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ABSTRACT: In this paper, we present differentiable solvent-
accessible surface area (dSASA), an exact geometric method to
calculate SASA analytically along with atomic derivatives on GPUs.
The atoms in a molecule are first assigned to tetrahedra in groups
of four atoms by Delaunay tetrahedralization adapted for efficient
GPU implementation, and the SASA values for atoms and
molecules are calculated based on the tetrahedralization
information and inclusion−exclusion method. The SASA values
from the numerical icosahedral-based method can be reproduced
with >98% accuracy for both proteins and RNAs. Having been
implemented on GPUs and incorporated into AMBER, we can
apply dSASA to implicit solvent molecular dynamics simulations
with the inclusion of this nonpolar term. The current GPU version of GB/SA simulations has been accelerated up to nearly 20-fold
compared to the CPU version, outperforming LCPO, a commonly used, fast algorithm for calculating SASA, as the system size
increases. While we focus on the accuracy of the SASA calculations for proteins and nucleic acids, we also demonstrate stable GB/SA
MD mini-protein simulations.

■ INTRODUCTION
An accurate description of the solvent environment is essential
for biomolecular modeling, as biological machines function in
an aqueous environment. The solute−solvent interactions and
the rearrangement of water molecules induce the change of
molecular shapes and the solvation free energy ΔGsol.

1

Including water molecules in explicit solvent simulations
produces more accurate simulation results at the cost of
redundant calculation for the pairwise interactions between
water molecules, while the friction induced by collisions with
water molecules can further slow down the conformational
sampling of the solute. In implicit solvent models, the solvent
is treated as a continuum, and the system is simulated without
explicit water molecules. The major advantage of implicit
solvent models is the ability to explore the conformational
space more efficiently, which can find applications in protein
folding studies and structure prediction,2,3 solvation free-
energy calculation using Poisson−Boltzmann surface area
(PBSA)4 or generalized Born surface area (GBSA),5 and
binding free-energy calculation using molecular mechanics
Poisson−Boltzmann surface area (MM-PBSA).6

In implicit solvent modeling, the solvation free energy can be
decomposed into polar and nonpolar contributions7 and the
expression is

G G G G G Gsol pol cav vdW pol np= + + = +

where the polar term ΔGpol gives the difference between the
work of uncharging the solute in vacuum and the work of
charging the solute in solvent, ΔGcav denotes the accom-
modation of cavity in the solvent for solute, and ΔGvdW
represents the van der Waals interactions between the solute
and solvent. The Poisson−Boltzmann (PB) method describes
the electrostatic potential in solution for a given set of
boundary conditions and determines the effect of electrostatic
interactions on the molecules8 and can be used to compute
ΔGpol. The ΔGcav and ΔGvdW are usually combined into one
nonpolar term ΔGnp. It is considered to be proportional to the
number of atoms in the solute having direct contact with
solvent molecules and can be estimated in terms of the solvent-
accessible surface area (SASA).9 Although it has been pointed
out that incorporation of the volume term into the
computation can provide a more complete description of the
nonpolar contribution,10,11 the surface area-based methods can
still have good performance in the prediction of the native-like
conformations of proteins and the estimation of ligand-binding
affinities.12
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In implicit solvent molecular dynamics (MD) simulations,
most of the effort has been devoted to the development of the
dominant polar part. Due to the complexity of solving the PB
equation, the generalized Born (GB) method5 was proposed to
approximate the solution of the PB equation with simple
functional forms. The recent improvement of fast GB models
for proteins13−15 and nucleic acids16 and its implementation on
graphics processing units (GPUs)17 helped GB achieve
popularity in recent years. The main goal of a GB model is
to achieve an agreement of electrostatic free energies with the
PB approach, which can be achieved by parametrizing the GB
screening parameters to provide a better match of the effective
radii to those from the reference method. In particular, the
pairwise decomposition version of GB18 is ideal for
implementation on GPU with parallel computing. Although
the performance of GB is improving, poor folding stabilities
were observed in protein folding studies,2 structure predic-
tions,3 and de novo designed peptides with high helicity.19 As
hypothesized in,2 the neglected nonpolar solvation term might
result in instability; this was supported by improved fold
stability when an approximate SASA-based nonpolar term was
added to the same GB model.20 As shown in that paper, the
inclusion of the nonpolar term in the GB/SA MD simulations
can produce more stable trajectories and better simulated
melting temperatures than comparable simulations with an
identical setup other than the SASA term.
There exist several methods to calculate the molecular

surface area on CPUs and GPUs. However, only a few of them
can be applied to MD simulations, because most of them lack
reliable derivatives for atoms. The solvent-accessible surface
was proposed by Lee and Richards.21 A numerical
implementation by Connolly22 is computationally expensive
and lacks analytical derivatives. The derivatives are unreliable
or unavailable in other methods, such as grid based, neighbor-
counting, or machine learning.23 The approximation methods
on GPU have similar issues.24,25 In the CHARMM software,
GBMV2/SA26 can reproduce the molecular surface and has
been implemented on GPUs.27 However, the computation is
based on grid points, so lower resolution of the grids may
generate less reliable results while higher resolution results in
slower simulation speed. The first available method for
approximating the surface area along with derivatives in
AMBER is LCPO,28 which is able to estimate SASA based on
the neighbors of atoms. As the MD simulations in AMBER are
now primarily on GPUs,17,29 the data transfer between CPU
and GPU deteriorates the performance because LCPO is
implemented only on CPUs. Recently, another approximate
pairwise method with a faster speed (up to 30 times faster),
called the pairwise approximation of SASA (pwSASA), was
proposed and it achieved a comparable accuracy to LCPO
according to the testing of proteins.20 The main purpose of
pwSASA was to investigate the impact of the nonpolar term on
the MD simulations of proteins with a simple and fast pairwise
approximation suitable for running entirely on GPUs. The
simple form of the functions provided faster simulation speed
and did prove the significance of the nonpolar term in the
simulations. However, the computed SASA values had various
correlation coefficients from 0.6 to 0.9 compared with the
numerical computation for a number of proteins, which is
partly because the higher order interactions were ignored.
Furthermore, pwSASA is highly empirical, and the parameters
were trained only for the specific local atomic environments
found in amino acids (such as hybridization and the identity of

