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Abstract

We present a computational approach that incorporates a convolutional neural network (CNN) for detecting internal
delamination in a layered 2D plane-strain anisotropic composite structure of transient elastodynamic fields. The two-
dimensional spectral element method (SEM) is utilized to simulate the propagation of elastic waves in an orthotropic
solid sandwiched by isotropic solids and their interaction with the internal delamination cavity. This work generates
training data consisting of input-layer features (i.e., measured wave signals) and output-layer features (i.e., element
types, such as void or regular, of all elements in a domain).

To accelerate training data generation, we utilize explicit time integration (e.g., the Runge-Kutta scheme) coupled
with an SEM wave solver. Applying the level-set method additionally avoids having to perform an expensive re-
meshing process for every possible configuration of the delamination cavities during the data-generation phase. The
CNN is trained to classify each element as a non-void or void element from the measured wave signals. Clusters of
identified void elements reconstruct targeted cavities. Once our neural network is trained using synthetic data, we
analyze how e↵ectively the CNN performs on synthetic measurement data. To this end, we use blind test data from
a third-party simulator that explicitly models the traction-free boundary of cavities for anisotropic materials without
the application of the level-set method.

Our numerical examples show that our approach can e↵ectively detect the internal cavities in an anisotropic
structure made of aluminum and carbon fiber-reinforced epoxy using the measured elastic waves without any prior
information about the cavities’ locations, shapes, and numbers. The presented method can be extended into a more
realistic 3D setting and utilized for the nondestructive test of various anisotropic composite structures.

Keywords: Imaging of delamination cavities, Element-wise classification, Convolutional neural network, Machine
learning, Level-set method, Spectral element method.

1. Introduction1

The advancement of the manufacturing industry has brought composite materials to our daily lives. By formulat-2

ing a composite, we adopt merits of each raw material while eliminating the limitations of each. One such composite3

material system is fiber metal laminates, where metal sheets are bonded to plies of fiber-reinforced epoxy to fabricate4

a new class of materials [1]. Fiber metal laminates are used in myriad of applications. Carbon fiber-reinforced metal5

laminates are increasingly used in the aviation industry for manufacturing aircraft because of their excellent mechan-6

ical properties, such as high strength-to-weight ratio, improved resistance to fatigue, higher damage tolerance, and7

enhanced mechanical and thermal properties over conventional materials [2, 3]. The weight proportion of composites8

is approximately 25% to 50%, respectively, in the modern aircraft, including the Airbus A380 and Boeing B787, of9
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which many crucial structural components are constructed of composites. Fiber metal composites are also used in10

various automotive components.11

Because of the extensive usage of such composite materials, it is critical to ensure the integrity of composite12

structures during their entire life cycle. Delaminations, cracks, inclusions of foreign substance, and other defects13

could be introduced into composite structures during production or use of them. Among the defect types, delamination14

(i.e., the debonding of adjacent plies in laminated composites) is the most frequent structural anomaly for composite15

structures, particularly sandwiched ones. Because internal delamination significantly reduces the strength and fatigue16

resistance of composite components, it is of importance to accurately detect and characterize internal delamination in17

fiber metal laminate components in various industrial applications [4].18

Various nondestructive testing (NDT) methods [5–7] are aimed to detect a variety of defects (e.g., cracks, de-19

laminations, crushed and buckled cores, and core-skin disbonds). Ultrasound techniques (either active or passive)20

are widely adopted in industry due to their versatility. In particular, active guided ultrasound (e.g., [8, 9]) allows for21

long-range monitoring, as guided ultrasonic waves propagate along the structure (also referred to as waveguide) and22

tend not to lose the wave energy over the traveling distance. Although, in a structure made of composite materials,23

guided wave propagation is complex due to material anisotropy and the waves’ dispersive and multi-modal nature,24

damage detection using guided waves is well-researched and has been applied to a variety of sandwich and other com-25

posite plate structures [10–20]. In addition to mere detection (e.g., examination of the existence of defects without26

discovering their locations or shapes) (level 1 [21]), localization (level 2) and shape-identification (level 3) are possi-27

ble and implemented through various damage imaging techniques. However, most case studies in the past focused on28

very specific, often simplified, applications. To enable the accurate characterization of structural flaws, optimization-29

based methods have been developed, in particular, using the extended finite element method (XFEM) or the level-set30

method to avoid re-meshing while modeling defects of varying shapes during optimization processes [22–27]. Such31

optimization methods typically consume a large duration of computing time (e.g., days), limiting real-time detection32

of structural damages from measured dynamic responses.33

As opposed to the optimization-based methods, studies have recently shown that machine learning (ML) drasti-34

cally reduces the computing time for detecting of defects into seconds or less. For instance, Jiang et al. [28] used a35

combination of the level-set approach and the extreme learning machine (ELM) to find cavities in 2D solid structures.36

Once their neural network is informed of the number of cavities and their shape types (e.g., circular or elliptical),37

it e↵ectively determines the coordinates of circular (or elliptical) cavities’ centroids, radii, major/minor axes, and38

orientations of cavities. Humer et al. [29] used deep neural networks (DNNs) to predict wave damage interaction39

coe�cients (WDICs) in order to identify damage in lightweight structures. Namely, they propose a hybrid neural40

network method that combines finite element (FE) simulations and DNNs to predict WDICs for di↵erent damage41

scenarios. Latête et al. [30] explored the use of CNNs to identify and locate flat bottom holes and side-drilled holes42

in an immersed test specimen using a single plane wave insonification. Mei et al. [31] developed a new approach43

to laser ultrasonic imaging of complex defects with di↵erent shapes, including delaminations and anomalies by us-44

ing full-matrix capture and deep-learning extraction. The aforementioned papers demonstrate the superiority of ML45

approaches over optimization-based methods for defect detection in di↵erent types of materials.46

Recently, Pranto et al. [32] presented an element-wise classification method to image cavities of random shapes47

and numbers in a homogeneous solid using elastic waves. They utilized a CNN to relate measured wave data at mul-48

tiple sensors around a solid to a contour map of elements individually classified as either void or non-void elements.49

They demonstrated that ML model, trained by using synthetic data generated by finite element method (FEM) sim-50

ulations, accurately predicts the sizes, thicknesses, and locations of penny-shaped defects in a solid. Inspired by the51

robust performance shown by Pranto et al. [32], this paper investigates the performance of a CNN, based on element-52

wise classification, for an anisotropic structure. This work incorporated the level-set method into the SEM, which can53

utilize an explicit time integration method to accelerate the data generation process. Namely, because the level-set54

method does not necessitate the task of generating explicit mesh around a cavity boundary, we save time for mesh55

generation. Furthermore, the SEM can further accelerate the calculation time than the regular FEM by the virtue of56

the diagonal mass matrix and the associated ease of matrix inversion during the time integration. Conversely, it can57

be very time-consuming if one uses a regular FEM with explicitly-generated mesh around a cavity boundary during58

the data generation process.59

The remaining sections of the paper are structured as follows. In Section 2, we first present the governing equation60

to simulate the propagation of elastic waves in 2D plane-strain orthotropic materials, which are later considered to61
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be sandwiched by isotropic solids. Section 3 presents a level-set SEM forward wave solver for e�ciently generating62

training data for the sandwiched composite structures with delamination cavities. In Section 4, to verify our level-63

set SEM wave solver, its computed displacement fields are compared with those obtained using ANSYS. Section 564

presents a CNN architecture that is trained using synthetic data sets for the classification of each element in the domain65

as a void or non-void element based on measured wave data. As a result, it provides an element-wise classification66

contour map that displays the probability of each element to be a void element. The positions, dimensions, and shapes67

of the cavities can be inferred from the contour map. In Section 6, the CNN’s performance is assessed using test data68

sets produced by the SEM wave-solver and blind test data sets produced by ANSYS.69

2. Problem Definition70

Layer 1

Orthotropic solid

Isotropic solid

Isotropic solid
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Figure 1: An illustration of an anisotropic layered medium (i.e., an orthotropic solid sandwiched by isotropic solid) with delamination cavities.

