installation, the
operating system invokes V"#$S%E’(to !nalize the enclave.

V"#$S%E’(ensures the operating system cannot access the en-
clave’s memory or change its layout post-installation. In particular,
V"#$S%E’(asks V"#$M&’ to create an enclave domain (DomE"%
in §5.1) and revoke all permissions from enclave regions at Dom&"’
(using RMPADJUST). V"#$S%E’(also clones the user process’s page
tables into its protected memory and performs several initialization
scans (next paragraph). An enclave uses these protected page tables
during execution, ensuring its initial layout is preserved.

V"#$S%E’(ensures two invariants are satis!ed while scanning
page tables during initialization. First, there should be a one-to-one
mapping between virtual and physical pages. This avoids malicious
remapping from the operating system and simpli!es enclave mea-
surement for remote attestation. Second, each enclave’s allocated
set of physical pages should be disjoint. Since all enclaves execute at
DomE"%, a common physical page will allow a malicious enclave to
steal another enclave’s contents. If either invariant is not satis!ed,
V"#$S%E’(terminates the enclave initialization process.

After protecting enclave memory and layout, V"#$ creates a
measurement of this region and reports it to a remote user. This
measurement is a SHA-256 cryptographic hash like other enclave
systems [77, 92] and it is derived from both page contents and
metadata (e.g., permissions). The measurement is sent to the user
through V"#$M&’’s secure user communication channel which is
established after the SEV remote attestation process (§5.2).
User-mapped GHCB for entry and exits. The untrusted appli-
cation enters the enclave for secure computation. Later, the enclave
exits to the untrusted world for the handling of system calls and
interrupts. This section discusses the challenge in enabling enclave
entry and exits, and our solution to address the problem.

V!"#: A Protected Services Framework for Confidential Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

During enclave entry and system call exits, an unprivileged
(CPL%3) process must send a message to the hypervisor for a do-
main switch between Dom&"’ and DomE"% (§5.2). Recall that this
message is sent through a guest-hypervisor communication block
(GHCB) which requires a privileged write to a model-speci!c regis-
ter (wrmsr) (§3). However, an unprivileged process is architecturally-
restricted from executing this privileged write. V"#$ solves this
problem by instructing the operating system to (a) automatically
set the GHCB MSR before scheduling an enclave-running process
and (b) map a per-thread GHCB to the process’ address space. Both
the application and the enclave can write their messages to the
mapped GHCB and execute a hypercall (VMGEXIT) for a domain
switch. To prevent errant hypercalls, the hypervisor is instructed
to only allow domain switches between Dom&"’ and DomE"% us-
ing this GHCB. If the operating system does not map the GHCB
correctly, the CVM crashes on an attempted domain switch. Hence,
the operating system cannot leverage control over the GHCB to
harm the enclave’s con!dentiality.

Apart from system calls, enclaves also incur exits at interrupts.
Enclaves rely on the untrusted world for I/O (through system calls),
hence all interrupt exits faced by an enclave do not require any
information from the enclave context and the CVM automatically
exits to the hypervisor (§3). V"#$ instructs the hypervisor to relay
these interrupts to Dom&"’ for handling. If the hypervisor does not
relay interrupts and forces interrupt handling at DomE"%, the CVM
will halt with a nested page fault (#NPF), since the operating system
interrupt handler is inaccessible at DomE"% (previous heading).
Secure collaborative memory management. The enclave pro-
cess’ memory region is collaboratively and securely managed by
the OS and V"#$S%E’(during execution. This process is analogous
to how the SGX microcode and OS collaboratively manage SGX
enclave regions [92]. The main di#erence is that enclave page tables
are kept by V"#$S%E’((instead of the OS which maintains SGX
enclave page tables), hence all updates to enclave page tables are
made by V"#$S%E’(. The rest of this section describes how secure
collaboration works for demand paging and permission changes.

At runtime, if the operating system must free an enclave page, it
will send a request to V"#$S%E’(. At this request, the service creates
an integrity hash of the enclave page with a freshness counter.
Then, it encrypts the page’s contents using a per-enclave secret
key, removes the page mapping from the enclave page tables, and
allows the OS to access the page and free it. Subsequently, when
the enclave tries to access the page, it raises a page fault.

Page faults during enclave execution are trapped to the hyper-
visor, which is instructed to send them to the operating system
(Dom&"’). After retrieving the faulted page from disk, the operat-
ing system sends a request to V"#$S%E’(to decrypt and remap the
page into the enclave’s page tables. At this point, V"#$S%E’((a)
copies the page into protected memory, (b) decrypts the page, and
(c) veri!es that the OS retrieved the correct page using the stored
fresh integrity hash. If the veri!cation checks pass, V"#$S%E’(adds
the mapping to the enclave page tables. To ensure the correctness
of remapping, the OS also tracks which physical page belongs to
which enclave virtual address, like SGX.

The OS is only allowed to change permissions (e.g., at mprotect)
of non-enclave regions, while enclave region permission changes

are directly handled by V"#$S%E’(. In the latter case, permission
change requests are sent by the enclave to V"#$S%E’(using the
enclave’s GHCB (previous section). Note that permission changes
to non-enclave regions must also be synchronized with enclave
page tables, since the enclave will use its own page tables to access
these regions. In this case, the OS is instructed to call V"#$S%E’(for
synchronization of permission changes between both page tables.
System call redirection to untrusted application. System calls
require userspace bu#ers (e.g., read a !le into a user bu#er) from
a process’s context, but the enclave memory is inaccessible to the
operating system. Hence, the enclave must redirect system calls
to the application (like OCALLs in SGX [92]). In particular, the
enclave copies the required information for a system call (e.g., bu#er
regions) from the enclave memory to shared application memory.
Then, the enclave exits and requests the application to execute the
system call on its behalf. On return from system calls, the enclave
must carefully sanitize results (e.g., check that returned pointers
do not belong to trusted memory regions before referencing) to
prevent IAGO attacks [37].

6.3 V"#$S%L&): System Audit Log Protection
The operating system collects detailed audit logs of security-

critical machine events (e.g., kernel module installation) for foren-
sic analysis. Unfortunately, a key limitation of commodity system
auditing frameworks (e.g., Linux’s Kaudit [119]) is that an attacker
can trivially tamper with these logs after compromising the operat-
ing system [21, 103, 104]. V"#$S%L&) enables the CVM to securely
isolate logs from the operating system. A user can query V"#$S%L&)
through a secure channel (§5.1) to retrieve logs.
Reserved append-only log storage. V"#$S%L&) reserves a large
memory region for log storage (in DomS#$) and provides APIs to the
operating system that allow append-only access to the storage. Note
that the size of the reserved region must be large enough that a user
can retrieve logs before it over$ows. Typically, machines produce
about 1GB [63] of logs every day; hence, with a 1GB storage region,
the user should retrieve logs everyday.
Execute-ahead log protection. Logs are protected before the
system executes an event con!gured by the user to be critical (??).
This ensures that logs are available if the attacker compromises
the machine at said event. To achieve this, we insert a hook in
the operating system’s built-in auditing framework to send a log
entry to V"#$S%L&) using an inter-domain communication block
and a domain switch (§5.2). V"#$S%L&) appends the entry into the
reserved log storage and performs a domain switch back to the
operating system, which then executes the event. Note that the
operating system is only trusted to relay correct logs until the point
it is compromised. Logs until the kernel compromise are typically
su"cient to analyze the attack origin and vector.

7 Implementation
This section describes the implementation steps we took. We

will open-source our prototype to help foster development.
CVM Linux kernel support for V"#$. We modi!ed the Linux
kernel v5.16.0-rc4 provided in AMD’s GitHub repository for SEV-
SNP guests to support V"#$. None of our implemented changes are
made to the core functionality of the kernel (e.g., memory and page
table allocation). Instead, they either support kernel execution at

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

Dom&"’ (§5.3) or hook the kernel’s execution to V"#$’s protected
services. For the latter, we modi!ed Linux’s kernel audit (kaudit)
to call V"#$S%L&) once a log entry is created (at the audit_log_end
function), as well as the kernel module loading and unloading
routines (load_module and free_module) to call V"#$S%K(#. In total,
we removed ↓50 lines of code and added ↓560 lines of code to the
native kernel source code.We also wrote a kernel module to support
enclave creation and protection. The module creates and initializes
a protected region in a program’s address space, allocates a GHCB
for the program, and calls V"#$S%E’(to !nalize the enclave. The
kernel module was written with ↓700 lines of code.
Hypervisor support for V"#$. Our host ran Ubuntu 20.04.3 LTS
with Linux v5.14.0-rc2 provided in AMD’s GitHub repository [1]
for SEV-SNP hosts. We made three changes to its KVM hypervisor.
These changes (a) maintain VMSAs for newly-created domains (in
struct vcpu_svm), (b) install hypercall handling routines for domain
switching, and (c) switchDomE"% toDom&"’ on automatic interrupt
exits during enclave execution. The changes required ↓10 lines of
code deletion and ↓400 additional lines of code.
Framework and protected services. V"#$’s security monitor and
protected services are written as a C library. V"#$M&’ currently
does not implement cryptographic functionality for communica-
tion and measurement. We expect this functionality to work like it
does for other enclave systems [42, 77]. Moreover, at runtime, V"#$
reuses some portion of the kernel’s code. This was done only to
ease the implementation burden (e.g., reuse module loading prim-
itives). In the future, all such functionality can be independently
implemented in V"#$’s protected services. Finally, V"#$M&’’s func-
tionality is implemented with ↓4100 lines of code in total. This is
small enough to be ported to a safer language (e.g., Rust), provided
formal guarantees (e.g., Komodo [49]), or robustly tested using
existing system software testing approaches [55, 56, 88].
Enclave software development kit (SDK). We built this kit to
facilitate the development of enclaves for V"#$S%E’(. It contains a
modi!ed C library, based on musl-libc [98]. The library automati-
cally (a) communicates with the V"#$ kernel module to initialize
and remove enclaves, (b) handles enclave entries and exits through
well-de!ned APIs that invoke VMCALL to the hypervisor, and (c) han-
dles system call redirection by copying system call-related memory
regions (e.g., argument pointers) from enclave memory to untrusted
memory (§6.2). The SDK also implements an internal heap allocator
for enclaves using the dlmalloc [75] implementation. To implement
this SDK, we added ↓2200 lines of C code to musl-libc.