bound atoms). Thus, in addition to relatively low accuracy on
proteins, pwSASA cannot be used in simulations of more
diverse systems such as those including modified amino acids,
small molecule ligands, nucleic acids, or glycans, further
limiting its suitability.
As every atom in a molecule can be represented by a sphere,

the surface areas have also been studied by computational
geometry methods. One reliable and accurate method was
developed based on the Alpha Complex construction30 by
which the geometric descriptors of molecules can be computed
through union of balls. The Alpha Complex is obtained with
the atomic coordinates and radii information and can be
applied to decompose the space into small segments through
which the surface areas are computed by using the Gauss−
Bonnet theorem31 or inclusion−exclusion formulas.32−34

Recently, the extension to other geometric measures, such as
volumes, mean, and Gaussian curvatures, was proposed35 in
which the parallel implementation can achieve speed improve-
ment over the serial version. However, the full implementation
of such a method on GPUs is still unavailable because each
step in the method requires substantial effort to utilize the
parallel computing property to improve performance.
Here, we present differentiable solvent-accessible surface

area (dSASA), a new method to calculate SASA and its
derivatives with respect to atomic coordinates using the Alpha
Complex theory and inclusion−exclusion method. This fully
analytical and accurate algorithm was implemented on GPUs
and incorporated into AMBER software. The basic background
and the procedures employed in the method are first shown.
The results for the assessment of the method are given next:
the accuracy of estimation is examined by several protein
systems with diverse topologies, the speed of the GPU version
in GB/SA simulations is compared with the CPU version and
other methods, and the performance is demonstrated by
including this nonpolar term in GB/SA simulations on
proteins. However, we caution readers that good practice in
force-field development involves isolation and validation of the
individual components, as done here. Deviations from
experimental behavior can arise from inaccuracy in any of
the multiple components (solute force field, polar solvation
term, and nonpolar term). Likewise, a good match to the
experiment can be obtained from the fortuitous cancellation of
error. For this reason, we show that the dSASA term performs
well in MD simulations, which verifies the efficient algorithm
implementation, but our main focus remains on validating the
SASA accuracy.

■ METHODS
Theory and Estimations for Nonpolar Solvation. In

the implicit solvent model, the nonpolar solvation term is
usually SASA-based.5 The free energy is proposed to be
proportional to SASA with a surface tension parameter (γ):
ΔGnp = γSASA. The surface tensions are assumed to be
identical for all atoms.
The relatively accurate SASA values can be calculated by the

ICOSA numerical method36 (gbsa = 2 in AMBER), in which
starting from an icosahedron, a water probe with radius 1.4 Å is
recursively rolled on the van der Waals surface of the molecule.
The implementation of this method in current AMBER MD
simulations is unavailable because of the absence of atomic
forces. The linear combinations of pairwise overlaps (LCPO;
gbsa = 1 in AMBER) algorithm is the first stable algorithm
used in GB/SA MD simulations in AMBER. The neighbor list
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of a central atom is used to subtract the pairwise overlapping
from its isolated sphere areas, which results in the computation
complexity O(N2), where N is the total number of solute
atoms, so it will slow down quadratically as the size of the
molecule increases. In the GPU version of GB/SA MD with
this method, the data transfer between CPU and GPU
decelerates the simulations as its implementation is CPU/GPU
hybrid. The pwSASA (gbsa = 3 in AMBER)20 is the recently
developed algorithm to calculate SASA that is suitable for
implementing on GPUs. The idea is similar to LCPO but only
considers the interactions between two atoms, which achieves
a faster speed but results in an approximate SASA. The
parameters for the atom types are trained exclusively on
standard amino acids, so the application to other systems, such
as nucleic acids or small molecules, is unavailable.
dSASA: An Analytical Method for SASA. Here, we

introduce dSASA, a geometric method (gbsa = 4 in AMBER)
to compute SASA. As has been explored in 28 and 37, to be
consistent with other methods, we assume that the heavy
atoms in molecules can have a good approximation to the
molecular SASA, reducing computational cost substantially.
The atomic radii for four common elements (C, 1.7 Å; O, 1.5
Å; N, 1.55 Å; S, 1.8 Å) are used in ICOSA, pwSASA, and
dSASA, while LCPO uses different radii (C, 1.7 Å; O, 1.6 Å; N,
1.65 Å; S, 1.9 Å). Every atom can be represented by a weighted
point pi′ = (pi,di) in the point set 3 × , which contains
the 3D coordinates pi in space and one-point weight di. The
radius of the water probe is set to 1.4 Å, and the weight
d (atom radius 1.4)i i

2= _ + . Here, we present the key steps,
while a complete description of the analytical development of
the method is given in refs 33 and 34. The method has three
main steps, and the depiction of the method is shown in Figure
1.

Step 1. Calculate the 3D weighted Delaunay tetrahedraliza-
tion (wDT) of all points through which the points are assigned
into tetrahedra. This step has computation complexity O(N log
N) and is the dominant part of the method.
Step 2. Create and classify the dual complex which

denotes the possible interactions among close atoms. The

complex contains the lists of simplices, such as the vertices
(the atoms), edges (overlap between two atoms), triangles
(overlap among three atoms), and tetrahedra (overlap among
four atoms) from the tetrahedralization. These simplices are
then filtered and classified into interior and exterior (denoted
by ) based on their connection information.
Step 3. Compute the surface areas using Laguerre

intersection cells and the inclusion−exclusion method based
on the exterior simplices .
In the following, we show the process to compute the atomic

SASA based on the exterior simplices because only the
atoms having direct contact with the solvent contribute to the
surface areas. The simplices have been classified into interior
and exterior in Step 2. The Laguerre diagram of the point set is
conjugate to the wDT. The space can be decomposed into
cells by the conjugated Laguerre diagram as shown in Figure 1.
The Laguerre cell for a weighted point (atom) pi′ is defined by

L x p x d p x d

p

: ,i i i j j

j

3 2 2= { | | | |

}

Every weighted point can also be treated as a ball
B x p x d: 0i i i

3 2= { | | }, and the union of these
balls B = ∪Bi forms the space filling model of . As shown in
Figure 1, the Laguerre cells of exterior atoms can be
unbounded or larger than the real size of the atoms, and
then a more realistic representation for an atom is given by the
Laguerre-intersection cell, the intersection part of the Laguerre
cell, and the ball: LIi = Li∩Bi.
The boundary area of the Laguerre intersection part LIi of an

exterior atom is the SASA value surf(LI )i
i= .

