

Convolutional neural network and level-set spectral element method for ultrasonic imaging of delamination cavities in an anisotropic composite structure

Boyoung Kim^a, Shashwat Maharjan^a, Fazle Mahdi Pranto^a, Bruno Guidio^a, Christoph Schaal^{d,e}, Chanseok Jeong^{a,b,c,*}

^a*School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859, USA*

^b*Earth and Ecosystem Science Program, Central Michigan University, Mount Pleasant, MI 48859, USA*

^c*Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI 48859, USA*

^d*Department of Mechanical Engineering, California State University, Northridge, CA 91330, USA*

^e*Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095, USA*

Abstract

We present a computational approach that incorporates a convolutional neural network (CNN) for detecting internal delamination in a layered 2D plane-strain anisotropic composite structure of transient elastodynamic fields. The two-dimensional spectral element method (SEM) is utilized to simulate the propagation of elastic waves in an orthotropic solid sandwiched by isotropic solids and their interaction with the internal delamination cavity. This work generates training data consisting of input-layer features (i.e., measured wave signals) and output-layer features (i.e., element types, such as void or regular, of all elements in a domain).

To accelerate training data generation, we utilize explicit time integration (e.g., the Runge-Kutta scheme) coupled with an SEM wave solver. Applying the level-set method additionally avoids having to perform an expensive remeshing process for every possible configuration of the delamination cavities during the data-generation phase. The CNN is trained to classify each element as a non-void or void element from the measured wave signals. Clusters of identified void elements reconstruct targeted cavities. Once our neural network is trained using synthetic data, we analyze how effectively the CNN performs on synthetic measurement data. To this end, we use blind test data from a third-party simulator that explicitly models the traction-free boundary of cavities for anisotropic materials without the application of the level-set method.

Our numerical examples show that our approach can effectively detect the internal cavities in an anisotropic structure made of aluminum and carbon fiber-reinforced epoxy using the measured elastic waves without any prior information about the cavities' locations, shapes, and numbers. The presented method can be extended into a more realistic 3D setting and utilized for the nondestructive test of various anisotropic composite structures.

Keywords: Imaging of delamination cavities, Element-wise classification, Convolutional neural network, Machine learning, Level-set method, Spectral element method.

1. Introduction

The advancement of the manufacturing industry has brought composite materials to our daily lives. By formulating a composite, we adopt merits of each raw material while eliminating the limitations of each. One such composite material system is fiber metal laminates, where metal sheets are bonded to plies of fiber-reinforced epoxy to fabricate a new class of materials [1]. Fiber metal laminates are used in myriad of applications. Carbon fiber-reinforced metal laminates are increasingly used in the aviation industry for manufacturing aircraft because of their excellent mechanical properties, such as high strength-to-weight ratio, improved resistance to fatigue, higher damage tolerance, and enhanced mechanical and thermal properties over conventional materials [2, 3]. The weight proportion of composites is approximately 25% to 50%, respectively, in the modern aircraft, including the Airbus A380 and Boeing B787, of

*Corresponding author

Email address: jeong1c@cmich.edu (Chanseok Jeong)

which many crucial structural components are constructed of composites. Fiber metal composites are also used in various automotive components.

Because of the extensive usage of such composite materials, it is critical to ensure the integrity of composite structures during their entire life cycle. Delaminations, cracks, inclusions of foreign substance, and other defects could be introduced into composite structures during production or use of them. Among the defect types, delamination (i.e., the debonding of adjacent plies in laminated composites) is the most frequent structural anomaly for composite structures, particularly sandwiched ones. Because internal delamination significantly reduces the strength and fatigue resistance of composite components, it is of importance to accurately detect and characterize internal delamination in fiber metal laminate components in various industrial applications [4].

19 Various nondestructive testing (NDT) methods [5–7] are aimed to detect a variety of defects (e.g., cracks, de-
 20 laminations, crushed and buckled cores, and core-skin disbonds). Ultrasound techniques (either active or passive)
 21 are widely adopted in industry due to their versatility. In particular, active guided ultrasound (e.g., [8, 9]) allows for
 22 long-range monitoring, as guided ultrasonic waves propagate along the structure (also referred to as waveguide) and
 23 tend not to lose the wave energy over the traveling distance. Although, in a structure made of composite materials,
 24 guided wave propagation is complex due to material anisotropy and the waves' dispersive and multi-modal nature,
 25 damage detection using guided waves is well-researched and has been applied to a variety of sandwich and other com-
 26 posite plate structures [10–20]. In addition to mere detection (e.g., examination of the existence of defects without
 27 discovering their locations or shapes) (level 1 [21]), localization (level 2) and shape-identification (level 3) are possi-
 28 ble and implemented through various damage imaging techniques. However, most case studies in the past focused on
 29 very specific, often simplified, applications. To enable the accurate characterization of structural flaws, optimization-
 30 based methods have been developed, in particular, using the extended finite element method (XFEM) or the level-set
 31 method to avoid re-meshing while modeling defects of varying shapes during optimization processes [22–27]. Such
 32 optimization methods typically consume a large duration of computing time (e.g., days), limiting real-time detection
 33 of structural damages from measured dynamic responses.

As opposed to the optimization-based methods, studies have recently shown that machine learning (ML) drastically reduces the computing time for detecting of defects into seconds or less. For instance, Jiang et al. [28] used a combination of the level-set approach and the extreme learning machine (ELM) to find cavities in 2D solid structures. Once their neural network is informed of the number of cavities and their shape types (e.g., circular or elliptical), it effectively determines the coordinates of circular (or elliptical) cavities' centroids, radii, major/minor axes, and orientations of cavities. Humer et al. [29] used deep neural networks (DNNs) to predict wave damage interaction coefficients (WDICs) in order to identify damage in lightweight structures. Namely, they propose a hybrid neural network method that combines finite element (FE) simulations and DNNs to predict WDICs for different damage scenarios. Lat  te et al. [30] explored the use of CNNs to identify and locate flat bottom holes and side-drilled holes in an immersed test specimen using a single plane wave insonification. Mei et al. [31] developed a new approach to laser ultrasonic imaging of complex defects with different shapes, including delaminations and anomalies by using full-matrix capture and deep-learning extraction. The aforementioned papers demonstrate the superiority of ML approaches over optimization-based methods for defect detection in different types of materials.