This paper considers a 2D layered domain (see Fig. 1), which is occupied by an orthotropic1 material stacked71

between isotropic material with delamination cavities along the interfaces. Specifically, we study elastic waves in a72

2D plane-strain anisotropic solid setting, where the governing equation reads:73

r · � � ⇢ü = 0, in ⌦, (1)

where u := u(x, y, t) = [ux, uy]T denotes the vector wave displacement field; � := �(x, y, t) denotes the Cauchy stress74

tensor; r · ( ) denotes the divergence operator; and ⇢ := ⇢(x, y) denotes the mass density. Initially, wave responses in75

time are zero (i.e., u and u̇ vanish at t = 0). The displacement field u is zero at �u, and a cavity’s surface �h is free of76

traction while �n is subjected to traction.77

The orthotropic solid has three orthogonal planes of symmetry that are mutually perpendicular to each other. The78

nine elastic constants in orthotropic constitutive equations are comprised of three Young’s moduli along each direction79

(E1, E2, E3), the three Poisson’s ratios (⌫23, ⌫31, ⌫12), and the three shear moduli (G23,G31,G12). The constitutive80

equation for a 2D plane-strain orthotropic material can be driven from that of a general 3D orthotropic solid as81

follows.82

First, the three-dimensional strain-stress relationship for a general orthotropic material is the following:83
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1We assume that the considered orthotropic solid is either a truly homogeneous material or a homogenized stack of layers.

3



where " denotes the strain tensor; S is a compliance matrix; Ei denotes Young’s modulus along axis i; ⌫i j denotes the84

Poisson’s ratio corresponds to a contraction in the j-th direction when an extension is applied in the i-th direction;85

and Gi j represents the shear modulus in the j-th direction on the plane of which normal vector is in the i-th direction.86

Assuming a plane strain condition where strains along the z-direction are zero, Eq. (2) can be reduced to87
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where Q is a reduced compliance matrix, of which components can be calculated from S using the following equation88

for each component of the matrix [33]:89

Qi j = S i j �
S i3S j3

S 33
, i, j = 1, 2, 6. (4)

By calculating the inverse of the matrix Q, we can obtain the plane-strain sti↵ness matrix, C = Q
�1.90

The weak form of the governing equation can be derived by multiplying Eq. (1) by a test function v 2 H1
0(⌦) and91

using the divergence theorem and integrating by parts:92
Z

⌦

⇢ü · vT d⌦ +
Z

⌦

v
T

D
T

CD u d⌦ =
Z

�n

v
T · T d�, (5)

where D is a di↵erential operator matrix; and T is a traction on the loaded surface. Eq. (5) is turned into a time-93

dependent discrete form, of which matrices are built by using the SEM process with a convenient level-set modeling.94

The propagation of transient elastic waves for orthotropic composite structures can be calculated via the assembled95

system of the matrices and the force vector in the discrete form. The detail of such a numerical procedure is shown in96

the next Section 3.97

3. Level-set SEM forward wave modeling98

Our wave solver uses the level-set method [25, 26, 32, 34] to reduce computational time for generating training99

data by avoiding remeshing for di↵erent parameters of delamination cavities, which are updated in each iteration100

during data generation.101

In the weak form of the governing equation per each element, the displacement field u in each finite element is102

estimated by using the finite element approximation and an enrichment function V(x, y). Namely, u in an element is103

approximated as:104

u
h(x, y, t) = V(x, y)

NnX

i=1

�i(x, y)ui(t), (6)

with a nodal displacement ui, a local shape function �i at the i-th local node, Nn denoting the total nodes in an element,105

and:106

V(x, y) =

8>><
>>:

1, if x, y 2 an element categorized as a non-void element,
0, if x, y 2 an element categorized as a void element.

(7)

In this study, the approximation in Eq. (6) is made with 9-node quadrilateral elements. An element is considered107

a void element if its centroid and 4 additional nodes (out of a total of 9 nodes) fall within the cavity boundary. In108

all other cases, elements are categorized as non-void elements. An illustrative example of the element classification109

is shown in Fig. 2. Thus, we can rewrite the weak form, Eq. (5), to the following time-dependent discrete form per110

element by utilizing Eq. (6):111
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After level-set algorithm

Original cavity

Non-void element

Void element

Node outside the cavity Node inside the cavity

Figure 2: Level-set classification of void and non-void elements for a 9-node quadrilateral element. On the right, we can see a comparison between
the original cavity and its level-set algorithm application.
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In Eqs. (9a) to (9d), Ci j is a component of the aforementioned plane-strain sti↵ness tensor computed per Eq. (3);113

� is a vector of shape functions (please refer to Appendix A, which details the shape functions associated with our114

spectral element modeling); and Ti denotes the prescribed traction of the surface �n.115

It should be noted that the sti↵ness and mass matrices of a void element become zero because of the enrichment116

function V(x, y) [34]. We derive the time-dependent discrete equation by globally assembling the element matrices117

and element force vector, resulting in a solution vector representing global displacements:118

Ku +Mü = F, (10)

where u = [ux; uy] is the global solution vector. We resolve Eq. (10) by using the explicit time integration method, of119

which details are shown in Appendix B.120

4. Verification of the forward wave solver121

To verify our in-house level-set SEM wave solver, the numerical solution was compared with a reference solution122

obtained using ANSYS Mechanical, a finite element analysis software. A three-layered structure with the size of123
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1 ⇥ 0.5 m with one delamination cavity was considered as depicted in Fig. 3(a). The domain is subjected to fixed124

boundary conditions on the right surface. The delamination cavity is elliptical with major and minor axes of m =125

0.04 m and n = 0.01 m, respectively. Its centroid is located at (x = 0.05, y = 0.015) m, and its major axis is126

inclined at an angle of ↵ = 5� with respect to the horizontal axis, as shown in Fig. 3(b). In our level-set SEM forward127

wave solver, we discretize the domain with a structured mesh of 9-node quadrilateral elements of size 0.01 m. Fig. 4128

shows close-up views of the delamination in the domain for both our SEM-based level-set forward solver and an FEM129

software ANSYS. To obtain the reference solution, we create an unstructured mesh of 8-node quadrilateral elements130

with an average element size of 0.005 m using the automatic mesh generation feature of ANSYS.131
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Figure 3: A stamp with a delamination cavity for the verification of our in-house level-set SEM wave solver.
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Figure 4: Close-up views of (a) the structured mesh for our level-set and SEM-based forward wave solver (white elements represent void elements)
with an element size of 0.01 m and (b) the unstructured mesh for ANSYS for an element size of 0.005 m.

The top and bottom layers are assumed to be aluminum, while the middle layer is carbon/epoxy laminate, and132

their material properties are presented in Table 1. It indicates that aluminum is isotropic, and carbon/epoxy laminate133

is orthotropic.134

A Ricker-pulse wave source with a peak amplitude of 5 kN/m and a central frequency of f = 50 kHz, as shown135

in Fig. 5, is applied at x = 0 m and y = 0.25 m as a point (i.e., z-directional line loading in a 2D) wave source based136

on Eq. (11) such that the positive value of the signal, F(t), is directed in the normal direction toward the interior of the137

domain. The time step used in the simulation is �t = 0.5 µs, and the total analysis time is 350 µs. The displacement138

in the y direction is calculated for a total of 41 sensors located on the upper surface at intervals of 0.02 m between139
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x = 0.1 m and x = 0.9 m at y = 0.5 m.140
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Table 1: Material properties of aluminum and carbon/epoxy laminate.