Suppose there are k points in a subset T . The number
of points in T is |T| = k and the centers of points are denoted
by T′. The convex hull (conv) of points in T′ is written as σT,
and the term ST is the surface area of the intersection of the
balls in T. By applying the inclusion−exclusion method shown
in Figure 2, the SASA of the molecule is

c S k( 1) , 1, 2, 3k
T T

1

T

= =+

The coefficients cT are given by the corresponding simplices.
When |T| = 1, i.e., a vertex vi: cT = ΩT is the fraction of the ball
i outside the tetrahedra in . ΩT is the normalized outer solid
angle subtended by the union of tetrahedra in containing vi.
When |T| = 2, i.e., an edge eij: cT = ΦT is the normalized outer
dihedral angle of the union of tetrahedra in which contain
the edge eij. When |T| = 3, i.e., a triangle tijk: cT = 1 or 0.5 is the
fraction of ST that is outside the union of tetrahedra in .
Here, vi = pi, eij = conv({pi,pj}), and tijk = conv({pi,pj,pk}).
The contribution of an individual atom pi′ to the molecular

surface area is

S S c Si
i i

i

e
ij ij

i

t
ijk ijk

i( ) ( ) ( )

ij ijk

= +
(1)

where ST(i) is the contribution of ST to i, and i
n i

1 == .
Then, the corresponding derivative for the points can be

obtained on the basis of the atomic surface area with respect to
the atomic coordinates in the molecule as

Figure 1. Depiction of the method in 2D. Every solid circle is the
expanded atom including the water probe, and black points show the
center of atoms. The dashed black lines denote part of the
tetrahedralization of the molecule. The atoms in green and blue
(such as p1 and p2) are exterior, and the gray atom p3 is interior. The
boundary of Laguerre cells of atoms is shown in solid red lines, and
the exterior boundary of Laguerre cells of molecules in the solvent is
represented by the dashed red curves which correspond to SASA.
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S S S

c S

( )i
i i

i

e
ij ij

i
ij ij

i

t
ijk ijk

i

( ) ( ) ( )

( )

ij

ijk

= +

+
(2)

The terms in the equations are calculated as follows. When
|T| = 1, ST(i) = 4πdi. Let 1 be the set of tetrahedra in to which
the point pi′ belongs to. For I 1, define ωI as the
normalized inner solid angle subtended by the tetrahedron ζI
from the point pi′. Then

1 , with the derivativeT T
I

T T
I

I I1 1

= =

(3)

The normalized inner solid angle, ωI, of a tetrahedron
pipjpkpl subtended by the vectors a = pj − pi, b = pk − pi, and c
= pl − pi is shown in the left of Figure 3 and given by the
equation

abc c b a
a b c

a b a c b c
1

2
arctan

( )
( ) ( ) ( )

I i
k
jjjj

y
{
zzzz= | · × |

+ · + · + ·

where a = |a| is the length of a and likewise for b and c.
When |T| = 2, the intersection of two atoms pi′ and pj′ is

shown in Figure 2. S d h2T
i

i i
( ) = . Let 2 be the set of

tetrahedra in containing the edge σT. For I 2, define ϕI

as the normalized inner dihedral angle of ζI along σT. Then

1T T
I

I 2

=

The normalized inner dihedral angle between planes pipjpk
and pipjpl with normals nk and nl is shown in the left of Figure
3 and given by

n n

n n

n n

arccos( )
2

,

with
( )

2 1 ( )

k l

k l

k l

I

I
2

= ·

= ·
· (4)

Then, the derivative terms for eq 2 are

S d h2 ,T
i

i i T
( )

T
I

I 2

= =
(5)

When |T| = 3, consider T = {pi′,pj′,pk′}. The surface area of
the common intersection of the three balls can be written as a
weighted sum of the surface areas of the single and double
intersections. If pi′,pj′, and pk′ have a nonempty intersection then
there are two points in common with the surfaces of all three
balls, shown in the right of Figure 3. Denote one of the two
points x, define p x( , 0)x

3= × , and let Tx =
{pi′,pj′,pk′,px′}. Let S2x be the set of edges defined by σT dx

and S1x

be the set of vertices in σTdx
. The atomic surface area of pi′ from

the intersection of pi′,pj′, and pk′ is given by

S S S
1
2 T

i
ij
x

ij
i

ik
x

ik
i

i
x

i
x( ) ( ) ( )x x= +

(6)

where Φij
x is the normalized dihedral angle of σTdx

along the
edge σij. Ωi

x is the normalized solid angle of σT dx
subtended from

pi and similarly for other combinations i, j, and k. The
derivative of this term is

S S S S S1
2 T

i
ij
x

ij
i

ij
x

ij
i

ik
x

ik
i

ik
x

ik
i

i
x

i
x( ) ( ) ( ) ( ) ( )x x x x= + + +

(7)

