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Abstract

Assessing the built environment’s seismic risk relies increasingly on numerical simulations of the response of infras-
tructure components to seismic motion. Since forecasting earthquake-induced motion is di�cult, if not impossible,
subjecting the infrastructure to seismic motion from past earthquakes remains the most potent way to assess the infras-
tructure’s risk and resilience. However, such simulations require a rupture-to-rafters modeling approach that entails
complex inversion procedures and ultra-scale computations.

In this work, we discuss a systematic methodology that attempts to reconstruct the earthquake-induced wave-
field only within the near-surface deposits, using ground surface recordings of seismic motion. The methodology
improves on alternative approaches by bypassing the need for either seismic source inversion or joint seismic-source-
and-material-model inversion, relying instead on a priori knowledge of the soil properties for only the near-surface
deposits, thus realizing significant computational savings.

The methodology takes advantage of a state-of-the-art, near-surface, seismic wave motion simulation framework
rooted in the Domain Reduction Method (DRM), which relies on a reduced computational domain containing the near-
surface deposits only, including possible topographic features and even accounting for materially-nonlinear response.
The reduced domain is surrounded by an artificial boundary – the DRM boundary –, onto which the seismic input
is typically prescribed in forward seismic motion simulations. A narrow wave-absorbing bu↵er exterior to the DRM
boundary completes the computational domain. It is the aim of this work to reconstruct the DRM seismic input
from ground-surface records using an inversion approach rooted in partial di↵erential equation (PDE)-constrained
optimization, without having to appeal to fault rupture inversion or joint inversions. To this end, we use the DRM,
enhanced with a Complex-Frequency-Shifted (CFS) Perfectly-Matched-Layer (PML), to address the forward wave
simulation, and an adjoint approach to address the inversion of the DRM seismic input.

Our numerical experiments demonstrate the versatility of the methodology in reconstructing the near-surface seis-
mic motion from sparse surface motion records, almost irrespective of the azimuthal coherency of the incoming
motion.

Keywords: Inversion of e↵ective seismic forces, Reconstruction of seismic wavefield, Domain reduction method
(DRM), Non-convolutional CFS-PML, Full-waveform inversion, Passive seismic inversion, Earthquake engineering.

1. Introduction1

We are concerned with the fidelity of near-surface numerical simulations of seismic motion. The interest stems2

from the, ever-present, need to assess seismic risk to infrastructure systems. Since the current state of knowledge3

prevents accurate forecasting of an earthquake to any degree of usefulness, the assessment of seismic risk is, perforce,4

conducted through studies of the e↵ects past seismic events could have on the infrastructure. This rationale has long5
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been acknowledged in seismic codes, where seismic response analyses are required to be performed for infrastructure6

systems using, for example, ground acceleration records of past earthquakes.7

While the last few decades have been marked by considerable advances in both computational power and in our8

ability to ever more faithfully simulate earthquake-induced ground motion, the reliance on one-dimensional models9

for, for example, site analyses [1, 2], and seismic motion deconvolution [3–5], persists. Central to our ability to assess10

seismic risk within the described rationale, is not only the ability to depart from one-dimensional models and graduate11

to two- and three-dimensional models, but also the ability to accurately describe both the subsurface properties and12

the seismic source. How could the latter, in particular, be accomplished? The most reliable information we have13

from past events are the ground surface motion records: ideally, the recorded surface motion can serve to infer both14

the subsurface properties and the source characteristics, usually in the context of joint inversion. Joint inversion15

entails the computationally daunting task of estimating the properties of the subsurface together with the fault rupture16

characteristics, following the adoption of suitable material models for the subsurface, a model for the fault rupture,17

and discretization of the computational domain from the depths of the earth where the faults are located, all the way to18

the ground surface. Even under the assumption of a linear material model, there can easily result tens to hundreds of19

millions of material property unknowns that need to be inverted for. Consider, for example, the forward simulation of20

a 1994 Northridge earthquake aftershock in the San Fernando Valley in California that was attempted some 30 years21

ago [6]: even after relaxing mesh quality considerations, a volume of 54 km long by 33 km wide by 15 km deep (to22

capture the fault), would result in about 40 million material property unknowns (two wave velocities and one mass23

density per material point in a mesh of 13 million nodes). The task of inverting for all these parameters remains an24

open challenge despite many attempts to date, including successful inversions made possible only under constrained25

conditions [7, 8].26

Given the computational complexity of joint inversion, it stands to reason to question the practicality of such27

inversions. An easy answer is that knowledge of the subsurface properties and of the source characteristics would28

allow us to perform true rupture-to-rafters seismic event simulations by adding infrastructure components to the29

ground surface in a fully-coupled soil-structure model that would now allow modeling the infrastructure’s response to30

incoming (past) seismic motion, while including the seismic source in the model. This, too, is a computationally costly31

procedure, often demanding high-performance computing resources [9]. To reduce the computational demands, it is32

often the case that three-dimensional seismic motion simulations are performed on a reduced computational domain33

using the Domain Reduction Method (DRM) [10, 11] that a↵ords the inclusion of topographic features and/or regions34

exhibiting nonlinear behavior within a limited near-surface computational domain (Fig. 1). Typically, the DRM35

partitions the computational domain into two domains, one interior to the DRM boundary and one exterior, where the36

latter is usually terminated with an absorbing boundary condition or a wave-absorbing bu↵er, tasked with mimicking37

the propagation of the outgoing waves in the unbounded physical domain that is excluded from the computations.38

A key requirement of the DRM, and central to the near-surface seismic motion computations, is the need to39

prescribe the incoming seismic motion on the DRM boundary: to date, the seismic input on the DRM has been, by40

and large, prescribed in the form of idealized motion (e.g., a plane wave), typically unrelated to the actual input/motion41

induced by a real earthquake. It is the aim of this article to bridge this gap, by providing a systematic approach that42

allows the determination of the seismic input on the DRM boundary based on ground surface records. We, thus, argue43

that, for the purpose of near-surface seismic motion simulations, it is not necessary to consider a rupture-to-rafters44

approach, but instead to use the surface records to invert for the seismic input on the DRM boundary, and then to45

prescribe on the DRM boundary the inverted-for seismic input in order to fully reconstruct the total seismic wavefield46

within the near-surface deposits. In this manner, one always stays within the near-surface (computational) confines,47

without ever venturing into the (computationally) treacherous path of joint inversion that engages huge computational48

domains and entails significant cost.49

To this end, we build upon recent work on a related problem that pertained to the scalar SH case [12], and50

extend it here to the all-important elastic/seismic wave case. Specifically, we start by first deploying a state-of-the-art51

framework for the forward problem, i.e, for the numerical simulation of the propagation of seismic (elastic) waves in52

the near-surface and in the time-domain [13–15]. The forward simulation engine consists of: (i) the DRM partitioning53

scheme [10] that allows the computation of the total and scattered wavefields within the domains interior and exterior54

to the DRM boundary, respectively; and (ii) a Complex-Frequency-Shifted-Perfectly-Matched-Layer (CFS-PML)55

wave-absorbing bu↵er [16, 17] that surrounds the domain exterior to the DRM boundary and results in the e↵ective56

absorption of the outgoing scattered motion.57

2



Our goal, then, is to use the surface motion records to invert for the seismic input, which is expressed in terms58

of forces applied on the DRM boundary. To this end, we follow classic lines of partial di↵erential equation (PDE)-59

constrained optimization, whereby we seek to minimize the misfit between the recorded motion at the surface sensors60

and the motion at the same sensor locations that would result from trial seismic forces prescribed on the DRM bound-61

ary, constrained only by the governing PDEs. Among a few alternatives for imposing the latter constraint (e.g., strong62

or weak form of the continuous PDEs), herein we adopt a discretize-then-optimize (DTO) approach [18, 19] accord-63

ing to which we side-impose to the misfit functional the space-time-discrete form of the governing PDEs (discretized64

in space and time). We use an adjoint method to recover the sought-after seismic forces on the DRM boundary65

by satisfying the Karush-Kuhn-Tucker conditions. As discussed in section 4.3, the inverted-for DRM forces su↵er66

from solution multiplicity, but the resulting total wavefield in the domain interior DRM appears unique, and exceed-67

ingly well-reconstructed close to the free surface: this is likely due to the implications of the Cauchy-Kovalevskaya68

theorem [20], as also discussed in section 4.3.69

We note that, in addition to the aforementioned computationally-expensive joint inversion approaches, there have70

also been a few other attempts reported in the literature for the characterization of the incoming seismic motion in71

the near surface deposits using measured ground motion data: though less computationally expensive, they are also72

less e↵ective in reconstructing the near-surface seismic motion. Among them, Ghahari et al. [21] and Ghahari et al.73