Recently, Pranto et al. [32] presented an element-wise classification method to image cavities of random shapes and numbers in a homogeneous solid using elastic waves. They utilized a CNN to relate measured wave data at multiple sensors around a solid to a contour map of elements individually classified as either void or non-void elements. They demonstrated that ML model, trained by using synthetic data generated by finite element method (FEM) simulations, accurately predicts the sizes, thicknesses, and locations of penny-shaped defects in a solid. Inspired by the robust performance shown by Pranto et al. [32], this paper investigates the performance of a CNN, based on element-wise classification, for an anisotropic structure. This work incorporated the level-set method into the SEM, which can utilize an explicit time integration method to accelerate the data generation process. Namely, because the level-set method does not necessitate the task of generating explicit mesh around a cavity boundary, we save time for mesh generation. Furthermore, the SEM can further accelerate the calculation time than the regular FEM by the virtue of the diagonal mass matrix and the associated ease of matrix inversion during the time integration. Conversely, it can be very time-consuming if one uses a regular FEM with explicitly-generated mesh around a cavity boundary during the data generation process.

60 The remaining sections of the paper are structured as follows. In Section 2, we first present the governing equation
 61 to simulate the propagation of elastic waves in 2D plane-strain orthotropic materials, which are later considered to

62 be sandwiched by isotropic solids. Section 3 presents a level-set SEM forward wave solver for efficiently generating
 63 training data for the sandwiched composite structures with delamination cavities. In Section 4, to verify our level-
 64 set SEM wave solver, its computed displacement fields are compared with those obtained using ANSYS. Section 5
 65 presents a CNN architecture that is trained using synthetic data sets for the classification of each element in the domain
 66 as a void or non-void element based on measured wave data. As a result, it provides an element-wise classification
 67 contour map that displays the probability of each element to be a void element. The positions, dimensions, and shapes
 68 of the cavities can be inferred from the contour map. In Section 6, the CNN’s performance is assessed using test data
 69 sets produced by the SEM wave-solver and blind test data sets produced by ANSYS.

70 2. Problem Definition

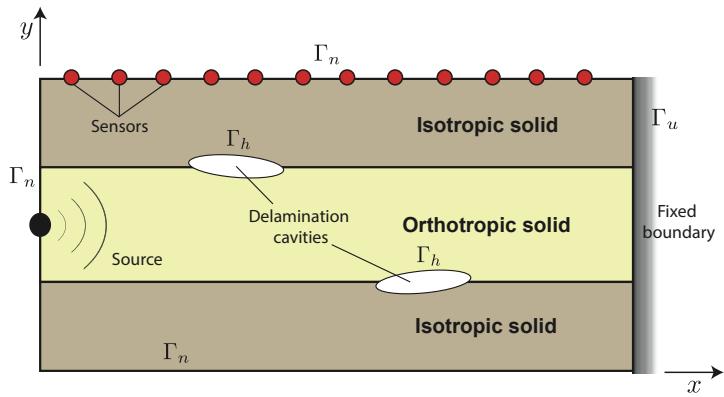


Figure 1: An illustration of an anisotropic layered medium (i.e., an orthotropic solid sandwiched by isotropic solid) with delamination cavities.

71 This paper considers a 2D layered domain (see Fig. 1), which is occupied by an orthotropic¹ material stacked
 72 between isotropic material with delamination cavities along the interfaces. Specifically, we study elastic waves in a
 73 2D plane-strain anisotropic solid setting, where the governing equation reads:

$$\nabla \cdot \boldsymbol{\sigma} - \rho \ddot{\mathbf{u}} = \mathbf{0}, \quad \text{in } \Omega, \quad (1)$$

74 where $\mathbf{u} := \mathbf{u}(x, y, t) = [u_x, u_y]^T$ denotes the vector wave displacement field; $\boldsymbol{\sigma} := \boldsymbol{\sigma}(x, y, t)$ denotes the Cauchy stress
 75 tensor; $\nabla \cdot (\cdot)$ denotes the divergence operator; and $\rho := \rho(x, y)$ denotes the mass density. Initially, wave responses in
 76 time are zero (i.e., \mathbf{u} and $\dot{\mathbf{u}}$ vanish at $t = 0$). The displacement field \mathbf{u} is zero at Γ_u , and a cavity’s surface Γ_h is free of
 77 traction while Γ_n is subjected to traction.

78 The orthotropic solid has three orthogonal planes of symmetry that are mutually perpendicular to each other. The
 79 nine elastic constants in orthotropic constitutive equations are comprised of three Young’s moduli along each direction
 80 (E_1, E_2, E_3), the three Poisson’s ratios ($\nu_{23}, \nu_{31}, \nu_{12}$), and the three shear moduli (G_{23}, G_{31}, G_{12}). The constitutive
 81 equation for a 2D plane-strain orthotropic material can be driven from that of a general 3D orthotropic solid as
 82 follows.

83 First, the three-dimensional strain-stress relationship for a general orthotropic material is the following:

$$\boldsymbol{\varepsilon} = \mathbf{S} \boldsymbol{\sigma} \rightarrow \begin{Bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \varepsilon_{yz} \\ \varepsilon_{zx} \\ \varepsilon_{xy} \end{Bmatrix} = \begin{Bmatrix} \frac{1}{E_1} & -\frac{\nu_{21}}{E_2} & -\frac{\nu_{31}}{E_3} & 0 & 0 & 0 \\ & \frac{1}{E_2} & -\frac{\nu_{32}}{E_3} & 0 & 0 & 0 \\ & & \frac{1}{E_3} & 0 & 0 & 0 \\ & & & \frac{1}{2G_{23}} & 0 & 0 \\ & & & & \frac{1}{2G_{13}} & 0 \\ & & & & 0 & \frac{1}{2G_{12}} \end{Bmatrix} \begin{Bmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \sigma_{yz} \\ \sigma_{zx} \\ \sigma_{xy} \end{Bmatrix}, \quad (2)$$

¹We assume that the considered orthotropic solid is either a truly homogeneous material or a homogenized stack of layers.

84 where $\boldsymbol{\varepsilon}$ denotes the strain tensor; \mathbf{S} is a compliance matrix; E_i denotes Young's modulus along axis i ; ν_{ij} denotes the
 85 Poisson's ratio corresponds to a contraction in the j -th direction when an extension is applied in the i -th direction;
 86 and G_{ij} represents the shear modulus in the j -th direction on the plane of which normal vector is in the i -th direction.
 87 Assuming a plane strain condition where strains along the z -direction are zero, Eq. (2) can be reduced to

$$\boldsymbol{\varepsilon} = \mathbf{Q}\boldsymbol{\sigma} \rightarrow \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_{xy} \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{21} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_{xy} \end{bmatrix} = \begin{Bmatrix} \frac{1-\nu_{13}\nu_{31}}{E_1} & -\frac{\nu_{12}(\nu_{21}-\nu_{23}\nu_{31})}{E_1} & 0 \\ \text{Sym.} & \frac{1-\nu_{23}\nu_{32}}{E_2} & 0 \\ 0 & 0 & \frac{1}{2G_{12}} \end{Bmatrix} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_{xy} \end{bmatrix}, \quad (3)$$

88 where \mathbf{Q} is a reduced compliance matrix, of which components can be calculated from \mathbf{S} using the following equation
 89 for each component of the matrix [33]:

$$Q_{ij} = S_{ij} - \frac{S_{i3}S_{j3}}{S_{33}}, \quad i, j = 1, 2, 6. \quad (4)$$

90 By calculating the inverse of the matrix \mathbf{Q} , we can obtain the plane-strain stiffness matrix, $\mathbf{C} = \mathbf{Q}^{-1}$.

