2024 4th Interdisciplinary Conference on Electrics and Computer (INTCEC) | 979-8-3503-4945-0/24/$31.00 ©2024 IEEE | DOI: 10.1109/INTCEC61833.2024.10603285

4. Interdisciplinary Conference on Electrics and Computer (INTCEC 2024)
11-13 June 2024, Chicago-USA

Just Enough Software Engineering for Domain
Scientists in Research Software Development

Melody L. Hammel
Department of Computer Science
Ball State University
Muncie, IN 47306, USA
mlhammel @bsu.edu

Abstract—For domain science researchers, software frequently
acts as a tool to accelerate and enhance their research, opening
up possibilities that were previously unimaginable. Often cases,
it is the domain scientists who know about programming that
take the task of software development. Lacking adequate training
in software engineering, software development can become a
daunting challenge. Thus, we present in this paper some widely-
adopted and most effective software engineering practices a
domain scientist who finds themselves developing software may
need, all in one place. From basic Git usage to software testing
and code specification, the information presented here should
help any domain scientist to develop the best software they can,
while spending as little time, effort, and money along the way as
possible. We hope this information will prove beneficial to domain
researchers involved in software development, empowering them
to improve the reliability and maintainability of well-crafted
research software.

Index Terms—software engineering, software testing, continu-
ous integration, code specifications, domain software quality

I. INTRODUCTION

Software development projects come in all different shapes
and sizes. Often, software development is done by profession-
als trained in software engineering to make the product the
best they can. However, contractual software developers can
be pricey. Domain scientists often find themselves in need of
software to serve a domain-specific or research purpose with-
out adequate funding to pay software professionals to do the
job. Thus, they must make the software themselves, without
any necessary software engineering training, and ensure the
project goes smoothly and quickly and the software turns out
good in the long run. To solve this dilemma, based on our
experience helping domain science researchers develop a non-
trivial piece of domain software [1]-[3], we present here what
we believe to be just enough knowledge and expertise from
the software engineering realm to help domain scientists with
their software development. We surveyed and include in this
paper topics on version control (Section II); software engi-
neering best practices (Section II); and testing (Section IV).

979-8-3503-4945-0/24/$31.00 ©2024 IEEE

Lan Lin
Department of Computer Science
Ball State University
Muncie, IN 47306, USA
llin4 @bsu.edu

We also discuss the importance of developer-oriented code
specifications in Section V. What we present here is by no
means an exhaustive list of considerations in domain software
development, but rather it serves as an initial stride toward
addressing the myriad of aspects that warrant attention in
developing high-quality, cost-effective, robust, reliable, and
maintainable domain software.

II. VERSION CONTROL

Long-touted by developers as a central pillar of software
development, version control is seen by many as an essential
part of any software project. Typical version control sys-
tems provide many useful benefits to any project in which
they are implemented, including recovering working versions
of projects if something breaks, tracking contributions by
different developers collaborative project, easily managing
changes made, and more. However, these systems can seem
intimidating. When working with a version control system
such as Git [4], familiarity with the command-line will help
immensely.

A. Git Basics

As of now, Git [4] is the most popular distributed version
control system out there. Other distributed (such as Mer-
curial [5]) and centralized (such as Subversion [6]) version
control systems do exist, but are rarely used in modern, main-
stream software development outside of specialized scenarios
and in maintaining legacy systems. Due to its popularity, there
are many different clients, methods, strategies and practices
for using Git. Many Git clients with GUIs and graphical
integration in most popular IDEs exist to make Git easier
to work with, but most more-experienced developers prefer
to use it in the command-line, for the most precise control
over the system and direct knowledge over every command
that is being executed, which can sometimes be hidden in the
graphical solutions.

1) Necessary Vocabulary: There is a set of basic vocabulary
used to talk about concepts in Git that must be understood by
a learner.

Authorized licensed use limited to: Ball State University. Downloaded on August 06,2024 at 17:46:59 UTC from IEEE Xplore. Restrictions apply.

« Local repository

This is all the data that Git knows about. It holds
the project’s history, all branches contained within the
project, commit messages, and information about every
version of the code that currently exists and has ever
existed. One can think of this as the “brain” of Git,
contained within the . git folder under the root directory
of your Git repository.

o Working tree

This represents your local files. The code that you write,
every part of the project that you commit, don’t commit,
ignore, stage, et cetera is included under the “working
tree.” Generally, Git commands utilize information stored
in the local repository to update your working tree
accordingly.

+ Remote repository

Your collaboration tool, where your files and changes are
stored on the Internet. It is like a local repository, but
on the cloud, and also including the current version of
your working tree. To collaborate with a team, one needs
to push commits and changes onto that repository and
pull changes teammates have made down onto their local
machine.

« Upstream

Onto or from the remote repository. For example, used as
an adverb, “push changes upstream”; used as an adjective,
“set an upstream branch to track a local one”; or, used
as a noun, “pull changes from upstream.”

2) Usage: Git’s usage is based around a system of commits.
When working in a Git repository, you can edit and save files
like usual (typically code, but no matter what is contained
with them), but the only way to truly save these changes
into both history and your local repository is to commit them.
Committing saves that change — the files’ current state at the
time of the commit — into the local repository as a snapshot
in time, attributing the committer’s name to the diff (the
changes made to the file since the last commit) and saving
a checkpoint of the file if anyone ever needs to restore it to
an older state in the future. After that, the local repository
will have a commit added into it, and you can push the new
state of the local repository and working tree upstream to the
remote repository if working collaboratively, e.g., on GitHub,
Bitbucket, or GitLab.

3) Creating a Git Repository: For all our examples,
GitHub [4] will be used, being the most popular remote
repository hosting service. To create a repository on GitHub,
you first must create an account — once registered, you must
initialize a Git repository in a directory, make the initial
commit, add a remote repository (which you must create on
GitHub, shown in Figure 1) and push your changes upstream,
setting the upstream branch to track your local branch. This
sequence is illustrated in Table 1.

4) Making Changes: After creating a Git repository in a
folder, changes can be made and written into files as usual, but
the only way to save these changes into your local repository
is to commit them. In order to commit files, they must first be

Create a new repository

A repository contains all project files, including the revision history. Already have a project repository
elsewhere? Import a repository.