By substituting eqs 3, 4, 5, 6, and 7 into eqs 1 and 2, we can
obtain the surface area and the derivative for every atom. More
details of the description and the equations can be found in
refs 33 and 34. However, the atomic derivatives may become
discontinuous when atoms are approaching. Through detailed
analysis in ref 33, it can be seen that the most common type of
discontinuities occur when two atoms become externally
tangent. We examine here the simplest case where only two
atoms with extended radii ri = 2.9 and rj = 3.1 Å are considered
to show the possible singularity in the calculation. The
changing process of the SASA values and the atomic
derivatives is given in Figure 4. In the left, the summation of
SASA values is continuous as two atoms are approaching from
a long distance, and the minimal value occurs when two atoms
are internally tangent. In the right, the magnitude of the atomic
derivatives has a leap when two atoms are externally tangential,
at which the singularity occurs. As investigated in ref 33, the
singularity rarely happens when the solvent radius is 1.4 Å. In
the implementation, we need one threshold value ϵ to
determine the external tangency if ||pi − pj| − (ri + rj)| < ϵ.
When ϵ = 10−6, the external tangency was not detected after
simulating a few systems for thousands of steps. When ϵ =

Figure 2. Inclusion−exclusion process of pi. The red circle denotes
the standalone ball Si of pi; the shaded region indicates the
intersection Sij and Sik with pj and pk; and the small red region is
the intersection of three atoms Sijk.

Figure 3. Left: Tetrahedron formed by points pi, pj, pk, and pl. Right:
Center x of the intersection of three balls and the resulting
tetrahedron.
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10−3, one such case may occur after dozens of simulation steps.
On the other hand, the magnitude of the leap in the atomic
derivatives is less than 20 Å2 and the surface tension is usually
less than 0.01 kcal/(mol·Å2), so the impact of such singularity
is insignificant compared to the overall forces for exterior
atoms whose magnitude can be more than 10 kcal/mol. Given
the small chance of happening and the tiny impact of the
singularity on the overall forces of the atoms, we can expect
that the discontinuity in SASA calculation will have a negligible
impact on the trajectories in GB/SA simulations.
Implementation of dSASA on GPUs. As the implemen-

tation of MD in AMBER has been done on GPUs,17,29 our
main concern here is to implement the method on GPUs to
speed up the calculation, making it applicable to longer time
MD simulations, so we discuss more details about the
necessary treatments on GPUs below.
Weighted Delaunay Tetrahedralization. In the wDT, all

possible connections among local points can be detected.
Based on the coordinates and weights, four local points are
assigned to a tetrahedron having the property that no other
points will be inside the circumsphere of this tetrahedron. The
wDT can be sequentially computed on CPUs with the
complexity O(N log N). One parallel algorithm on GPUs to
generate exact wDT for a large data set remains a challenge.
The typical GPU implementation of wDT often obtains a near-
Delaunay tetrahedralization followed by transformation to
CPU to generate the valid wDT. However, an algorithm
gReg3D,38 which is able to compute the exact wDT on GPUs,
was implemented a few years ago. In the algorithm, all points
are first included in a cube with an appropriate size, and next
the points will be assigned to smaller cubes. The local
tetrahedralization for these small cubes is calculated in parallel,
followed by checking the consistency and applying necessary
modifications to achieve the final wDT. The largest size of the
initial cube in this algorithm is 512, so the point set with a
greater size will be rescaled to fit into the cube, which may
introduce a few errors. As the SARS-CoV-2 spike protein
containing nearly 4000 residues typically occupies a cube with
a size of 256, this algorithm can compute an exact wDT for
proteins with thousands of residues on GPUs. As shown in
Figure 1, the black points are the center of atoms and dashed
lines connecting black points denote the edges in the
tetrahedralization. The purpose of this step is to obtain the
dual complex and the conjugated Laguerre diagram. In this
diagram, every point is represented by a cell enclosed by the

red solid lines and dashed curves; then, the surface area can be
calculated with such information.

Extraction of Exterior Simplices and Calculation of
Surface Areas. The information on close atoms in the
tetrahedra has been achieved in the wDT above. However,
some unrealistic connections and the interior contacts will not
have a contribution to surface areas. Then, we need to extract
the exterior simplices containing the feasible vertices, edges,
and triangles along with the connections among them, which
will finally be used to calculate SASA. The extraction of
simplices on CPUs is serial and cannot be implemented on
GPUs directly. Here, we provide more details of the extraction
of simplices on GPUs.
We first need to create lists of unique triangles, edges, and

vertices with connection information. Take one tetrahedron as
an example. It contains 4 triangles as faces, 6 edges, and 4
vertices. One element in the list of triangles contains the
information on three vertices and the tetrahedra it belongs to,
one edge element contains the information on two vertices and
the triangles and tetrahedra it is in, while one vertex element
has the information on the associated edges and tetrahedra.
The exported information from gReg3D provides the vertex

indices of all tetrahedra, so we can pull out all information on
edges and triangles in tetrahedra by taking advantage of the
parallelism on GPUs. One list of all possible triangles is
created, and every element has three vertices and the
associated tetrahedra. The list of all possible edges is
constructed with each element containing two vertices and
the associated tetrahedra. Suppose there are N tetrahedra, then
4N possible triangle elements and 6N possible edge elements
are in the lists, respectively. However, some duplicate elements
need to be filtered out to create lists of unique elements. Take
the list of triangles as an example shown in Figure 5. We first
perform lexical sorting for the list of triangles by the first three
indices, bringing the same triangles next to each other. Next,
with parallel computing, we can identify the number of
associated tetrahedra for a triangle. One triangle can belong to
at most two tetrahedra. In the following assignment, every
element will check the three vertices of the next element in the
list, if three vertices are identical, then we will assign “1” to the
newly created array “idxTri”, which indicates that the triangle is
duplicate, otherwise we assign “0”. We then can identify the
unique triangle elements in the list and record the indices in
one array “Tri”: a “1” in “idxTri” is a new element, and the
second “0” in two consecutive “0”s indicates a new element as