91 The weak form of the governing equation can be derived by multiplying Eq. (1) by a test function $\mathbf{v} \in H_0^1(\Omega)$ and
 92 using the divergence theorem and integrating by parts:

$$\int_{\Omega} \rho \ddot{\mathbf{u}} \cdot \mathbf{v}^T d\Omega + \int_{\Omega} \mathbf{v}^T \mathbf{D}^T \mathbf{C} \mathbf{D} \mathbf{u} d\Omega = \int_{\Gamma_n} \mathbf{v}^T \cdot \mathbf{T} d\Gamma, \quad (5)$$

93 where \mathbf{D} is a differential operator matrix; and \mathbf{T} is a traction on the loaded surface. Eq. (5) is turned into a time-
 94 dependent discrete form, of which matrices are built by using the SEM process with a convenient level-set modeling.
 95 The propagation of transient elastic waves for orthotropic composite structures can be calculated via the assembled
 96 system of the matrices and the force vector in the discrete form. The detail of such a numerical procedure is shown in
 97 the next Section 3.

98 3. Level-set SEM forward wave modeling

99 Our wave solver uses the level-set method [25, 26, 32, 34] to reduce computational time for generating training
 100 data by avoiding remeshing for different parameters of delamination cavities, which are updated in each iteration
 101 during data generation.

102 In the weak form of the governing equation per each element, the displacement field \mathbf{u} in each finite element is
 103 estimated by using the finite element approximation and an enrichment function $V(x, y)$. Namely, \mathbf{u} in an element is
 104 approximated as:

$$\mathbf{u}^h(x, y, t) = V(x, y) \sum_{i=1}^{N_n} \phi_i(x, y) \mathbf{u}_i(t), \quad (6)$$

105 with a nodal displacement \mathbf{u}_i , a local shape function ϕ_i at the i -th local node, N_n denoting the total nodes in an element,
 106 and:

$$V(x, y) = \begin{cases} 1, & \text{if } x, y \in \text{an element categorized as a non-void element,} \\ 0, & \text{if } x, y \in \text{an element categorized as a void element.} \end{cases} \quad (7)$$

107 In this study, the approximation in Eq. (6) is made with 9-node quadrilateral elements. An element is considered
 108 a void element if its centroid and 4 additional nodes (out of a total of 9 nodes) fall within the cavity boundary. In
 109 all other cases, elements are categorized as non-void elements. An illustrative example of the element classification
 110 is shown in Fig. 2. Thus, we can rewrite the weak form, Eq. (5), to the following time-dependent discrete form per
 111 element by utilizing Eq. (6):

$$\begin{bmatrix} \mathbf{K}_{xx}^e & \mathbf{K}_{xy}^e \\ \mathbf{K}_{yx}^e & \mathbf{K}_{yy}^e \end{bmatrix} \begin{bmatrix} \mathbf{u}_x^e \\ \mathbf{u}_y^e \end{bmatrix} + \begin{bmatrix} \mathbf{M}_{xx}^e & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_{yy}^e \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{u}}_x^e \\ \ddot{\mathbf{u}}_y^e \end{bmatrix} = \begin{bmatrix} \mathbf{F}_x^e \\ \mathbf{F}_y^e \end{bmatrix}, \quad (8)$$

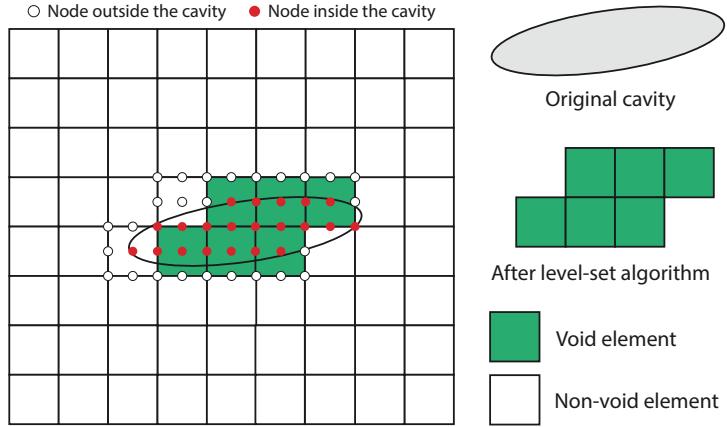


Figure 2: Level-set classification of void and non-void elements for a 9-node quadrilateral element. On the right, we can see a comparison between the original cavity and its level-set algorithm application.

112 where

$$\mathbf{K}_{xx}^e = \int_{\Omega^e} V(x, y) \left(C_{11} \frac{\partial \Phi}{\partial x} \frac{\partial \Phi^T}{\partial x} + C_{33} \frac{\partial \Phi}{\partial y} \frac{\partial \Phi^T}{\partial y} \right) d\Omega, \quad (9a)$$

$$\mathbf{K}_{xy}^e = \int_{\Omega^e} V(x, y) \left(C_{12} \frac{\partial \Phi}{\partial x} \frac{\partial \Phi^T}{\partial y} + C_{33} \frac{\partial \Phi}{\partial y} \frac{\partial \Phi^T}{\partial x} \right) d\Omega, \quad (9b)$$

$$\mathbf{K}_{yx}^e = \int_{\Omega^e} V(x, y) \left(C_{12} \frac{\partial \Phi}{\partial y} \frac{\partial \Phi^T}{\partial x} + C_{33} \frac{\partial \Phi}{\partial x} \frac{\partial \Phi^T}{\partial y} \right) d\Omega, \quad (9c)$$

$$\mathbf{K}_{yy}^e = \int_{\Omega^e} V(x, y) \left(C_{22} \frac{\partial \Phi}{\partial y} \frac{\partial \Phi^T}{\partial y} + C_{33} \frac{\partial \Phi}{\partial x} \frac{\partial \Phi^T}{\partial x} \right) d\Omega, \quad (9d)$$

$$\mathbf{M}_{xx}^e = \mathbf{M}_{yy}^e = \int_{\Omega^e} V(x, y) \rho \Phi \Phi^T d\Omega, \quad (9e)$$

$$\mathbf{F}_x^e = \int_{\Gamma_n^e} \Phi \mathbf{T}_x d\Gamma, \quad (9f)$$

$$\mathbf{F}_y^e = \int_{\Gamma_n^e} \Phi \mathbf{T}_y d\Gamma. \quad (9g)$$

113 In Eqs. (9a) to (9d), C_{ij} is a component of the aforementioned plane-strain stiffness tensor computed per Eq. (3);
 114 Φ is a vector of shape functions (please refer to Appendix A, which details the shape functions associated with our
 115 spectral element modeling); and \mathbf{T}_i denotes the prescribed traction of the surface Γ_n .