Owner *

(@

Great repository names are short and memorable. Need inspiration? How about laughing-guacamole?

Repository name *

Description (optional)

‘:' Public

"= Anyone on the intemet can see this repository, You choose wha can commit,

C ﬁ Private

You choosa who can sea and commit to this repasitory.

Fig. 1. Creating a repository on GitHub

staged. Staging means that operations in Git will be applied to
them. Once staged, files can be committed. When committing,
the committer should specify a commit message to explain
what was changed in the commit. Once a commit has been
added, if a remote repository exists, the local repository will
now be one commit ahead of the remote. The change must
then be pushed onto the remote repository. Git keeps track of
the status of the local repository, which can be viewed at any
time. The commands for these tasks are shown in Table I.

5) Staying Up-to-Date: Not only is it important to make
sure your own changes are recorded and saved on the remote
repository, but for collaboration to truly take place, you must
also be able to view changes your colleagues on the same
repository have made. To do this, you must pull changes
from upstream to ensure you have the latest version of the
code to work on. Using the git pull command retrieves
information about changes in the remote repository on the
current branch and integrates them into your own local repos-
itory, updating your working tree accordingly. To only update
your local repository and not your working tree, you can use
git fetch. Fetching is useful in scenarios where you have
local changes and don’t necessarily want to unconditionally
overwrite them with a pull; fetching the changes first allows
you to view the changes that were made on the remote
repository so you can take care of your local changes before
merging the changes into your working tree.

If not pulled frequently, code on your local machine can
end up without changes that have already been made on the
remote repository. Then, the next time you attempt to push
your changes upstream, a merge commit must be made in
order to merge your commit history with the upstream commit
history, which have now diverged.

6) Merge Conflicts: If you and another developer are
working on the same file at the same time (or you forgot to
pull changes before beginning working), you may encounter
a merge conflict. This means that the remote and local
repositories have two different versions of the same file, and
Git is unable to update the working tree without overwriting
changes made by at least one commit. These can be difficult
to overcome, given Git edits the file to place lines telling the
individual to resolve the conflict where it occurred. In simple

Authorized licensed use limited to: Ball State University. Downloaded on August 06,2024 at 17:46:59 UTC from IEEE Xplore. Restrictions apply.

TABLE L.
COMMANDS TO CREATE A Git REPOSITORY, MAKE CHANGES, AND STAY UP-TO-DATE

Command Description

git init Initialize a local repository

git add <file> Stage the files for the initial commit

git commit -m <message> Commit staged file(s) with the specified message

git remote add remote <url> Add a remote repository named “remote”

git push --set-upstream remote master | Set up the remote “master” branch to track the local master branch

git push Update the state of the remote repository to the local repository’s state

git status Display the current status of the local repository

git pull Download commits from the remote repository and merge them into your
working tree

git fetch Retrieve information about the remote repository and how many changes

are upstream

scenarios, one can just remove those lines to keep both sets
of changes. However, it may end up not being so simple (and
much progress can be lost if using GUI clients that provide
the option to “accept local”).

7) Ignoring Files: Sometimes, specific files should not be
pushed to the remote repository, since they may be user- or
machine-specific, e.g., build files, environment files, virtual en-
vironments, et cetera. These files that should not be pushed to
the remote repository can be specified with a .gitignore.
This is a file either at the root of a repository or in a user’s
home directory that specifies a list of files, directories, and
patterns for Git operations to ignore. For example, when git
status is run, files specified in the . gitignore will not be
listed as changed, even if they have, and will remain unstaged
when a whole directory is staged. Thus, these files will not be
pushed to the remote repository, which removes the chance
that a user pulling changes from upstream will have their own
local configuration files replaced by another developer who
pushed theirs.

The .gitignore itself must be committed to take effect,
but an individual user can create a global .gitignore that
lives in their home directory, specifying files and patterns to
be ignored across all repositories on the user’s machine. The
benefit of this is that it does not need to be committed to the
repository, in case an individual user wants to ignore files that
they won’t need to add to all future .gitignore files. The
syntax of .gitignore is shown in Table II.

TABLE II.
gitignore EXAMPLES
Syntax Description
env.ts | Exact file name: ignores that specific file
build/ | Directory: ignores directory named “build”
*.pycC Wildcard: ignores all files ending in .pyc
Ex Comment: for organizational purposes

B. Git Advanced

The basic features that Gir provides are a good bare min-
imum. We cover here a few more we find to be most useful
in most developers’ day-to-day lives.

1) Branching: Branching is one of the main reasons Git be-
came more popular than its competitors. Other version control

systems may have branching systems, but Git’s is considered
among the easiest to use and most intuitive. Branches can be
used for many different things: protecting the master branch to
ensure it is always production-ready, avoiding frequent local-
remote merge commits when multiple people are working at
the same time, organizing work and commits, and tracking
progress on specific features according to a branching strategy
(to be discussed in Section III-B). Once a branch is created,
development can continue as normal, committing, pushing,
and pulling. When you no longer have need of a branch, it
can be merged back into the master branch, and all changes
made on that branch will be merged with the history of the
master branch. If you still want to keep the base branch around,
the changes can instead be rebased onto the current branch
to ensure all branches are up-to-date with the latest changes.
Rebasing, as opposed to merging, edits the branch’s history to
include the commits from a different branch, whereas merging
creates a new commit to add the changes in. Switching
between branches updates your working tree accordingly —
if changes were made on a branch that were not made on
another, switching to the latter will see those changes missing
from your files. A list of possible branch operations is shown
in Table III.

2) Undoing Mistakes: In most university settings, this topic
seems to be frequently left out. However, when changes are
spread across files and subtle enough that they aren’t easy to
find, Gir’s ability to turn back time can save a project on its
last legs.