[22] studied methods to simultaneously identify the transfer function of a soil column and the incident wave, using74

recorded signals at two or more stations, while also accounting for uncertainty. Li et al. [23] argued that body waves75

should be inverted for realistic and comprehensive assessment of seismic e↵ects on structures, but their wavefield-76

inversion methodology inverted only the incident angles of idealized incoming plane waves. We note that, in the77

aforementioned studies, the characterized seismic inputs have been limited to propagating plane waves impinging on78

the free surface at a single angle of incidence. In contrast, herein, we are interested in reconstructing the seismic79

wavefield while allowing for azimuthally incoherent incident waves.80

Herein, the theory and numerical experiments are described for two spatial dimensions: the extension to three81

dimensions requires that a 3D forward DRM wave simulation engine be used (see, for example, Poursartip et al.82

[13], endowed with 3D PMLs (Fathi et al. [24])); however, the rest of the technical ingredients remain the same, and,83

even though the computational cost would increase, we expect the seismic motion reconstruction to be feasible and to84

exhibit similar performance as the one we report in section 5. Overall, the quality of the near-surface seismic motion85

reconstruction depends chiefly on the density of the ground surface sensor network.86

2. The seismic input and the DRM87

To describe the inversion process that leads to the determination of the seismic wavefield within the near-surface88

deposits using the ground-surface records, it is necessary to introduce the forward modeling framework, which rests89

on the Domain Reduction Method (DRM) [10]. The DRM is simply the means by which any incoming seismic motion90

can be e↵ectively replaced by a set of forces that act on an artificial boundary –henceforth referred to as the DRM91

boundary– enveloping the near-surface domain of interest. To this end, consider the computational domain depicted92

in Fig. 1(a); the originally unbounded domain has been rendered finite through the introduction of a wave-absorbing93

bu↵er ⌦CFS�PML, and the resulting finite computational domain has been partitioned into an interior domain ⌦i and94

an exterior domain ⌦e through the introduction of �DRM –the DRM boundary. We assume that ⌦i [ ⌦e are occupied95

by linear, heterogeneous, elastic solids –a typical assumption for soils not exposed to strong ground motion. We note96

though that, in general, and owing to the versatility of the DRM, ⌦i could also be occupied by a nonlinear solid;97

herein, we treat the linear case only.98

Following classic DRM lines and a standard Galerkin approach, the motion within ⌦i and ⌦e can be described by99
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Figure 1: Problem configuration: the originally unbounded domain is replaced by a reduced, finite, computational domain ⌦i [ ⌦e [ ⌦CFS�PML.
Domain ⌦i encompasses the near-surface heterogeneous deposits of interest. The domain partitions are realized through the introduction of the
artificial boundaries �DRM and �CFS�PML. Ns sensors are deployed on the ground surface.

the following semi-discrete form1,2:100
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In (1), subscripts i, d, and e refer to matrix and vector partitions pertaining to the interior domain ⌦i, the DRM101

boundary �DRM, and the exterior domain ⌦e, respectively. For example, K⌦i

ii
is the sti↵ness matrix assembled from102

elements whose nodes lie entirely in the interior of ⌦i, whereas K⌦i

id
is the sti↵ness matrix assembled from finite103

elements that lie in ⌦i and have at least one node on the DRM boundary �DRM. Similarly, K⌦i

dd
refers to sti↵ness104

matrix elements engaging nodes on �DRM only, but stemming from finite elements that lie in ⌦i, whereas K⌦e

dd
refers105

to similar matrix elements engaging nodes on �DRM, yet stemming from finite elements that lie within ⌦e.106

Moreover, we use lowercase letters to refer to the various continuous wavefields (e.g., ui), and uppercase letters107

(e.g., Ui) to refer to their discrete counterparts. Thus, Ui and Ud denote the vectors of nodal values of the total108

(displacement) wavefields ui and ud in ⌦i and on �DRM, respectively, whereas We denotes the vector of nodal values109

of the scattered (displacement) wavefield we within the exterior domain ⌦e. In the right-hand-side of (1), according110

to DRM theory, the fields with zero (0) superscript refer to the displacement field that would have resulted had the111

interior domain ⌦i, which may include topographic features, heterogeneities, or other nonlinearities, been replaced112

by a domain where these particular features had been removed/simplified: in the parlance of the DRM, the zero-113

superscripted fields are referred to as the free-field motion.114

Of critical importance to both the forward modeling and the ensuing inversion is understanding the role that115

the right-hand-side of (1) plays in the modeling: owing to the particular structure of the matrix-vector products116

involved, the resulting vectors P�DRM and P�0DRM
refer to (e↵ective) forces that are applied only on �DRM and on �0DRM,117

respectively. �DRM is, as previously defined, the interface separating the interior domain ⌦i from the exterior domain118

⌦e, whereas �0DRM encompasses all the nodes in the first-most layer of elements in ⌦e, adjacent to �DRM, but exclusive119

of the nodes on �DRM (Fig. 2). Typically, the DRM layer is only one-element wide, sandwiched between �DRM and �e120

(Fig. 1): if, for example, the DRM layer consists of bilinear quadrilaterals (Fig. 2a), then �0DRM ⌘ �e; if, in contrast,121

the DRM layer consists of biquadratic elements, then �0DRM ⌘ �e [ �m (Fig. 2b).122

1For brevity, the semi-discrete form (1) is written assuming lossless soil deposits; damping matrices exhibiting a similar structure to the mass
and sti↵ness matrices can be added to account for lossy soils under viscous damping assumptions.

2To avoid notational congestion and maintain the focus on the DRM, the e↵ect of the CFS-PML bu↵er has not been included in (1); it is restored
later in equation (2).
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Figure 2: Typical topology of a DRM layer and associated e↵ective forces; (a) the DRM layer consists of bilinear quadrilaterals; (b) the DRM layer
consists of biquadratic quadrilaterals.

The e↵ective forces P�DRM and P�0DRM
capture the incoming seismic motion to its fullest extent, and account for all123

of its characteristics, including directionality, frequency content, and propagation path. To use the e↵ective forces in124

a forward modeling setting, it is necessary to obtain first the free-field motion u0: this requires a priori knowledge of125

the seismic source characteristics and of the earth’s (linear) properties from the source (rupture fault) to the ground126

surface. But, in an inverse setting, it is precisely P�DRM and P�0DRM
that we are interested in inverting, informed only by127

the ground-surface records, i.e., by ui on the ground surface, without any need for a priori information on the source128

or the earth’s properties at depth
3. Thus, for inversion purposes, the free field motion u0 needs never be computed.129

It is important to note that the wavefields in (1) exhibit, by design, a discontinuity on the DRM boundary: ui and130

ud are the total wavefields interior to �DRM and on �DRM, respectively, whereas we is the scattered wavefield, exterior131

to �DRM. In fact, it is the e↵ective forces P�DRM and P�0DRM
that are responsible for imparting the discontinuity between132

the two wavefields (ud and we) across �DRM, and are themselves discontinuous (there is a jump between P�DRM and133

P�0DRM
): this observation is of importance in assessing the quality of the inversion, as will be discussed.134

3. The forward problem135

Now that the DRM’s technical details have been described, we turn to the complete description of the forward136

simulator, which encompasses not only the DRM, but also addresses the truncation of the unbounded domain through137

the introduction of a recently developed Complex-Frequency-Shifted Perfectly-Matched-Layer (CFS-PML) [16, 17].138

The particular form of the CFS-PML we adopted allows us to retain the second-order character of the semi-discrete139

equations of motion, at the moderate expense of auxiliary CFS-PML variables introduced within the absorptive PML140

3The properties of the near-surface deposits in ⌦i must be a priori known.
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bu↵er. Then, the resulting semi-discrete form for the forward simulation engine becomes:141
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where MPML, CPML, and KPML, are mass, damping, and sti↵ness matrices associated with the CFS-PML (detailed142

expressions can be found in Appendix A), and the vector V(t) is augmented to now consist of the vector of nodal143

scattered field displacements We(t) within ⌦e [ ⌦CFS�PML, and of the vector of auxiliary PML variables ⇥(t), �(t),144

and H(t) (Appendix A). We note that the various damping submatrices in (2) account for lossy soils, following the145

adoption of suitable soil models that incorporate intrinsic attenuation; various candidate choices for soils that would146

yield velocity-proportional damping terms (e.g., Generalized Maxwell Body) can be found in [25]. Here, owing to147

the lossless soils considered in this study, the various damping submatrices in (2) vanish identically, except for CPML,148

which is always nonzero due to the presence of the PML bu↵er. In compact form, equation (2) can be rewritten as the149

standard second-order set of ODEs:150

M Ü(t) + C U̇(t) +K U(t) = FDRM(t), (3)

where, now, U(t) encompasses all nodal unknowns, i.e., the total displacements Ui(t) and Ud(t), the scattered displace-151

ments We(t), and the auxiliary nodal vectors ⇥(t), �(t), and H(t):152
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FDRM(t) = [0T PT