116 It should be noted that the stiffness and mass matrices of a void element become zero because of the enrichment
 117 function $V(x, y)$ [34]. We derive the time-dependent discrete equation by globally assembling the element matrices
 118 and element force vector, resulting in a solution vector representing global displacements:

$$\mathbf{Ku} + \mathbf{M}\ddot{\mathbf{u}} = \mathbf{F}, \quad (10)$$

119 where $\mathbf{u} = [\mathbf{u}_x; \mathbf{u}_y]$ is the global solution vector. We resolve Eq. (10) by using the explicit time integration method, of
 120 which details are shown in Appendix B.

121 4. Verification of the forward wave solver

122 To verify our in-house level-set SEM wave solver, the numerical solution was compared with a reference solution
 123 obtained using ANSYS Mechanical, a finite element analysis software. A three-layered structure with the size of

124 1×0.5 m with one delamination cavity was considered as depicted in Fig. 3(a). The domain is subjected to fixed
 125 boundary conditions on the right surface. The delamination cavity is elliptical with major and minor axes of $m =$
 126 0.04 m and $n = 0.01$ m, respectively. Its centroid is located at $(x = 0.05, y = 0.015)$ m, and its major axis is
 127 inclined at an angle of $\alpha = 5^\circ$ with respect to the horizontal axis, as shown in Fig. 3(b). In our level-set SEM forward
 128 wave solver, we discretize the domain with a structured mesh of 9-node quadrilateral elements of size 0.01 m. Fig. 4
 129 shows close-up views of the delamination in the domain for both our SEM-based level-set forward solver and an FEM
 130 software ANSYS. To obtain the reference solution, we create an unstructured mesh of 8-node quadrilateral elements
 131 with an average element size of 0.005 m using the automatic mesh generation feature of ANSYS.

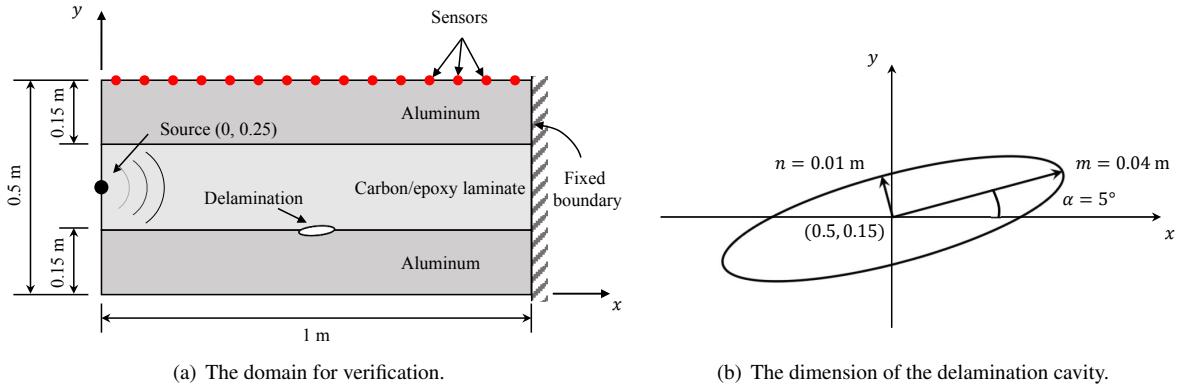


Figure 3: A stamp with a delamination cavity for the verification of our in-house level-set SEM wave solver.

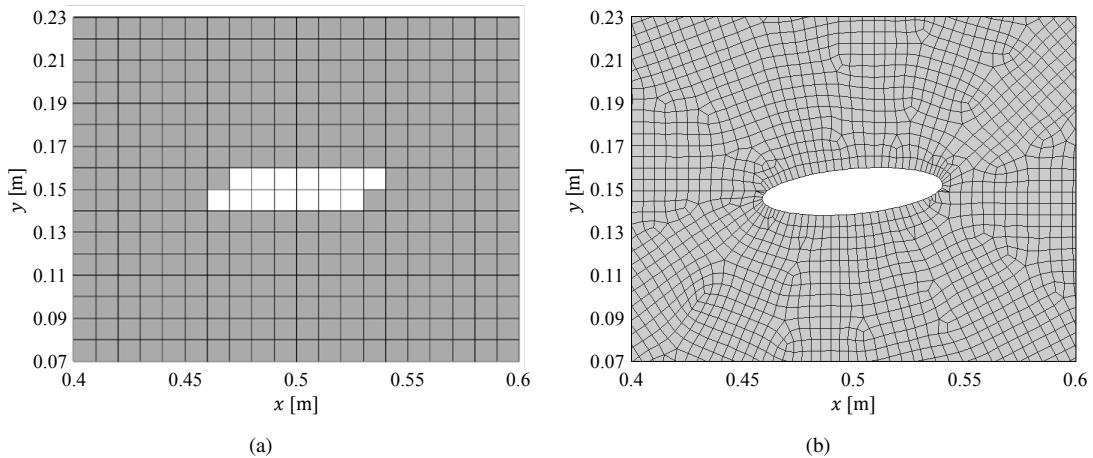


Figure 4: Close-up views of (a) the structured mesh for our level-set and SEM-based forward wave solver (white elements represent void elements) with an element size of 0.01 m and (b) the unstructured mesh for ANSYS for an element size of 0.005 m.

132 The top and bottom layers are assumed to be aluminum, while the middle layer is carbon/epoxy laminate, and
 133 their material properties are presented in Table 1. It indicates that aluminum is isotropic, and carbon/epoxy laminate
 134 is orthotropic.