Git allows three different operations to undo changes:
reverting, resetting, and restoring. Reverting refers to creating
a new commit in the history that performs the inverse of
a selected commit. For example, if a recent commit adds
four lines and removes two, the commit that reverts that
commit will add the two removed and remove the four added.
However, this can cause a merge conflict if there have been
commits made after the commit being reverted. Resetting
refers to deleting commits from history, which allows for a
mass deletion of work all at once, and thus can be rather
dangerous. Importantly, providing a commit hash to reset
removes all commits up to but not including the specified
commit. By default, this does not update the working tree
unless the option ——hard is provided. Restoring is an oper-

Authorized licensed use limited to: Ball State University. Downloaded on August 06,2024 at 17:46:59 UTC from IEEE Xplore. Restrictions apply.

TABLE IIL
BRANCH OPERATIONS

selected branch

Command Description
git branch List existing branches and highlight currently-selected branch
git checkout -b <branch-name> Create a new branch called <branch-name> with the same history as the

git switch <branch-name>

Switch to the branch called <branch-name>

git merge <branch-name>

Merge <branch-name> into the currently-selected branch

git branch -d <branch-name>

Delete <branch-name>

git push <remote>
:<branch-name>

Push deletion of <branch—name> to remote

git rebase <branch-name>

Pull commits from <branch-name> into selected branch

ation affecting only the working tree; it restores the working
tree back to the state of the most recent commit. This is
useful for getting rid of changes made since the last commit
that have yet to be committed, for example to prepare for a
pull that fixes the issues you were already working on. The
commands to perform these operations are shown in Table IV.
Anywhere a commit hash is provided can be replaced by
the HEAD " n syntax, which represents the commit n commits
ago in the log, zero indexed. So, in a commit history with
hashes £8d3118, 22£d140,c1a7480,and 1006444, with
£8d3118 being most recent and 1006444 being the oldest,
HEAD ™2 represents commit c1a7480.

3) Stashing: Rarely does anyone speak of stashing; it is
akin to a hidden art among Git enthusiasts. Stashing a change
or set of changes refers to “setting changes aside” without
committing them so you can re-apply them to your working
tree another time. It undoes all the uncommitted changes
to your working tree and saves them in something called
a stash in your local repository. This is useful if you have
uncommitted changes that aren’t ready to be committed yet but
you need to work on something else for the time being, or pull
from the remote repository, or try something else but save your
current work. However, this can quickly grow complicated,
as you can have multiple stashed changes at one time from
multiple different branches and periods of time, stash specific
files, chunks of files, et cetera.

By default, creating a stash with no extra arguments stashes
all uncommitted changes to files. This means it does not
stash untracked files (newly created files that have yet to be
committed into the local repository) by default. The stash will
be named with the latest commit at the time of its creation and
the branch it was created on. However, it is much more helpful
to give stashes descriptions so you know what you were
working on in each specific stash. Stashes can then be either
popped onto the working tree (which applies the changes from
the stash back to your working tree and simultaneously deletes
the stash) or applied to the working tree (which applies the
changes from the stash and keeps it around, in case you need
to apply those changes to multiple branches, for example). All
stash commands, when not provided any argument, default to
stashQO0, or the first stash in your list (pronounced “stash at
index zero”). Useful stash operations are shown in Table V.

4) Other Useful Commands: Git, of course, has far too
many features to list all here. We have included a list of some

more commands we find to be useful, also shown in Table VI.

e Cherry-pick Cherry-picking refers to taking individual
commits from a branch and rebasing them onto a different
branch. This can easily lead to merge conflicts, but this
can be useful for things like bug hotfixes; if a developer
fixes a bug on a branch that isn’t master but the bug still
exists on the master branch, that fix can be cherry-picked
onto the master branch to ensure users aren’t affected by
it without rebasing all of the changes from that branch
onto master before they may be ready.

o Blame Though the word has a rather strong connotation,
blame refers to the Gir feature that allows the user to
check who wrote every line of code in a file and with
which commit they did so.

e Show Sometimes, the blame of a file can become
crowded. Use this command to view what was changed
in a specific commit. Providing no argument defaults to
the most recent commit.

o Fetch Fetching changes as opposed to pulling changes
refers to updating your local repository without updating
your working tree. In essence, this pulls information
about what commits are upstream that are missing from
your local repository without merging those changes into
your local branch yet, allowing you to view what changes
have been made (if any) and clean up your working tree
accordingly (for example, stashing current changes made
to pull new ones, if they exist).

« Diff Viewing the diff between two commits means view-
ing the difference between them — changes that have been
made from one to the next. This can also be used with
no arguments to see what changes have been made to
your working tree since the last time you committed —
for example, if you come back to your repository after
a moment and forget what changes you made that you
forgot to commit.

e Log The log is a surprisingly powerful tool. Being highly
customizable to one’s needs, it can provide exactly what
information you need and nothing that you don’t if you
use it correctly. It presents precisely your needed infor-
mation, down to formatting by placing fields manually
using string interpolation or showing a graph of all the
commits and how they arrived in the current branch using
ASCII art.

Authorized licensed use limited to: Ball State University. Downloaded on August 06,2024 at 17:46:59 UTC from IEEE Xplore. Restrictions apply.

TABLE IV.
COMMANDS TO UNDO MISTAKES

Command

git revert <hash>

git reset <hash>

git reset <hash> --hard
git restore <file>

Description

Undo the commit with hash <hash>

Remove all commits up to commit with hash <hash>

Remove all commits up to <hash> and update the working tree
Restore <file> back to its state at the most recent commit

git push <remote> —-force | Push a recent reset, updating the remote commit history
TABLE V.
USEFUL stash COMMANDS
Command Description
git stash Save a new stash of all changes to files with a default name

Save a new stash with description <description>

List existing stashes

Apply changes from stash to working tree and delete stash from list
Apply changes from stash to working tree and keep stash in list
View [stash]’s diff (the changes included in the stash)