�DRM
(t) PT

�0DRM
(t)]T . (5)

We note that in (5), the force vector FDRM(t) has non-zero entries only along �DRM and �0DRM. By adopting an154

implicit Newmark time-integration scheme, and by collecting the acceleration-like quantities Ü(t), the velocity-like155

U̇(t), and the displacement-like U(t) at all time steps in a single vector d̂, it can be shown that (3) reduces to (see156

Appendix Appendix B):157

Q d̂ = F̂DRM, (6)

where a hat ( ˆ ) denotes space-time discretization of the subtended quantity. The compact form (6) is the discrete form158

of the space-time-discretized forward problem.159

4. Inverting for the seismic input160

The inversion for the seismic input is driven by the ground-surface records of motion, collected, typically, in the161

form of displacement or velocity time histories for each motion component4. Given Ns sensors situated on the ground162

surface (Fig. 1), the recorded displacement time histories form the measurement vector d̂m, with non-zero entries only163

along the surface.164

We define the following discrete objective functional Â to capture the misfit between measurements d̂m and165

computed responses d̂inv; the latter are based on trial distributions of the seismic input F̂inv
DRM on the DRM boundary:166

Â = 1
2

(d̂inv � d̂m)T B (d̂inv � d̂m), (7)

4If velocities are recorded, then the records are integrated in time to yield displacement time series, which are preferable, since the integration
process filters out high-frequency artifacts that are inconsistent with the induced motion.
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where B is a block diagonal matrix defined as �t B, in which B is a square, diagonal matrix that has zero entries167

everywhere except for entries of one along its diagonal, which correspond to the sparsely-distributed ground surface168

sensors nodal locations. Then, we construct a Lagrangian L̂ by side-imposing to the objective functional Â, using169

Lagrange multipliers �̂, the discrete forward problem (6), written for computed responses d̂inv corresponding to trial170

seismic input F̂inv
DRM:171

L̂ = 1
2

(d̂inv � d̂m)T B (d̂inv � d̂m) � �̂T (Q d̂inv � F̂inv
DRM). (8)

In accordance to the space-time discretization scheme described in Appendix Appendix B, �̂ is the discrete space-172

time Lagrange multiplier vector defined as �̂ = [�T

0 , �̇
T

0 , �̈
T

0 , ..., �
T

⌧ , �̇
T

⌧ , �̈
T

⌧ ]T , where a subscript indicates a time step,173

and ⌧ denotes the final time step. The goal is to find the (space-time discrete) seismic forces F̂inv
DRM by minimizing174

the Lagrangian L̂, thus, simultaneously, enforcing the observations d̂m to match the computed responses d̂inv, while175

the underlying physics described by equation (6), i.e., Q d̂inv = F̂inv
DRM, are satisfied. To this end, we seek a stationary176

point for the Lagrangian L̂, as described in the following section.177

4.1. First-order optimality conditions178

To invert for the unknown seismic input F̂inv
DRM on the DRM boundary, we seek to satisfy the first-order optimality179

conditions. The optimality conditions are obtained as the Fréchet derivatives of the Lagrangian with respect to the180

Lagrange multipliers �̂, the forward response d̂inv, and the inversion variable F̂inv
DRM, respectively. Accordingly, the181

first two derivatives result in:182

@L̂
@�̂
= �Q d̂inv + F̂inv

DRM,
@L̂
@d̂inv

= �QT �̂ + B (d̂inv � d̂m). (9)

Requiring that the above Fréchet derivatives vanish yields the first two optimality conditions, which, as it can be183

readily seen, define the following forward and adjoint problems for the forward response d̂inv and for the Lagrange184

multipliers �̂, respectively:185

Q d̂inv = F̂inv
DRM|            {z            }

forward problem

, QT �̂ = B (d̂inv � d̂m)|                    {z                    }
adjoint problem

. (10)

We note that the forward problem is driven by trial distributions of the e↵ective forces F̂inv
DRM, while the adjoint problem186

is driven by the misfit at the sensor locations. The adjoint problem is also a final-value problem that is resolved by187

marching backwards in time [26]. Lastly, the third optimality condition leads to the following control equation:188

@L̂
@F̂inv

DRM

= �̂. (11)

That is, the gradient of the Lagrangian with respect to the seismic input (inversion variable) equals the adjoint solution189

�̂. We note that, when the control equation (11) vanishes for an inverted set of seismic input forces F̂inv
DRM, then �̂ ⌘ 0,190

and the misfit vanishes identically, while the forward problem is also satisfied. In other words, in such cases, F̂inv
DRM is191

pronounced to be a solution for the seismic input, since all three optimality conditions are satisfied.192

4.2. The inversion process193

Armed with the technical details described in the preceding section, we discuss next the inversion process in its194

entirety. The overarching goal is twofold: (a) to recover the seismic forces on the DRM boundary using only the195

surface records and information about the material properties of the near-surface deposits; and (b) to reconstruct the196

total wavefield within the near-surface deposits, since such a reconstruction would allow us to assess the response197

everywhere within the region of interest, setting the stage for a complete post-mortem assessment of the exposed198

infrastructure. Moreover, the reconstruction of the DRM forces also allows the assessment of future infrastructure199

additions (or subtractions) to the same seismic scenario, by taking advantage of the DRM theory.200
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As previously described, the inversion process engages only the reduced, finite, computational domain depicted201

in Fig. 1, which includes the interior domain ⌦i containing the near-surface deposits of interest, the DRM boundary202

and its discrete counterpart defined by a single-element layer, sandwiched between the dashed lines �DRM and �e203

(Fig. 2), the (rather limited) exterior domain ⌦e, and the surrounding absorptive bu↵er ⌦CFS�PML, occupied by the204

non-convolutional CFS-PML [16, 17]. Without loss of generality, we assume throughout that the incident seismic205

motion, whether synthetic or real, originates from a location exterior to the reduced computational domain.206

The first step involves the synthetic generation of the ground-surface records at the sensor locations: to this end, we207

turn to an extended computational domain, where the exterior domain ⌦e has been enlarged to now contain a seismic208

source. The enlarged domain, too, is terminated with a CFS-PML bu↵er. Herein, we model the seismic source as209

a body force situated within ⌦e, but several other commonly used seismic source models, including double-couples,210

plane waves, kinematic fault models, etc., are possible: the presented methodology is independent of the seismic211

source model. Then, using the DRM framework, the free-field response u0 corresponding to the seismic source is212

generated first, and, next, with the aid of the expressions involved in the right-hand-side of (1), the e↵ective seismic213

forces FDRM on the DRM boundary are defined. Then, using (2), the total wavefield ui is obtained at all nodes within214

the interior domain of interest ⌦i, and, consequently, on the surface as well: the displacement histories at the Ns215

sensor locations on the ground surface are then used to populate the measurements d̂m, thus completing the synthetic216

generation. When actual records are available, the entire first step is omitted, and the synthetic data are replaced by217

the real sensor data.218

The inversion process is initiated with a guess for the seismic forces F̂inv
DRM, and the forward problem (10)a is solved219

next, resulting in computed responses d̂inv. Using the computed responses d̂inv and the known measurements d̂m, the220

misfit is computed, allowing next for the solution of the adjoint problem (10)b, which yields the Lagrange multipliers221

�̂. Per the control equation (11), the computation of the Lagrange multipliers is used in the gradient definition, which,222

in turn, drives the updates for the seismic forces F̂inv
DRM. The updated DRM forces are fed back into the forward223

problem, and the process is repeated until the third optimality condition is satisfied (adjoint variables vanish). We224

note that both the horizontal and vertical components of the nodal forces F̂inv
DRM at the DRM layer are inverted for:225

they are the only entries of F̂inv
DRM that are non-zero during the inversion iterations. The flowchart of Fig. 3 summarizes226

the overall inversion process.227

4.3. On the multiplicity of the seismic forces228

As witnessed in prior work involving the scalar wave case [12], the inverted components of F̂inv
DRM di↵ered significantly229

from the target seismic forces F̂DRM, despite the fact that there was good agreement between the computed and230

measured total wavefields in the interior domain ⌦i, and, despite the fact that the misfit had vanished. In addition,231

it was also observed that there was a significant di↵erence in the scattered wavefield in the exterior domain ⌦e: the232

amplitudes of the scattered motion induced by the inverted seismic forces were significantly larger than those induced233

by the target (true) seismic input. The same observations were confirmed in the numerical experiments reported herein234

for the elastic wave case.235

To understand the root cause for the discrepancies, it is necessary to describe first the rather uncommon charac-236

teristics of the inverse problem at hand. To this end, we note that there are infinite ways by which one can partition237

the total wavefield ue in the exterior domain ⌦e. Specifically, there are infinitely many pairs of incident wavefields238