135 A Ricker-pulse wave source with a peak amplitude of 5 kN/m and a central frequency of $f = 50$ kHz, as shown
 136 in Fig. 5, is applied at $x = 0$ m and $y = 0.25$ m as a point (i.e., z -directional line loading in a 2D) wave source based
 137 on Eq. (11) such that the positive value of the signal, $F(t)$, is directed in the normal direction toward the interior of the
 138 domain. The time step used in the simulation is $\Delta t = 0.5$ μ s, and the total analysis time is 350 μ s. The displacement
 139 in the y direction is calculated for a total of 41 sensors located on the upper surface at intervals of 0.02 m between

¹⁴⁰ $x = 0.1$ m and $x = 0.9$ m at $y = 0.5$ m.

$$F(t) = \begin{cases} \frac{5000 \left[(0.25(2\pi ft - 3\sqrt{6})^2 - 0.5) e^{-0.25(2\pi ft - 3\sqrt{6})^2} - 13 \cdot e^{-13.5} \right]}{0.5 + 13 \cdot e^{-13.5}}, & \text{if } t \leq \frac{6\sqrt{6}}{2\pi f}, \\ 0, & \text{if } t > \frac{6\sqrt{6}}{2\pi f}. \end{cases} \quad (11)$$

Table 1: Material properties of aluminum and carbon/epoxy laminate.

Elastic properties	Aluminum	Carbon/epoxy laminate [35]
ρ (kg/m ³)	2,700	1,550
E_{xx} (GPa)	69	150
E_{yy} (GPa)	69	10
E_{zz} (GPa)	69	10
ν_{xy}	0.33	0.33
ν_{yx}	0.33	0.022
ν_{yz}	0.33	0.44
ν_{zy}	0.33	0.44
ν_{xz}	0.33	0.33
ν_{zx}	0.33	0.022
G_{xy} (GPa)	25.9	9

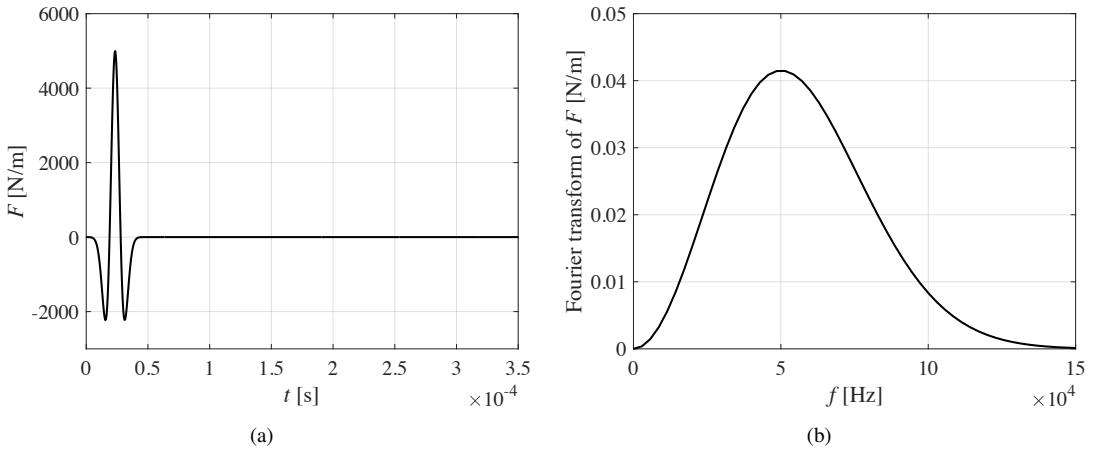


Figure 5: Time history and Fourier spectrum of the Ricker pulse.

¹⁴¹ In Fig. 6, we show the contour plot of amplitudes of displacement at different timesteps generated by our level-set
¹⁴² SEM wave solver. Fig. 7 shows that the wave responses in the y-direction from our level-set SEM wave solver are
¹⁴³ in excellent agreement with those from ANSYS at the sensor locations on the top of the domain. This comparison
¹⁴⁴ verifies the capability of our level-set SEM solver for accurately simulating the propagation of elastic waves in a
¹⁴⁵ composite structure with a delamination cavity.

¹⁴⁶ With an element length of 0.01 m in our level-set solver, the smallest distance between nodes is $r_{min} = 0.005$ m.
¹⁴⁷ We use the time step size Δt of 0.5 μ s satisfying the Courant-Friedrichs-Lowy (CFL) condition, Eq. (B.10), for the
¹⁴⁸ maximum wave velocity of the considered materials presented in Appendix C. Since the CFL condition is satisfied,
¹⁴⁹ the explicit time integration in our SEM-based forward wave solver leads to accurate solutions without non-physical
¹⁵⁰ oscillations or numerical instabilities in the solution.

¹⁵¹ Note that, using an element size of 0.005 m, it takes 15 min for the ANSYS simulation to complete. For matching
¹⁵² element sizes of 0.01 m, the ANSYS simulation completes in 5 min, while our level-set SEM wave solver finishes the
¹⁵³ computation in only 1 min, demonstrating superior computational efficiency of our wave solver.