Remove [stash] from the list

Drop all stashes

Create branch <branch-name> using [stash]’s changes

git stash save <description>
git stash list

git stash pop

git stash apply

git stash show [stash]

git stash drop [stash]

git stash clear

git stash branch <branch-name>

[stash]
TABLE VI
MISCELLANOUS USEFUL COMMANDS
Command Description

Rebase <commit> onto the current branch
Display file <file> annotated with names and commit hashes in which
each line was last edited

git cherry-pick <commit>
git blame <file>

git show [commit] Display changes made in [commit]

git fetch Update the local repository from upstream without updating the working
tree

git diff View changes made to the working tree since the most recent commit

git log View the log of commits

o\

Sar: \"%s\""

git log —--pretty=format:" (%h) %an -

Print the git log with format (hash) name - time: “commit message”

git log —--oneline

Display each commit in the log on one line

git log -p

Show changes made in every commit in the log

git log —--graph

Show an ASCII-art graph of where each commit came from

commit bc34dce5407ef0662f353befof76898dc6d6abef
Author: melody <melodylynnnhagmail.com>
Date: Sun Jul 30 19:41:23 2023 -0400

worst edit ever

diff --git a/hangout_analyzer.py b/hangout_analyzer.py
index 6ec0242..f634786 100644
--- a/hangout_analyzer.py
+++ b/hangout_analyzer.py
@ -147,6 +147,8 @@ class RegularChatMessageEvent(Event):
super().__init__(obj, chat)
self.event_type = EventType.REGULAR_CHAT MESSAGE
self.segments = self.get_segments(obj["chat_message"]["message_content"]["segment"])
self.html_text_content in(self.segments)
self.unformatted_text_conten ".join(self.content["chat_message"]["message_content"]["segment"1[0]["text"])

def get_segments(self, segments):
ox = [

@) -184,10 +186,9 @@ class RegularChatMessageEvent(Event):
self.container = "<style>"+CHAT_BOX_STYLE+"</style><body>${HTML_BODY}</body>"

L_contents(self):
)

user = self.chat.us self.gaia] if self.gaia in self.chat.users else self.gaia
return f'<div class="chat-bubble"><div cla op-bar”>{user}'\
f an></d div>'
</div>{self.html_text_content}</div>"

"
<span clas

Fig. 2. A commit diff where some content was added and some was removed

III. BEST PRACTICES

Many problems in domain software development come from
poor or no application of software engineering best practices.
Though it may take time and effort to ensure these practices
are put into place, the cost to solve the problems later on would
be considerably higher as opposed to if these best practices

were followed from the start.

A. Commit Strategy

Because collaborating on code projects is based around
committing — and because one of the main problems that
can be run into is merge conflicts — it is best practice to
commit frequently and in smaller chunks. Committing changes
to multiple files at once is generally frowned upon; if you have
made changes in multiple places in the code and have yet to
commit, it is better to use git add -—p to stage files in parts
for smaller individual commits. If you commit many changes
at once, you are likely to miss changes upstream, ending
up with a merge conflict. Additionally, commits should have
descriptive commit messages so readers know exactly what
was changed with each commit. This makes it easier to tell
when a change was made without reading exact diffs. Used in
tandem with other software engineering practices, this makes
code changes easier to keep track of and makes collaboration
easier as a result.

Authorized licensed use limited to: Ball State University. Downloaded on August 06,2024 at 17:46:59 UTC from IEEE Xplore. Restrictions apply.

B. Branching Strategy

The main purpose of branching is Master Branch Protec-
tion. In general, the default branch created by Git is either
the master or main branch. This is the branch that should
always be kept production-ready; code should not end up in
this branch unless it has been thoroughly tested, linted and
reviewed, and assured to be of good quality.

To actually go about protecting the master branch in a code
repository, there must be other branches that one can write
code onto intsead of the master branch. There must be rules
for how branches should be created and used so that branches
have reasons to exist. Such we call a branching strategy —
plenty different ones exist in software engineering to serve
various purposes, but we propose that the most applicable to
most software development scenarios is feature branching.

With feature branching, a new branch is created for every
new feature that is being implemented into the software. For
example, if a software exists that pulls data from an external
server and a new caching system is to be implemented, a
branch called “cache” could be created for this feature. After it
is implemented and integrated into the software properly, the
feature branch is merged into an intermediary development
branch, where it undergoes tests and continuous integration to
ensure it is of good quality. After a few features have been
merged into the development branch and they are all ensured
to be good (likely both via automated checks and manual code
review), the development branch can be merged back into the
master branch, where continuous deployment tasks are run to
deploy the software to end-users.

But what if a bug is discovered in the master branch? In
this scenario, feature branching extends with a hotfix branch.
It is created off of the master branch when necessary to fix a
bug and merged straight back into the master and development
branches as quickly as possible. Then, if a feature branch needs
this hotfix, the master or development branch can be rebased
onto it. A possible visual demonstration of this branching
strategy is shown in Figure 3.

master

|
ool (bhoro

Oo—r

develop hotfix

feature

Fig. 3. An example of feature branching

C. Pull Requests

Since the master branch is to be protected from less-than-
quality code and features are being developed on their own

branches, we need to ensure that only code put through lots
of review is able to make it onto the master branch. For this,
we use pull requests. These function as a system of requesting
code to be merged into a different branch. Their primary
application for our branching strategy is to merge branches
containing finished features into the development branch and
for merging the development branch into the master branch.
They serve as a request to pull code from the base branch
into the destination branch. Pull requests, unlike merging with
no review, allow developers to review the changes made in a
branch and approve them or request changes before they are
merged into the destination branch. A pull request also serves
as a good place to run automatied checks and continuous
integration, putting the code through a unit test suite and a
linter to make sure there are no obvious bugs or problems. Pull
requests can be set up in GitHub (and most other online Git
repositories) to require a certain number of approvals before
they can be merged and, in that sense, are somewhat akin to
voting on a bill for code to be merged into a different branch.

D. Issue Tracking

Issue tracking, also known as card tracking on occasion, is
how bugs and feature assignments are tracked in large software
projects. It involves a system of creating issues or cards and
assigning them to different developers, using them to track,
eponymously, issues, or tasks that are still to be done on
the project. Having an issue tracking system in place means
that everyone always knows what work still needs to be done
and what work is already done on the project and, if used
diligently, allows developers to avoid the situation where two
people work on the same feature at the same time, or a feature
is not taken care of by anyone on the team. With issue tracking,
the first developer to begin work on a feature would claim the
card, so other developers check the cards and will know not
to take it. GitHub’s built-in Issues is an easy issue tracking
solution to use, but dedicated issue tracking services exist,
such as Jira [7] and Trello [8].