One of the challenges in implementing the SDK was automati-
cally inferring grammar for enclave system call handling. We ad-
dressed this by implementing a system call sanitizer that leverages
system call grammar rules from a famous and well-maintained OS
fuzzer, Syzkaller [57]. In particular, our sanitizer uses the rules to
create a C library that performs a deep copy of each system call
argument and included memory pointers. While the speci!cations
provided by Syzkaller proved to be generally robust, we found dis-
crepancies in several system calls using our unit-tests. Hence, we
manually re!ned our sanitizer to address them.

The sanitizer is guided by both a call and type speci!cation. The
call speci!cation encodes the high-level information about argu-
ments used in each system call. The type speci!cation contains

the signature of various types used in system call arguments (e.g.,
struct, pointer). It also contains high-level semantic information,
such as the length constraint relationship between di#erent argu-
ments. For instance, in the write system call, the third argument
speci!es the length of the second argument, which is a bu#er. Our
system call sanitizer was written in ↓1100 lines of Go code, and we
wrote ↓500 lines of C-based unit-tests to re!ne the sanitizer.

Since our SDK is in prototype stage, it has some limitations, none
of which we believe signi!cantly impact our performance results.
In particular, the SDK and V"#$S%E’(currently only support single-
threaded enclaves and do not support secure collaborative page
swapping (§6.2), instead all enclave pages are mapped during initial-
ization. Supporting multiple enclave threads requires two changes.
First, the OS kernel’s scheduler must request the scheduling of the
correct enclave thread from V"#$M&’. Second, V"#$M&’ must cre-
ate a VMSA for the enclave thread on each VCPU and synchronize
them so that the thread can execute on any VCPU. Note that the
OS changes are minor, while a signi!cant portion of V"#$’s code
can be reused to implement VMSA creation and synchronization
in the future. To avoid synchronization issues across VCPU!, we
currently leverage taskset to pin the single enclave thread to one
VCPU during its execution.

Our SDK prototype supports 96 system calls, but additional sys-
tem calls can be ported using our sanitizer. Also, our SDK only
enables basic protection against IAGO attacks [37] by ensuring all
pointers returned by the operating system on system calls (e.g.,
at mmap) belong to memory regions outside the enclave. Complete
protection against IAGO attacks is an active area of research [44]
orthogonal to our key contribution.
Syscall coverage using Linux Test Project (LTP). We evalu-
ated our SDK’s system call handling by conducting tests using the
LTP suite [5]. LTP’s kernel tests contain testcases that (a) specif-
ically evaluate system call robustness [8] and (b) general system
functionality [6]. We evaluated our SDK on both.

On the system call robustness cases, our prototype successfully
completed all tests for 85/96 supported system calls. We believe the
reason for some system calls not passing all tests is that we did
not implement support for all their semantic cases, opting instead
to focus on the more common functions used by real-world appli-
cations. Prior study [123] shows that only a subset of the system
call interface is required to run the majority of applications. This is
why musl and popular library OSs also only support a subset of the
POSIX semantics [73, 98, 122]. For the unsupported system calls,
our SDK is designed to kill the enclave and exit on their execution.
Hence, our SDK failed all tests for these system calls. In total, our
SDK passed 276 out of 1393 system call test cases.

Our SDK also successfully executed 180 out of 639 system func-
tionality tests. These evaluate di#erent system aspects like cryp-
tographic implementations and !lesystems. A large chunk of the
tests that passed were related to the supported !lesystem calls. The
remaining failed because they executed unsupported system calls
(e.g., ioctl [7]) or bash scripts [9].

Although our SDK only passes a small portion of the LTP tests,
it is still robust enough to run many important real-world pro-
grams (§9.2). Finally, a future Library OS integration can help ad-
dress the shortcomings of our prototype (§10).

V!"#: A Protected Services Framework for Confidential Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 1: Potential attacks against V"#$’s framework and im-
plemented defenses (§5.1–§5.3)

Attack V"#$ defence

At boot-time
Load mal. code at DomM!"/DomS#$ Remote attestation
During domain enforcement
Read/write at DomM!"/DomS#$ Restricted by VMPL
Adjust VMPL restrictions RMPADJUST prohibited
Overwrite sensitive registers Protected in DomM!"
Overwrite page tables Protected in DomM!"
Create VCPU at DomM!"/DomS#$ Control creation
During inter-domain comm.
Overwrite IDCB Protected in DomS#$
OS sends malicious request OS request sanitized

8 Security Analysis and Validation
This section analyzes the security of V"#$ by !rst discussing

various attacks against the framework and implemented services. It
concludes with the results of our experimental security validation.

8.1 Analyzing Framework Security
The V"#$ framework is the root-of-trust for protected services.

The attacker can try to (a) attack the framework during boot-time
loading, (b) circumvent V"#$’s domain enforcement at runtime, or
(c) harm inter-domain communication.V"#$ implements protections
for attacks at each of these stages (Table 1).
Preventing boot-time attacks. At boot-time, the attacker can
try to load a malicious boot disk into the CVM, instead of V"#$’s
boot disk. This would allow the attacker to execute malicious code
at the privileged DomM!" and DomS#$. V"#$ prevents this attack by
leveraging SEV’s remote attestation to measure and report initial
disk contents to a remote user.
Preventing domain enforcement attacks. At runtime, an at-
tacker can try to directly access a trusted domain’s memory con-
tents, overwrite their architectural state, and spawn new attacker-
controlledVCPU! at privileged domains.V"#$ prevents direct access
into privileged domains by leveraging VMPL’s restrictions. These
restrictions cannot be removed by the attacker, since the attacker is
unable to execute RMPADJUST on higher-privileged domain memory
regions. Additionally, all sensitive domain state (e.g., registers, page
tables) is protected in DomM!", which is inaccessible to the attacker.
The attacker can try to spawn a new VCPU to access DomM!", but
only V"#$M&’ can create a new VCPU (by executing RMPADJUST
for a new VMSA), and it only allows new VCPU instances to the
operating system at the restricted Dom&"’ (§5.3).
Preventing inter-domain communication attacks. The at-
tacker can try to overwrite the messages passed between di#erent
domains (e.g., to trick V"#$M&’ into lifting VMPL permissions). Ex-
cept for messages from the operating system, all IDCBs are stored in
protected memory regions (DomS#$) (§5.2). The messages received
from the operating system are sanitized to ensure enforcement.
Speci!cally, the OS passes pointers during its communication with
V"#$M&’ and protected services; hence, it could try to pass a pointer
to protected regions and trick trusted software to overwrite these
regions. To prevent this attack, before referencing an untrusted

memory address pointer, V"#$M&’ checks that it does not point to
a protected region (e.g., V"#$M&’ memory). V"#$M&’ can perform
this check since it keeps track of all protected memory regions
at runtime. V"#$M&’ also provides this information to protected
services so that they may also perform the check.

8.2 Analyzing Protected Services Security

This section describes how each V"#$ protected service enforces
security invariants inside CVM!.
Enforcing kernel code integrity with V"#$S%K(#. The attacker
can try to inject malicious code into the kernel by overwriting
existing text regions, creating new text regions, or loadingmalicious
kernel modules. V"#$S%K(# enforces write↔supervisor-execute on all
kernel memory using VMPL restrictions (§6.1). Hence, even if the
attacker can disable the operating system’s protections (e.g., SMEP,
NX bits), they still cannot overwrite existing text regions or create
new text regions. Moreover, these enforcements are never disabled
at Dom&"’ and all kernel modules are loaded through V"#$S%K(#,
which checks their signature before installation.
Shielding program execution with V"#$S%E’(. The attacker
can try to compromise an enclave using the operating system and
a di#erent attacker-controlled enclave. In particular, the attacker
can try to load a malicious binary into the enclave to steal provided
user data, read or write enclave regions, and overwrite sensitive
enclave states. V"#$S%E’(prevents all these attacks (Table 2).

V"#$S%E’(ensures the load-time correctness of the enclave by
measuring the initial memory contents and layout. This trusted
measurement is provided to the remote user for attestation through
V"#$M&’’s secure channel. Only after attestation passes, the remote
user sends their sensitive information to the enclave.

At runtime, if the operating system tries to access enclave mem-
ory regions or the enclave’s interrupted processor state (inside the
VMSA), the CVM halts on a nested page fault (#NPF) since these
regions are protected in DomE"% and DomM!", respectively. Addi-
tionally, the enclave’s page tables are protected in DomS#$ (during
initialization), hence the attacker cannot modify them either.

An attacker might try to load a malicious enclave at DomE"% to
steal or modify other enclave contents. V"#$S%E’(prevents attacks
from malicious enclaves by ensuring that each enclave is initialized
with a disjoint set of physical pages. Hence, even though amalicious
enclave executes at DomE"%, it cannot read another enclave’s pages.
Moreover, the enclave is not allowed to execute supervisor code in
DomE"%, therefore it cannot change de!ned mappings.

Finally, the attacker can also try to launch two attacks using
the hypervisor and leak sensitive enclave information. First, the
hypervisor can attempt to modify the enclave register state stored
in the VMSA [96]. Second, the hypervisor can refuse to relay inter-
rupts to the untrusted world during enclave execution, and force an
execution of the operating system’s code at DomE"%. The attacker
is unsuccessful on both accounts. In particular, the enclave’s VMSA
is stored inside the CVM, hence it cannot be accessed. Additionally,
DomE"% cannot access kernel code (since it is unmapped in the
enclave’s page tables) and neither can the enclave execute supervi-
sor instructions (since it is restricted using VMPL). Hence, if the
hypervisor does not relay interrupts to Dom&"’, the CVM halts
with a continuous set of #NPFs due to permission violation.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

Table 2: Potential attacks against enclaves and implemented
defenses (§6.2).