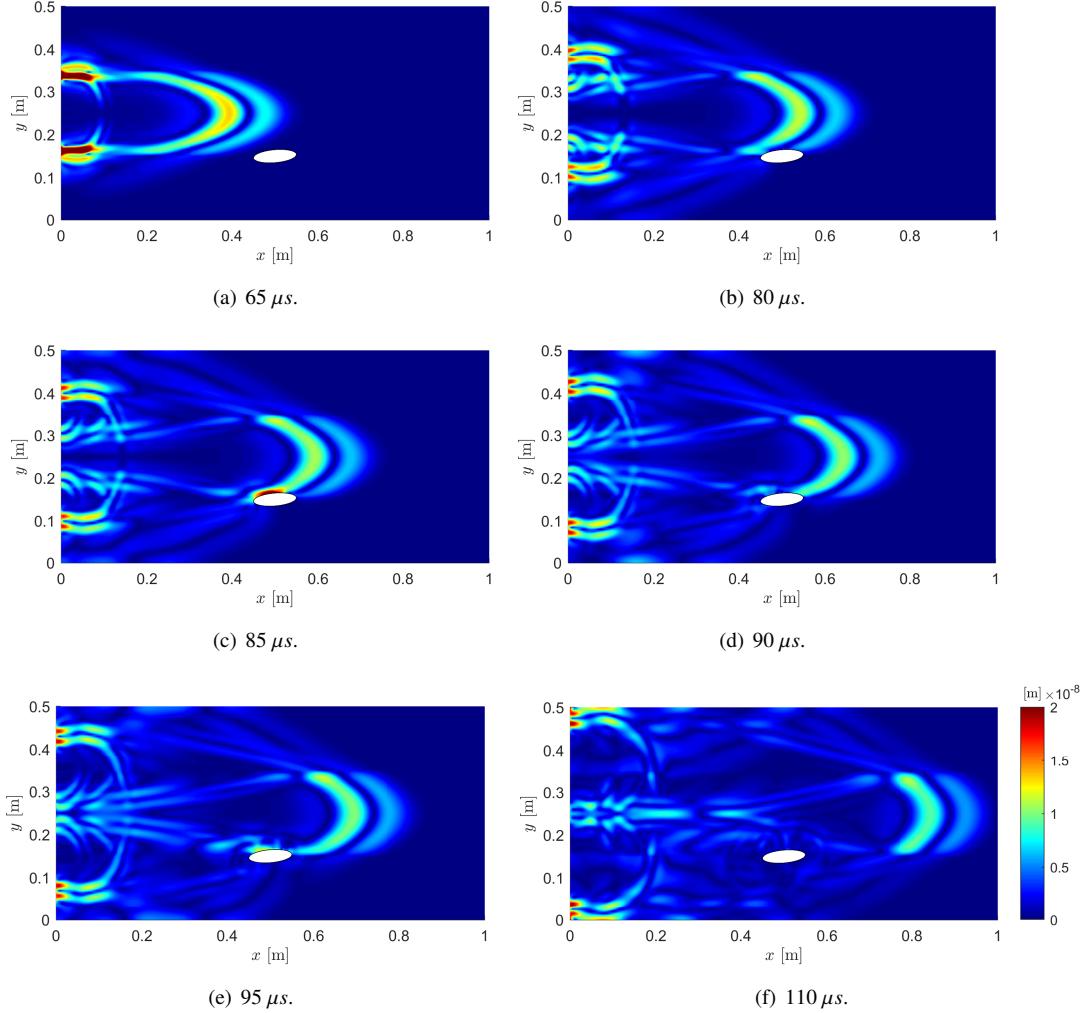


Figure 6: Contour plot displaying the elastic wave's displacement field's amplitudes in an anisotropic structure made of aluminum and carbon/epoxy laminate with a delamination cavity.

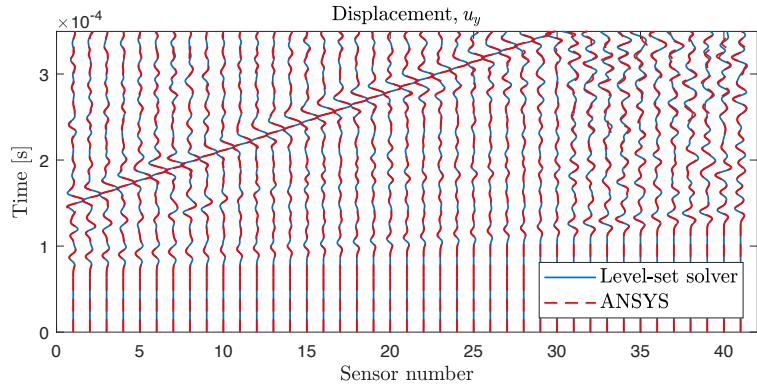


Figure 7: Comparison of displacement-time histories obtained using our level-set SEM wave solver and ANSYS.

154 **5. CNN modeling**

155 *5.1. Data generation*

156 To train our CNN, our data-generation simulation should (i) randomly populate void elements in a domain, (ii)
157 run our SEM forward wave solver, and (iii) record the measured wave signals at sensors. To create void elements in
158 a random but realistic manner in step (i), we capture (via the level-set method) void elements within a set of cavities
159 that are generated with a random number, location, and configurations.

160 We use a three-layered domain of size, for instance, $16.44\lambda \times 8.22\lambda$ in meters in Examples 1 and 2, where λ denotes
161 the wavelength of the shear wave of aluminum. Here, λ is 0.0608 m for the central frequency f of the Ricker of 50
162 kHz leading to a domain of $1 \text{ m} \times 0.5 \text{ m}$ as in the verification example. The solid is made of the same carbon/Epoxy
163 laminate sandwiched by aluminum (see Table 1). This plane-strain setting domain is discretized using an element size
164 of 0.1644λ (0.01 m and 0.001 m for f of 50 kHz ($\lambda = 0.0608 \text{ m}$) and 500 kHz ($\lambda = 0.00608 \text{ m}$) in Examples 1 and
165 2, respectively). Thus, a structured background mesh is generated, discretizing the entire domain with 5,000 square
166 elements. We use a Ricker-pulse wave source, $F(t)$ in Eq. (11), with its peak amplitude of 5 kN/m.

167 We populate the elliptical shaped cavities using our in-house randomizer to make an arbitrary number of cavities
168 with different sizes and angles at various locations within the interior domain. Each elliptical cavity's actual boundary
169 is defined by the following equation:

$$\frac{[(x - x_0) \cos(\alpha) + (y - y_0) \sin(\alpha)]^2}{m^2} + \frac{[(x - x_0) \sin(\alpha) - (y - y_0) \cos(\alpha)]^2}{n^2} = 1, \quad (12)$$

170 where (x_0, y_0) denotes the coordinates of the center; m and n are its major and minor axes, respectively; and α is the
171 angle of the major axis with respect to the x -axis (see Fig. 3(b)). In each data set, our randomizer makes a random set
172 of ellipses in a way such that the parameters are unrelated to each other. Despite the possibility of overlap, we avoid
173 double-counting void elements. Because our CNN model is designed to find targeted void elements, overlapping of
174 elliptical cavities does not affect how well our predictions work.

175 To generate the data set, we create elliptical cavities with a major axis between 0.49λ and 1.32λ (0.03 m and 0.08
176 m for f of 50 kHz), a minor axis between 0.16λ and 0.25λ meters (0.01 m and 0.015 m for f of 50 kHz), and an
177 orientation between -5° and 5° . We randomly place our cavities along the two material interfaces to get training data
178 that is free of bias.

179 Our data generation process randomizes the location and size of the target cavities in each data set, and we classify
180 the elements based on our level-set approximation so that output feature data are labeled. We assign a value of one
181 to void elements and zero to non-void elements and store the assigned values in the training data. At the same time,
182 we run our in-house wave solver to record the displacement, u_y , of wave responses at the sensors. We generate a
183 total of 6,000 data sets in three sets of 2,000, each accounting for 0, 1, and 2 cavities in total, respectively. The total
184 observation time for each forward iteration is divided by 700 time steps, and each time step's size is $T/40$, where T is
185 $\frac{1}{f}$. For f of 50 kHz, the time step size is $0.5 \mu\text{s}$. We have 41 sensors located at the top surface of the domain. It takes
186 65 seconds for our level-set SEM wave solver to generate one data set on a single CPU and MATLAB. Thus, a total
187 of 109 hours were spent to complete the data generation process on a single CPU.