ũ0 and scattered wavefields w̃e, which, when combined, will produce the same total (true) wavefield ue = w̃e + ũ0 in239

⌦e. Using any single one of the fictitious incident fields ũ0 in the DRM forces of equation (1), as if it were a priori240

known, would still satisfy the equations of motion, and would still render the true total wavefield ui in the interior, but241

would produce a, possibly, non-physical external wavefield w̃e (e.g., large amplitude scattered motion) . The set of all242

such possible fictitious incident fields5 generates a set of DRM force distributions, all of which constitute admissible243

solutions for the DRM forces. In other words, we have an uncommon peculiarity for an inverse problem: whereas in a244

typical inverse problem, one aims at reducing the solution multiplicity by adopting regularization schemes to filter out245

unwanted multiples, here, any single one of the DRM force distributions would be admissible (as long as the misfit246

vanishes). There is, thus, no need for regularization, in the classical sense, and none has been implemented.247

5The set includes the true pair w̃e + u0, where u0 is the free-field motion.
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Use a forward solver in an 
enlarged domain encompassing 
the source to generate the 
seismic DRM forces

Compute the total wavefield at 
the sensor locations and in the 
interior of the domain of interest
 (    )

Use the sensor data to drive 
the DRM force inversion 

Real seismic event

Record the total 
wavefield at the sensor 
locations

Use the inverted DRM force 
to compute the total wavefield 
in the domain of interest

Inversion process
based on synthetic data

Inversion process
based on real data

Figure 3: Flowchart of the inversion process for the reconstruction of the seismic DRM forces and the total wavefield in ⌦i. Left column: inversion
process based on synthetic data; right column: inversion process based on real data.

We further note that the set of admissible DRM force distributions includes DRM forces that are continuous across248

the DRM layer, as well as distributions that exhibit a jump, as originally predicated by the DRM theory: any such249

force distribution would be admissible. Thus, the remaining question is whether the inversion process can converge250

to any single one of the infinitely many, admissible, DRM force distributions. As it turns out, this is a question of251

quality of the inverted DRM force distributions, and not a question of uniqueness of the DRM forces: the inversion252

process will converge to one of the many candidate DRM force solutions, with the quality of the force reconstruction253

dependent only on the availability/density of the ground surface data.254

The observed di↵erence between the inverted DRM forces and the true DRM forces derived based on the free-field255

motion is due, primarily, to the fact that the inversion process favors seismic forces at the DRM boundary that are256

continuous across the DRM layer, thereby defeating one of the foundational elements of the DRM theory, which, as257

discussed in section 2, enforces a partitioning of the wavefields into total for the interior and scattered for the exterior,258

by imparting a jump in the forces on the DRM layer. But, as argued above, this is not of concern, since the interior total259

field would still be, by and large, well reconstructed. The latter is likely due to the Cauchy-Kovalevskaya theorem260

that guarantees the uniqueness of the total wavefield in the neighborhood of the sensor data (but cannot guarantee261

uniqueness away from the neighborhood), and helps explain the remarkably good reconstruction of the total wavefield262

near the free surface.263

It is for the outlined reasons and owing to the peculiarity of the inverse source problem at hand that, when dis-264

cussing the numerical results, our focus is on comparisons of the true total wavefield in the interior domain of interest265

against the total wavefield resulting from the inverted DRM forces F̂inv
DRM, and not on the DRM forces per se.266

5. Numerical Experiments267

We report numerical experiments aimed at the reconstruction of the seismic forces on the DRM boundary enveloping268

the near-surface deposits of interest, when given ground surface measurements at a few sensors. Of particular focus is269
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the method’s e↵ectiveness in reconstructing the total wavefield within ⌦i induced by the inverted DRM forces F̂inv
DRM,270

when compared with the total wavefield induced by the targeted DRM forces F̂DRM.271

Throughout, we use a reduced computational domain that is 40 m wide by 20 m deep, surrounded along three272

of its sides by a 10 m-thick PML bu↵er (Fig. 4(A)). We recall that the DRM is primarily designed to partition the273

computational domain so that topographical features and/or zones of soil nonlinear behavior be contained within274

the interior domain ⌦i. In the absence of such features, the DRM placement is driven by the region of interest and275

considerations of computational e�ciency. And, therefore, here, the computational domain is partitioned into the276

interior domain ⌦i – a 35 m long by 17.5 m deep domain –, which is enveloped by a, relatively thin, exterior domain277

⌦e (Fig. 4A).278

For the purpose of generating the incident wave motion, we embed the reduced domain within an enlarged domain;279

the size of the enlarged domain is set to be 80 m by 40 m, and it too is surrounded by a 10 m-thick PML (Fig. 4(B)).280

Body wave-dominant,  
inclined incident wave

Surface  
wave-dominant 
incident wave

Reduced 
domain

Enlarged 
domain

13 m

5 m 4 m

10 m

10 m 35 m 10 m22.5 m 22.5 m

5.5 m

7.5 m

100 m

17.5 m

10 m

10 m

10 m

20 m

1.5 m

10 m 10 m35 m2.5 m 2.5 m

10 m

17.5 m

2.5 m

Figure 4: Computational models for the numerical experiments; (A) Reduced computational model used in inversion; (B) Enlarged computational
model used for synthetic sensor data generation.

Both the reduced and the enlarged domains are heterogeneous; moreover, in addition to the layering, two sti↵281

inclusions are also embedded within the reduced domain (Fig. 4). The properties of the various materials implicated282

in the model are as follows: the shear wave speeds are Vs1= 200 m/s, Vs2= 150 m/s, Vs3= 100 m/s, Vs4= 500 m/s, and283

Vs5= 800 m/s; the dilatational wave speeds are Vp1
= 400 m/s, Vp2

= 300 m/s, Vp3
= 200 m/s, Vp4

= 1000 m/s, and Vp5
=284

1600 m/s; and the mass density of both the reduced and enlarged domains is uniform and set at 1500 kg/m³.285

We note that the properties of the reduced domain are considered a priori known; in practice, they could be286
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obtained via site characterization (e.g., spectral analysis of surface waves (SASW) method [27–31], multi-channel287

analysis of surface waves (MASW) method [32, 33], or full-waveform inversion (FWI) method [34–36]).288

For the spatial discretization of the computational domains, we use a structured mesh, consisting of 9-noded289

quadrilateral elements with an edge size equal to 1 m, thus resulting in nodal spacing of 0.5 m. Given that the smallest290

shear wave velocity in our model is 100 m/s, and the highest dominant frequency is 10 Hz, there result about 20 nodes291

per the shortest wavelength, which is in line with typical recommendations for wave propagation problems.292

For the temporal discretization, a time step size of 0.001 s, and a total observation time of 1.5 s are used in all293

numerical experiments. The spacing of the ground surface sensors is not fixed, but varies in our numerical experiments294

in order to study the e↵ect of the sensor array density on the reconstructed wavefield; the first sensor is always situated295

at the top-left corner of �DRM, while the last one is located at the top-right corner of �DRM
6.296

Without loss of generality, we use point body forces in the enlarged domain to generate the incident fields. A point297

source serves as a surrogate for a seismic source (e.g., seismic moment tensor at a fault), and results in generating both298

compressional and shear waves. To address the time dependence of the point sources, we use Ricker wavelets with a299

peak amplitude of 100 N/m and a central frequency of 2 Hz, 5 Hz, or 10 Hz to drive the vertical body force component300