Attack V"#$S%E’(defence

From CVM OS
Load incorrect binary Enclave attestation
Read/write memory Restrictions in Dom&"’
Modify physical layout PTs protected in DomS#$
Violate saved state (e.g., rip) VMSA protected in DomM!"
Incorrect GHCB mapping CVM crash on VMGEXIT
From hypervisor
Violate saved state (e.g., rip) VMSA protected in CVM
Refuse interrupt relay CVM halts with #NPF
From malicious enclaves
Access memory from DomE"% Disjoint physical pages
Execute OS code in DomE"% Disallowed in DomE"%

Protecting system audit logs with V"#$S%L&). A compromised
kernel can try to modify the stored log entries (produced by the
kernel in an honest state) by directly overwriting the log bu#er. The
log bu#er cannot be accessed in the operating system’s Dom&"’—it
can only be accessed at DomS#$. Only the remote user can ask for
stored logs to be removed (after retrieval) through an authenticated
and secure communication channel.

8.3 Validation
We designed and executed two attacks to validate the correctness

of implemented protections. We found that V"#$’s protections hold
against both attacks. The !rst attack tried to overwrite V"#$M&’
page table entries, and harm the monitor’s integrity. For this attack,
we mapped the page tables to the operating system’s address space.
When we tried to modify the page tables from the operating system,
the CVM halted with continuous nested page faults (#NPFs). This
signals an expected VMPL violation. The second attack tried to
overwrite a kernel module’s text region after V"#$S%K(# was acti-
vated. We set the write bit in the operating system’s page tables to
disable page table-based W↔X protections. On overwrite attempt,
the CVM halted with continuous #NPFs again.

9 Performance Evaluation
This section describesV"#$’s performance through several micro-

benchmarks and case-studies. All experiments were executed on a
server machine with an AMD EPYC 7313P 16 core CPU, 80 GB of
DDR4-3200 memory, and a 500 GB SATA SSD storage drive. On this
machine, we created an SEV-SNP virtual machine with 4 hardware-
accelerated VCPU!, 2 GB of memory, and a 50 GB storage drive
(using VIRTIO [13]), using AMD’s GitHub repository [1] scripts.

9.1 Micro-Benchmarks and Analysis
Initialization time. During CVM boot, V"#$ must initialize and
protect DomM!" and DomS#$. We measured the time taken (using
RDTSC) to complete these steps during 10CVM boot-ups. On average,
V"#$ increased boot time of theCVM by↓2 seconds. Over 70% of this
time is needed to protect domain state, which requires executing
RMPADJUST on all physical pages. This results in a memory access to
every page before adjusting permissions. Nevertheless, this is only

a 13% increase over the native CVM boot time (which is already
longer than regular VM boot times) and a one-time cost.
Domain switch cost. To measure the average cost of a hypervisor-
relayed domain switch (§5.2), we performed 10,000 domain switches
between the operating system and V"#$M&’ and measured time
using RDTSC. We found the average cost to be 7135 cycles for a
domain switch. The major cost is SEV-SNP’s register state save
and restore that occurs on VMGEXIT and VMENTER (§3). State save
and restore is known to be expensive for other trusted execution
environments like SGX [101] too. Notably, a normal exit (using
VMCALL) on a non-SEV-SNP VM takes ↓1100 cycles on our machine.
Nevertheless, the impact of this extra cost is limited if the CVM
does not switch domains frequently (as described next).
Background system impact. Even by default, the kernel exe-
cutes at Dom&"’ and relies on V"#$M&’ for a few architectural
functionality (§5.3). To measure the impact of this reliance, we ex-
ecuted SPEC CPU 2006 [117], a well-known collection of system
benchmarks, memcached [11], and NGINX [100] inside a native
CVM and a V"#$ CVM. The workloads and settings for memcached
and NGINX are provided in Table 5. We noticed negligible di#er-
ence (<2%) in performance for all three tests. This is because the
overwhelming majority of system functionality required through
V"#$M&’, namely booting VCPU! and validating CVM memory
regions (§5.3), happens during initialization, not at runtime.
Runtime monitor cost analysis. Excluding the cost of imple-
mented services (which we discuss in §9.2), the runtime cost of
any security monitor implementation is the cumulative cost of a
domain switch to the monitor (𝐿𝐿𝑀) multiplied by the number of
times a domain switch occurs (𝑀𝐿𝑀).

Software security monitors like the Nested Kernel [45] have a
very small 𝐿𝐿𝑀 since they neither require a ring-level switch nor a
VM exit. However, the Nested Kernel has a large 𝑀𝐿𝑀 since it is fre-
quently invoked (e.g., whenever the kernel needs to update its page
tables or update control registers). This can result in non-negligible
background overhead (e.g., a reported 15 → 20% bandwidth reduc-
tion in some cases [45]). If the Nested Kernel is updated to support
memory unmapping in page tables for read protection-based ser-
vices (the importance of which we discussed in §2), its𝐿𝐿𝑀 will also
include an expensive TLB $ush. Compiler-based monitors [42, 43]
already support read protection but they require the expensive
kernel CFI, which can reportedly incur more than 50% slowdown
for webservers like NGINX [15].

Hypervisor-based monitors like BlackBox [65] do not require
frequent context switches (small 𝑀𝐿𝑀) since they rely on additional
architectural features (e.g., EPT) for memory isolation instead of
regular page tables. In CVM contexts, the di#erence in𝐿𝐿𝑀 between
V"#$M&’ and a hypervisor-based solution is that the hypervisor
𝐿𝐿𝑀 is roughly half of the cost of a V"#$M&’ 𝐿𝐿𝑀 , since it would
not need to resume V"#$M&’’s VCPU. However, this additional
cost (incurred by V"#$) is not signi!cant, given that the alternative
requires trusting cloud providers for hypervisor-based monitors.

In contrast to other monitors, while V"#$M&’’s 𝐿𝐿𝑀 is higher,
it still incurs negligible background impact at runtime (previous
section) since it’s𝑀𝐿𝑀 is very low under normal execution. It also has
several other advantages like a versatile read and write protection

V!"#: A Protected Services Framework for Confidential Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

open read write mmap munmap socket printf
0

2

4

6

P
er

fo
rm

an
ce

ov
er

he
ad

(t
im

es
)

Fig. 4: Cost of redirecting popular system calls from a V"#$S%
E’(enclave to the outsideworld (CS2). The system call bench-
mark parameters are provided in Table 3.

Table 3: Settings for enclave system call benchmarks (Fig. 4).

Benchmark Parameters

open Open a text !le with read and write permissions

read Read 10 KB from a !le to a memory-mapped region

write Write 10 KB from a memory-mapped region to a !le

mmap Map a 10KB region using the NULL !le descriptor

munmap Unmap the 10KB region previously-mapped

socket Open a socket using AF_INET and SOCKSTREAM

printf Print a "Hello World!" message to the console

scope (§2) and does not require trusting cloud providers. Hence, we
believe that V"#$M&’ o#ers a good trade-o#.

9.2 Case Studies on Protected Services
CS1: Secure module load/unload overhead. To measure the
performance overhead of module installation when V"#$S%K(# is
activated, we loaded and unloaded a custom kernel module that
prints out a statement to the kernel’s debug message log. We chose
this small module (of binary size 4728 bytes and !nal in-memory
installed size of 24 kilobytes) since a large module load/unload will
already take a long time and the additional VMPL protection update
time will become amortized. We repeated the process 100 times and
averaged results. We measured an average increase of 55k cycles
at load and unload. It was similar for load and unload, since the
additional steps (adjusting permissions using RMPADJUST) required
are the same. This resulted in a 5.7% increase in load time and 4.2%
increase in unload time, which is a small per-module cost to pay
for kernel code integrity.
CS2: Enclave system call and runtime overhead. Wemeasured
the runtime overhead of enclaves using a system call benchmark
and several real-world programs.

Fig. 4 shows enclave performance on common system calls re-
lated to !le system, memory allocation, network, and console mes-
sages. On our machine, we ran these natively and inside an enclave
for 10,000 iterations. Predictably, system calls in enclave contexts
are between 3.3 → 7.1↗ slower since they require two costly do-
main switches (from DomE"% to Dom&"’ and back) and system
call argument copies (§6.2). This is also true for other enclaves. For

GZip UnQlite MbedTLS Lighttpd SQLite
0

10

20

30

40

50

60

70

P
er

fo
rm

an
ce

ov
er

he
ad

(%
) Syscall-Redirect

Enclave-Exit

Fig. 5: Performance overhead incurred while shielding real-
world programs using V"#$S%E’((CS2). The combined cost
of the stacked bars is the complete overhead incurred by the
application inside an enclave. From left to right, the enclave
exit rate/second was 0.08k, 35.5k, 9.3k, 4.8k, and 22.4k.

Table 4: Settings for running enclave programs (Fig. 5).

Program Parameters

GZip Compressed a 10MB !le generated using /dev/urandom

SQLite Inserted 10k random entries into a test database

UnQlite Ran provided huge-db test which inserts 1 million
random entries into a test database

MbedTLS Ran provided a self-test benchmark which executes 2.8k
tests for AES, SHA, RSA, ChaCha etc.

Lighttpd Ran locally with 1 worker thread and benchmarked
using ApacheBench (ab) [121] for 10,000 (10KB) !les

instance, Virtual Ghost enclaves incur 4.7↗ times performance over-
head on !le system benchmarks [42], while SGX with an optimized
library operating system still incurs at least 4↗ slowdown for the
read system call [36]. This cost becomes amortized during enclave
execution, especially when system calls are infrequent.