188 *5.2. Data Preparation*

189 We preprocess the generated 6,000 data to render them suitable for training, validation, and testing. Each data
190 comprises of vertical-displacement values of measured wave signals at 41 sensors spanning a duration of $35\mu\text{s}$ for
191 f of 50 kHz. Consequently, the input data consists of 41 sensors multiplied by 701 timesteps. To train a neural
192 network, data were computed on a system comprised of an 8-core CPU with 64 gigabytes of DDR4 RAM and a 12
193 gigabytes memory NVIDIA Titan V GPU. To reduce the computational cost of training our CNN, we extract every
194 third-time step, resulting in only 234 timesteps at each sensor. This reduction in timesteps significantly mitigates the
195 computational cost while having no impact on performance during training, validation, and testing. We allocated 80%
196 (4800) of the 6,000 data for training, 10% (600) for validation, and the remaining 10% (600) for testing.

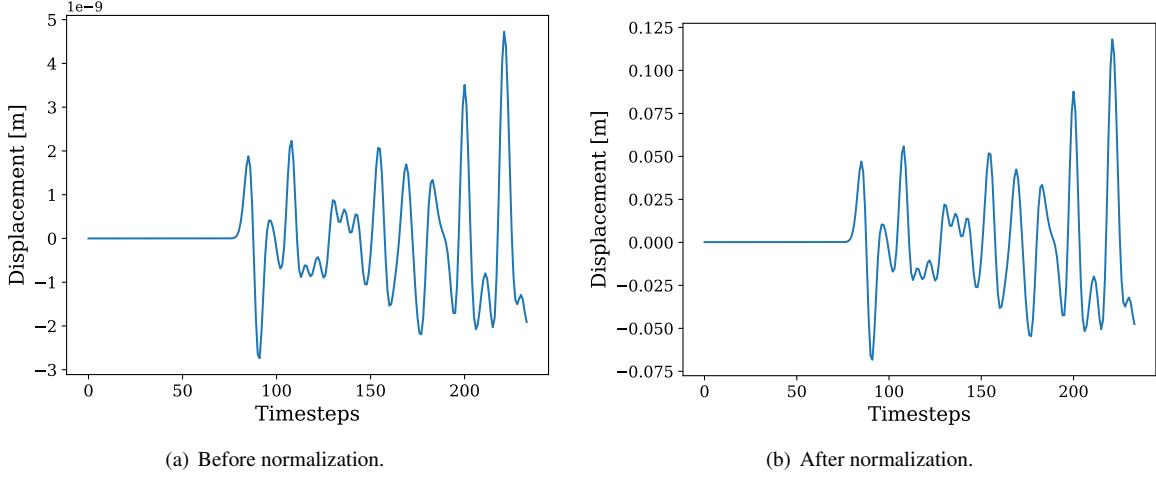


Figure 8: Input displacement data for training CNN.

197 Figure 8(a) presents a sample of the input data at one sensor. It is evident from Figure 8(a) that the data encompasses magnitudes, spanning from -10^{-9} to 10^{-9} . To facilitate the efficient learning of feature-relationships between
 198 input- and output-layer data by our CNN, we normalize the data using Eq. (13), limiting the range of the data between
 199 -0.5 and 0.5. We use this normalized data as the input-layer data for our CNN.
 200

$$A_{ijk}^n = \frac{A_{ijk} - A_{\text{train}}^{\text{mean}}}{A_{\text{train}}^{\text{max}} - A_{\text{train}}^{\text{min}}}, \quad (13)$$

201 where A_{ijk}^n is the normalized displacement data set; the equation involves subtracting the mean value $A_{\text{train}}^{\text{mean}}$ from the
 202 un-normalized input data matrix's value A_{ijk} and dividing the result by the range ($A_{\text{train}}^{\text{max}} - A_{\text{train}}^{\text{min}}$) of the training data
 203 set.

204 5.3. CNN Architecture

205 We utilize a CNN architecture to identify important feature-relationship between our input- and output-layer data.
 206 Our CNN architecture consists of a Convolution, Max Pooling, Batch Normalization, Flatten, and Dense layer. We
 207 feed our preprocessed displacement data consisting of 41 sensors each with 234-time steps as input which then passes
 208 the data along to the convolution layer. We use n_{filters} of filter size $n_{\text{filtersize}}$ whose initial values are initialized using
 209 the “He uniform” initializer [36]. The convolutional filters work in a sliding-dot product-like operation to extract
 210 a convolution map from each displacement value recorded at different sensor positions. The convoluted output is
 211 passed through an activation function, in our case Leaky Rectified Linear Unit (LeakyReLU), to grasp the non-linear
 212 patterns between the provided input and target output data. Without non-linear activation functions, a neural network,
 213 regardless of its depth, would essentially operate as a linear model, limiting its ability to learn from the intricate
 214 patterns and relationships present in the data. The subsequent Max Pooling layer receives this convolution map and
 215 extracts maximum values from n_{poolsize} to make a further generalization based on prominent features. The feature map
 216 from the previous layer is batch normalized to make the training more stable. The batch-normalized feature map is
 217 then transformed into a one-dimensional input to feed the data into a densely connected hidden layer. We utilize 4500
 218 neurons and utilize LeakyReLU as the activation function. The output from this penultimate layer, containing n_{units} ,
 219 is passed onto the output layer to predict 5000 probabilistic values using the sigmoid activation function. Each value
 220 represents the probability, between 0 and 1, of an element in a two-dimensional domain of being void. Our CNN
 221 architecture is presented in Figure 9. We employed the “binary cross-entropy” loss function to calculate the disparity
 222 between the predicted and target outputs which is shown in Eq. (14). The actual hyperparameter combinations are

223 shown in

$$\mathcal{L} = -\frac{1}{M} \sum_{i=1}^M \left(\frac{1}{N} \sum_{i=1}^N Y_i \log(P(Y_i)) + (1 - Y_i) \log(1 - P(Y_i)) \right), \quad (14)$$

224 where Y_i represents the target label, where “1” indicates voids and “0” indicates non-void elements, for the i -th
225 element; N represents the total number of elements; M represents the total number of training data; and $P(Y_i)$ is the
226 predicted probability of the i -th element being void, ranging from 0 to 1.

227 For optimization, we used the “Nadam” optimizer to back-propagate using TensorFlow provided automated dif-
228 ferentiation to adjust the learnable parameters based on the calculated loss value. To assess our training and validation
229 performance, we employed “Precision” as our evaluation metric. Additionally, we present the test set’s performance
230 across all four evaluation metrics: “Accuracy”, “Precision”, “Recall”, and “F1-score”.