Py(t), while the horizontal component Px(t) is set to zero. We remark that the presented method can accommodate301

any profile (spatial or temporal) of a seismic source in the enlarged domain; moreover, our inversion solver does not302

need to be informed of the profile of the source.303

In order to assess the quality of the reconstructed total wavefield within ⌦i, we define a global space-time normal-304

ized error norm in the least-squares sense, per:305

E|u| =

NX

j=1

|dtarget
j
� dinv

j
|2

NX

j=1

|dtarget
j
|2

⇥ 100[%], (12)

where dtarget
j

is the vector of the displacement amplitudes of the true total wavefield |ui| of all nodes in ⌦i at the j-th306

time step; dinv
j

is its reconstructed counterpart induced by the inverted DRM forces F̂inv
DRM; and N is the total number307

of time steps. Global norms Eux and Euy for the horizontal and vertical displacement components, respectively, are308

similarly defined.309

5.1. Example 1: Inverting for the seismic forces and the total wavefield due to a body-wave-dominant seismic source310

In this example, we study the performance of the presented approach when the near-surface deposits are excited by a311

body-wave-dominant source situated at the bottom-left of the enlarged domain. The source is a Ricker pulse with a312

central frequency of 10 Hz.313

Figure 5 shows a snapshot of the target displacement amplitudes of the total wavefield taken at t = 0.40 s. The314

dashed line in the enlarged domain is �CFS�PML, i.e., the interface between the enlarged domain and its surrounding315

CFS-PML bu↵er, while the solid line is the DRM boundary �DRM, surrounding ⌦i. The total wavefield within ⌦i316

is shown in Fig. 5(A) and represents the target wavefield that the presented inversion approach ultimately seeks to317

reconstruct by using F̂inv
DRM.318

6Placing sensors at the intersection of the DRM with the ground surface is not required; it is merely convenient for the computational simulations.
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Figure 5: Example 1: Snapshot at t = 0.40 s of the total wavefield amplitudes induced by a body-wave-dominant source in the form of a body force
Ricker pulse operating at 10 Hz. (A) Target total wavefield motion amplitudes |ui | in ⌦i; (B) Total wavefield motion amplitudes in the enlarged
domain.

To drive the inversion, we deploy 19 ground sensors spaced 2 m apart; thus, the sensor array extends over the entire319

surface of the reduced computational domain. Figure 6 compares the snapshots of the displacement amplitudes of320

target total wavefield in⌦i that are computed using the enlarged domain solver against their reconstructed counterparts321

induced by the inverted DRM forces F̂inv
DRM, after 500 inversion iterations. As can be seen, the reconstructed wavefields322

are, overall, in great agreement with the target wavefields, especially near the ground surface, with the accuracy323

somewhat degrading as the DRM boundary is approached. For example, if one were to consider the bottom half of the324

domain (i.e., -18 m< y  -9 m), the associated error E|u| is 10.11%, while the error reduces to 1.04% when considering325

the top half of the domain (i.e., -9 m< y  0 m). This performance is as expected, since the vanishing of the misfit326

governs the error in the near-surface wavefields.327
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Figure 6: Example 1: (First row) Snapshots of the target displacement wavefield |ui | in ⌦i induced by a body-wave-dominant source in the form
of a body force Ricker pulse operating at 10 Hz; (Second row) reconstructed displacement wavefields induced by the inverted seismic DRM forces
F̂inv

DRM.

Figure 7 depicts the comparison of the target total wavefield in ⌦i and the reconstructed wavefield in terms of328

the acceleration amplitudes. As it can be seen, the reconstructed acceleration wavefields are in great agreement with329

their target counterparts. Similarly to the displacement wavefields, here too we observe better agreement within the330

top half of the domain than within the bottom half. Specifically, while the error E|ü| is 1.50% within the top half of331

the domain, it increases to 11.47% within the bottom half of the domain. Furthermore, there is a slight worsening of332

the error associated with the acceleration fields (6.63%) when compared with the displacement fields (5.11%), but,333

overall, the accuracy is comparable.334

Figure 7: Example 1: (First row) Snapshots of the target wavefield |üi | in ⌦i induced by a body-wave-dominant source in the form of a body force
Ricker pulse operating at 10 Hz; (Second row) reconstructed acceleration wavefields induced by the inverted seismic DRM forces F̂inv

DRM.

Figure 8 shows excellent agreement between the time-histories of the horizontal and vertical displacements of the335

measured ground motions and their reconstructed counterparts induced by F̂inv
DRM at the nineteen sensor locations on336

the ground surface; the excellent agreement is due to the successful minimization of the misfit functional.337
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Figure 8: Example 1: Comparison between measured horizontal and vertical displacement time histories and their reconstructed counterparts
induced by the inverted DRM forces F̂inv

DRM at 19 ground sensor locations.

Lastly, we are interested in the method’s performance as the excitation’s frequency content changes, and as the338

number and the spacing of the sensors changes. To this end, we consider three Ricker pulses driven by central339

frequencies of 2 Hz, 5 Hz, and 10 Hz, and di↵erent sensor spacing, varying between 1 m and 18 m. Table 1 tabulates340

the results for all cases considered.341

Table 1: Summary of errors for various sensor array spacings and driving seismic source frequencies.

Case Central Sensor E|u| Eux Euy

number frequency spacing
1.1 2 Hz 1 m 0.15% 0.68% 0.14%
1.2 2 Hz 2 m 0.14% 0.65% 0.14%
1.3 2 Hz 5 m 0.17% 0.76% 0.17%
1.4 2 Hz 7 m 0.19% 0.75% 0.18%
1.5 2 Hz 12 m 0.48% 4.39% 0.49%
1.6 2 Hz 18 m 1.05% 5.54% 1.55%
1.7 5 Hz 1 m 1.99% 3.95% 2.83%
1.8 5 Hz 2 m 1.90% 3.75% 2.67%
1.9 5 Hz 5 m 2.23% 4.22% 3.31%

1.10 5 Hz 7 m 2.56% 4.22% 4.53%
1.11 5 Hz 12 m 12.77% 21.69% 28.18%
1.12 10 Hz 1 m 5.21% 11.85% 7.04%
1.13 10 Hz 2 m 5.11% 11.70% 6.88%
1.14 10 Hz 5 m 7.92% 14.66% 11.53%
1.15 10 Hz 7 m 13.06% 19.84% 24.20%

Figure 9 illustrates the relationship between the error E|u| and both the dominant frequency of the source and the342

sensor spacing. As it can be seen, and as expected, the error increases as the density of the sensor array coarsens.343

Similarly, the error increases as the source frequency increases, but the error can be improved by increasing the mesh344

density. Overall, the error in the reconstructed total wavefields is remarkably low for all cases for which there is345

a su�cient, and relatively small, number of sensors deployed. Furthermore, the number of sensors per wavelength346

can serve as a criterion to establish the minimum sensor density required for a robust reconstruction of the seismic347

wavefield (i.e., E|u|  10%). Per Fig. 9, it would be necessary to deploy at least 3 sensors per the shortest wavelength348
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(i.e., the shear wavelength in the upper layer of the domain). And, thus, for example, when using a source with a349

dominant frequency of 5 Hz (the shortest wavelength is 20 m), a sensor spacing of 12 m (about 1.67 sensors per350

wavelength) would not result in E|u|  10%, but a sensor spacing of 7 m (about 2.9 sensors per wavelength) would351

satisfy the inequality.352
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Figure 9: Relation of the error to the dominant frequency (or the shortest wavelength ⇤) of the body-wave-dominant source and the sensor spacing
(Example 1).

As discussed earlier, the inverted DRM forces, owing to the inherent multiplicity of admissible solutions, could353

generate strong scattered wavefields in the exterior domain ⌦e. Thus, having a quality absorbing condition at the354

truncation interface of the computational domain is of paramount importance in order to guard against pollution of355

the wavefield solutions from reflections o↵ of the truncation boundary. To demonstrate the importance the CFS-356

PML bu↵er plays in obtaining quality solutions, we, next, compare the target and reconstructed total wavefields for357

two di↵erent truncation strategies, one resting on the CFS-PML, and a second one that relies on simple dashpots,358

commonly referred to as the Lysmer and Kuhlemeyer absorbing boundary condition [37]. We use the data of case359

1.13 (see Table 1) to highlight the di↵erences. The dashpot conditions are realized via:360

�xx = ⇢Vpu̇x, �xy = ⇢Vsu̇y, on �DRMleft and �DRMright , (13)

�xy = ⇢Vsu̇x, �yy = ⇢Vpu̇y, on �DRMbottom . (14)

Figure 10 depicts snapshots of the target total wavefield |ui| in ⌦i (top row), of the reconstructed total wavefield when361

the CFS-PML is used (middle row), and of the reconstructed total wavefield when the dashpot condition is used362

(bottom row). Moreover, Table 2 summarizes various global error metrics between the target and reconstructed total363

wavefields in ⌦i. From both Fig. 10 and Table 2, it is clear that the use of the dashpots severely degrades the quality364

of the reconstructed wavefields, and its use should be avoided.

Table 2: Errors in the reconstructed total wavefields obtained when using the CFS-PML versus the Lysmer and Kuhlemeyer absorbing boundary
condition.