Elastic properties Aluminum Carbon/epoxy laminate [35]
⇢ (kg/m3) 2, 700 1, 550
Exx (GPa) 69 150
Eyy (GPa) 69 10
Ezz (GPa) 69 10

⌫xy 0.33 0.33
⌫yx 0.33 0.022
⌫yz 0.33 0.44
⌫zy 0.33 0.44
⌫xz 0.33 0.33
⌫zx 0.33 0.022

Gxy (GPa) 25.9 9
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Figure 5: Time history and Fourier spectrum of the Ricker pulse.

In Fig. 6, we show the contour plot of amplitudes of displacement at di↵erent timesteps generated by our level-set141

SEM wave solver. Fig. 7 shows that the wave responses in the y-direction from our level-set SEM wave solver are142

in excellent agreement with those from ANSYS at the sensor locations on the top of the domain. This comparison143

verifies the capability of our level-set SEM solver for accurately simulating the propagation of elastic waves in a144

composite structure with a delamination cavity.145

With an element length of 0.01 m in our level-set solver, the smallest distance between nodes is rmin = 0.005 m.146

We use the time step size �t of 0.5 µs satisfying the Courant-Friedrichs-Lewy (CFL) condition, Eq. (B.10), for the147

maximum wave velocity of the considered materials presented in Appendix C. Since the CFL condition is satisfied,148

the explicit time integration in our SEM-based forward wave solver leads to accurate solutions without non-physical149

oscillations or numerical instabilities in the solution.150

Note that, using an element size of 0.005 m, it takes 15 min for the ANSYS simulation to complete. For matching151

element sizes of 0.01 m, the ANSYS simulation completes in 5 min, while our level-set SEM wave solver finishes the152

computation in only 1 min, demonstrating superior computational e�ciency of our wave solver.153
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(a) 65 µs. (b) 80 µs.

(c) 85 µs. (d) 90 µs.

(e) 95 µs. (f) 110 µs.

Figure 6: Contour plot displaying the elastic wave’s displacement field’s amplitudes in an anisotropic structure made of aluminum and carbon/epoxy
laminate with a delamination cavity.
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Figure 7: Comparison of displacement-time histories obtained using our level-set SEM wave solver and ANSYS.
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5. CNN modeling154

5.1. Data generation155

To train our CNN, our data-generation simulation should (i) randomly populate void elements in a domain, (ii)156

run our SEM forward wave solver, and (iii) record the measured wave signals at sensors. To create void elements in157

a random but realistic manner in step (i), we capture (via the level-set method) void elements within a set of cavities158

that are generated with a random number, location, and configurations.159

We use a three-layered domain of size, for instance, 16.44�⇥8.22� in meters in Examples 1 and 2, where � denotes160

the wavelength of the shear wave of aluminum. Here, � is 0.0608 m for the central frequency f of the Ricker of 50161

kHz leading to a domain of 1 m ⇥ 0.5 m as in the verification example. The solid is made of the same carbon/Epoxy162

laminate sandwiched by aluminum (see Table 1). This plane-strain setting domain is discretized using an element size163

of 0.1644� (0.01 m and 0.001 m for f of 50 kHz (� = 0.0608 m) and 500 kHz (� = 0.00608 m) in Examples 1 and164

2, respectively). Thus, a structured background mesh is generated, discretizing the entire domain with 5,000 square165

elements. We use a Ricker-pulse wave source, F(t) in Eq. (11), with its peak amplitude of 5 kN/m.166

We populate the elliptical shaped cavities using our in-house randomizer to make an arbitrary number of cavities167

with di↵erent sizes and angles at various locations within the interior domain. Each elliptical cavity’s actual boundary168

is defined by the following equation:169

[(x � x0) cos(↵) + (y � y0) sin(↵)]2

m2 +
[(x � x0) sin(↵) � (y � y0) cos(↵)]2

n2 = 1, (12)

where (x0, y0) denotes the coordinates of the center; m and n are its major and minor axes, respectively; and ↵ is the170

angle of the major axis with respect to the x-axis (see Fig. 3(b)). In each data set, our randomizer makes a random set171

of ellipses in a way such that the parameters are unrelated to each other. Despite the possibility of overlap, we avoid172

double-counting void elements. Because our CNN model is designed to find targeted void elements, overlapping of173

elliptical cavities does not a↵ect how well our predictions work.174

To generate the data set, we create elliptical cavities with a major axis between 0.49� and 1.32� (0.03 m and 0.08175

m for f of 50 kHz), a minor axis between 0.16� and 0.25� meters (0.01 m and 0.015 m for f of 50 kHz), and an176

orientation between �5� and 5�. We randomly place our cavities along the two material interfaces to get training data177

that is free of bias.178

Our data generation process randomizes the location and size of the target cavities in each data set, and we classify179

the elements based on our level-set approximation so that output feature data are labeled. We assign a value of one180

to void elements and zero to non-void elements and store the assigned values in the training data. At the same time,181

we run our in-house wave solver to record the displacement, uy, of wave responses at the sensors. We generate a182

total of 6,000 data sets in three sets of 2,000, each accounting for 0, 1, and 2 cavities in total, respectively. The total183

observation time for each forward iteration is divided by 700 time steps, and each time step’s size is T/40, where T is184

1
f . For f of 50 kHz, the time step size is 0.5 µs. We have 41 sensors located at the top surface of the domain. It takes185

65 seconds for our level-set SEM wave solver to generate one data set on a single CPU and MATLAB. Thus, a total186

of 109 hours were spent to complete the data generation process on a single CPU.187

5.2. Data Preparation188

We preprocess the generated 6,000 data to render them suitable for training, validation, and testing. Each data189

comprises of vertical-displacement values of measured wave signals at 41 sensors spanning a duration of 35µs for190

f of 50 kHz. Consequently, the input data consists of 41 sensors multiplied by 701 timesteps. To train a neural191

network, data were computed on a system comprised of an 8-core CPU with 64 gigabytes of DDR4 RAM and a 12192

gigabytes memory NVIDIA Titan V GPU. To reduce the computational cost of training our CNN, we extract every193

third-time step, resulting in only 234 timesteps at each sensor. This reduction in timesteps significantly mitigates the194

computational cost while having no impact on performance during training, validation, and testing. We allocated 80%195

(4800) of the 6,000 data for training, 10% (600) for validation, and the remaining 10% (600) for testing.196
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(a) Before normalization. (b) After normalization.

Figure 8: Input displacement data for training CNN.

Figure 8(a) presents a sample of the input data at one sensor. It is evident from Figure 8(a) that the data encom-197

passes magnitudes, spanning from �10�9 to 10�9. To facilitate the e�cient learning of feature-relationships between198

input- and output-layer data by our CNN, we normalize the data using Eq. (13), limiting the range of the data between199

-0.5 and 0.5. We use this normalized data as the input-layer data for our CNN.200

An
i jk =

Ai jk � Amean
train

Amax
train � Amin

train

, (13)

where An
i jk is the normalized displacement data set; the equation involves subtracting the mean value Amean

train from the201

un-normalized input data matrix’s value Ai jk and dividing the result by the range (Amax
train � Amin

train) of the training data202

set.203

5.3. CNN Architecture204

We utilize a CNN architecture to identify important feature-relationship between our input- and output-layer data.205