Figure 4. Trend of SASA and the magnitude of atomic derivatives as the distance of two atomic centers is changing. The x-axis shows the distance
between the atomic centers, decreasing to the right. The summation of SASA values is on the left, while the atomic derivatives are on the right.
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well. Now we have the indices for all unique triangles and the
number of associated tetrahedra, and then we can create the
data structure “TriList” for these triangles. When creating
triangles, we extract a list of edges and assign the associated
triangle indices to this new list, which will provide partial
information to edges. Following the similar process above, we
can create lists of unique edges and unique vertices,
respectively.
With the lists for vertices, edges, and triangles, we next can

classify them into interior and exterior and record the indices
of exterior simplices. The basic rule is the triangle with at most
one associated tetrahedron is exterior, and one edge is exterior
only if its two vertices are both exterior. As shown in Figure 1,
the atoms in green and blue are exterior while the gray atom p3
is interior whose SASA value will be 0; the edge p1p2 is exterior
and the edges p1p3 and p2p3 are interior. For a molecule with
1700 atoms, the numbers of tetrahedra, triangles, and edges are
more than 11,200, 22,600, and 13,000, respectively. These

simplices can be independently implemented in parallel on a
GPU to speed up the classification. Given the lists of exterior
vertices, edges, and triangles, we then can calculate atomic
surface areas and gradients by eqs 1 and 2 in parallel and assign
the values to individual atoms.

Simulated Protein Systems and RNA Systems. Trp-
cage variant Tc5b (PDB code, 1L2Y39) has 20 residues with
the sequence NLYIQWLKDGGPSSGRPPPS, and the burial of
the hydrophobic tryptophan side chain provides a driving force
for its folding. It contains an α-helix, a 310-helix, and a C-
terminal PPII helix and the Trp indole ring is encapsulated in a
cluster of Pro rings. The structure was determined via the
NMR experiment.
Homeodomain variant (PDB code, 2P6J40) contains 52

residues with sequence MKQWSENVEEKLKEFVKRHδQRIT
QEELHδQYAQRLGLNEEAIRQFFEEFEQRK. It is a variant
of Drosophila melanogaster engrailed homeodomain and was
solved by NMR. It consists of three α-helices connected by
loop regions.
The 14-mer cUUCGg tetraloop hairpin RNA (PDB code,

2KOC41) is an NMR-solved model and contains 14 bases with
sequence GGCACUUCGGUGCC, with the common and
highly stable UUCG loop.
The stem loop C 5‘AUA3’ triloop of brome mosaic virus

RNA (PDB code, 1ESH42) is composed of 13 bases with
sequence GGUGCAUAGCACC. It is designed to contain the
triloop AUA in the middle and is an NMR-solved model.
The CD experiments provide the melting curves for Trp-

cage39 and the melting temperature for the homeodomain
variant.40 These two protein systems were studied in ref 20 and
the ab initio folding experiments in ref 2 using the same force
field and solvent model, providing a good reference to quantify
the possible improvement by addition of a nonpolar solvation
term. As mentioned above, it is important to compare results in
which only the component of interest is varied.

Figure 5. Procedures to create the list for unique triangles.

Figure 6. Comparison of molecular SASA between the dSASA and ICOSA numerical method for the proteins. Each point represents one
conformation of the protein. The diagonal dashed lines indicate perfect agreement.
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Details of MD Simulation. In the GB and GB/SA MD
simulations, replica exchange molecular dynamics (REMD)
was applied to enhance the efficiency of sampling. The setting
for the system is as follows: all bonds involving hydrogen were
added SHAKE constraints; Langevin dynamics (ntt = 3) with 1
ps−1 collision frequency was used; the time step was 4 fs by
following the protocol in ref 43 through which the masses of
hydrogen atoms can be repartitioned; exchanges between
adjacent temperature replicas were attempted every 1 ps; and
conformations were extracted every 0.1 ns. Trp-cage and
homeodomain were parameterized by ff14SBonlysc44 with
GBNeck215 and mbondi3 radii.15 The surface tension
parameter was extensively tested in pwSASA20 for proteins
and 5, 7, and 10 cal/(mol·Å2) provided reasonable results
when compared to simulations of a model system in explicit
water. Thus, we implemented the GB/SA simulations for
LCPO, pwSASA, and dSASA with 5 or 7 cal/(mol·Å2).
For Trp-cage, two production runs starting from unfolded

and the first NMR structure were simulated for 1.0 μs in GB,
LCPO, pwSASA, and dSASA, with an REMD ladder of 8
temperatures (247.7, 264.0, 281.4, 300.0, 319.8, 340.9, 363.3,
and 387.3 K). The backbone RMSD cutoff of 2.0 Å was
applied to calculate the fraction of folded. For the
homeodomain variant, two production runs starting from
extended and the first NMR structure were simulated with a
ladder of 10 temperatures (288.7, 300.0, 311.7, 323.9, 336.6,
349.8, 363.5, 377.7, 392.4, and 407.8 K) for 2.0 μs in GB and
pwSASA, and 1.0 μs for LCPO and dSASA. The backbone
RMSD cutoff of 5.0 Å was used to calculate the fraction of
folded. These cutoffs are consistent with the study in refs 2 and
20. MD simulations were not performed for the RNA systems,
since weaknesses in current RNA force fields make it
challenging to obtain stable simulations for stable hairpins
such as 2KOC even with fully explicit water.45 We therefore
restrict our analysis to the SASA accuracy for RNA.