We also used our SDK (§7) to port 5 real-world programs that
can bene!t from enclave protection. They include a webserver
(lighttpd [86]), two databases (SQLite [118] and UnQLite [12]), a
cryptographic program (MbedTLS [10]), and a compression en-
gine (Gzip [3]). Each program required ↓200 lines of code changes
to enable enclave initialization, as well as con!guration changes
to build statically-linked binaries. Since many of these programs
have tens of thousands of code lines, we believe this porting e#ort
is minor. Note that the o"cial SGX SDK [14] requires developers
to manually specify pointers and lengths for system calls, a con-
siderably more complex undertaking. Additionally, in the future,
enclave initialization can be automated by changing the startup
functions of musl-libc (e.g., __libc_start_main). Table 4 shows the
settings and workloads for each program.

Fig. 5 shows the average performance slowdown of enclave
protection for evaluated programs under 10 runs. We observed
performance overheads from 4.9% to 63.9%. Since enclave slowdown
is due to system call redirection and enclave exits, we divide the bar
into overhead incurred by source. In general, we notice that enclave
exit cost dominates, except when very large regions are copied at
system calls (e.g., lighttpd must copy 10kB pages outside the enclave

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

OpenSSL 7-zip Memcached SQLite NGINX
0

5

10

15

P
er

fo
rm

an
ce

ov
er

he
ad

(%
) Kaudit (IM)

VeilS-LOG

Fig. 6: Performance overhead while auditing di!erent real-
world programs using V"#$S%L&) (CS3). From left to right,
the log rate/second was 1.5k, 1.8k, 61k, 2.3k, and 38k.

Table 5: Settings for auditing real-world programs (Fig. 6).

Program Parameters

OpenSSL Phoronix benchmark: pts/openssl [108]

7-Zip Phoronix benchmark: pts/compress-7zip [107]

Memcached Ran locally with 4 worker threads and benchmarked
using memaslap [134] with 90:10 GET:SET split for 60s
and a concurrency level of 16

SQLite Phoronix benchmark: pts/sqlite-speedtest [109]

NGINX Ran locally with 2 worker threads and benchmarked
using ApacheBench (ab) [121] for 10,000 (10KB) !les

on client requests). This is expected given the performance overhead
we observed in the system call benchmarks (previous section). It
is also expected that enclave overhead is dependent on enclave
exit rate. In particular, SQLite which incurred ↓36k exits/second
incurred the highest overhead. The cost of enclave exits can be
reduced by implementing exitless handling [29, 101, 116].

In general, V"#$S%E’(’s cost is modest and comparable to other
enclave systems (e.g., SGX). Hence, we !nd it a promising solution
to address the critical problem of running sensitive computations
in CVM! with untrusted operating systems.
CS3: Secure system call auditing overhead. We compared the
performance of V"#$S%L&)’s protection with the native Linux sys-
tem audit framework (Kaudit [119]) using real-world programs. We
ran 5 programs—NGINX, Memcached, OpenSSL, 7-Zip, and SQLite.

The test parameters and benchmarks for each application are
provided in Table 5. We con!gured the CVM (using the Linux
auditctl [2] command) to log system calls1 based on the ruleset
used by prior work [21, 103, 104]. The ruleset includes important
!le creation, network access, and process execution calls.

We made one change to Kaudit to ensure fair comparison. In
particular, natively Kaudit uses a user-space component called Au-
ditd to write logs to disk. This component is known to be very
ine"cient [90], and is di#erent from V"#$S%L&) which keeps logs
in-memory. Hence, we modi!ed Kaudit to keep logs in-memory
too for both experiments.
1read, readv, write, writev, sendto, recvfrom, sendmsg, recvmsg, mmap, mprotect, link,
symlink, clone, fork, vfork, execve, open, close, creat, openat, mknodat, mknod, dup,
dup2, dup3, bind, accept, accept4, connect, rename, setuid, setreuid, setresuid, chmod,
fchmod, pipe, pipe2, truncate, ftruncate, send!le, unlink, unlinkat, socketpair, splice.

Fig. 6 shows the incurred overhead for Kaudit and V"#$S%K(#
over native execution. V"#$S%K(# incurred a performance overhead
of 1.4% to 18.7% while Kaudit incurred an overhead of 0.3% to 8.7%,
compared to native execution. This performance gap is not very
high, even under the very high log production rates of tested pro-
grams, and it shows that V"#$S%K(# is suitable for system logging.

9.3 Key takeaways

V"#$’s protected services incur modest performance overhead,
which is comparable to other widely-deployed systems (e.g., SGX).
When a protected service is not used, V"#$ incurs no discernable
performance overhead. Hence, we believe that V"#$ can be readily-
adopted to secure today’s CVM!.

10 Discussion and Future Work

VeilS-ENC and other enclave solutions. V"#$S%E’(’s abstrac-
tions are inspired by SGX. Like SGX, V"#$S%E’(divides the process
into untrusted and enclave regions, while ensuring enclave memory
cannot be shared with any other software. Moreover, while SGX
allows the operating system to maintain an enclave’s page table
unlike V"#$S%E’(, the latter still allows the OS to securely make
changes to the page tables (e.g., for collaborative demand paging)
and manage enclave memory like SGX (§6.2).

Although its abstractions are functionally-equivalent to SGX
and others [41], V"#$S%E’(o#ers a more $exible tiered security
approach than alternatives. In particular, SGX-like approaches only
enable protection for computations inside enclaves; hence, enclaves
must be used for all programs that require any degree of protection.
With V"#$, users can leverage native CVM protections (against
untrusted hypervisors) for programs that are not highly sensitive,
while only relying on V"#$S%E’(for highly sensitive programs
(e.g., servicing personally-identi!able information). This gives users
more control over the security-performance trade-o#.

Another advantage of V"#$S%E’(is that it can be $exibly molded
into non-SGX enclave models depending on user scenario. For in-
stance, Chancel [18] leverages expensive compiler software fault
isolation (SFI) to securely share a single SGX enclave’s memory for
multi-client applications. In contrast,V"#$S%E’(canmodify enclave
page tables to securely and e"ciently share memory regions be-
tween two mutually-trusting enclave processes. Additionally, since
V"#$S%E’(executes at a privileged mode (unlike SGX enclaves), it
can leverage CPU features like MPK for !ne-grained intra-enclave
component isolation [20, 106]. Finally, like eOPF [22], V"#$S%E’(
can leverage privileged instructions (e.g., WBINVD) to isolate and
invalidate CPU structures and defeat enclave side-channels.
System call batching. A signi!cant cost for enclave solutions
(including V"#$S%E’() are synchronous system call exits [29, 101]
since the enclave must incur a high exit cost and busy-wait while a
system call is handled (§9.2). One way to minimize synchronous
exits is by batching system calls and leveraging free background
threads to process the batched calls [116]. This optimization can
be incorporated for V"#$S%E’(alongside multi-threaded enclave
support (§7) to improve performance. We leave this to future work.
Library OS (LibOS) integration. LibOSs o#er robust system call
support and other advantages like fully-containerized !lesystems
to enclaves [32]. Given the functional equivalence of V"#$S%E’(

V!"#: A Protected Services Framework for Confidential Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

and SGX, the best integration choice for the former is an SGX Li-
bOS (e.g., Graphene [36]). The main porting e#ort in this case would
be writing a custom platform abstraction layer that would trans-
form SGX commands and instructions into V"#$-speci!c requests.
For instance, the SGX entry instruction (EENTER) would become a
hypervisor-relayed domain switch request (§5.2). Employing V"#$
with LibOSs can bene!t from fast process-level startup techniques,
such as on-demand fork [131], and fast in-process sandbox [106]
to overcome VM and kernel overheads.

11 Related work

Concurrent VMPL research. Concurrent with this work, two
other recent systems–SVSM and Hecate–leverageVMPL.

AMD released a secure VM service module (SVSM) [24] written
in Rust to provide migration and a virtual TPM to CVM!. SVSM
considers a di#erent threat model than Veil’s, where the CVM OS
is trusted but o%oads some functionality to a higher privileged
software for simplicity. This module also uses VMPL protections,
but it does not support V"#$’s services or domain isolation. In the
future, we plan to integrate V"#$ and SVSM, to bring the bene!ts
of Rust to V"#$ and extend SVSM with V"#$’s services.

Hecate [53] leverages VMPL to securely lift-and-shift legacy
VMs to SEV-SNP. In particular, Hecate implements a monitor at
VMPL-0 that intercepts the legacy VM’s system interactions and
transparently translates them into SEV-SNP compatible operations.
In addition, the monitor optionally protects the kernel from mali-
cious network tra"c and implements kernel code integrity. How-
ever, unlike Veil, Hecate does not leverage its design to enable
isolated security services or enclave abstractions to protect trusted
applications if the guest OS becomes compromised.
Kernel and hypervisor security monitors. SILVER [128] and
UCON [129] provide VM monitor-enforced access control policies
on sensitive kernel structures. Nooks [120] and LVDs [99] isolate
device drivers from the core kernel using MMU protections and
lightweight virtualization (VMFUNC), respectively. IskiOS [60] lever-
ages Intel MPK to create isolated shadow stacks. Many of the isola-
tion targets of these systems can be used by future V"#$ services to
enable additional kernel security.