Our CNN architecture consists of a Convolution, Max Pooling, Batch Normalization, Flatten, and Dense layer. We206

feed our preprocessed displacement data consisting of 41 sensors each with 234-time steps as input which then passes207

the data along to the convolution layer. We use n f ilters of filter size n f iltersize whose initial values are initialized using208

the “He uniform” initializer [36]. The convolutional filters work in a sliding-dot product-like operation to extract209

a convolution map from each displacement value recorded at di↵erent sensor positions. The convoluted output is210

passed through an activation function, in our case Leaky Rectified Linear Unit (LeakyReLU), to grasp the non-linear211

patterns between the provided input and target output data. Without non-linear activation functions, a neural network,212

regardless of its depth, would essentially operate as a linear model, limiting its ability to learn from the intricate213

patterns and relationships present in the data. The subsequent Max Pooling layer receives this convolution map and214

extracts maximum values from npoolsize to make a further generalization based on prominent features. The feature map215

from the previous layer is batch normalized to make the training more stable. The batch-normalized feature map is216

then transformed into a one-dimensional input to feed the data into a densely connected hidden layer. We utilize 4500217

neurons and utilize LeakyReLU as the activation function. The output from this penultimate layer, containing nunits,218

is passed onto the output layer to predict 5000 probabilistic values using the sigmoid activation function. Each value219

represents the probability, between 0 and 1, of an element in a two-dimensional domain of being void. Our CNN220

architecture is presented in Figure 9. We employed the “binary cross-entropy” loss function to calculate the disparity221

between the predicted and target outputs which is shown in Eq. (14). The actual hyperparameter combinations are222
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shown in223

L = � 1
M

MX

i=1

0
BBBBB@

1
N

NX

i=1

Yi log(P(Yi)) + (1 � Yi) log(1 � P(Yi))
1
CCCCCA , (14)

where Yi represents the target label, where “1” indicates voids and “0” indicates non-void elements, for the i-th224

element; N represents the total number of elements; M represents the total number of training data; and P(Yi) is the225

predicted probability of the i-th element being void, ranging from 0 to 1.226

For optimization, we used the “Nadam” optimizer to back-propagate using TensorFlow provided automated dif-227

ferentiation to adjust the learnable parameters based on the calculated loss value. To assess our training and validation228

performance, we employed “Precision” as our evaluation metric. Additionally, we present the test set’s performance229

across all four evaluation metrics: “Accuracy”, “Precision”, “Recall”, and “F1-score”.230

5.4. Hyperparameter Search and Optimization231

To automate the laborious and time-consuming process of hyperparameter search, we conducted an extensive hy-232

perparameter search using custom algorithms, where the values of n f ilters, n f iltersize, npoolsize, and nunits are optimized.233

We tested various combinations of layers and learnable parameters and then fine-tuned the best-performing combina-234

tion manually to obtain optimal results on the validation data. To prevent overfitting, we use TensorFlow’s callback235

mechanisms to halt training when there is no observed improvement in model performance based on validation loss236

(binary cross-entropy). Our presented CNN model is well-optimized and produces outstanding results on both the237

blind test data generated using ANSYS and the test data as shown in the upcoming Section 6.238
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Figure 9: Our CNN architecture.

5.5. Evaluation metrics239

In this section, we show how the di↵erent evaluation metrics change during training and how our trained CNN240

model performs on test and blind-test data sets, the latter generated using ANSYS. We can evaluate our CNN’s241

performance on training, validation, and two sets of test data sets using the following evaluation metrics:242

Accuracy =
tp + tn

tp + f n + tn + f p
⇥ 100 [%], (15a)

243

Precision =
tp

tp + f p
⇥ 100 [%], (15b)

244

Recall =
tp

tp + f n
⇥ 100 [%], (15c)

245

F1-score =
2 ⇥ Precision ⇥ Recall

Precision + Recall
⇥ 100 [%], (15d)
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where tp, tn, f p, and f n represent, respectively, the counts of true-positive, true-negative, false-positive, and false-246

negative classifications of all the elements in a particular data set. Specifically, we count tp when our CNN correctly247

classifies a target void element as a void; tn when our CNN correctly classifies a target non-void element as a non-void248

element; f p when our CNN incorrectly classifies a target non-void element as a void element; and f n when our CNN249

incorrectly classifies a target void element as a non-void element.250

We note that Accuracy was not an ideal choice as our domain primarily comprised non-void elements, which are251

significantly easier to predict and can falsely represent our CNN’s performance. In contrast, Precision assesses how252

e↵ectively our CNN identifies void elements (tp) compared to falsely classifying a non-void element as a void element.253

On the other hand, Recall measures our CNN’s performance in identifying void elements (tp) compared to incorrectly254

identifying a void element as a non-void element ( f n). Moreover, the inclusion of the F1-score complements this255

assessment, serving as a harmonic mean between Precision and Recall. Opting for a single metric wouldn’t provide a256

holistic representation of our model’s predictive capabilities. Hence, we present all four metrics for a comprehensive257

evaluation.258

6. Numerical Results259

6.1. Case A: Examining the scalability of the presented method with respect to the scale of the domain size, wave260

frequency, and source location.261

We consider two examples shown in Fig. 10. The first one (shown in Fig. 10(a)) considers the wave source at the262

left boundary and the central frequency f of the Ricker pulse 50 kHz. The second one (shown in Fig. 10(b)) utilizes263

the source on the top surface with f of 500 kHz. To accommodate two di↵erent frequencies, ten folds apart each264

other, the size of the domain in the first example is set to be 1 m by 0.5 m while that of the second example is 0.1 m265

by 0.05 m. The orders of magnitudes of horizontal-direction dimensions of cavities in the blind tests are up to 0.04 m266

and 0.004 m in Examples 1 and 2, respectively. These examples demonstrate that our presented examples are scalable267

to various sizes of domains, sizes of delamination cavities, the frequency regime of waves, and the location of a wave268

source.269
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(a) Large domain (Example 1).
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(b) Small domain (Example 2).

Figure 10: A schematic diagram of the data generation domain for Examples 1 and 2.

6.1.1. Performance during training for Examples 1 and 2270

As this research problem involves a binary classification task, we show the convergence of binary cross-entropy271

loss function in Eq. (14) and Precision in Eq. (15b) over epochs in Fig. 11. Aside from the convergence of the loss272

function, we employed “Precision” as our exemplary independent evaluation metric2, showing the progress of the273

training process in Fig. 11(b). In Example 1, Fig. 11 shows that the loss function converges to zero and the Precision274

metric reaches 100% within 20 epochs. If the curves were indicative of overfitting, the loss and Precision curves for275

2Additionally, we present the performance of our CNN model across all four evaluation metrics: “Accuracy”, “Precision”, “Recall”, and “F1-
score” when we subsequently examine test data and perform a blind test.
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training and validation data sets would not overlap, suggesting a lack of generalization during the learning phase. In276

Fig. 12, we observe the similar behavior of loss function and Precision curves over the epochs in Example 2 where277

we use a smaller domain, a source at the top of a higher frequency, and smaller cavity sizes than Example 1.278

(a) Binary cross-entropy loss function. (b) Precision.

Figure 11: Convergence curve of the loss function and Precision over 20 epochs for Example 1.

(a) Binary cross-entropy loss function. (b) Precision.

Figure 12: Convergence curve of the loss function and Precision over 20 epochs for Example 2.