Truncation condition E|u| Eux Euy

CFS-PML by François et al. [16, 17] 5.11% 11.70% 6.88%
Lysmer and Kuhlemeyer [37] 11.51% 20.03% 19.54%

365

5.2. Example 2: The e↵ect of a structure366

In this example, we study the e↵ect the addition of a structure within the domain of interest may have on the ability367

of the inversion algorithm to reconstruct the DRM seismic forces and the total wavefield within ⌦i (Fig. 11). The368

structure is modeled as a solid, partially buried, and partially extending above the ground surface: we set its shear369

and dilatational wave speeds at Vs6 = 3250 m/s and Vp6
= 5900 m/s, respectively. The target total wavefield is again370

induced by the body force of Example 1, operating at central frequencies of 5 Hz and 10 Hz. We also compare the371

15



Figure 10: Example 1: (A) Target total wavefield |ui | in ⌦i; and (B,C) reconstructed total wavefields obtained using the CFS-PML, and the Lysmer
and Kuhlemeyer absorbing boundary condition, respectively.

performance of the inversion when (i) sensors are distributed on the ground surface with a 2 m spacing; and (ii) when372

additional 5 sensors are vertically deployed along the height of the structure, as shown in Fig. 11.373
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Figure 11: Computational model of the near-surface deposits, encompassing a structure.

We note that structure V6 exhibits strong resonance at, approximately, 1.9 Hz, as depicted in Fig. 12. Specifically,374

Fig. 12 shows the maximum displacement amplitude of the topmost node of V6, for frequencies ranging from 0.1 Hz375

to 15 Hz. Therefore, the structure’s dominant amplification frequency is contained within the spectrum of the Ricker376

source, though not coinciding with the Ricker’s central frequency (5Hz or 10Hz for the two cases considered).377

378
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Figure 12: Maximum displacement amplitude |umax | of the topmost node of structure V6 as a function of excitation frequency.

Table 3 shows the global error in the reconstructed total wavefields in⌦i for four di↵erent cases after 500 iterations.379

The results show that the presented method can accurately estimate the wave motions in ⌦i, even in the presence of a380

structure: the error in the motion amplitudes E|u| is smaller than 10% in all cases.381

Table 3: Example 2: Summary of errors in the total wavefield for two di↵erent sensor array configurations and two driving seismic source
frequencies.

Case Central Sensors in Number of E|u| Eux Euy

number frequency the structure sensors
2.1A 5 Hz No 19 2.75% 5.11% 5.11%
2.1B 5 Hz Yes 19 + 5 3.60% 7.03% 6.66%
2.2A 10 Hz No 19 8.73% 14.26% 13.84%
2.2B 10 Hz Yes 19 + 5 9.78% 15.40% 16.05%

Table 3 also shows that the final values of E|u| for all Cases 2.1A to 2.2B7, obtained by using only the distributed382

sensors on the top surface, are close to those obtained by using a combination of sensors on the ground surface and in383

the structure. Namely, the E|u| value of 2.75% of Case 2.1A (5 Hz without the vertical array) is close to the E|u| value384

of 3.06% of Case 2.1B (5 Hz with the vertical array), and the E|u| value of 8.73% of Case 2.2A (10 Hz without the385

vertical array) is close to the E|u| value of 9.78% of Case 2.2B (10 Hz with the vertical array).386

Furthermore, Table 4 shows the global error in the reconstructed wavefields in the soil and in the structure, respec-387

tively. It can be seen that minimizing the misfit that includes the measurements on the vertical array of the structure388

makes the error E|u| in the soil to be greater than otherwise (e.g., 3.61% in Case 2.1A versus 4.75% in Case 2.1B). On389

the other hand, because the error E|u| in the structure is already quite small even when the vertical array is not used,390

we do not notice significant improvement of E|u| in the structure when its sensor array is used (i.e., 0.02% in Case391

2.1A! 0.01% in Case 2.1B, and 0.38% in Case 2.2A! 0.38% in Case 2.2B). Thus, it seems that we may not need392

sensors in the structure for the presented algorithm, at least in this example with a single structure of a simple shape.393

Table 4: Example 2: Summary of errors in the total wavefield in the soil and in the structure for two di↵erent driving seismic source frequencies
and two di↵erent sensor array configurations.

Case E|u| E|u|soil E|u|struct Eux Eux

soil Eux

struct Euy Euy

soil Euy

struct
2.1A 2.75% 3.61% 0.02% 5.11% 6.61% 0.02% 5.11% 6.56% 0.01%
2.1B 3.60% 4.75% 0.01% 7.03% 9.12% 0.01% 6.66% 8.57% 0.01%
2.2A 8.73% 9.08% 0.38% 14.26% 14.69% 0.08% 13.84% 14.58% 0.89%
2.2B 9.78% 10.18% 0.38% 15.40% 15.85% 0.07% 16.05% 16.91% 0.89%

7Case 2.1A and 2.2A do not use measurement data from the vertical array in the structure, whereas Case 2.1B and 2.2B do.
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Lastly, Fig. 13 shows snapshots of |ui| of the target total wavefield in ⌦i and their estimated counterparts, for Case394

2.1A (5 Hz central Ricker pulse frequency, and ground surface array only). Similarly, figures 14 and 15 show the snap-395

shots of the target horizontal and vertical displacements and their reconstructed counterparts, respectively. Figures 13,396

14, and 15 all indicate that the wavefields close to the lower DRM boundary are not as accurately reconstructed as397

those near the ground surface. Specifically, the error E|u| for the bottom half of the domain (i.e., -18 m< y  -9 m)398

is 7.99%, while E|u| is only 0.38% for the near-surface wavefields (i.e., -9 m < y  0 m) and the wavefield in the399

structure. We suggest that, since the sensors are located at the upper part of the domain, the minimization of the misfit400

functional leads to more e↵ective reconstruction of waves in the upper part of the domain than in the lower part.401

Figure 13: Example 2: Case 2.1A (without structure sensor array); (First row) Snapshots of the target wavefield |ui | in ⌦i induced by a body-wave-
dominant source in the form of a body force Ricker pulse operating at 5 Hz; (Second row) reconstructed wavefields induced by the inverted seismic
DRM forces F̂inv

DRM.

Figure 14: Example 2: Case 2.1A (without structure sensor array); (First row) Snapshots of the target horizontal component of the wavefield |ui |
in ⌦i induced by a body-wave-dominant source in the form of a body force Ricker pulse operating at 5 Hz; (Second row) reconstructed wavefields
induced by the inverted seismic DRM forces F̂inv

DRM.

5.3. Example 3: Inverting for the seismic forces and the total wavefield due to a surface-wave-dominant seismic402

source in the presence of a structure403

In this example, we study the e↵ect a surface-wave-dominant source has on the quality of the reconstructed total404

wavefields. In particular, the incident wave originates from a source embedded within the top-left area of the enlarged405

domain. We obtain results again for four di↵erent cases, corresponding to two di↵erent Ricker pulses with central406

frequencies of 5 Hz and 10 Hz, while we also consider two di↵erent array configurations, with and without a vertical407

sensor array in the structure.408
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Figure 15: Example 2: Case 2.1A (without structure sensor array); (First row) Snapshots of the target vertical component of the wavefield |ui | in
⌦i induced by a body-wave-dominant source in the form of a body force Ricker pulse operating at 5 Hz; (Second row) reconstructed wavefields
induced by the inverted seismic DRM forces F̂inv

DRM.