In addition to monitors for operating systems, researchers have
proposed security monitors for cloud hypervisors. HypSec [85] pro-
tects VMs from large buggy hypervisors by introducing a minimal
core hypervisor. Nexen [114] leverages the Nested Kernel principles
to create a protected Xen hypervisor that prevents a wide-range
of known hypervisor vulnerabilities [50]. Like hypervisor-based
monitors (§2), these solutions are also incompatible with CVM!
since they do not trust any software outside the CVM.
Shielded program execution. Many systems protect computa-
tions from an untrusted operating system [18, 28, 40–42, 46, 48,
62, 65, 66, 77, 92]. V"#$S%E’(leverages techniques used in these
systems, while maintaining compatibility with CVM!. vSGX [132]
is the only other SEV system that shields programs from the oper-
ating system. vSGX allows a single computation to run inside an
enclave CVM, while redirecting system calls to an untrusted CVM.
Hence, each computation needs its own CVM, which is wasteful
not just in terms of memory, but also because a platform can only

run a limited amount of CVM! [26]. In contrast, V"#$S%E’(can
enable potentially unlimited enclaves inside a single CVM.
SEV attacks and defenses. SEV was found vulnerable to vari-
ous attacks, and is patched against many of these attacks in SEV-
SNP [23]. In particular, the earliest version of SEV kept CVM regis-
ter state unprotected in hypervisor memory, allowing an attacker
to compromise CVM integrity [64] or !ngerprint programs run-
ning inside CVM! [125]. Attacks utilizing the ciphertext side chan-
nels [80, 83, 126] and insecure I/O implementations [82] of SEV
were also found. SEV-SNP mitigates these problems by saving reg-
ister state in protected CVM memory and disallowing hypervisor
access to encrypted memory regions. However, SEV is still vulnera-
ble to memory side channels [79, 81, 82, 84, 89, 95] and controlled
channels [124, 130]. Many software mitigations have been proposed
for these attacks, such as trying to detect attacks [39, 61, 115], isolat-
ing shared resources (e.g., cache) [22, 54, 70, 105, 113, 133], adding
noise to timer readings to make it imprecise [91, 102], and applying
cryptographic memory randomization [17, 19, 74, 110].
User-level isolation in privileged modes. Lord of the x86
Rings [78] is a portable approach for user-space privilege isola-
tion by leveraging intermediate x86 rings (ring 1 and 2). vTZ [67]
leverages ARM TrustZone to create a co-running secure VM for
each guest, where trusted guest programs execute. The former solu-
tion requires trusting the operating system, while the latter requires
a hardware layer that is not supported in the CVM threat model.
TrustZone-based systems also su#er from other problems including
controlled channel attacks as outlined by prior work [35].
Secure system auditing. Existing research prevents the operat-
ing system from tampering with system logs using tamper-evident
hashes [69, 103, 104], an external hardware device [21], or trusted
virtualization extensions [52]. Tamper-evident hashes only guaran-
tee log integrity veri!cation, and some implementations [69, 103]
require a protected execution environment (e.g., SGX) to securely
keep these hashes. External hardware devices are incompatible with
CVM! since devices cannot be securely queried and virtualization
layers are occupied by the untrusted cloud hypervisor.

12 Conclusion
V"#$ is a CVM security monitor framework that e"ciently en-

ables a wide-range of protected services—from kernel code integrity
to shielded program execution—in the presence of an untrusted
operating system. Our implementation shows that CVM! can sup-
port V"#$with minor changes, while incurring modest performance
overheads for using protected services.

Acknowledgment
We thank the anonymous reviewers and our shepherd for their

helpful feedback. This work was partly supported by the National
Science Foundation (NSF) under the grant CNS-2145888.

References
[1] AMDESE/AMDSEV: AMD Secure Encrypted Virtualization. https://github.com/

AMDESE/AMDSEV.
[2] auditctl(8) – Linux Manpage. https://linux.die.net/man/8/auditctl/.
[3] Gzip – GNU Project Free Software Foundation. https://www.gnu.org/software/

gzip/.
[4] Linux Kernel CVEs | All CVEs. https://www.linuxkernelcves.com/cves.
[5] Linux Test Project. https://github.com/linux-test-project/ltp.

https://github.com/AMDESE/AMDSEV
https://github.com/AMDESE/AMDSEV
https://linux.die.net/man/8/auditctl/
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
https://www.linuxkernelcves.com/cves
https://github.com/linux-test-project/ltp

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

[6] Linux Test Project: ltp/testcases/kernel. https://github.com/linux-test-project/
ltp/tree/master/testcases/kernel.

[7] Linux Test Project: ltp/testcases/kernel/device-drivers. https://github.com/linux-
test-project/ltp/tree/master/testcases/kernel/device-drivers.

[8] Linux Test Project: ltp/testcases/kernel/syscalls. https://github.com/linux-test-
project/ltp/tree/master/testcases/kernel/syscalls.

[9] Linux Test Project: ltp/testcases/kernel/tracing. https://github.com/linux-test-
project/ltp/tree/master/testcases/kernel/tracing.

[10] mbedtls. https://tls.mbed.org.
[11] Memcached - A Distributed Memory Object Caching System. https://

memcached.org/.
[12] UnQLite – An Embedded NoSQL Database Engine. https://unqlite.org/.
[13] Virtio - KVM. https://www.linux-kvm.org/page/Virtio.
[14] 01&*). Intel(R) Software Guard Extensions for Linux* OS (source code). https:

//github.com/01org/linux-sgx.
[15] A+,+-.-*, M., A/0-1, A., F&’!"(-, P., -’1 X,, D. SHARD: Fine-Grained

Kernel Specialization with Context-Aware Hardening. In Proceedings of the 30th
USENIX Security Symposium (Security) (Virtual Event, Aug. 2021).

[16] A(("22-, M. J., B-*&’, R. V., B&$&!.3, W. J., G&$,+, D. B., R-!/#1, R. F.,
T"4-’#-’, A., -’1 Y&,’), M. Mach: A New Kernel Foundation for UNIX
Development. In Proceedings of the 2010 USENIX Annual Technical Conference
(ATC) (Boston, MA, June 2010).

[17] A/0-1, A., J&", B., X#-&, Y., Z/-’), Y., S/#’, I., -’1 L"", B. Obfuscuro: A
Commodity Obfuscation Engine for Intel SGX. In Proceedings of the 2019 Annual
Network and Distributed System Security Symposium (NDSS) (San Diego, CA,
Feb. 2019).

[18] A/0-1, A., K#0, J., S"&, J., S/#’, I., F&’!"(-, P., -’1 L"", B. Chancel: E"cient
Multi-client Isolation Under Adversarial Programs. In Proceedings of the 2021
Annual Network and Distributed System Security Symposium (NDSS) (2021).

[19] A/0-1, A., K#0, K., S-*5-*-6, M. I., -’1 L"", B. OBLIVIATE: A Data Oblivious
File System for Intel SGX. In Proceedings of the 2018 Annual Network and
Distributed System Security Symposium (NDSS) (February 2018).

[20] A/0-1, A., L"", S., F&’!"(-, P., -’1 L"", B. Kard: Lightweight Data Race
Detection with Per-thread Memory Protection. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (Virtual Event, Apr. 2021).

[21] A/0-1, A., L"", S., -’1 P"#’-1&, M. Hardlog: Practical Tamper-Proof System
Auditing Using a Novel Audit Device. In Proceedings of the 43rd IEEE Symposium
on Security and Privacy (Oakland) (May 2022).

[22] A/0-1, A., S(/,$26, A., L"", B., -’1 F&’!"(-, P. An Extensible Orchestration
and Protection Framework for Con!dential Cloud Computing. In Proceedings of
the 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDI) (Jul 2023).

[23] AMD. AMD SEV-SNP: Strengthening SEV with Integrity Protections and
More. https://www.amd.com/system/!les/TechDocs/SEV-SNP-strengthening-
vm-isolation-with-integrity-protection-and-more.pdf.

[24] AMD. AMDESE/linux-svsm. https://github.com/AMDESE/linux-svsm.
[25] AMD. SEV-ES Guest-Hypervisor Communication Block Standardization. https:

//developer.amd.com/wp-content/resources/56421.pdf.
[26] AMD. SEV Secure Nested Paging Firmware ABI Speci!cation. https://www.

amd.com/system/!les/TechDocs/56860.pdf.
[27] A’-’1T"(/. AMD to Launch 3rd Generation EPYC on March 15: Milan

with Zen 3. https://www.anandtech.com/show/16537/amd-to-launch-3rd-
generation-epyc-on-march-15th-milan-with-zen-3.

[28] ARM. Arm con!dential compute architecture. https://www.arm.com/
architecture/security-features/arm-con!dential-compute-architecture, 2022.

[29] A*’-,2&4, S., T*-(/, B., G*")&*, F., K’-,2/, T., M-*2#’, A., P*#"+", C.,
L#’1, J., M,2/,.,0-*-’, D., O’K""55", D., S2#$$7"$$, M., "2 -$. SCONE:
Secure Linux Containers with Intel SGX. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI) (Savannah,
GA, November 2016).

[30] A6-+, A. M., N#’), P., S/-/, J., C/"’, Q., B/,2.-*, R., G-’"!/, G., M-, J., -’1
S/"’, W. Hypervision Across Worlds: Real-Time Kernel Protection from the
ARM TrustZone Secure World. In Proceedings of the 21st ACM Conference on
Computer and Communications Security (CCS) (Scottsdale, Arizona, Nov. 2014).

[31] A6,*", M. DCasv5 and ECasv5 Series Con!dential VMs. https://learn.microsoft.
com/en-us/azure/con!dential-computing/con!dential-vm-overview.

[32] B-,0-’’, A., P"#’-1&, M., -’1 H,’2, G. Shielding Applications from an
Untrusted Cloud with Haven. In Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI) (Broom!eld, CO, Oct.
2014).

[33] B,/*"’, R., J-(&+, H.%N., K*-(/"’5"$!, T., -’1 S"#5"*2, J.%P. One Glitch
to Rule Them All: Fault Injection Attacks Against AMD’s Secure Encrypted
Virtualization. In Proceedings of the 28th ACM Conference on Computer and
Communications Security (CCS) (Virtual Event, Nov. 2021).

[34] B,$(., J. V., M#’.#’, M., W"#!!", O., G"’.#’, D., K-!#.(#, B., P#"!!"’!, F.,
S#$+"*!2"#’, M., W"’#!(/, T. F., Y-*&0, Y., -’1 S2*-(.8, R. Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order

Execution. In Proceedings of the 27th USENIX Security Symposium (Security)
(August 2018).

[35] C"*1"#*-, D., S-’2&!, N., F&’!"(-, P., -’1 P#’2&, S. SoK: Understanding
the Prevailing Security Vulnerabilities in TrustZone-assisted TEE Systems. In
Proceedings of the 41st IEEE Symposium on Security and Privacy (Oakland) (San
Francisco, CA, May 2020).