6.1.2. Performance on test data set for Examples 1 and 2279

Tables 2 and 3 present the overview of our trained CNN’s performance on the 600 test data sets and show the280

performance of our trained CNN both in larger and smaller domains (Examples 1 and 2). To provide a detailed281

analysis, Tables 2 and 3 individually identify the best and worst predictions for the three types of test data sets (i.e., 1282

data set with zero target cavities, data sets with one target cavity, data sets with two target cavities).283

• Data set with zero target cavities: Notably, we achieve perfect Accuracy for the domain that contains no void284

elements for both Examples 1 and 2. However, we are unable to compute the remaining three metrics due to285

the lack of tn, f p, and f n terms, which renders the expressions in Eqs. (15b), (15c), and (15d) indeterminate.286

• Data sets with one target cavity: For the domain with one delamination cavity in Example 1, our CNN achieves287

an impressive Accuracy of 99.99%, a Precision of 100.00%, a Recall of 96.15%, and an F1-score of 98.04% for288
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the best prediction. Even the worst prediction for Example 1 resulted in an Accuracy of 99.95%, a Precision289

of 93.75%, a Recall of 94.94%, and an F1-score of 94.34%. Our CNN also shows an outstanding performance290

with an Accuracy of 99.95%, a Precision of 96.82%, a Recall of 91.03%, and an F1-score of 93.84% as shown291

in the best prediction result of Example 2. The worst prediction result of Example 2 also shows high values of292

the metrics: an Accuracy of 99.90%, a Precision of 84.51%, a Recall of 93.75%, and an F1-score of 88.89%.293

• Data sets with two target cavities: Moreover, for the domain with two delamination cavities, our CNN achieves294

an Accuracy of 99.98%, a Precision of 97.83%, a Recall of 100.00%, and an F1-score of 98.90% for the best295

prediction in Example 1. On the other hand, the worst prediction for Example 1 results in an Accuracy of296

99.84%, a Precision of 93.07%, a Recall of 91.26%, and an F1-score of 92.16%. Example 2 also shows a great297

performance of our CNN as evidenced in the best prediction in Example 2 with an Accuracy of 99.88%, a298

Precision of 94.18%, a Recall of 89.91%, and an F1-score of 92% and the worst prediction in Example 2 with299

an Accuracy of 99.79%, a Precision of 82.57%, a Recall of 88.24%, and an F1-score of 85.31%.300

Table 2: The test data set’s (Example 1) evaluation metrics for CNN under Case A.

Figures Accuracy (%) Precision (%) Recall (%) F1-score (%)
Fig. 13 - Prediction (zero cavities) 100

Fig. 14 - Best prediction (one cavity) 99.99 100.00 96.15 98.04
Fig. 15 -Worst prediction (one cavity) 99.95 93.75 94.94 94.34
Fig. 16 - Best prediction (two cavities) 99.98 97.83 100.00 98.90

Fig. 17 - Worst prediction (two cavities) 99.84 93.07 91.26 92.16

Table 3: The test data set’s (Example 2) evaluation metrics for CNN under Case A.

Figures Accuracy (%) Precision (%) Recall (%) F1-score (%)
Fig. 13 - Prediction (zero cavities) 100

Fig. 14 - Best prediction (one cavity) 99.95 96.82 91.03 93.84
Fig. 15 -Worst prediction (one cavity) 99.90 84.51 93.75 88.89
Fig. 16 - Best prediction (two cavities) 99.88 94.18 89.91 92.00

Fig. 17 - Worst prediction (two cavities) 99.79 82.57 88.24 85.31

To provide a more intuitive understanding of the predictions, we present the visual representation of predicted301

cavities in each type of test data set consisting of 0, 1, and 2 targeted cavities in Figures 13 to 17, respectively.302
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(a) Target domain (Example 1). (b) Predicted domain (Example 1).

(c) Target domain (Example 2). (d) Predicted domain (Example 2).

Figure 13: Prediction for zero target cavities in test data set under Case A.

(a) Target domain (Example 1). (b) Predicted domain (Example 1).

(c) Target domain (Example 2). (d) Predicted domain (Example 2).

Figure 14: Best prediction for one target cavity in test data set under Case A.
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(a) Target domain (Example 1). (b) Predicted domain (Example 1).

(c) Target domain (Example 2). (d) Predicted domain (Example 2).

Figure 15: Worst prediction for one target cavity in test data set under Case A.

(a) Target domain (Example 1). (b) Predicted domain (Example 1).

(c) Target domain (Example 2). (d) Predicted domain (Example 2).

Figure 16: Best prediction for two target cavities in test data set under Case A.
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(a) Target domain (Example 1). (b) Predicted domain (Example 1).

(c) Target domain (Example 2). (d) Predicted domain (Example 2).

Figure 17: Worst prediction for two target cavities in test data set under Case A.

6.1.3. Performance on blind test data sets for Examples 1 and 2303

The previous Section 6.1.2 employed test data sets that were generated by a level-set SEM wave solver to investi-304

gate the performance of our CNN. In this section, we present the performance of our CNN on blind test data that was305

generated using ANSYS Mechanical. By running the CNN using the measurement data from the third-party simulator306

that models the boundary of cavities explicitly (i.e., more accurately than our level-set wave solver), we avoid an in-307

verse crime. Namely, we virtually mimic a situation where our numerical simulator uses experimental data, which are308

true to real physics. Our blind tests also demonstrate how our CNN solver predicts delamination cavities when it is fed309

by the measurement data from ANSYS in consideration of (i) elliptical cavities of even smaller major axes than those310

in the training data and (ii) cavities with non-elliptical shapes. Namely, we test the performance of our CNN inversion311

solver for cavities of non-elliptical shapes that it has never been exposed to during the training phase. To obtain the312

blind test data set, we created an unstructured mesh of 8-node quadrilateral elements, each having an average element313

size of 0.0025 m for Example 1 and 0.00025 m for Example 2, via ANSYS’s automatic mesh generation feature.314

Such ANSYS modeling is considered to be, again, more veracious to the real physics than that of the level-set solver,315

particularly in modeling of a cavity with a zero-traction boundary.316

We utilize our CNN to identify delamination cavities in samples of blind test data sets from ANSYS. Namely,317

the measured wave signals from ANSYS modeling for the samples are fed into our trained CNN, which, in turn,318

yields the contour maps of the predicted void elements. They are, eventually, compared to the geometries of targeted319

cavities in ANSYS visually and numerically. Our CNN exhibited great performance on the samples (Figures 18 - 22).320

The Samples A1 to A3 correspond to the instances when the targeted delamination cavities, modeled by ANSYS, are321

elliptical, but with even smaller major axes (e.g., 0.01 to 0.02 m in Example 1 of a larger domain) than those (e.g.,322

0.03 to 0.08 m in Example 1) in the training data. In Samples A4 and A5, the targeted cavities are of non-elliptical323

shapes (e.g., Gaussian distribution or saw-tooth shape). Figs. 18 to 22 illustrate the target and prediction domains for324

all Samples A1 to A5. For brevity, the targeted and predicted cavities of Samples A1, A3, and A5 are presented only325

for Example 1 while those of Samples A2 and A4 are depicted for Example 2.326

The numerical results of the evaluation metrics for all five blind test samples for both Examples 1 and 2 are327

presented in Tables 4 and 5. To this end, we map the geometries of targeted delamination cavities from ANSYS into328

a structured grid and identify equivalent targeted void elements in each sample. In the next Section 6.2, we compare329

the blind test results for various central frequencies of the source while its location is fixed.330
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(a) Target domain. (b) Predicted domain.

Figure 18: Blind test (Sample A1) for Example 1 under Case A.
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(a) Target domain. (b) Predicted domain.

Figure 19: Blind test (Sample A2) for Example 2 under Case A.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5
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Figure 20: Blind test (Sample A3) for Example 1 under Case A.
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Figure 21: Blind test (Sample A4) for Example 2 under Case A.
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(a) Target domain. (b) Predicted domain.

Figure 22: Blind test (Sample A5) for Example 1 under Case A.

Table 4: The evaluation metrics for CNN (Example 1) for the ANSYS generated blind test data set under Case A.

Samples Targeted delamination cavities Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

A1 - Fig. 18 Two cavities in di↵erent interfaces 99.88 91.67 68.75 78.57
A2 Two cavities in di↵erent interfaces 99.88 88.46 71.88 79.31

A3 - Fig. 20 Two cavities in di↵erent interfaces 99.87 87.50 63.64 73.68
A4 One cavity (saw-tooth shape) 99.83 80.00 55.56 65.57

A5 - Fig. 22 One cavity (Gaussian distribution shape) 99.83 81.48 52.38 63.77

Table 5: The evaluation metrics for CNN (Example 2) for the ANSYS generated blind test data set under Case A.