E. User Stories

A user story describes a use case for a software; it is a way
of describing the features of a software from the perspective
of a hypothetical user. For many, this can be an easy way
to tell when a feature is done, as once the user story can be
fulfilled in the software, that means the feature is complete.
This has the potential to be dangerous, if checks aren’t in place
to test and lint the code (among other quality control tasks).
Assuming those practices are properly followed, user stories
can be an easy way to track feature progress, and can mesh
well with issue tracking systems. Larger overarching issues
can be created for user stories as features. Many smaller issues
describe individual pieces that must be implemented as part
of those features. Example user stories typically follow the
format of “as a [profession], I want to [feature in the app] so
that I can [accomplish something].” Some example user stories
include

Authorized licensed use limited to: Ball State University. Downloaded on August 06,2024 at 17:46:59 UTC from IEEE Xplore. Restrictions apply.

e As a hydrologist, I want to automatically set up the
working directory for my model so that I can run my
simulations with less friction and effort.

o As a game master, [want to store my players’ information
in an easy-to-navigate system so that I can quickly
reference their stats when I need to.

o As a parent, I want to view cheap healthy recipes in an
online catalog so that I can have more options to cook
for my children.

® 20pen + 5Closed
Author~ Label~ Assignee~ Sort~
© As a hydrologist, | want to automatically set up the I

working directory for my model so that | can run my

simulations with less friction and effort.
enhancement

#11 opened on Apr 2 by rokolinkon

(© As a game master, | want to store my players'
information in an easy-to-navigate system so that |

can quickly reference their stats when | need to.
enhancement

#10 opened on Apr 2 by rokelinkon

Fig. 4. User stories stored using GitHublssues

FE. Clean Code

In general, clean code is a set of standards to be followed
when writing code to make it more readable, maintainable,
and easy to write and understand. However, “more readable,
maintainable, and easy” are subjective terms — what goes
into these things can vary depending on whom you ask.
For example, in Google’s standards for TypeScript, they ban
Automatic Semicolon Insertion and require all statements to
be explicitly terminated with semicolons. However, in the
TypeScript standards at the Ball State University Digital Corps,
semicolons are removed by the linter and are considered bad
practice. There are generally well-accepted standards for most
languages that are considered best practice and which one to
choose will depend on the project’s needs and its members’
preferences.

No matter what standard is being followed, there are some
basic concepts that are always applied that are language-
agonistic. They go toward making your code more readable
in any language. Good naming conventions, the Don’t Repeat
Yourself (DRY) principle, object-orientation, and more can be
applied to most modern programming languages. An example
excerpt from PEP 8 [9] is shown in Figure 5.

1) Naming Conventions: Names of objects, functions,
methods, classes, variables, types and anything else in code
that can be named should be descriptive of what the thing
is (but not too descriptive so as to make the name too
long). Generally, the rule is that things should be explicitly
defined in your code such that comments are unnecessary, and

Avoid extraneous whitespace in the following situations:
+ Immediately inside parentheses, brackets or braces:

Correct:
spam(ham[1], {eggs: 2})

Wrong:
spam(ham[1], { eggs: 2 })

» Between a trailing comma and a following close parenthesis:

Correct:
foo = (8,)

Wrong:
bar = (@8,)

» |mmediately before a comma, semicolon, or colon:

Correct:
if x == 4: print(x, y); %, v =y, %

Wrong:

if x ==4 : print({x , y) } x, y=y, x

Fig. 5. An example clean code standard

individuals reading your code shouldn’t have to read method
implementations to know what they do. An example is shown
in Figure 6.

Can you tell what this statement means?

(1)

If we look at the declarations, it becomes more clear
1=1 , ,"a",]
f = lambda a: (a)

But even our IDE has underlined one

of these to tell us it's bad—let’s fix this up
items: = [, ,ma",]
def (item:) -> None: (item)

for i in 1:

With good names (and type annotations as a bonus)
we can now read the code from before plainly

for each_item in items: (each_item)

Fig. 6. An example of good naming conventions

2) DRY: Don’t Repeat Yourself: When someone says “write
DRY code,” they’re referring to the acronym of “Don’t Repeat
Yourself” [10]. Repeated code is replaceable by functions,
variables, and classes, and refactoring repeated code helps
make code reusable without cluttering the codebase. One
defines functions to allow code to be reused, and classes
to give structure to common constructs in code. There are
many attributes of modern programming languages specifically
designed for avoiding repetition in code, so writing DRY code
is easier than ever.

Authorized licensed use limited to: Ball State University. Downloaded on August 06,2024 at 17:46:59 UTC from IEEE Xplore. Restrictions apply.

G. Object-Orientation

Object-orientation is a paradigm of programming and writ-
ing code that is “object-oriented” — that is, code that is written
to represent real-world objects. Admittedly, not everything
in code is translatable to real-world objects, so objects can
be difficult to decipher. Object-oriented code, when all its
practices are followed and found in its purest form, is designed
to be reusable. The code is written in such a way that common
functions and attributes are grouped together into structures
called objects, and common attributes are only known to
the objects they inhabit. There are a few main principles of
Object-Oriented Programming (OOP) that are considered best
practice to follow and can improve the structure of code they
are used in. First, however, some basic vocabulary should be
understood:

o Class: The abstraction of an object defining its structure,
attributes, and methods

¢ Object: The instantiation of a class with its (non-static)
attributes defined and unique to that instance

o Function: A unit of code that takes parameters and
returns a value that is not attached to any class instance

e Method: A function that is attached to an instance of a
class and typically operates on attributes of that class

« Static: A variable or method of a class that is the same
between all instances of the class and doesn’t depend on
the object being instantiated to exist