[36] (/" T!-#, C., P&*2"*, D. E., -’1 V#9, M. Graphene-SGX: A Practical Library OS
for Unmodi!ed Applications on SGX. In Proceedings of the 2017 USENIX Annual
Technical Conference (ATC) (Santa Clara, CA, July 2017).

[37] C/"(.&7-3, S., -’1 S/-(/-0, H. Iago Attacks: Why the System Call API is
a Bad Untrusted RPC Interface. In Proceedings of the 18th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (March 2013).

[38] C/"’, H., Z/-’), F., C/"’, C., Y-’), Z., C/"’, R., Z-’), B., -’1 M-&, W.
Tamper-Resistant Execution in an Untrusted Operating System Using A Virtual
Machine Monitor, 2007.

[39] C/"’, S., Z/-’), X., R"#2"*, M. K., -’1 Z/-’), Y. Detecting Privileged Side-
Channel Attacks in Shielded Execution with Déjá Vu. In Proceedings of the 24th
ACM Conference on Computer and Communications Security (CCS) (Dallas, TX,
Oct.–Nov. 2017).

[40] C/"’, X., G-*5#’."$, T., L"7#!, E. C., S,+*-/0-’3-0, P., W-$1!:,*)"*, C. A.,
B&’"/, D., D7&!.#’, J., -’1 P&*2!, D. R. Overshadow: A Virtualization-Based
Approach to Retro!tting Protection in Commodity Operating Systems. In
Proceedings of the 13th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS) (Seattle, WA, Mar.
2008).

[41] C&!2-’, V., L"+"1"4, I., -’1 D"4-1-!, S. Sanctum: Minimal Hardware Exten-
sions for Strong Software Isolation. In Proceedings of the 25th USENIX Security
Symposium (Security) (Austin, TX, August 2016).

[42] C*#!7"$$, J., D-,2"’/-/’, N., -’1 A14", V. Virtual Ghost: Protecting Ap-
plications from Hostile Operating Systems. In Proceedings of the 19th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (Salt Lake City, UT, Mar. 2014).

[43] C*#!7"$$, J., L"’/-*2/, A., D/,*9-2#, D., -’1 A14", V. Secure Virtual Archi-
tecture: A Safe Execution Environment for Commodity Operating Systems. In
Proceedings of the 21st ACM Symposium on Operating Systems Principles (SOSP)
(Stevenson, WA, Oct. 2007).

[44] C,#, R., Z/-&, L., -’1 L#", D. Emilia: Catching Iago in Legacy Code. In Pro-
ceedings of the 2021 Annual Network and Distributed System Security Symposium
(NDSS) (Feb. 2021).

[45] D-,2"’/-/’, N., K-!-0:-$#!, T., D#"26, W., C*#!7"$$, J., -’1A14", V. Nested
Kernel: An Operating System Architecture for Intra-Kernel Privilege Separation.
In Proceedings of the 20th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS) (Istanbul, Turkey,
Mar. 2015).

[46] D&’), X., S/"’, Z., C*#!7"$$, J., C&8, A. L., -’1 D7-*.-1-!, S. Shielding
Software from Privileged Side-Channel Attacks. In Proceedings of the 27th
USENIX Security Symposium (Security) (Baltimore, MD, Aug 2018).

[47] E’-*8. AMD SEV Remote Attestation Protocol. https://enarx.dev/docs/
technical/amd-sev-attestation.

[48] F"’), E., L,, X., D,, D., Y-’), B., J#-’), X., X#-, Y., Z-’), B., -’1 C/"’, H.
Scalable Memory Protection in the PENGLAI Enclave. In Proceedings of the 15th
USENIX Symposium on Operating Systems Design and Implementation (OSDI)
(Jul 2021).

[49] F"**-#,&$&, A., B-,0-’’, A., H-7+$#26"$, C., -’1 P-*’&, B. Komodo: Us-
ing Veri!cation to Disentangle Secure-Enclave Hardware from Software. In
Proceedings of the 26th ACM Symposium on Operating Systems Principles (SOSP)
(Shanghai, China, Oct. 2017).

[50] F&’!"(-, P., W-’), X., -’1 K*#!/’-0,*2/3, A. MultiNyx: A Multi-Level
Abstraction Framework for Systematic Analysis of Hypervisors. In Proceedings
of the 13th European Conference on Computer Systems (EuroSys) (Porto, Portugal,
Apr. 2018).

[51] F&’!"(-, P., Z/-’), K., W-’), X., -’1 K*#!/’-0,*2/3, A. An Empirical Study
on the Correctness of Formally Veri!ed Distributed Systems. In Proceedings of
the 12th European Conference on Computer Systems (EuroSys) (Belgrade, Serbia,
Apr. 2017).

[52] G-’1/#, V., B-’"*9"", S., A)*-7-$, A., A/0-1, A., L"", S., -’1 P"#’-1&, M.
Rethinking System Audit Architectures for High Event Coverage and Synchro-
nous Log Availability. In Proceedings of the 32nd USENIX Security Symposium
(Security) (Anaheim, CA, Aug 2023).

[53] G", X., K,&, H.%C., -’1 C,#, W. Hecate: Lifting and Shifting On-Premises
Workloads to an Untrusted Cloud. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (Los Angeles, CA, USA,
2022).

[54] G&15*"3, M., -’1 Z,$."*’#’", M. Preventing Cache-Based Side-Channel
Attacks in a Cloud Environment. IEEE Transactions on Cloud Computing (2014).

[55] G&’), S., A$2#’+;."’, D., F&’!"(-, P., -’1 M-’#-2#!, P. Snowboard: Finding
Kernel Concurrency Bugs through Systematic Inter-Thread Communication

https://github.com/linux-test-project/ltp/tree/master/testcases/kernel
https://github.com/linux-test-project/ltp/tree/master/testcases/kernel
https://github.com/linux-test-project/ltp/tree/master/testcases/kernel/device-drivers
https://github.com/linux-test-project/ltp/tree/master/testcases/kernel/device-drivers
https://github.com/linux-test-project/ltp/tree/master/testcases/kernel/syscalls
https://github.com/linux-test-project/ltp/tree/master/testcases/kernel/syscalls
https://github.com/linux-test-project/ltp/tree/master/testcases/kernel/tracing
https://github.com/linux-test-project/ltp/tree/master/testcases/kernel/tracing
https://tls.mbed.org
https://memcached.org/
https://memcached.org/
https://unqlite.org/
https://www.linux-kvm.org/page/Virtio
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://github.com/AMDESE/linux-svsm
https://developer.amd.com/wp-content/resources/56421.pdf
https://developer.amd.com/wp-content/resources/56421.pdf
https://www.amd.com/system/files/TechDocs/56860.pdf
https://www.amd.com/system/files/TechDocs/56860.pdf
https://www.anandtech.com/show/16537/amd-to-launch-3rd-generation-epyc-on-march-15th-milan-with-zen-3
https://www.anandtech.com/show/16537/amd-to-launch-3rd-generation-epyc-on-march-15th-milan-with-zen-3
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://enarx.dev/docs/technical/amd-sev-attestation
https://enarx.dev/docs/technical/amd-sev-attestation

V!"#: A Protected Services Framework for Confidential Virtual Machines ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Analysis. In Proceedings of the 28th ACM Symposium on Operating Systems
Principles (SOSP) (Virtual Event, Oct. 2021).

[56] G&’), S., P"’), D., A$2#’+;."’, D., F&’!"(-, P., -’1M-’#-2#!, P. Snowcat:
E"cient Kernel Concurrency Testing using a Learned Coverage Predictor. In
Proceedings of the 29th ACM Symposium on Operating Systems Principles (SOSP)
(Koblenz, Germany, Oct. 2023).

[57] G&&)$". google/syzkaller: syzkaller is an unsupervised coverage-guided kernel
fuzzer. https://github.com/google/syzkaller.

[58] G&&)$". Introducing Google cloud con!dential computing with con!dential
VMs. https://cloud.google.com/blog/products/identity-security/introducing-
google-cloud-con!dential-computing-with-con!dential-vms.

[59] G&&)$" C$&,1. Con!dential computing concepts | Google Cloud. https://cloud.
google.com/con!dential-computing/con!dential-vm/docs/about-cvm.

[60] G*-4-’#, S., H"1-3-2#, M., C*#!7"$$, J., -’1 S(&22, M. L. Fast Intra-Kernel
Isolation and Security with IskiOS. In Proceedings of the 24th International
Symposium on Research in Attacks, Intrusions and Defenses (RAID) (2021).

[61] G*,!!, D., L"22’"*, J., S(/,!2"*, F., O/*#0"’.&, O., H-$$"*, I., -’1 C&!2-, M.
Strong and E"cient Cache Side-Channel Protection using Hardware Transac-
tional Memory. In Proceedings of the 27th USENIX Security Symposium (Security)
(Vancouver, BC, 2017).

[62] G,-’, L., L#,, P., X#’), X., G", X., Z/-’), S., Y,, M., -’1 J-")"*, T. Trust-
Shadow: Secure Execution of Unmodi!ed Applications with Arm TrustZone.
In Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys) (Niagara Falls, NY, 2017).

[63] H-!!-’, W. U., B-2"!, A., -’1M-*#’&, D. Tactical Provenance Analysis for
Endpoint Detection and Response Systems. In Proceedings of the 41st IEEE
Symposium on Security and Privacy (Oakland) (San Francisco, CA, May 2020).

[64] H"26"$2, F., -’1 B,/*"’, R. Security Analysis of Encrypted Virtual Machines.
ACM SIGPLAN Notices (2017).

[65] H&5, A. V., -’1 N#"/, J. BlackBox: A Container Security Monitor for Protecting
Containers on Untrusted Operating Systems. In Proceedings of the 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI) (Carlsbad,
CA, July 2022).

[66] H&50-’’, O. S., K#0, S., D,’’, A. M., L"", M. Z., -’1 W#2(/"$, E. InkTag:
Secure Applications on an Untrusted Operating System. In Proceedings of the
18th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (Houston, TX, Mar. 2013).