Samples Targeted delamination cavities Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

A1 Two cavities in di↵erent interfaces 99.84 91.67 61.11 73.33
A2 - Fig. 19 Two cavities in di↵erent interfaces 99.87 88.46 69.70 77.97

A3 Two cavities in di↵erent interfaces 99.85 84.38 61.36 71.05
A4 - Fig. 21 One cavity (saw-tooth shape) 99.81 86.00 51.81 64.66

A5 One cavity (Gaussian distribution shape) 99.81 87.04 48.45 62.25

6.2. Case B: Examining the performance of the method with respect to the frequency of the load for Example 1331

In this section, we examine how well our CNN performs on blind test data in relation to the load frequency in332

Example 1. We explore three central frequencies (30 kHz, 40 kHz, and 50 kHz) of the Ricker-pulse wave source. We333

train three distinct CNN architectures with varied hyperparameter configurations, tailoring each to the training data334

for its respective frequency. A dedicated hyperparameter search is conducted for each wave source frequency problem335

to find optimal settings. Following a similar approach as outlined in Section 6.1.3, we generate blind test data sets for336

five samples using ANSYS. Our CNN demonstrates great performance across various central frequencies of the load337

for all samples.338

The numerical results for the evaluation metrics of all five blind test Samples B1 to B5 are outlined in Tables 6339

and 7 for central frequencies of 40 kHz and 30 kHz, respectively. Earlier results for the central frequency of 50 kHz340

are available in Table 4 in Section 6.1.3. Notably, we consistently observe positive outcomes across all three load341

frequencies, underscoring the broad applicability of our proposed CNN-based approach, irrespective of the source342

wave frequency. We notice that training with a 50 Hz frequency leads to slightly better performance, as evidenced by343

improvements in the F1-score. Figure 23 illustrates the target and prediction domains for only Sample B1 for brevity.344

We notice the slightly less accurate performance of our CNN when (i) targeted cavities are not elliptical shaped345

than otherwise; (ii) targeted cavities are located near the top or bottom surface or the fixed boundary; and (iii) targeted346

cavities are vertically oriented. This could be improved by introducing a variety of cavities of di↵erent sizes and347
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shapes in our training data sets. In the next Section 6.3, we examine that the presented method can be improved if the348

training data are further diversified in terms of the target cavity profiles.349

Table 6: The evaluation metrics for CNN (Example 1, central frequency of 40 kHz) for the ANSYS generated blind test data set under Case B.

Samples Targeted delamination cavities Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

B1 - Fig. 23(c) Two cavities in di↵erent interfaces 99.79 100 41.51 58.67
B2 Two cavities in di↵erent interfaces 99.80 100 48.00 64.86
B3 Two cavities in di↵erent interfaces 99.79 100 44.21 61.31
B4 One cavity (saw-tooth shape) 99.80 100 37.50 54.55
B5 One cavity (Gaussian distribution shape) 99.79 100 32.26 48.78

Table 7: The evaluation metrics for CNN (Example 1, central frequency of 30 kHz) for the ANSYS generated blind test data set under Case B.

Samples Targeted delamination cavities Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

B1 - Fig. 23(d) Two cavities in di↵erent interfaces 99.81 77.27 41.46 53.97
B2 Two cavities in di↵erent interfaces 99.81 86.11 49.21 62.63
B3 Two cavities in di↵erent interfaces 99.81 88.10 46.84 61.16
B4 One cavity (saw-tooth shape) 99.82 100 40.00 57.14
B5 One cavity (Gaussian distribution shape) 99.81 100 34.48 51.28

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

(a) Target domain (Sample B1). (b) Predicted domain (frequency = 50 kHz).

(c) Predicted domain (frequency = 40 kHz). (d) Predicted domain (frequency = 30 kHz).

Figure 23: Blind test (Sample B1) for various central frequencies of the load under Case B.

6.3. Case C: Examining the e↵ect of diversifying training data in terms of target cavity profiles for Examples 1 and 2350

We train the CNNs using the data sets with more diversified target cavity profiles for Examples 1 and 2 than Case351

A. As distinction from Case A, the angle ranges from �88� to 88� in Case C, being more inclusive than the previous352
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range of �5� to 5� in Case A. The cavities are located throughout the entire domain in Case C (Case A populates them353

only along the interfaces), with their centers at 1.32�  x  16.45� and 1.32�  y  8.22� (0.08 m  x  1 m354

and 0.08 m  y  0.42 m for Example 1; 0.008 m  x  0.1 m and 0.008 m  y  0.042 m for Example 2). The355

target profiles of training data include not only horizontally oriented cavities but also vertically oriented cavities, near-356

surface cracks, or those near the fixed boundary. We generate the blind test data sets, produced by ANSYS, simulating357

domains with two horizontally oriented cavities at di↵erent interfaces (Sample C1), a vertically oriented cavity at the358

interface (Sample C2), a cavity near the surface (Sample C3), and a cavity near the fixed boundary (Sample C4).359

Except for the aforementioned newly diversified profiles of target cavities in training data sets, all other conditions360

(e.g., boundary condition, source profile, sensor locations) remain the same as Case A.361

To assess the e↵ect of diversifying the cavity profiles of training data sets, we show the prediction results of blind362

tests. Figs. 24 and 26 depict the results of Samples C1 and C3 only for Example 1 while Figs. 25 and 27 present363

those of Samples C2 and C4 only for Example 2. The models have improved in detecting the locations of cavities364

because our CNN model is trained using data sets that consider both horizontally and vertically oriented cavities near365

the interface, surface, or fixed boundary. In Tables 8 and 9, the numerical results of the evaluation metrics for four366

blind test samples are presented for both Examples 1 and 2.367

(a) Target domain. (b) Predicted domain.

Figure 24: Blind test (Sample C1) for Example 1 under Case C: Two horizontally oriented delamination cavities.

(a) Target domain. (b) Predicted domain.

Figure 25: Blind test (Sample C2) for Example 2 under Case C: One vertically oriented cavity.
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(a) Target domain. (b) Predicted domain.

Figure 26: Blind test (Sample C3) for Example 1 under Case C: One cavity near the surface.

(a) Target domain. (b) Predicted domain.

Figure 27: Blind test (Sample C4) for Example 2 under Case C: One delamination cavity near the fixed boundary.

Table 8: The evaluation metrics for CNN for the ANSYS generated blind test data set for Example 1 under Case C.

Samples Targeted cavities Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

C1 - Fig. 24 Two delamination cavities in di↵erent interfaces 99.72 45.00 75.00 56.25
C2 One vertically oriented cavity in the interface 99.81 57.14 69.57 62.75

C3 - Fig. 26 One cavity near the surface 99.72 49.18 54.55 51.72
C4 One delamination cavity near the fixed boundary 99.78 60.00 64.29 62.07

Table 9: The evaluation metrics for CNN for the ANSYS generated blind test data set for Example 2 under Case C.