There are four key concepts of OOP that are considered
its main principles (or “pillars”). Abstraction provides one of
the fundamental ways to deal with complexity. An abstraction
focuses on the outside view of an object and separates an
object’s behavior from its implementation. Turning code from
low-level boilerplate into more readable and comprehensible
code not only helps readers, but also writers of code to avoid
repetitive work. This can be done by abstracting more complex
lower-level tasks into methods and creating variables, classes,
and structures to help group information together and give it
meaningful names. Encapsulation provides a mechanism to
hide internal implementation details from outside a module.
This means that code outside the class should not be able to
access and modify internal properties of the class. Encapsu-
lation can be achieved using private and protected attributes
and methods, common in object-oriented languages like Java
and C++. Public attributes can be accessed and modified
by any code. Protected attributes can only be accessed and
modified within the class itself and within subclasses of that
class. Private attributes can only be accessed within the class
itself. In Java, by default, attributes without access modifiers
can only be accessed within the same package. Inheritance
provides a method of reuse by subclassing. A child class (or
subclass) is created that inherits all the public and protected
properties of its parent class (or superclass), while being able
to be extended further. Finally, polymorphism supports many
implementations behind a common single interface. A function
or method operating on an object should also be able to operate
on subclass instances without knowing it — just that the object

it is operating on has the expected type.

H. Coupling and Cohesion

Coupling refers to the degree of interdependence between
modules in an object-oriented system. It represents how much
different modules are communicating with each other and
using each other’s methods and attributes. More communi-
cation and usage between modules means greater coupling,
and more difficulty of editing one without affecting the other.
Typically, in software design, high coupling is associated with
low cohesion. Cohesion refers to the degree to which code in
the same module belongs together. Low cohesion in a software
system means that pieces of the same module aren’t properly
interacting with each other or have no real reason to be
placed together (called coincidental cohesion). High cohesion
is desired and can be achieved in a number of ways, suggesting
that the question “why is this code grouped together?” can
be given a sensible answer. The highest degree of cohesion,
also called atomic, is rarely achievable and often cumbersome
to get to — functional cohesion is a good substitute and
the most common type of cohesion to strive for. Functional
cohesion refers to grouping code together that shares similar
functionality or all works together to serve a common purpose.

IV. TESTING

Testing remains one of the most effective means to ensure
the quality and reliability of a piece of software. It is much
more than just the use of the software as an end-user to verify
functionality. It involves the concept of writing code to test
other code, typically in an automated fashion to make sure
that an entire suite of software works as expected, according
to a specification of correct behavior. Test automation allows
tests to be run repeatedly without any user input. With contin-
uous integration, developers can run tests with every change
they make, constantly assuring that the changes don’t break
anything in the software. When tests are already in place for a
feature before its implementation is begun, developers can use
those tests as a benchmark for feature progress, considering
the feature “done” when all the tests for the feature pass. An
example test output with automated React [11] testing is shown
in Figure 7.

FAIL LearnMore.test.tsx
® Test suite failed to run

Jest worker encountered 4 child process exceptions, exceeding retry limi
t

Ao S]]/ /Henry-Gets-Moving-Frontend/node_modules/
jest-worker/build/workers/ChildProcessWorker. js

Test Suites: 4 failed, 3 passed, 7 total

Tests: 9 failed, 3 skipped, 1 todo, 17 passed, 30 total
Snapshots: @ total

Time: 9.969 s

Fig. 7. An example test output with automated React testing

A. Unit Testing

The lowest level of testing one starts with is unit festing.
Here, software is broken down into the smallest unites you can

Authorized licensed use limited to: Ball State University. Downloaded on August 06,2024 at 17:46:59 UTC from IEEE Xplore. Restrictions apply.

code in, where one piece of production code corresponds to
a few tests. It is effective in testing every facet of code, from
success to failure to edge cases. Every small feature should be
unit tested. Desiderata of good unit tests include but are not
limited to:

o No human intervention
Tests should be able to be exectued with only one com-
mand, without requiring the user to provide any inputs
during the test run. This works in conjunction with good
model-view separation — if the model and view are not
kept separate, unit tests cannot be properly run without
invoking some methods that will prompt user input.

o No human interpretation
Test output should be easily interpretable so the reader
knows what test failed and what needs to be changed
in order to pass the test without having to read deep
into stack traces. Generally, a well-established testing
framework will suit this principle fine, as they typically
exist with consistent output on passed and failed tests.
Assuming your test names are good enough and tests are
split up to test one thing at a time in isolation, you should
be able to understand what is wrong just from reading the
name of the test that failed and the error that occurred.

o Test one thing
Unit tests should test only one unit of the software, which
allows tests to be easily interpreted, since reading the
name will give you a good hint as to exactly what failed.
This also suggests that tests should not rely on each other
to run properly — most test runners run tests out of order
or in parallel, so relying on the order they run in to set
up parameters for future tests can lead to problems and
should be avoided.

o Test for failure
As well as testing the code works with valid inputs and
in edge cases, one should also make sure that the code
in question fails correctly when given invalid inputs or
run in abnormal scenarios. Code should be designed to
fail in a specific way, as documented in the specification
of correct behavior. This is also intended behavior that
requires testing and verification. Most test runners support
failure testing and allow testers to expect exceptions to
be raised. It is important to ensure that the method is
properly raising exceptions instead of continuing to run
in an incorrect state.

B. Test Design

Before unit tests are written, a test design considers sys-
tematically how the behavior of an individual unit under test
changes depending on the various inputs it is given. Inputs can
range from arguments to a function to the files in a directory on
the system the tests run on. Anything the unit uses to vary its
output is considered an input. If the tester is the same person
who wrote the implementation or specification, testing is easy,
as they know exactly how the behavior should change based
on the inputs. With proper abstraction, any specifically noted

piece of functionality or designated case for the unit deserves
a few test cases.

As a trivial example, we will use a hypothetical calculator
class. The specification for this calculator states that it should
not operate with numbers above 999 or negative numbers. Of
course, this is not a very useful calculator, but it works well
to serve our purpose here as an example for test design and
unit testing. We can thus write tests based on the specification
that we have of the calculator: it has methods add and
subtract, which take two numbers as parameters and return
an number. They function as one would expect based on the
names. Thus, we can devise the following tests: addition with
both operands and return value in the range [0, 999], addition
with either operand or return value being negative, addition
with either operand or return value above 999, subtraction
with both operands and return value in the range [0, 999],
subtraction with either operand or return value being negative,
and subtraction with either operand or return value above 999.
We also need to test that correct exceptions are raised when
calling either function with a parameter that is not a number —
this ensures that we have comprehensible error messages that
will be useful to end-users to help figure out what they did
wrong.