■ RESULTS
Molecular SASA Estimation. In the test set to validate

SASA estimation, we selected eight proteins from the set of the
previously examined proteins for ab initio protein folding,2 in
which the set of proteins have diverse topologies: Trp-cage (20
residues), Fip35 (33 residues), NTL9 (39 residues), BBL (47
residues), NuG2variant (56 residues), CSPA (69 residues),
lambda repressor (80 residues), and Top7 (92 residues). An
ensemble of structures for every protein were extracted from
the protein folding trajectories in that work with an even
interval, obtaining a set of conformations with diverse atomic
and molecular SASA values. The corresponding data were
estimated for every conformation using ICOSA, LCPO, and
pwSASA and dSASA. The numerical method ICOSA can
provide more accurate SASA estimation for molecules than
LCPO and pwSASA, so we mainly compared the molecular
SASA values from dSASA with ICOSA. The results are shown
in Figure 6 and every point represents one conformation in the
trajectory. In all systems, dSASA can generate well-correlated
SASA values with ICOSA as Pearson correlation coefficients of
the linear regression are R2 = 0.98 and 0.99 and the slopes are
also close to 1. We note that this close agreement in fact
demonstrates the relative accuracy of ICOSA as compared with
our exact geometric method. However, ICOSA lacks the
derivatives needed for MD simulation.
The molecular SASA values from LCPO and pwSASA were

calculated using the same conformations and compared with
the ICOSA method. As shown in Figure 7, the discrepancy of
LCPO molecular SASA values with ICOSA values varies for
different conformations in the systems. Overall, the LCPO
tends to underestimate the values, with most of the values
falling above the perfect agreement line. The correlation
coefficients are around 0.9, but the slope and correlation are
lower than 0.9 for NTL9 and CSPA. The results became worse
with pwSASA shown in Figure 8, where a similar phenomenon

Figure 7. Comparison of molecular SASA between the LCPO and ICOSA numerical method for the proteins. Each point represents one
conformation of the protein. The diagonal dashed lines indicate perfect agreement.
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arose: the discrepancy of pwSASA molecular SASA values with
ICOSA values varies for conformations in the systems;
furthermore, all correlation coefficients are less than 0.9 and
the coefficients can be less than 0.8 for NTL9, BBL,
NuG2variant, and CSPA. This reflects on the goal of pwSASA
being speed rather than accuracy.
Both LCPO and pwSASA use pairwise overlaps, which can

be relatively faster, but the inexact calculation will lead to
inaccuracy, especially for some types of atoms. For example,
both methods occasionally produce unphysically negative
SASA values for individual atoms, while the atomic values
from dSASA are all non-negative. LCPO includes the higher-
order correction terms to account for the overlap between two
neighbors of the central atom. Then, several atom types are
defined by the environment, such as the atomic number, the
number of bonded neighbors, and the state of hybridization.
Every atom type has predefined parameters through training.

Because of less data for certain atom types, the parameter
values for these atoms may generate unexpected values, which
explains the discrepancy for the proteins above. As noticed in
ref 28, the method works better for more exposed atoms and
tends to overestimate the surface area of some buried atoms,
such as the carboxyl carbons of the amino acids Asp, Asn, Gln,
and Glu. pwSASA only considers the overlap between
neighboring pairs and is compensated by training highly
specific parameters applicable only to the atomic environments
present in standard amino acids. Even though pwSASA
introduced many additional empirical parameters, it suffers
similar problems as LCPO, likely due to weak transferability of
the pair parameters, and accounting for 3-body and higher
terms only in an average way. In fact, the pwSASA values are
not the original SASA values because they introduce an
empirical adjustment to the SASA values to compensate for a

Figure 8. Comparison of molecular SASA between the pwSASA and ICOSA numerical method for the proteins. Each point represents one
conformation of the protein. The diagonal dashed lines indicate perfect agreement.

Figure 9. Left: Performance of dSASA for various sizes of proteins on CPU and GPU. The y-axis shows the wall-clock time in hours to complete a
1 ns simulation. Right: Performance of different methods for proteins on GPU.
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systematic divergence from the numerical ICOSA calculations,
which may adversely affect the overall accuracy as well.
Speed Comparison in GB/SA MD. The original version

of dSASA was implemented on CPUs, and the transformation
to a GPU version speeds up the computation by taking
advantage of parallel computing. The program written in
CUDA was integrated into the AMBER20 version. In sander,
pmemd, or pmemd.cuda, setting the gbsa flag to 4 in the GB
suite will activate GB/SA simulations with dSASA. We first
compared the speed of GB/SA MD on GPU with CPU and
next with other methods using 10 proteins with various sizes
ranging from 10 residues to 190 residues. Four of them were
selected from above and the PDB code of the rest is given: 10
(PDB code, 5AWL), 20, 33, 52 (2P6J), 69, 92, 110 (1BYW),
130 (1E6K), 162 (2B75), and 190 (1BK7).
We benchmarked the method on the CPU Intel Platinum

8268 2.90 GHz and GPU Nvidia RTX 2080 Ti. The estimated
wall-clock time for one-step SASA calculation on CPU is from
12 ms (10 residues) to 90 ms (190 residues), while the time
trend on GPU is from 12 to 30 ms. The wall-clock time here
and below is averaged over several simulations. The speed on
CPU is comparable to the speed on GPU when the size of the
protein is small, and the speed on GPU becomes relatively
faster as the size of the protein increases. The estimated wall-
clock time in hours required to complete 1 ns GB/SA
simulation in AMBER is given in the left of Figure 9. The wall-
clock time required to finish 1 ns simulation on the CPU
increases from 0.87 h (10 residues) to 33.80 h (190 residues),
while the corresponding trend of timing on the GPU is from
0.6 to 1.87 h. When the size of the protein is small, the
improvement of GPU over CPU version is small with a
speedup of 1.44 times for 10 residues, while the speedup grows
as the size of the molecule increases to 18.07 times for 190
residues. For the system with 190 residues, we tested the
parallel version with multiple CPUs. The GPU version is still
much faster than the parallelized CPU version. The speedup of
the GPU version over the parallel version with 4, 8, and 16
CPUs is 7.6, 9.1, and 4.8, respectively.
We next compared the speed with other methods in

AMBER using the same set of systems described above. The
wall-clock time in hours needed to complete a 1 ns simulation
is provided in the right of Figure 9. The speed of pwSASA is
stable and much faster than the other two methods as it is
designed to have a fast and simple estimation with more

approximations, so we can confirm that the accuracy of the
method is at the cost of speed as LCPO and dSASA can
reproduce more accurate SASA values by the testing above. As
can be seen in Figure 9, the speed of dSASA is more stable as
the size of the system grows, while LCPO has a steeper
increasing trend when the size of the molecule becomes larger.
When the size of the system is small (10 residues), dSASA is
slower than LCPO. While the crossing point is around the size
of 69 residues and after that, dSASA starts to gain an advantage
over LCPO for 69 and 92 residues and the speedup becomes
greater for larger systems. This phenomenon fits the
computation complexity for these two methods: the
computation complexity of LCPO is O(N2) while the
complexity of dSASA is O(N log N) (the complexity of
tetrahedralization algorithm), so the system with a larger size
will have relatively better performance. Another reason is that
the GB/SA simulation with LCPO is CPU/GPU hybrid, so the
data transfer further hinders the performance. On the other
hand, pwSASA is ∼80 times faster than dSASA for small
proteins, reducing to ∼50 times for larger proteins. While
pwSASA is a pairwise method and its computation complexity
is also O(N2), however, its computation is efficiently
embedded in the overall energy computation which is of the
same order; thus pwSASA adds little to the overall computa-
tional cost.