Samples Targeted cavities Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

C1 Two delamination cavities in di↵erent interfaces 99.58 15.00 42.86 22.22
C2 - Fig. 25 One vertically oriented cavity in the interface 99.71 32.14 47.37 38.30

C3 One cavity near the surface 99.74 42.62 60.47 50.00
C4 - Fig. 27 One delamination cavity near the fixed boundary 99.73 33.33 60.00 42.86

6.4. Case D: Examining the performance of the method for a domain (Example 3) of a di↵erent dimensional ratio368

from Examples 1 and 2369

In this section, we train the new CNN model with a di↵erent dimensional ratio from Examples 1 and 2. We reduce370

the thickness of aluminum from 0.015 m to 0.005 m while the thickness of the Carbon/epoxy laminate remains as 0.02371

m, as illustrated in Fig. 28. Similar to Example 2 in Case C, we create elliptical cavities with a major axis between372
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0.003 m and 0.008 m, a minor axis between 0.001 m and 0.0015 m, and an orientation between �88� and 88�. The373

center of cavities is located at 0.004 m  x  0.1 m and 0.004 m  y  0.026 m. We use the central frequency of the374

Ricker wave source as 500 kHz and apply it in the y-direction at (0.045 m, 0.03 m). To train the model, we collect375

the displacement data in the y-direction at a total of 41 sensors located on the upper surface at intervals of 0.002 m376

between x = 0.01 m and x = 0.09 m at y = 0.03 m. The blind test data sets for four samples are generated using377

ANSYS, as in Section 6.3, considering cavities near the interface, surface, or fixed boundary.378

Figures 29 to 32 demonstrate the ability of our CNN model to detect cavities in the domain for Example 3. More-379

over, we find that transitioning to a di↵erent dimensional ratio does not significantly impact the CNN’s performance—380

it consistently identifies the presence of single or double cavities and accurately locates their positions within the381

domain. Additionally, the model continues to successfully reconstruct the cavity’s shapes by predicting the associated382

elements. The numerical results for the prediction of blind test data for this dimensional ratio are summarized in Table383

10.384

Aluminum

Carbon/epoxy laminate

Aluminum

41 Sensors

0.1 m

𝑦

𝑥

Fixed 
boundary

0.005 m

0.
03

 m

0.02 m

0.005 m

Source (0.045 m, 0.03 m)

Figure 28: A schematic diagram of the data generation domain for Example 3.

(a) Target domain. (b) Predicted domain.

Figure 29: Blind test (Sample D1) for Example 3 under Case D: Two horizontally oriented cavities.

(a) Target domain. (b) Predicted domain.

Figure 30: Blind test (Sample D2) for Example 3 under Case D: One vertically oriented cavity.
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(a) Target domain. (b) Predicted domain.

Figure 31: Blind test (Sample D3) for Example 3 under Case D: One cavity near the surface.

(a) Target domain. (b) Predicted domain.

Figure 32: Blind test (Sample D4) for Example 3 under Case D: One cavity near the fixed boundary.

Table 10: The evaluation metrics for CNN (Example 3) for the ANSYS generated blind test data set under Case D.

Samples Targeted cavities Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

D1 - Fig. 29 Two delamination cavities in di↵erent interfaces 99.47 25.00 83.33 38.46
D2 - Fig. 30 One vertically oriented cavity in the interface 99.60 32.14 64.22 42.86
D3 - Fig. 31 One cavity near the surface 99.42 50.82 43.66 46.97
D4 - Fig. 32 One delamination cavity near the fixed boundary 99.48 55.56 48.08 51.55

6.5. Case E: Examining the performance of the method with respect to the number of sensors.385

In this section, we discuss the outcomes of our parametric study, focusing on the correlation between the number386

of sensors and the predictive performance of the neural network. To evaluate the model’s predictive accuracy, we387

analyze true positives (correct identification of void elements) and false positives (incorrect identification of non-void388

elements as void elements) in the test data set of Examples 1 and 2 under Case C and Example 3 under Case D in389

Figures 33 and 34, respectively.390

Figures 33(a) and 33(b) illustrate the correct identification of void elements (true positives) in domains containing391

1 and 2 cavities, respectively. Notably, an increase in the number of sensors, exemplified by the yellow bars (41392

sensors), consistently leads to improved void element identification compared to trained models with fewer sensors393

(11 sensors in blue and 21 sensors in orange). The use of fewer sensors can significantly hinder the neural network’s394

capability to predict void elements.395

Further analysis of Figures 34(a) and 34(b), which depict false positives (instances where non-void elements396

are incorrectly identified as void elements), shows that employing more sensors is associated with a decrease in397

misidentifying void elements. This observation suggests that a greater number of sensors facilitates the neural network398

in learning intricate feature relationships between input- and output-layer data, contributing to enhanced void element399

identification.400
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(a) Correctly identified void elements (one target cavity).
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(b) Correctly identified void elements (two target cavities).

Figure 33: Parametric study investigating the impact of sensor configurations on the predictive performance of our CNN in correctly identifying
void elements (i.e., the number of true positives) when there are (a) one or (b) two target cavities.
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(a) Incorrectly identified void elements (one target cavity).
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(b) Incorrectly identified void elements (two target cavities).

Figure 34: Parametric study investigating the impact of sensor configurations on the predictive performance of our CNN in incorrectly identifying
void elements (i.e., the number of false positives) when there are (a) one or (b) two target cavities.

7. Conclusion401

We discuss a novel method to detect delamination cavities in a 2D plane-strain anisotropic structure subjected to402

elastic waves. This paper presents the following methodological contributions.403

• In order to accelerate the data generation process, we utilize the SEM method endowed with the explicit time404

integration and the level-set method. Namely, we rapidly solve a series of forward problems with varying405

sizes, shapes, and locations of delamination cavities located across an orthotropic material (e.g., carbon fiber-406

reinforced epoxy) and an isotropic layer (e.g., aluminum) without remeshing for varying parameters of the407

geometries of targeted cavities. In that, we systematically capture (via the level-set method) void elements408

within a set of cavities that are populated with a random number, location, and configurations. The binary409

information (i.e., void or non-void element) of all the elements and the measured wave signals at sensors are410

utilized to train our CNN.411

• Once the CNN learns from these training data sets, our CNN categorizes each element in the domain as either412

a void or non-void one. Clusters of identified void elements reconstruct targeted cavities although they are413

arbitrary in their numbers and shapes. The advantage of such element-wise classification is that a neural network414

does not need to be informed of the prior information about the target cavities (e.g., their number and their415

shapes). Therefore, our CNN can identify targeted cavities, which are arbitrary in terms of shapes, numbers,416

locations, and size using only measurement data.417

This work also utilizes blind test data produced by ANSYS Mechanical, which simulates the boundaries of the418

delamination cavities explicitly by using an unstructured mesh of fine resolution. Thus, we do not commit an inverse419
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crime in this work by mimicking a situation where our numerical simulator uses experimental data. The blind test also420

examines the performance of our CNN inversion solver for cavities of non-elliptical shapes (e.g., Gaussian distribution421

or saw-tooth shape) that it has never been exposed to during the training phase.422

The following summarizes the findings from our numerical results.423

• For domains with di↵erent scales in domain size, cavity sizes, and wave frequencies, our training consistently424

demonstrates the convergence of the loss function to a minimum, ensuring great performance for accurate425

cavity detection, also validated through visual inspection and numerical results. In blind tests, our CNN solver426

e↵ectively detects delamination cavities, considering (i) elliptical cavities of even smaller major axes than those427

in the training data and (ii) cavities with non-elliptical shapes.428

• From a numerical simulation, examining the performance of our CNNs with respect to only the central fre-429

quency of a wave source, we found that the accuracy of the CNN is not significantly a↵ected by changing the430

central frequency (e.g., 30, 40, and 50 kHz).431

• The performance of our CNN is improved once we consider target cavities of a broader range of shapes (e.g.,432

a larger range of inclined angles) and locations (e.g., not just along the interfaces but also around the top and433

bottom surfaces and the fixed boundary) in our training data sets.434

• Our CNN model successfully detects cavities near the interface, surface, and fixed boundary in a sandwiched435

composite structure of various dimensional ratios.436

• The evaluation of our CNN’s correct and incorrect identification of void elements indicates that an increase in437

the number of sensors consistently improves the accuracy of cavity identification.438
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Appendix A. On the Spectral Element Modeling450

To improve computational e�ciency in terms of computing time and memory usage, the global mass matrix,451