[67] H,-, Z., G,, J., X#-, Y., C/"’, H., Z-’), B., -’1 G,-’, H. vTZ: Virtualizing
ARM TrustZone. In USENIX security symposium (2017).

[68] I’2"$. Intel 64 and ia-32 architectures software developer’s manual. Volume 3A:
System Programming Guide (2016).

[69] K-*-’1", V., B-,0-’, E., L#’, Z., -’1 K/-’, L. SGX-Log: Securing System
Logs with SGX. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security (ASIA CCS) (2017).

[70] K#0, T., P"#’-1&, M., -’1M-#’-*%R,#6, G. STEALTHMEM: System-Level Pro-
tection Against Cache-Based Side Channel Attacks in the Cloud. In Proceedings
of the 21st USENIX Security Symposium (Security) (Bellevue, WA, Aug. 2012).

[71] K$"#’, G., E$:/#’!2&’", K., H"#!"*, G., A’1*&’#(., J., C&(., D., D"**#’, P.,
E$.-1,7", D., E’)"$/-*12, K., K&$-’!.#, R., N&**#!/, M., S"7"$$, T., T,(/,
H., -’1 W#’7&&1, S. seL4: Formal Veri!cation of an OS Kernel. In Proceedings
of the 22nd ACM Symposium on Operating Systems Principles (SOSP) (Big Sky,
MT, Oct. 2009).

[72] K&(/"*, P., H&*’, J., F&)/, A., G"’.#’, D., G*,!!, D., H--!, W., H-0+,*),
M., L#::, M., M-’)-*1, S., P*"!(/"*, T., S(/7-*6, M., -’1 Y-*&0, Y. Spectre
Attacks: Exploiting Speculative Execution. In Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland) (May 2019).

[73] K,"’6"*, S., B-1&#,, V.%A., L"5",4*", H., S-’2/-’-0, S., J,’), A., G-#’, G.,
S&$1-’#, C., L,:,, C., T"&1&*"!(,, S., R-1,(-’,, C., B-’,, C., M-2/3, L.,
D"-(&’"!(,, R., R-#(#,, C., -’1H,#(#, F. Unikraft: Fast, Specialized Unikernels
the Easy Way. Proceedings of the Sixteenth European Conference on Computer
Systems (2021).

[74] L", D. V., H,*2-1&, L. T., A/0-1, A., M#’-"#, M., L"", B., -’1 K-2", A. A Tale
of Two Trees: One Writes, and Other Reads. Optimized Oblivious Accesses to
Large-Scale Blockchains. In Proceedings of the Privacy Enhancing Technologies
Symposium (PETS) (2020).

[75] L"-, D. Dlmalloc, 2010.
[76] L"", D., J,’), D., F-’), I. T., T!-#, C.%C., -’1 P&:-, R. A. An O#-Chip Attack

on Hardware Enclaves via the Memory Bus. In Proceedings of the 29th USENIX
Security Symposium (Security) (Boston, MA, Aug 2020).

[77] L"", D., K&/$+*"’’"*, D., S/#’1", S., A!-’&4#<, K., -’1 S&’), D. Keystone:
An Open Framework for Architecting Trusted Execution Environments. In
Proceedings of the 15th ACM European Conference on Computer Systems (EuroSys)
(2020).

[78] L"", H., S&’), C., -’1 K-’), B. B. Lord of the x86 Rings: A Portable User
Mode Privilege Separation Architecture on x86. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (2018).

[79] L"", S., S/#/, M., G"*-, P., K#0, T., K#0, H., -’1 P"#’-1&, M. Inferring Fine-
grained Control Flow Inside SGX Enclaves with Branch Shadowing. In Pro-
ceedings of the 26th USENIX Security Symposium (Security) (Vancouver, BC, Aug

2017).
[80] L#, M.,W#$.", L., W#(/"$0-’’, J., E#!"’+-*2/, T., T"&1&*"!(,, R., -’1 Z/-’),

Y. A Systematic Look at Ciphertext Side Channels on AMD SEV-SNP. In 2022
IEEE Symposium on Security and Privacy (SP) (2022).

[81] L#, M., Z/-’), Y., -’1 L#’, Z. Crossline: Breaking "Security-by-crash" based
Memory Isolation in AMD SEV. In Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security (2021).

[82] L#, M., Z/-’), Y., L#’, Z., -’1 S&$#/#’, Y. Exploiting Unprotected I/OOperations
in AMD’s Secure Encrypted Virtualization. In 28th USENIX Security Symposium
(USENIX Security) (2019).

[83] L#, M., Z/-’), Y., W-’), H., L#, K., -’1 C/"’), Y. CIPHERLEAKS: Breaking
Constant-time Cryptography on AMD SEV via the Ciphertext Side Channel. In
30th USENIX Security Symposium (USENIX Security 21) (2021).

[84] L#, M., Z/-’), Y., W-’), H., L#, K., -’1 C/"’), Y. TLB Poisoning Attacks on
AMD Secure Encrypted Virtualization. InAnnual Computer Security Applications
Conference (2021).

[85] L#, S.%W., K&/, J. S., -’1 N#"/, J. Protecting Cloud Virtual Machines from
Hypervisor and Host Operating System Exploits. In Proceedings of the 28th
USENIX Security Symposium (2019).

[86] L#)/22:1. Lighttpd - $y light. https://www.lighttpd.net/.
[87] L#::, M., S(/7-*6, M., G*,!!, D., P*"!(/"*, T., H--!, W., F&)/, A., H&*’, J.,

M-’)-*1, S., K&(/"*, P., G"’.#’, D., Y-*&0, Y., -’1 H-0+,*), M. Meltdown:
Reading Kernel Memory from User Space. In Proceedings of the 27th USENIX
Security Symposium (Security) (July 2018).

[88] L#,, C., G&’), S., -’1 F&’!"(-, P. KIT: Testing OS-Level Virtualization for
Functional Interference Bugs. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (Vancouver, BC, Apr. 2023).

[89] L#,, F., Y-*&0, Y., G", Q., H"#!"*, G., -’1 L"", R. B. Last-Level Cache Side-
Channel Attacks Are Practical. In Proceedings of the 36th IEEE Symposium on
Security and Privacy (Oakland) (May 2015).

[90] M-, S., Z/-#, J., K7&’, Y., L"", K. H., Z/-’), X., C#&(-*$#", G., G"/-’#, A.,
Y")’"!7-*-’, V., X,, D., -’1 J/-, S. Kernel-Supported Cost-E#ective Audit
Logging for Causality Tracking. In Proceedings of the 2018 USENIX Annual
Technical Conference (ATC) (Boston, MA, July 2018).

[91] M-*2#’, R., D"00", J., -’1 S"2/,0-1/-4-’, S. Timewarp: Rethinking Time-
keeping and Performance Monitoring Mechanisms to Mitigate Side-Channel
Attacks. In 2012 39th Annual International Symposium on Computer Architecture
(ISCA) (2012).

[92] M(K""’, F., A$"8-’1*&4#(/, I., B"*"’6&’, A., R&6-!, C. V., S/-5#, H.,
S/-’+/&),", V., -’1 S-4-)-&’.-*, U. R. Innovative Instructions and Software
Model For Isolated Execution. In Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy (HASP) (June
2013).

[93] M#(*&!&52. Azure Con!dential VMs Using SEV-SNP (DCasv5/ECasv5) are
Now Generally Available. https://techcommunity.microsoft.com/t5/azure-
con!dential-computing/azure-con!dential-vms-using-sev-snp-dcasv5-
ecasv5-are-now/ba-p/3573747.

[94] M#(*&!&52 D&(!. Virtualization-Based Security (VBS). https://docs.microsoft.
com/en-us/windows-hardware/design/device-experiences/oem-vbs.

[95] M&*+#26"*, M., H,+"*, M., -’1 H&*!(/, J. Extracting Secrets from Encrypted
Virtual Machines. In Proceedings of the Ninth ACM Conference on Data and
Application Security and Privacy (2019).

[96] M&*+#26"*, M., H,+"*, M., H&*!(/, J., -’1 W"!!"$, S. Severed: Subvert-
ing AMD’s Virtual Machine Encryption. In Proceedings of the 11th European
Workshop on Systems Security (2018).

[97] M,*1&(., K., O!7-$1, D., G-*(#-, F. D., V-’ B,$(., J., G*,!!, D., -’1 P#"!!"’!,
F. Plundervolt: Software-based Fault Injection Attacks against Intel SGX. In
Proceedings of the 41st IEEE Symposium on Security and Privacy (Oakland) (May
2020).

[98] M,!$%L#+(. musl-libc, 2017. https://www.musl-libc.org.
[99] N-*-3-’-’, V., H,-’), Y., T-’, G., J-")"*, T., -’1 B,*2!"4, A. Lightweight

Kernel Isolation with Virtualization and VM Functions. In Proceedings of the
16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE) (2020).

[100] NGINX I’(. NGINX High Performance Load Balancer, Web Server, & Reverse
Proxy. https://www.nginx.com.

[101] O*"’+-(/, M., L#5!/#2!, P., M#’.#’, M., -’1 S#$+"*!2"#’, M. Eleos: ExitLess
OS Services for SGX Enclaves. In Proceedings of the 12th European Conference
on Computer Systems (EuroSys) (Belgrade, Serbia, Apr. 2017).

[102] O!4#., D. A., S/-0#*, A., -’1 T*&0"*, E. Cache Attacks and Countermeasures:
the Case of AES. In Cryptographers’ Track at the RSA Conference (2006).