Stability Analysis of Proteins. dSASA can estimate the
molecular SASA accurately in proteins with diverse shapes
based on the testing above. With the speedup on GPUs, it is
now possible to examine their performance in GB/SA
simulations and evaluate their effect on the stability of protein
structures. However, a comparison of the simulation results to
experiments should be done with the understanding that
deviations can arise from inaccuracy in any of the multiple
components of the model (such as the biopolymer force field
or GB model, which typically contributes more than the SASA
term). Additionally, the implicit solvation models may become
less reliable away from 300 K. Given these caveats, we
simulated two proteins with dSASA and compared the results
with experiments and GB-only and other SASA methods. The
trends in the simulations can provide useful information, albeit
with these limitations. The thermal stability profiles of the Trp-
cage and the fraction of folded on the homeodomain are
calculated from REMD at various temperatures. The temper-
ature ladder for Trp-cage contains 8 replicas (247.7−387.3 K,

Figure 10. Thermal stability profiles for Trp-cage with surface tension 5 (left) and 7 cal/(mol·Å2)(right) in GB and GB/SA simulations,
respectively, including experimental data.
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see the Methods section for the full list). The ladder for the
homeodomain has 10 replicas (288.7−407.8 K).
The default surface tension value in the AMBER GB/SA

module is 5 cal/(mol·Å2)4 and the recommended value is 7
cal/(mol·Å2)5 for pwSASA.20 For the Trp-cage, we tested
surface tension values of 5 and 7 to examine the performance
of the method. For the homeodomain, we only used the value
7, which can produce more near-native states in the
trajectories.
The thermal stability profiles of Trp-cage with surface

tension 5 and 7 cal/(mol·Å2) were first computed and the
fractions of the near-native conformations are given in Figure
10 for all methods. The left shows the results with a surface
tension of 5 cal/(mol·Å2), while the right shows the results
with a surface tension of 7 cal/(mol·Å2). With a surface tension
of 5, all three methods incorporating the nonpolar term
achieve better agreement with experiments by creating more
stable thermal stability profiles at various temperatures. At 300
K, simulations using dSASA generate ∼75% fraction of folded
states, while other methods with the nonpolar term and
experimental results are ∼80% and the GB-only method leads
to ∼50%. When the temperature is greater than 310 K, the
fraction of folded from dSASA is still slightly smaller than other
methods, but dSASA can produce closer results to the
experiments. The predicted melting temperature Tm is 316.8
K and the experimental result is around 317 K, which is better
than the GB-only (predicted Tm is around 300 K) and other
methods (predicted Tm is greater than 320 K for LCPO and
pwSASA). Moreover, it is expected that a larger surface tension
can generate more native-like conformations through which we
can demonstrate that the nonpolar term does not disrupt the
system. As shown on the right of Figure 10, all three methods
can generate more native-like structures with a surface tension
of 7 cal/(mol·Å2).

To show the extent of dynamics and variation in sampled
RMSD, we provide the detailed trajectories at several
temperatures for Trp-cage starting from extended and native
states with surface tension 5 cal/(mol·Å2) in the Supporting
Information.
For the homeodomain variant, we first carried out REMD

with surface tension 5 cal/(mol·Å2) using pwSASA for 2 μs,
but we noticed that the fraction of folded was far from the
experimental results at higher temperatures. The experimen-
tally measured Tm is greater than 372 K, so we expect that a
larger surface tension can achieve better agreement with
experiments. We then simulated a surface tension of 7 cal/
(mol·Å2) for all GB/SA methods. All three methods with the
nonpolar term can improve the fraction of folded at various
temperatures compared to the GB-only method. The fractions
of native-like starting from native and unfolded states at
selected temperatures are shown in Figure 11. Since the
experimental Tm is greater than 372 K, we expect that the
system will not collapse at high temperatures. The two more
accurate SASA methods, LCPO and dSASA, produce more
native-like conformations at higher temperatures, as shown in
Figure 11. Moreover, dSASA generated more native-like
conformations than LCPO at various temperatures, demon-
strating that our method can have a better effect on stabilizing
the system. The detailed trajectories of the homeodomain at
selected temperatures starting from extended and native states
with surface tension 7 cal/(mol·Å2) are given in the Supporting
Information. Furthermore, at the temperature of 300 K, the
difference between the native-like fractions of the simulations
starting from native and extended is around 20% for dSASA
and LCPO after 500 ns simulations, while the difference is
around 40% for GB and pwSASA even after 1000 ns
simulations, indicating that the inclusion of an accurate
SASA term might lead to improved sampling and faster
convergence (or conversely, that the SASA approximations