M, can be diagonalized due to its e�cient matrix-vector multiplication and matrix inversion compared to the non-452

diagonal mass matrix. While the lumped mass model is a straightforward way to diagonalize the mass matrix, we453

utilize the SEM [37], which utilizes high-order polynomials as basis functions with the Gauss-Lobatto-Legendre454

(GLL) numerical integration within the framework of a typical finite element modeling, to avoid the approximation455

error of the mass lumping but still diagonalize M. Thus, the SEM leads to a higher accuracy of the solution than the456

mass lumping.457

We use three integration points for each direction in the quadratic 9-node element to perform the GLL numerical458

integration in this study. The basis function  for each direction in the local coordinate (⇠ and ⌘ in a 2D) can be459

expressed using the second-order Legendre polynomial. For instance, when ⇠ is considered,460

 p(⇠) =
1

6L2(⇠p)
(1 � ⇠2)L02(⇠)

⇠ � ⇠p
, p = 1, 2, 3, �1  ⇠  1, (A.1)

where ⇠p is the p-th local node’s coordinate (i.e., ⇠1 = �1, ⇠2 = 0, and ⇠3 = 1) and L2(⇠) denotes the second-order461

Legendre polynomial defined as:462

L2(⇠) =
1
2

⇣
3⇠2 � 1

⌘
. (A.2)

The shape function � for the quadratic 9-node element in the local coordinate (⇠, ⌘), ⇠, ⌘ 2 [�1, 1], is built as463

follows:464

�i(⇠, ⌘) =  p(⇠) q(⌘), p, q = 1, 2, 3, and i = 1, . . . , 9. (A.3)

The combination of p and q values for each i in Eq. (A.3) are determined per Fig. A.35.465
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Figure A.35: The quadratic 9-node element in the local coordinate.

Table A.11 presents the location of nodes, integration points, and the corresponding weight factors (wp and wq)466

for the GLL quadrature used in this paper.467

Table A.11: Location of integration points and weight factors for the GLL quadrature.

p, q Location of integration points Weight factors
⇠p and ⌘q wp and wq

1 -1 1/3
2 0 4/3
3 1 1/3
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The element-level calculation of M
e in the local coordinate system is as follows:468

Me
i j =

Z

⌦e
⇢�i(x, y)� j(x, y)d⌦ =

Z 1

�1

Z 1

�1
⇢�i(⇠, ⌘)� j(⇠, ⌘) |J| d⇠d⌘, i, j = 1, . . . , 9, (A.4)

where |J| is the determinant of the Jacobian matrix. By using three integration points in each direction with the GLL469

quadrature method, Eq. (A.4) becomes470

Me
i j =

3X

p=1

3X

q=1

wpwq⇢�i(⇠p, ⌘q)� j(⇠p, ⌘q) |J| , (A.5)

and M
e is characterized as:471

Me
i j =

8>><
>>:

Me
i j = 0, i , j

Me
i j , 0, i = j.

(A.6)

The global mass matrix, M in Eq. (B.1), can be obtained from the assembly of M
e, and then M is diagonalized.472

Appendix B. Explicit Time Integration Method473

We introduce an explicit time integration method, leveraged by the diagonal mass matrix naturally arisen from the474

SEM, to solve nodal displacements and velocities. The system of the global matrices and the force vector in Eq. (10)475

can be transformed into a system of first-order di↵erential equations, by assuming y = u̇ and multiplying by the476

inverse of the mass matrix into Eq. (10), as:477

"
u̇

ẏ

#
=

"
0 I

�M
�1

K 0

# "
u

y

#
+

"
0

M
�1

F

#
, (B.1)

where y = [u̇x; u̇y]. By substituting ṡ = [u̇; ẏ], s = [u; y] into Eq. (B.1), the second-order di↵erential equation system478

in Eq. (10) can be transformed into a system of first-order di↵erential equations in every discrete time step n:479

ṡn = Jsn + F
e↵
n , (B.2)

where J =
h
0,�I;�M

�1
K, 0

i
, and F

e↵ =
h
0; M

�1
F

i
.480

We adopt the explicit time integration scheme, the fourth-order Runge-Kutta method, to solve for the global481

solution vector of the first-order system in Eq. (B.2), for each discrete time step. The displacements and velocities for482

the next step (sn) can be calculated from a previous time step (sn�1) using the Runge-Kutta method with a time step �t483

as seen below:484

sn = sn�1 +
�t
6

(k1 + 2k2 + 2k3 + k4), (B.3)

where the vector ki are called i-th stage derivative of the 4th-order Runge-Kutta integration scheme as:485

k1 =
@s

@t
(tn�1, sn�1) = Jsn�1 + F

e↵
n�1, (B.4)

k2 =
@s

@t

 
tn�1 +

�t
2
, sn�1 +

�t
2

k1

!
= J

 
sn�1 +

�t
2

k1

!
+ F

e↵
n�0.5, (B.5)

k3 =
@s

@t

 
tn�1 +

�t
2
, sn�1 +

�t
2

k2

!
= J

 
sn�1 +

�t
2

k2

!
+ F

e↵
n�0.5, (B.6)

k4 =
@s

@t
(tn, sn�1 + �tk3) = J (sn�1 + �tk3) + F

e↵
n , (B.7)

and486

F
e↵
n�0.5 =

"
0

M
�1

F

⇣
tn�1 +

�t
2

⌘
#
. (B.8)
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A time step size is selected to satisfy the following CFL condition for convergence, useful for explicit time inte-487

gration schemes:488

C = vmax (�t)
rmin

 Cmax, (B.9)

where C is the Courant number, vmax is the largest wave speed of the material(s) used in the model, �t is the time489

step size, rmin is the smallest distance between nodes in the finite element model, and Cmax is the maximum allowable490

Courant number. Choosing Cmax = 1.0, the time steps used in this study meet the following condition:491

�t  rmin

vmax
. (B.10)

Appendix C. Evaluation of the maximum wave velocity of the considered materials492

We could analytically compute the maximum wave velocity of the considered materials and ensure that the493

CFL condition (defined in Eq. (B.9)) is satisfied. Namely, the maximum wave velocity of aluminum is calculated494

va =
q

E(1�⌫)
⇢(1+⌫)(1�2⌫) = 6153 m/s while that of carbon/epoxy laminate is vxx =

q
Exx
⇢ = 9837 m/s [38]. To confirm495

our analytical evaluation, we simulate wave propagation in a homogeneous domain with aluminum or carbon/epoxy496

laminate. The size of the homogeneous domain is 1⇥0.5 m, identical to that of Fig. 3(a), with no cavities. The bound-497

ary and loading conditions are the same as the simulation for verification of our level-set SEM solver. Fig. C.36(a)498

presents a comparison of displacement-time histories in the x-direction at the middle of the domain (y = 0.25 m) for499

both the aluminum domain and carbon/epoxy laminate. The comparison is conducted at intervals of 0.02 m between500

x = 0.1 m and x = 0.9 m at y = 0.25 m. Fig. C.36(b) presents displacement-time histories for both domains at point501

(x = 0.5, y = 0.25) m. In the case of the aluminum domain, the peak of the Ricker-pulse wave source initiates at502

(0, 0.25) m after ti = 24 µs, and reaches point (0.5, 0.25) m at the arrival time of about ta = 107 µs, taking a total of503

about 83 µs. On the other hand, for the carbon/epoxy laminate, the arrival time tc is 75.5 µs, taking a total of 51.5 µs.504

The maximum wave velocity of each material can be numerically estimated by using the aforementioned travel time505

for each. The numerically estimated velocities of the materials are very close to their analytical counterparts, men-506

tioned above.507
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Figure C.36: Comparison of displacement-time histories of the aluminum domain and carbon/epoxy laminate.
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