Table 5 shows the errors for all four cases (Cases 3.1A to 3.2B) after 500 inversion iterations. We note the relatively409

small errors, ranging from 0.34% to 3.83%, which demonstrate the successful reconstruction of the total wavefields410

induced by surface wave-dominant incident waves.411

Table 5: Summary of errors in the total wavefield for two di↵erent array configurations and two driving seismic source frequencies

Case Central Sensors in Number of E|u| Eux Euy

number frequency the structure sensors
3.1A 5 Hz No 19 0.34% 1.20% 0.39%
3.1B 5 Hz Yes 19+5 0.47% 1.79% 0.53%
3.2A 10 Hz No 19 3.41% 10.31% 5.13%
3.2B 10 Hz Yes 19+5 3.83% 11.47% 5.90%

Table 5 also shows that the inclusion of the vertical sensor array in the structure did not significantly a↵ect the412

resulting errors. Moreover, it can also be seen that when increasing the frequency of the incident waves, the errors413

increase. We also note that the errors E|u| for the surface-wave-dominant cases of Example 3 (range: 0.34% to 3.83%)414

were smaller than the errors reported in Example 2 (range: 2.75% to 9.78%), which pertained to the body-wave-415

dominant excitation. In general, the wavefield is better reconstructed in areas close to the ground surface sensor416

network, for both P-SV dominant incidence and for surface-wave-dominant incident motion, likely owing to the417

implications of the Cauchy-Kovalevskaya theorem, as previously discussed. The results are better for surface-wave-418

dominant incident motion, because the reconstruction also benefits from the fact that most of the motion is contained419

within the zone proximal to the sensors: the rise of the error at depth, which is expected, is over smaller amplitude420

wavefields, and has a lesser impact on the global error metric.421

Figure 16 depicts snapshots of the target and reconstructed total wavefields |ui| in ⌦i in Case 3.1A, i.e., when a422

Ricker wavelet with a 5 Hz dominant frequency is used as the source, and only the sensors on the ground surface423

are used for inversion. Figures 17 and 18 show snapshots of the target horizontal and vertical wavefield components,424

and their reconstructed counterparts, respectively, and as previously noted, they indicate a fairly satisfactory wavefield425

reconstruction.426

5.4. Example 4: The e↵ect of material property uncertainty427

The inversion procedure outlined in this study relies on a priori estimates of the material properties of the near-surface428

deposits. It is important to acknowledge that in real-world scenarios, the actual properties of the near-surface deposits429

might diverge from their estimates. In this example, we attempt to assess the e↵ect of such discrepancies between430

estimated and actual properties on the accuracy of the reconstructed wavefields.431
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Figure 16: Example 3: Case 3.1A (without structure sensor array); (First row) Snapshots of the target wavefield |ui | in ⌦i induced by a surface-
wave-dominant source in the form of a body force Ricker pulse operating at 5 Hz; (Second row) reconstructed wavefields induced by the inverted
seismic DRM forces F̂inv

DRM.

Figure 17: Example 3: Case 3.1A (without structure sensor array); (First row) Snapshots of the target horizontal component of the wavefield |ui | in
⌦i induced by a surface-wave-dominant source in the form of a body force Ricker pulse operating at 5 Hz; (Second row) reconstructed wavefields
induced by the inverted seismic DRM forces F̂inv

DRM.

Figure 18: Example 3: Case 3.1A (without structure sensor array); (First row) Snapshots of the target vertical component of the wavefield |ui | in
⌦i induced by a surface-wave-dominant source in the form of a body force Ricker pulse operating at 5 Hz; (Second row) reconstructed wavefields
induced by the inverted seismic DRM forces F̂inv

DRM.
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To this end, we use again the same setup that was used in the previous numerical experiments (Fig. 11), with the432

following modifications: here, we assume that the previously used material properties correspond to estimates that433

di↵er from their true values by 2% to 5% as shown in Table 6. In addition, we also assume that the true depth of the434

topmost layer is 9 m, whereas the estimated depth was 10 m. We note that the sensor data were obtained using the435

true/actual values, and not the estimated values.436

Table 6: Summary of the shear and dilatational wave speeds used in Example 4

Wave Estimated properties True properties (2% deviation) True properties (5% deviation)
speed (m/s) Vs Vp Vs Vp Vs Vp

V2 150 300 147 294 142.5 285
V3 100 200 102 204 105 210
V4 500 1000 510 1020 525 1050
V5 800 1600 784 1568 760 1520
V6 3250 5900 3185 5782 3087.5 5605

We study four di↵erent cases, corresponding to two di↵erent Ricker pulses with central frequencies of 5 Hz437

and 10 Hz and two di↵erent property distributions, exhibiting 2% and 5% deviations from the estimated properties,438

respectively. Table 7 shows the error between the reconstructed and true wavefields for all four cases, denoted as439

Cases 4.1A, 4.1B, 4.2A and 4.2B, respectively. Table 7 also includes the errors for Cases 2.1A and 2.2A, where no440

uncertainty was considered (Example 2), and are included here for reference. The results show that the error E|u|441

increases as the deviation from the true properties increases. Table 7 also shows that error worsens further with higher442

frequencies.443

Table 7: Summary of errors for di↵erent levels of uncertainty in wave speeds and driving seismic source frequency

Case Central Uncertainty in E|u| Eux Euy

number frequency in wave speeds
2.1A 5 Hz 0% 2.75% 5.11% 5.11%
4.1A 5 Hz 2% 3.79% 9.41% 6.10%
4.1B 5 Hz 5% 5.14% 13.83% 7.86%
2.2A 10 Hz 0% 8.73% 14.26% 13.84%
4.2A 10 Hz 2% 10.10% 18.96% 16.55%
4.2B 10 Hz 5% 11.99% 22.72% 20.81%

The top row of Fig. 19 shows snapshots of the true wavefields |ui| in⌦i when a 5 Hz central Ricker pulse frequency444

is employed. Furthermore, the second, third, and fourth row of Fig. 19 show the reconstructed wavefield for Cases445

2.1A, 4.1A, and 4.1B, respectively, corresponding to 0%, 2%, and 5% uncertainty in wave speeds. Although, as446

depicted in Fig. 19, there is a gradual worsening of the reconstructed wavefields as the deviation between true and447

estimated properties becomes greater, it is noteworthy that the wavefields are still reasonably well reconstructed near448

the top of the domain.449

6. Conclusions450

We discussed a systematic methodology for reconstructing the total seismic wavefield within the near-surface deposits451

using scant ground-surface measurements, under the assumption that the deposits have been previously characterized.452

We assumed further the site to be arbitrarily heterogeneous, and that the incident seismic motion to induce deforma-453

tions that remain within the linear range. The total wavefield reconstruction is of importance not only for assessing454

seismic risk in sites where the infrastructure has remained, by and large, unchanged over time, but also in sites where455

infrastructure modifications are planned.456

To reconstruct the seismic wavefield everywhere within a site of interest, the presented methodology requires no457

prior knowledge of the seismic event or of the source characteristics. Instead, the method aims at the reconstruction458
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Figure 19: Example 4: (First row) Snapshots of the target wavefield |ui | in⌦i induced by a body-wave-dominant source operating at 5 Hz; (Second-
Fourth row) reconstructed wavefields in Case 2.1A, 4.1A, and 4.1B, respectively, corresponding to 0%, 2%, and 5% uncertainty in wave speeds.

of seismic forces along the, so-called, DRM boundary, enveloping the near-surface deposits of interest. We discussed459

that there are infinitely many DRM force distributions that could satisfy the data, and argued that any single one of460

the DRM force distributions would result in the true total wavefield in the interior, but could result in strong (and461

non-physical) scattered motion in the domain exterior to the DRM boundary and the deposits of interest. To combat462

large amplitude scattered motion that may pollute the total wavefield in the domain of interest, we deployed a state-463

of-the-art absorptive CFS-PML bu↵er to force the decay of outgoing scattered waves within the bu↵er.464

On the technical side, we cast the inverse source problem as a PDE-constrained optimization problem, where the465

PDE was incorporated as a constraint in its space-time discrete form. We used a gradient-based minimization scheme,466

powered by a discretize-then-optimize (DTO) approach, which aimed at minimizing the misfit between measured467

time-series of the total wavefield at the sensors and their reconstructed counterparts –the latter obtained from trial468

DRM seismic force distributions.469

The following is a summary of observations from the numerical experiments.470

• The inverted DRM forces reconstruct fairly well the total wavefield in the interior domain of interest, which471

may also include structures.472

• The reconstructed total wavefield tends to be more accurate in the vicinity of the sensors than in depth.473

• For quality reconstructions of the total wavefield, the required sensor spacing and density depend on the fre-474

quency content of the incident motion: higher frequency content demands denser arrays.475

• The method is e↵ective for arbitrarily incoherent incident fields; surface-wave-dominant incident fields tend to476

reconstruct the wavefield more accurately than body-wave-dominant fields.477

• The method provides acceptable accuracy even in the presence of geophysical uncertainties. The results show478

that the error in the reconstructed wavefield increases with rising uncertainties, as would be expected, but the479

wavefields are reasonably well recovered in the topmost layers, proximal to the free surface and the sensor array.480
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We note that the presented methodology is readily scalable to three dimensions and, with a few modifications,481

could also accommodate nonlinear behavior in the interior domain482
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Nomenclature492

Symbol Comment
�DRM and �0DRM DRM layer boundaries
�CFS�PML Interface boundary between ⌦e and ⌦CFS�PML
⌦i, ⌦e Interior and exterior domains, respectively
⌦CFS�PML Perfectly-matched-layer wave-absorbing bu↵er

i, d, e Subscripts for matrix and vector partitions in ⌦i, �DRM, and ⌦e, respectively

ui, ud Total displacement wavefields in ⌦i and on �DRM, respectively
u0 Free-field motion
we, #, ', ⌘ Scattered displacement wavefield and three auxiliary fields within CFS-PML
Nu, N#, N', N⌘ Shape functions for (ui,ud,we), #, ', and ⌘, respectively
Bx, By, B#, B' Shape function derivatives