C. Integration Testing

Integration testing is a higher level of testing than unit
testing that involves putting units of the software together as
they would typically be used to test the integration of those
units. This helps ensure that not only do these parts work
on their own in isolation, but they can properly communicate
with one another in order to perform a greater overarching
task that the software is designed to complete. For some
software, this can involve sanity testing, where the inverse of a
function is called on the function itself, ensuring that the initial
input is the same as the result received back. For example,
in the calculator mentioned earlier, a sanity test would call
add (subtract (x, 1), 1) to testthat these two inverse
functions, when called in a sequence, can return the same
number back.

D. Mocks

Mocks are used in unit testing when code does something
it should not do in test execution, for example connecting to
an external server. If done every single time tests are run, this
could incur usage costs, make tests run significantly slower,
or affect live data on the server that we don’t want to interfere
with. Many testing frameworks support mocks by default,
but for languages that don’t, there are typically workarounds.
Python, for example, supports object-method replacement [1],
in which methods and attributes of objects can be replaced
within testing code to versions of them that don’t call to
external servers.

E. Test-Driven Development

Test-Driven Development (TDD) is a software engineering
practice that uses tests as a basis for developing code. It can

Authorized licensed use limited to: Ball State University. Downloaded on August 06,2024 at 17:46:59 UTC from IEEE Xplore. Restrictions apply.

take many different forms, depending on how pervasively it
is implemented in a software project, from “red, green, refac-
tor” [12] to test coverage. TDD stipulates writing tests for a
function or feature to be developed before any code is written.
It interweaves coding, unit testing, and refactoring (design),
and allows unit tests to serve as a functional specification
for how the feature should work. Once the tests pass, the
feature can be considered “done.” This form of a developer-
oriented specification can help developers figure out what they
are doing along the way and exactly what is going wrong if
their code isn’t perfect. An example unit test output is shown in
Figure 8. For example, with the calculator we have mentioned,
we could write the tests designed in Section IV-B before
implementing any of the code for the calculator. Then, as we
implement the code, we cover both valid and invalid scenarios,
until all designed tests pass, and the feature is complete.

..F.F

FAIL: test_to_roman_conversion (__main__.TestRomanNumeralConverter.test_to_
roman_conversion)

Traceback (most recent call last):

File "/Users/melody/Documents/cyberwater project/unit-tests/../cw2-testin
g/test_RomanNumeralConverter.py", line 13, in test_to_roman_conversion

self.assertEqual(self.converter.to_roman(578), "DLXVIII")

AssertionError: 'DLXXVIII' != 'DLXVIII'
- DLXXVIII
? -
+ DLXVIII

FAIL: test_to_roman_out_of_range (__main__.TestRomanNumeralConverter.test_t
o_roman_out_of_range)

Traceback (most recent call last):
File "/Users/melody/Documents/cyberwater project/unit-tests/../cw2-testin
g/test_RomanNumeralConverter.py", line 20, in test_to_roman_out_of_range
with self.assertRaises(ValueError):
AssertionError: ValueError not raised

Ran 5 tests in 0.000s

FAILED (failures=2)

Fig. 8. The tests beginning to pass as we implement functionality, suggesting
what we still need to do

F. Test Coverage

Test coverage allows unit tests to be run with some ba-
sic statistics provided, conveying information about not only
passed and failed tests, but also how much code is covered
by the tests. If a line of code is covered, that means the
test suite has executed that line of source code, and if the
tests covering the line pass, we can gain confidence in that
it is roughly in working order. Beware that high test (code)
coverage doesn’t necessarily mean that a test suite is good —
it may still not cover enough edge cases or failure cases to
ensure that everything works as expected. Just because a line
of code is covered at least once does not mean it has been
adequately tested, but it is still a useful metric to have. For
larger projects, it is generally accepted that 80% is a good
number to strive for. Besides code coverage, test coverage can
also mean requirements coverage, model coverage, et cetera.

G. Test Automation and Continuous Integration

Continuous integration plays a crucial role in the automated
quality assurance of code. The integration process is auto-
mated. Each integration triggers an automated build and a set
of tests to run. For code that is assured to be in working
order, it can be automatically merged into the master branch,
allowing multiple developers to easily collaborate on a project.
Typically it involves automatic test and linter running upon a
certain action being taken, e.g., a push to a remote repository
or a pull request being created. There are many ways to
implement continuous integration. One way is to use GitHub
Actions, which allows developers to write code in YAML [13]
that defines when jobs should be run to take certain actions
on the code in the code base. Then, GitHub displays metrics
about passed and failed tests on commits where the code was
pushed or on the pull request screen, as shown in Figure 9.

< automated unit tests

@ skip back-arrow until user authentication #133

I (@ Summary
Triggered via push last year Status

@ rokolinkon pushed -o- 5be00Be main Success

Jobs
@ Home.tsx tests

@ Calendar.tsx tests

main.yml

@ About.tsx tests on: push
@ Header.tsx tests
@ Recipe.tsx tests @ Home.tsx tests 34s
@ Login.tsx tests

@ Ccalendar.tsx tests 30s
@ Register.tsx tests

@ About.tsx tests 29s

@ Game.tsx tests

" © Header.tsx tests 26s
@ Exercise.tsx tests

@ Exerciselog.tsx tests © Recipe.tsx tests 385
@ Admin.tsx tests @ Login.tsx tests 2855

@ LearnMore.tsx tests @ Register.tsx tests 38s

Run details © Game.tsx tests a2s

& Usage
3 Workflow file

@ Exercise.tsx tests a6s
@ Exerciselog.tsx tests 27s
@ Admin.tsx tests 29s

@ LearnMore.tsx tests 255

Fig. 9. Continuous Integration in GitHub

Continuous integration works well in development projects
that have branching strategies that enable it to be run before
changes are merged into the master branch — it serves as a
reasonable roadblock for less-than-quality code to make it into
the repository or be reviewed by a human developer, since the
committer will know right away whether their code needs to
be fixed or not.