Figure 11. Fraction of native-like structures for the homeodomain starting from native (solid lines) and extended (dashed lines) at 5 selected
temperatures. Top left: dSASA; top right: LCPO; bottom left: pwSASA; and bottom right: GB-only method.
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may lead to increased kinetic traps). The improved perform-
ance from dSASA still has variance from the experimental
results; for example, the fraction of the native-like con-
formations at 377.7 K is around 35% while it is 50% in the
experiment. Such discrepancy may come from limitations of
the SASA-based nonpolar term, or from the force field and the
polar GB term; comparison of simulation results to the
experiment typically does not reveal which component is
responsible, and further model system development is needed.
Performance on RNA Systems. Another advantage of

dSASA over pwSASA is that it can be applied to other types of
systems such as nucleic acids or small-molecule ligands because
only the radii of the atoms are considered without defining
diverse atom types. Here, we test this aspect using two RNA
systems, 2KOC and 1ESH, and compare the molecular SASA
values with ICOSA and other methods to see if the excellent
performance on proteins can be transferred to other
biopolymers. Simulation results for RNA are not presented
in detail, since accurate force fields and implicit solvent models
for RNA are still a matter of active research.45,46

To validate the SASA estimation, we generated alternate
conformations for these RNA systems with the GB-only
method for 1 μs and extracted 104 conformations for each
system, respectively. The comparison of the molecular SASA
values between all methods is shown in Figure 12. dSASA can
reproduce SASA values from ICOSA with more than 98%
accuracy for both systems, while LCPO and pwSASA produced
divergent results for the two systems, and they had an overall
underestimation of the SASA values. The SASA estimates from
pwSASA have large discrepancy from the ICOSA method,
likely because it was trained exclusively on protein data so that
the parameters do not accurately model the specific atom types
and local environments present in RNA. Overall, the results

confirm the expected outcome that dSASA accuracy is
transferable across diverse molecular systems.

■ CONCLUSIONS
In this work, we present dSASA, an analytical SASA evaluation
method for molecules, and its implementation on GPUs. In
this approach, the weighted Delaunay tetrahedralization is first
computed with the atomic coordinates and radii. Next, the
atomic and molecular SASA values are estimated using the
inclusion−exclusion method based on exterior simplices from
tetrahedralization, resulting in a more accurate estimation than
LCPO and pwSASA in reproducing numerical ICOSA SASA
values. The pretrained parameters for atoms in LCPO and
pwSASA can speed up the calculation, but these parameters
can have low transferability. This is confirmed by the
comparison of computed molecular SASA values, which for
these approximate methods had smaller correlation coefficients
with the values from the ICOSA method, such as in the protein
systems CSPA and NuG2variant and RNAs. In contrast,
estimation from dSASA can reproduce ICOSA values with
correlation coefficients greater than 98%. Moreover, the
current GPU version speeds up the calculation substantially
compared with the CPU version, making it applicable for
longer GB/SA MD simulations, especially for larger systems.
The gain of speed arises from the complexity of the algorithm
itself which will scale well for larger systems and from the full
implementation on GPU devices removing the data transfer
with CPUs. dSASA has a stable trend of speed as the size of
molecules increases, but it is still relatively slower than the
highly approximate pwSASA. However, dSASA started to
outperform LCPO when the system contains around 70
residues, and the performance for larger molecules would be
more stable than LCPO because the computation in LCPO is

Figure 12. Comparison of molecular SASA values from various methods; each point represents one conformation of the RNA. The first row is for
2KOC and the second is for 1ESH. The diagonal dashed lines indicate perfect agreement.
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pairwise and its implementation is CPU/GPU hybrid in
AMBER.
In the GB/SA simulations, two proteins (Trp-cage and

homeodomain) were simulated and compared with other
methods and experimental results. dSASA achieved a
comparable performance with LCPO and pwSASA on the
small protein, and the performance became better for the
larger system. The simulated melting curve with the nonpolar
term for the Trp-cage was more consistent with the
experimental measures compared with that without the
nonpolar term. In the homeodomain variant, the melting
temperature is greater than 372 K so we expect that the system
can maintain some amount of native-like conformations at
higher temperatures. The simulations generated more
extended conformations with other methods at high temper-
atures, while dSASA can produce more native-like conforma-
tions in the trajectories, which is closer to the experimental
data. However, these comparisons to experiments must be
considered in the context of the other force-field components
as well.
As the program has been rigorously examined, we anticipate

to extend its applications to other functions in the AMBER
software, such as postprocessing of the trajectories in MM-
PBSA or MM-GBSA. The calculation in dSASA is geometry-
based, obtaining accurate results with the provided atomic
coordinates and radii. Therefore, it can be used for diverse
types of systems without restrictions, such as the simulations of
larger proteins, protein−ligand complexes, and protein−
nucleic acids complexes. One ns GB/SA simulation for 200-
residue proteins with dSASA takes around 2 h. Even though it
is slower than pwSASA, the accuracy of the method will allow
us to explore the impact of the nonpolar term on simulations
in the future. Given the accuracy of dSASA, the calculation of
atomic and molecular SASA values can be benchmark data set
for the training of the parameters in the pwSASA approach for
RNAs in the future, which will combine the advantage of its
speed on GPUs and the accurate calculation from dSASA. The
SASA is certainly an approximation to nonpolar solvation, but
many studies have shown that including it improves agreement
with the experiment for things like protein stability or binding
affinities.12 In addition, dSASA, a more accurate SASA with
derivatives implemented on GPUs, will also enable fast polar
solvation methods for MD. Furthermore, the calculation of
SASA is based on the diagram of Laguerre intersection cells, so
it can be easily extended to the computation of molecular
volumes along with the corresponding atomic derivatives.
Inclusion of the volume term provides a more complete
description for the nonpolar solvation term. With the volume
derivatives, we can further examine the effect of the term on
the stability of molecules in the MD simulations. Moreover,
the current algorithm being used for weighted Delaunay
tetrahedralization, gReg3D, is designed to work on a set of
random points, and the size of the workspace depends on the
distribution of points in the workspace. As it consumes nearly
70% of the wall-clock time of our surface area calculation,
improvement on this algorithm will further speed up the
simulations. The program dSASA written in CUDA will be
freely available from the authors.
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(45) Mráziková, K.; Mlyńsky,́ V.; Kührová, P.; Pokorná, P.; Kruse,
H.; Krepl, M.; Otyepka, M.; Banás,̌ P.; Šponer, J. UUCG RNA
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