[103] P-((-)’"$$-, R., D-22-, P., H-!!-’, W. U., B-2"!, A., F$"2(/"*, C., M#$$"*,
A., -’1 T#-’, D. CUSTOS: Practical Tamper-Evident Auditing of Operating
Systems Using Trusted Execution. In Proceedings of the 2020 Annual Network
and Distributed System Security Symposium (NDSS) (San Diego, CA, Feb. 2020).

https://github.com/google/syzkaller
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/confidential-computing/confidential-vm/docs/about-cvm
https://cloud.google.com/confidential-computing/confidential-vm/docs/about-cvm
https://www.lighttpd.net/
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-confidential-vms-using-sev-snp-dcasv5-ecasv5-are-now/ba-p/3573747
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-confidential-vms-using-sev-snp-dcasv5-ecasv5-are-now/ba-p/3573747
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-confidential-vms-using-sev-snp-dcasv5-ecasv5-are-now/ba-p/3573747
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://www.musl-libc.org
https://www.nginx.com

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca

[104] P-((-)’"$$-, R., L#-&, K., T#-’, D., -’1 B-2"!, A. Logging to the Danger
Zone: Race Condition Attacks and Defenses on System Audit Frameworks.
In Proceedings of the 27th ACM Conference on Computer and Communications
Security (CCS) (Nov. 2020).

[105] P-)", D. Partitioned Cache Architecture as a Side-Channel Defence Mechanism.
Cryptology ePrint Archive (2005).

[106] P"’), D., L#,, C., P-$#2, T., F&’!"(-, P., V-/$1#".%O+"*7-)’"*, A., -’1 V#9,
M. uSWITCH: Fast Kernel Context Isolation with Implicit Context Switches.
In 2023 IEEE Symposium on Security and Privacy (Oakland) (San Francisco, CA,
2023).

[107] P/&*&’#8. 7-Zip Compression. https://openbenchmarking.org/test/pts/
compress-7zip-1.9.0.

[108] P/&*&’#8. OpenSSL Benchmark. https://openbenchmarking.org/test/pts/
openssl.

[109] P/&*&’#8. SQLite SpeedTest Benchmark. https://openbenchmarking.org/test/
pts/sqlite-speedtest.

[110] R-’", A., L#’, C., -’1 T#7-*#, M. Raccoon: Closing Digital Side-Channels
through Obfuscated Execution. In Proceedings of the 24th USENIX Security
Symposium (Security) (Washington, DC, Aug. 2015).

[111] R#$"3, R., J#-’), X., -’1X,, D. Guest-Transparent Prevention of Kernel Rootkits
with VMM-based Memory Shadowing. In Recent Advances in Intrusion Detection:
11th International Symposium (RAID) (2008).

[112] S"!/-1*#, A., L,., M., =, N., -’1 P"**#), A. SecVisor: A Tiny Hypervisor to
Provide Lifetime Kernel Code Integrity for Commodity OSes. In Proceedings
of the 21st ACM Symposium on Operating Systems Principles (SOSP) (Stevenson,
WA, Oct. 2007).

[113] S/#, J., S&’), X., C/"’, H., -’1 Z-’), B. Limiting Cache-Based Side-Channel
in Multi-Tenant Cloud using Dynamic Page Coloring. In 2011 IEEE/IFIP 41st
International Conference on Dependable Systems and Networks Workshops (DSN-
W) (2011).

[114] S/#, L., W,, Y., X#-, Y., D-,2"’/-/’, N., C/"’, H., Z-’), B., -’1 L#, J. De-
constructing Xen. In Proceedings of the 2017 Annual Network and Distributed
System Security Symposium (NDSS) (San Diego, CA, Feb. 2017).

[115] S/#/, M.%W., L"", S., K#0, T., -’1 P"#’-1&, M. T-SGX: Eradicating Controlled-
Channel Attacks Against Enclave Programs. In Proceedings of the 2017 Annual
Network and Distributed System Security Symposium (NDSS) (San Diego, CA,
Feb. 2017).

[116] S&-*"!, L., -’1 S2,00, M. FlexSC: Flexible System Call Scheduling with
Exception-Less System Calls. In Proceedings of the 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI) (Vancouver, Canada, Oct.
2010).

[117] SPEC. SPEC CPU 2006. https://www.spec.org/cpu2006/.
[118] SQL#2" C&’!&*2#,0. SQLite home page.
[119] SUSE. Understanding Linux Audit. https://documentation.suse.com/sles/12-

SP4/html/SLES-all/cha-audit-comp.html.
[120] S7#52, M. M., B"*!/-1, B. N., -’1 L"43, H. M. Improving the Reliability of

Commodity Operating Systems. In Proceedings of the 19th ACM Symposium on

Operating Systems Principles (SOSP) (Bolton Landing, NY, Oct. 2003).
[121] T/" A:-(/" S&527-*" F&,’1-2#&’. ab - Apache HTTP Server Benchmark

Tool. https://httpd.apache.org/docs/2.4/programs/ab.html.
[122] T!-#, C.%C., A*&*-, K. S., B-’1#, N., J-#’, B., J-’’"’, W., J&/’, J., K-$&1’"*,

H. A., K,$.-*’#, V., O$#4"#*-, D., -’1 P&*2"*, D. E. Cooperation and Security
Isolation of Library OSes for Multi-Process Applications. In Proceedings of
the 9th European Conference on Computer Systems (EuroSys) (Amsterdam, The
Netherlands, Apr. 2014).

[123] T!-#, C.%C., J-#’, B., A+1,$, N. A., -’1 P&*2"*, D. E. A Study of Modern
Linux API Usage and Compatibility: What to Support When You’re Supporting.
In Proceedings of the 11th European Conference on Computer Systems (EuroSys)
(London, UK, Apr. 2016).

[124] V-’ B,$(., J., W"#(/+*&12, N., K-:#26-, R., P#"!!"’!, F., -’1 S2*-(.8, R.
Telling your Secrets without Page Faults: Stealthy Page Table-Based Attacks
on Enclaved Execution. In Proceedings of the 26th USENIX Security Symposium
(Security) (August 2017).

[125] W"*’"*, J., M-!&’, J., A’2&’-.-.#!, M., P&$3(/*&’-.#!, M., -’1M&’*&!", F.
The SEVerESt Of Them All: Inference Attacks Against Secure Virtual Enclaves.
In Proceedings of the 2019 ACMAsia Conference on Computer and Communications
Security (AsiaCCS) (2019).

[126] W#$.", L., W#(/"$0-’’, J., M&*+#26"*, M., -’1 E#!"’+-*2/, T. Sevurity: No
Security without Integrity: Breaking Integrity-Free Memory Encryption with
Minimal Assumptions. In IEEE Symposium on Security and Privacy (Oakland)
(2020).

[127] X#-&, Y., Z/-’), X., Z/-’), Y., -’1 T"&1&*"!(,, R. One Bit Flips, One Cloud
Flops: Cross-VM Row Hammer Attacks and Privilege Escalation. In Proceedings
of the 25th USENIX Security Symposium (Security) (August 2016).

[128] X#&’), X., -’1 L#,, P. SILVER: Fine-Grained and Transparent Protection Do-
main Primitives in Commodity OS Kernel. In Proceedings of the 16th International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID) (2013).

[129] X,, M., J#-’), X., S-’1/,, R., -’1 Z/-’), X. Towards a VMM-Based Usage
Control Framework for OS Kernel Integrity Protection. In Proceedings of the 12th
ACM Symposium on Access Control Models and Technologies (SACMAT) (2007).

[130] X,, Y., C,#, W., -’1 P"#’-1&, M. Controlled-Channel Attacks: Deterministic
Side Channels for Untrusted Operating Systems. In Proceedings of the 36th IEEE
Symposium on Security and Privacy (Oakland) (San Jose, CA, May 2015).

[131] Z/-&, K., G&’), S., -’1 F&’!"(-, P. On-demand-fork: A microsecond fork
for memory-intensive and latency-sensitive applications. In Proceedings of the
USENIX European Conference on Computer Systems (EuroSys) (2021).

[132] Z/-&, S., L#, M., Z/-’), Y., -’1 L#’, Z. vSGX: Virtualizing SGX Enclaves on
AMD SEV. In 2022 IEEE Symposium on Security and Privacy (SP) (2022), IEEE.

[133] Z/&,, Z., R"#2"*, M. K., -’1 Z/-’), Y. A Software Approach to Defeating
Side Channels in Last-Level Caches. In Proceedings of the 23rd ACM Conference
on Computer and Communications Security (CCS) (Vienna, Austria, Oct. 2016).

[134] Z/,-’), M., -’1 A."*, B. memaslap - Load Testing and Benchmarking a
Server. http://docs.libmemcached.org/bin/memaslap.html.

https://openbenchmarking.org/test/pts/compress-7zip-1.9.0
https://openbenchmarking.org/test/pts/compress-7zip-1.9.0
https://openbenchmarking.org/test/pts/openssl
https://openbenchmarking.org/test/pts/openssl
https://openbenchmarking.org/test/pts/sqlite-speedtest
https://openbenchmarking.org/test/pts/sqlite-speedtest
https://www.spec.org/cpu2006/
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-audit-comp.html
https://documentation.suse.com/sles/12-SP4/html/SLES-all/cha-audit-comp.html
https://httpd.apache.org/docs/2.4/programs/ab.html
http://docs.libmemcached.org/bin/memaslap.html

	Abstract
	1 Introduction
	2 A Security Monitor for CVMs
	2.1 Current Approaches and Trade-Offs
	2.2 CVM Security Monitor Principles

	3 AMD SEV-SNP Background
	4 Veil Overview
	4.1 Threat Model and Assumptions
	4.2 Key Observation and Challenges

	5 Veil Framework
	5.1 Secure Dual-Factor Privilege Domains
	5.2 Replicated VCPUs for Domain Switch
	5.3 Privileged Functionality Delegation

	6 Veil Protected Services
	6.1 VeilS-Kci: Kernel Code Integrity
	6.2 VeilS-Enc: Shielded Program Execution
	6.3 VeilS-Log: System Audit Log Protection

	7 Implementation
	8 Security Analysis and Validation
	8.1 Analyzing Framework Security
	8.2 Analyzing Protected Services Security
	8.3 Validation

	9 Performance Evaluation
	9.1 Micro-Benchmarks and Analysis
	9.2 Case Studies on Protected Services
	9.3 Key takeaways

	10 Discussion and Future Work
	11 Related work
	12 Conclusion
	References