Ui, Ud Vectors of nodal values for ui and ud, respectively
We, ⇥, �, H Vectors of nodal values for we, #, ', and ⌘, respectively
U Vector consisting of Ui, Ud, and V
V Vector consisting of We, ⇥, �, and H
d̂ Vector consisting of the time discretization of U(t), U̇(t), and Ü(t) for all time steps
d̂m Vector consisting of measured responses
�̂ Lagrange multiplier vector (space-time discrete)
d̂inv Vector consisting of computed (inverted) responses
dtarget

j
Vector of target |ui| of all nodes in ⌦i at the j-th time step

dinv
j

Vector of reconstructed |ui| induced by F̂inv
DRM of all nodes in ⌦i at the j-th time step

P�DRM , P�0DRM
Seismic forces on �DRM and on �0DRM, respectively

FDRM Global seismic force vector
F̂DRM Time discretization of FDRM(t) for all time steps
F̂inv

DRM Trial (inverted) distributions of the seismic forces F̂DRM

M,K,C Global mass, sti↵ness, and damping matrices for ⌦i [⌦e [⌦CFS�PML
MPML, KPML, CPML Global mass, sti↵ness, and damping matrices for CFS-PML
Q Discrete space-time forward operator

Â Discrete objective functional
L̂ Discrete Lagrangian functional
B,B Block diagonal matrices with non-zero entries corresponding to sensor locations

E|u| Error norm for |ui|
Eux Error norm for the horizontal component of ui

Euy Error norm for the vertical component of ui

Ns Number of sensors on the ground surface
N Total number of time steps
⌧ Final time step
Vs, Vp Shear and dilatational wave speed
�, µ Lamé parameters
↵x, �x, !x Real and imaginary stretching functions and frequency shift in the x direction
↵y, �y, !y Real and imaginary stretching functions and frequency shift in the y direction

493
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Appendix A. On the CFS-PML matrices MPML, CPML, and KPML494

The non-convolutional second-order Complex-Frequency-Shifted Perfectly-Matched-Layer [16, 17] is used for trun-495

cating the unbounded domain, following a mixed-field formulation. Within the PML, the scattered displacements we,496

and the three auxiliary variables, #, ' and ⌘, are discretized using:497

we (x, t) =Nu (x) We (t) , (A.1)
# (x, t) =N# (x)⇥ (t) , (A.2)
' (x, t) =N' (x)� (t) , (A.3)
⌘ (x, t) =N⌘ (x) H (t) , (A.4)

where N(.) are vectors of global basis functions. The PML matrices are defined as [16, 17]:498

MPML =

Z

⌦CFS�PML

2
66666666666664

⇢A2NT
u
Nu 0 0 ⇢A2NT

u
N⌘

0 �2NT
#N# 0 0

0 0 �2NT
'N' 0

0 0 0 B2NT
⌘N⌘

3
77777777777775

d⌦, (A.5)

CPML =

Z

⌦CFS�PML

2
666666666666666664

⇢A1NT
u
Nu 0 0 ⇢A1NT

u
N⌘

�
⇣
�1 � ↵y

↵x

�1
⌘

NT
#L

T
#Bx �1NT

#N# 0 0
�
✓
�1 � ↵x

↵y

�1

◆
NT
'LT
'By 0 �1NT

'N' 0
B1NT

⌘Nu 0 0 B1NT
⌘N⌘

3
777777777777777775

d⌦, (A.6)

KPML =

Z

⌦CFS�PML

2
666666666666666666666666664

↵y

↵x

BT
x
CBx +

↵x

↵y

BT
y
CBy + BT

x
CBy BT

x
CB# BT

y
CB' ⇢A0NT

u
N⌘

+BT
y
CBx + ⇢A0NT

u
Nu

�
⇣
�0 � ↵y

↵x

�0
⌘

NT
#L

T
#Bx �0NT

#N# 0 0

�
✓
�0 � ↵x

↵y

�0

◆
NT
'LT
'By 0 �0NT

'N' 0

B0NT
⌘Nu 0 0 B0NT

⌘N⌘

3
777777777777777777777777775

d⌦. (A.7)

In the above,499

L# =

2
666666664

1 0
0 0
0 1

3
777777775 , L' =

2
666666664

0 0
0 1
1 0

3
777777775 , C =

2
666666664

� + 2µ � 0
� � + 2µ 0
0 0 µ

3
777777775 , (A.8)

A0 = (↵x!x + �x)
⇣
↵y!y + �y

⌘
, A1 = ↵x

⇣
↵y!y + �y

⌘
+ ↵y (↵x!x + �x) , A2 = ↵x↵y, (A.9)

B0 =!x!y, B1 = !x + !y, B2 = 1, (A.10)

�0 = (↵x!x + �x)!y, �1 = ↵x

⇣
!x + !y

⌘
+ �x, �2 = ↵x, (A.11)

�0 =
⇣
↵y!y + �y

⌘
!x, �1 = ↵y

⇣
!x + !y

⌘
+ �y, �2 = ↵y, (A.12)

where � and µ are the Lamé parameters; ↵x, �x are the real and the imaginary stretching parameters of the PML’s500

stretching function, respectively, and !x is the frequency shift in the x direction; ↵y, �y, and !y are the corresponding501

quantities along the y direction. In addition, we define Bx = LxNu, By = LyNu, B# = L#N#, and B' = L'N', where502

Lx =

2
666666664

@
@x 0
0 0
0 @

@x

3
777777775 , Ly =

2
6666666664

0 0
0 @

@y
@
@y 0

3
7777777775
. (A.13)

Appendix B. On the compact discrete operators Q and d̂ of (6)503

The discrete forward operator Q results from the standard second-order semi-discrete equations of motion (3), fol-504

lowing the introduction of the average acceleration implicit Newmark time-integration scheme. Specifically, it can be505
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shown that:506

Q =

2
666666666666666666666666666666666666666666666664

I 0 0 0 0 0 . . . 0 0 0 0 0 0
0 I 0 0 0 0 . . . 0 0 0 0 0 0
K C M 0 0 0 . . . 0 0 0 0 0 0
L1 L2 L3 Ke↵ 0 0 . . . 0 0 0 0 0 0
a1I I 0 �a1I I 0 . . . 0 0 0 0 0 0
a0I a2I I �a0I 0 I . . . 0 0 0 0 0 0
...

...
...

...
...
...
. . .

...
...

...
...

...
...

0 0 0 0 0 0 . . . L1 L2 L3 Ke↵ 0 0
0 0 0 0 0 0 . . . a1I I 0 �a1I I 0
0 0 0 0 0 0 . . . a0I a2I I �a0I 0 I

3
777777777777777777777777777777777777777777777775

, (B.1)

where:507

Ke↵ = a0M + a1C +K, L1 = �a0M � a1C, L2 = �a2M � C, L3 = �M,

a0 =
4

(�t)2 , a1 =
2
�t
, a2 =

4
�t
, (B.2)

with �t denoting time step. The vector d̂, which encompasses the space-time discretization of the unknown nodal508

quantities at all time steps, is defined as:509

d̂ =

2
66666666664

Û
˙̂U
¨̂U

3
77777777775
, (B.3)

where Û, ˙̂U, ¨̂U are the space-time discretization of displacement-like quantities U(t), the velocity-like U̇(t), and the510

acceleration-like Ü(t), respectively. Specifically:511

Û =

2
66666666666666666666666666666664

Ui0

Ud0

V0
...

Ui⌧

Ud⌧

V⌧

3
77777777777777777777777777777775

, ˙̂U =

2
66666666666666666666666666666664

U̇i0

U̇d0

V̇0
...

U̇i⌧

U̇d⌧

V̇⌧

3
77777777777777777777777777777775

, ¨̂U =

2
66666666666666666666666666666664

Üi0

Üd0

V̈0
...

Üi⌧

Üd⌧

V̈⌧

3
77777777777777777777777777777775

, (B.4)

where subscripts 0 . . . ⌧ indicate time steps, with ⌧ denoting the final time step; in the above, U(t) is defined as in (4):512

U(t) =
h
UT

i
(t) UT

d
(t) VT (t)

iT
=
h
UT

i
(t) UT

d
(t) WT

e
(t) ⇥T (t) �T (t) HT (t)

iT
. (B.5)
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