
Kaleidoscope: Precise Invariant-Guided Pointer
Analysis

Tapti Palit
tpalit@purdue.edu
Purdue University

West Lafayette, Indiana, U.S.A

Pedro Fonseca
pfonseca@purdue.edu
Purdue University

West Lafayette, Indiana, U.S.A

Abstract
Pointer analysis techniques are crucial for many software
security mitigation approaches. However, these techniques
su!er from imprecision; hence, the reported points-to sets
are a superset of the actual points-to sets that can possibly
form during program execution. To improve the precision
of pointer analysis techniques, we propose Kaleidoscope. By
using an invariant-guided optimistic (IGO) pointer analysis
approach, Kaleidoscope makes optimistic assumptions dur-
ing the pointer analysis that it later validates at runtime. If
these optimistic assumptions do not hold true at runtime,
Kaleidoscope falls back to an imprecise baseline analysis,
thus preserving soundness. We show that Kaleidoscope re-
duces the average points-to set size by 13.15× across a set of 9
applications over the current state-of-the-art pointer analysis
framework. Furthermore, we demonstrate how Kaleidoscope
can implement control "ow integrity (CFI) to increase the
security of traditional CFI policies.

ACM Reference Format:
Tapti Palit and Pedro Fonseca. 2024. Kaleidoscope: Precise Invariant-
Guided Pointer Analysis. In 29th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 3 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA,
USA. ACM, New York, NY, USA, 16 pages. h!ps://doi.org/10.1145/
3620666.3651340

1 Introduction
Applications developed in C/C++ make extensive use of code
and data pointers. Therefore, accurately resolving the tar-
gets of pointers in these applications is important for various
software security and software engineering techniques. For
example, forward-edge control !ow integrity (CFI) [11] re-
quires the points-to sets of each function pointer. Software
debloating [12, 27] requires the precise callgraph of the appli-
cation, and therefore needs to resolve the targets of function

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro#t or commercial advantage and that copies
bear this notice and the full citation on the #rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04.
h!ps://doi.org/10.1145/3620666.3651340

pointers, too. Similarly, automatic privilege separation mech-
anisms [19, 35, 42] that isolate accesses to privileged data,
must resolve which data pointers point to privileged data.
These techniques, therefore, critically rely on pointer analy-
sis—a class of static code analysis techniques that identi#es
the application object targets of each pointer.
Unfortunately, pointer analysis techniques struggle to

achieve precision, especially when applied to complex sys-
tems that consist of hundreds of thousands of lines of code.
Static pointer analysis imprecision arises primarily due to
the inability to model all runtime information statically. For
example, a function accepting pointer arguments that is in-
voked frommultiple callsites with di!erent arguments would
result in di!erent points-to relationships depending on the
arguments passed from each calling context. An analysis
technique that does not di!erentiate between these di!er-
ent calling contexts, therefore, results in imprecision as the
pointer arguments at these di!erent callsites cannot be mod-
eled distinctly.

Imprecision signi#cantly hinders the applicability of pointer
analysis. For example, imprecise pointer analysis results in
overly permissive control "ow integrity (CFI) policies, thus
weakening security guarantees. Figure 1 compares the num-
ber of CFI targets for each callsite derived by the modern
SVF [10] pointer analysis framework against the number
of targets observed experimentally through runtime execu-
tion for the popular lightweight SSL library, MbedTLS [9],
when performing 1000 SSL requests for a 4KB #le. While it
is impossible to ensure full coverage using execution alone,
it is indicative of the imprecision that the static analysis con-
cludes that 92% of all indirect callsites can invoke 184 out of
all 185 address-taken functions. This results in a highly per-
missive CFI policy where every indirect call-site is allowed to
invoke all of the address-taken functions in the application,
thereby reducing the CFI security e!ectiveness.

To improve pointer analysis precision, we propose Kaleido-
scope, a system that combines the knowledge gained during
the static analysis process with dynamic run-time informa-
tion. Unlike traditional e!orts [15, 43, 49, 52, 53] that aim to
reduce the imprecision statically, we observe that by making
optimistic assumptions about the points-to sets of certain key
pointers, during the static analysis, we can signi#cantly re-
duce the impact of static imprecision on the pointer analysis
use cases. These optimistic assumptions are then monitored

https://doi.org/10.1145/3620666.3651340
https://doi.org/10.1145/3620666.3651340
https://doi.org/10.1145/3620666.3651340


























https://zenodo.org/records/10841643


https://github.com/rssys/kaleidoscope-artifacts/
https://github.com/rssys/kaleidoscope-artifacts/
https://github.com/rssys/kaleidoscope-artifacts/blob/main/README.md
https://github.com/rssys/kaleidoscope-artifacts/blob/main/README.md
https://github.com/rssys/kaleidoscope-artifacts/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/bminor/musl/blob/master/src/thread/pthread_create.c#L127
https://github.com/bminor/musl/blob/master/src/thread/pthread_create.c#L127
https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/intel/e100.c#L650
https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/intel/e100.c#L650
https://elixir.bootlin.com/linux/latest/source/drivers/net/ethernet/intel/e100.c#L650
https://clang.llvm.org/
https://libevent.org/
https://libmemcached.org/libMemcached.html
http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng.html
https://llvm.org/
https://github.com/Mbed-TLS/mbedtls
https://github.com/SVF-tools/SVF
https://github.com/SVF-tools/SVF



	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Static Pointer Analysis
	2.2 Precision Challenges in Static Pointer Analysis

	3 Invariant-guided Optimistic Analysis
	4 Kaleidoscope Design
	4.1 Pointer Analysis Introspection
	4.2 Arbitrary Pointer Arithmetic
	4.3 Positive Weight Cycles in the Constraint Graph
	4.4 Context Sensitivity

	5 Case Study: Control Flow Integrity
	6 Implementation
	7 Evaluation
	7.1 Precision Improvements 
	7.2 Case Study: Control Flow Integrity
	7.3 Likely Invariant Validation through Fuzzing

	8 Discussion
	9 Related Work
	10 Conclusion
	11 Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results

	References