V. CODE SPECIFICATIONS

Code specifications are developer-oriented documentation
describing the functionality of a piece of code and providing
information necessary for a developer who may use this code
in writing new code. This includes testers, who will need
to know what the intended input and output is of the code
they are testing in order to test it properly. A specification
should be developed before the code is even written, so it

Authorized licensed use limited to: Ball State University. Downloaded on August 06,2024 at 17:46:59 UTC from IEEE Xplore. Restrictions apply.

can be set in stone and functionality doesn’t change much
during development. The specification should contain all the
information necessary to write thorough unit tests for a piece
of software, or to implement the software. If the functionality
changes over time, the specification should be updated as well.
Specification is not a one-time document; it should evolve
with the software and will continue to be a useful artifact
of the development process. It serves as a reference for how
the functionality of a module has evolved over time, and can
help develop the code that the specification is for in the first
place. If the specification is good, code implementation is just
a matter of following the specification, with all the intended
behavior already carefully thought-out.

Code specification should include, at the bare minimum,
methods, parameters and their types, return values and their
types, instance variables, static variables and methods, and side
effects. Your code will be impossible to use if no one knows
how to call your methods without receiving an error, so usage
examples are key to include. Similarly, a user also needs to
know how not to call your methods. Including exceptions that
the method raises in its specification is vital for users to know
what they are doing wrong and why. For example, using the
calculator example from Section IV-B, we could write a simple
specification as follows:

e add(augend, addend)
Params
augend: int | float: the number to be added to
addend: int | float: the number to add to augend
Exceptions
ValueError if either input parameter or the result is greater
than 999

ValueError if either input parameter or the result is less
than 0
TypeError if either input parameter is not an int or float
Returns int | float — the sum of the two input arguments,
augend + addend

Examples
add (1, 2):returns int (3)
add (1.0, 2.2):returns float (3.2)
add (998, 2):raises ValueError
add (-1, 2):raises ValueError
add("1", "2"):raises TypeError
e subtract (minuend, subtrahend)
Params
minuend: int | float: the number to be subtracted
from
subtrahend: int | float: the number to subtract
from minuend
Exceptions
ValueError if either input parameter or the result is greater
than 999
ValueError if either input parameter or the result is less
than 0

TypeError if either input parameter is not an int or float
Returns int | float — the difference of subtrahend sub-
tracted from minuend,
minuend - subtrahend
Examples
subtract (2, 1):returns int (1)
subtract (2.2, 1.0):
returns float (1.2)
subtract (1000, 2):
raises ValueError
subtract (2, 3):raises ValueError
subtract ("23", "6"):

raises TypeError

This specification includes all the methods of the hypotheti-
cal class, their parameters and types, as well as exceptions that
can be raised by each method and how to avoid them. It also
includes return values, their types, and descriptions about how
the methods reach those return values, plus usage examples
as to how the methods would respond to various inputs. A
hypothetical developer now has everything they need to start
using these methods.

VI. CONCLUSION

We present in this paper some best software engineering
practices that we find to be necessary and useful for the smooth
development of domain software of acceptable quality. The
practices we outlined will help ensure that reworking and
fixing problems that crop up later in development be kept
minimal. Such practices are widely adopted in the software
industry for a reason — employing them significantly enhances
the overall quality of the software and, at the same time,
has substantial savings in terms of budget, time, effort, and
other valuable resources. Although what we have endeavored
to put together is in no sense a complete list, it provides a
starting point to prepare domain science researchers engaged
in software development towards the goal of producing high
quality research software cost-effectively.

VII. ACKNOWLEDGMENTS

This work was generously funded by the National Science
Foundation (NSF) under Grants 1835602 and 2209834.

REFERENCES

[1] L. Connelly, M. Hammel, B. Eger, and L. Lin, “Automated unit testing of
hydrologic modeling software with CI/CD and Jenkins,” in Proceedings
of the 34th International Conference on Software Engineering and
Knowledge Engineering, 2022, pp. 225-230.

[2] M. Hammel and L. Lin, “Assuring domain software quality through

workflow testing and specification,” in Proceedings of the 35th Interna-

tional Conference on Software Engineering and Knowledge Engineering,

2023, pp. 37-44.

L. Connelly, M. Hammel, and L. Lin, “Leveraging best industry practices

to developing software for academic research,” in Proceedings of the

7th International Conference on Management Engineering, Software

Engineering and Service Sciences, 2023, pp. 7-13.

[4] E. Don, Git Prodigy: Mastering Version Control with Git and GitHub.

Independently published, 2023.

B. O’Sullivan, Mercurial: The Definitive Guide, Illustrated edition.

O’reilly & Associates Inc, 2009.

[6] M. Mason, Pragmatic Guide to Subversion (Pragmatic Programmers).

Pragmatic Bookshelf, 2011.

G. Cantrell, Automate Everyday Tasks in Jira: A practical, no-code

approach for Jira admins and power users to automate everyday

processes. Packt Publishing, 2021.

B. Joiner, Supercharging Productivity with Trello: Harness Trello’s

powerful features to boost productivity and team collaboration. Packt

Publishing, 2023.

[9]1 “PEP 8: The Python Style Guide,” https://pep8.org/.

[10] A. Hunt and D. Thomas, The Pragmatic Programmer: From Journeyman
to Master. Addison-Wesley, 1999.

[11] M. Schwarzmiiller, React Key Concepts: Consolidate your knowledge of
React’s core features. Packt Publishing, 2022.

[12] A. Mellor, Test-Driven Development with Java: Create higher-quality
software by writing tests first with SOLID and hexagonal architecture.
Packt Publishing, 2023.

[13] M. Soni, Hands-on Pipeline as YAML with Jenkins: A Beginner’s Guide
to Implement CI/CD Pipelines for Mobile, Hybrid, and Web Applications
Using Jenkins (English Edition). BPB Publications, 2021.

3

=

[5

[t}

[7

—

[8

—_

Authorized licensed use limited to: Ball State University. Downloaded on August 06,2024 at 17:46:59 UTC from IEEE Xplore. Restrictions apply.