231 *5.4. Hyperparameter Search and Optimization*

232 To automate the laborious and time-consuming process of hyperparameter search, we conducted an extensive hy-
233 perparameter search using custom algorithms, where the values of $n_{filters}$, $n_{filtersize}$, $n_{poolsize}$, and n_{units} are optimized.
234 We tested various combinations of layers and learnable parameters and then fine-tuned the best-performing combi-
235 nation manually to obtain optimal results on the validation data. To prevent overfitting, we use TensorFlow’s callback
236 mechanisms to halt training when there is no observed improvement in model performance based on validation loss
237 (binary cross-entropy). Our presented CNN model is well-optimized and produces outstanding results on both the
238 blind test data generated using ANSYS and the test data as shown in the upcoming Section 6.

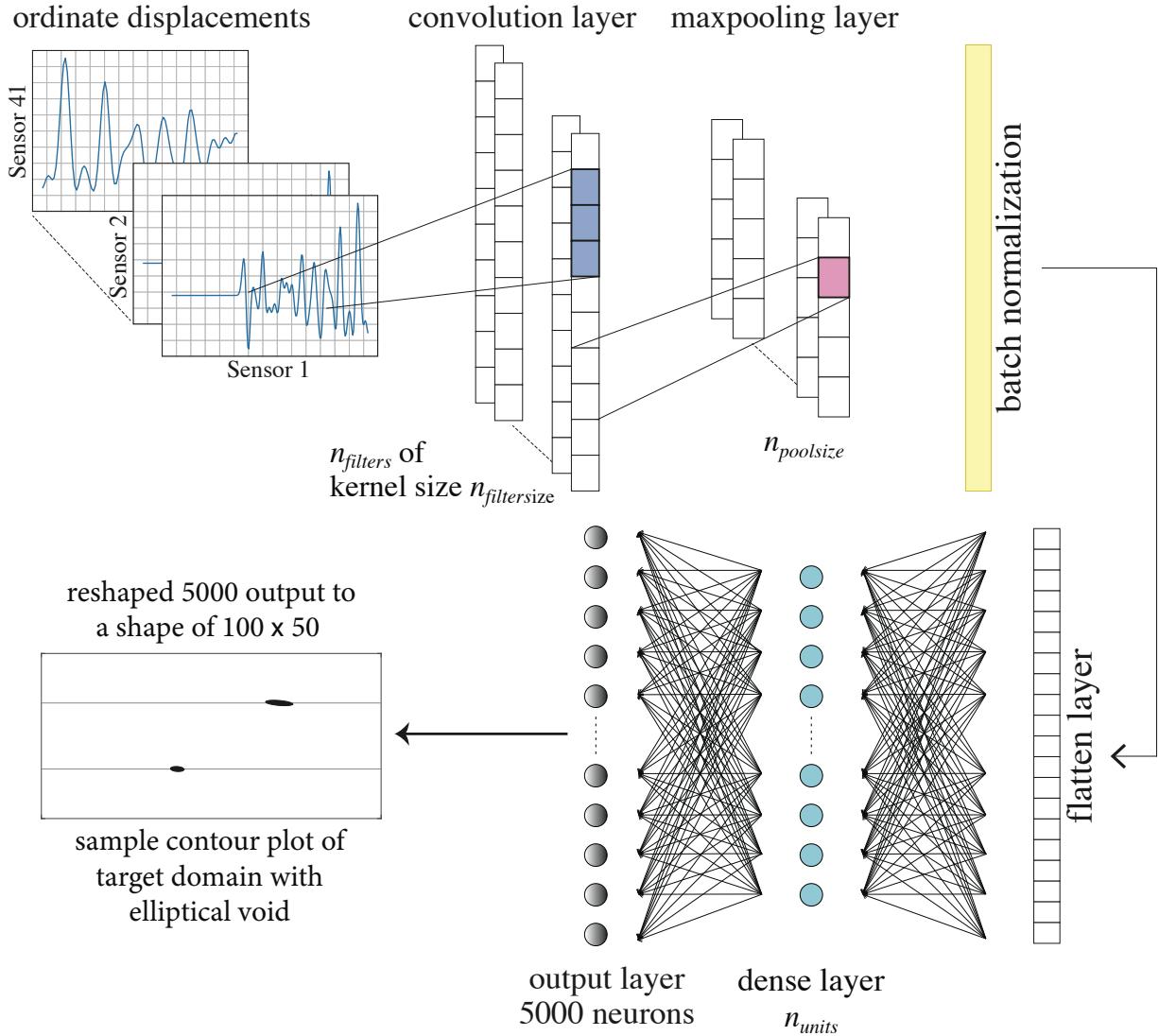


Figure 9: Our CNN architecture.

239 5.5. Evaluation metrics

240 In this section, we show how the different evaluation metrics change during training and how our trained CNN
 241 model performs on test and blind-test data sets, the latter generated using ANSYS. We can evaluate our CNN's
 242 performance on training, validation, and two sets of test data sets using the following evaluation metrics:

$$243 \text{Accuracy} = \frac{tp + tn}{tp + fn + tn + fp} \times 100 [\%], \quad (15a)$$

$$244 \text{Precision} = \frac{tp}{tp + fp} \times 100 [\%], \quad (15b)$$

$$245 \text{Recall} = \frac{tp}{tp + fn} \times 100 [\%], \quad (15c)$$

$$246 \text{F1-score} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \times 100 [\%], \quad (15d)$$

246 where tp , tn , fp , and fn represent, respectively, the counts of true-positive, true-negative, false-positive, and false-negative classifications of all the elements in a particular data set. Specifically, we count tp when our CNN correctly classifies a target void element as a void; tn when our CNN correctly classifies a target non-void element as a non-void element; fp when our CNN incorrectly classifies a target non-void element as a void element; and fn when our CNN incorrectly classifies a target void element as a non-void element.

251 We note that Accuracy was not an ideal choice as our domain primarily comprised non-void elements, which are
252 significantly easier to predict and can falsely represent our CNN's performance. In contrast, Precision assesses how
253 effectively our CNN identifies void elements (tp) compared to falsely classifying a non-void element as a void element.
254 On the other hand, Recall measures our CNN's performance in identifying void elements (tp) compared to incorrectly
255 identifying a void element as a non-void element (fn). Moreover, the inclusion of the F1-score complements this
256 assessment, serving as a harmonic mean between Precision and Recall. Opting for a single metric wouldn't provide a
257 holistic representation of our model's predictive capabilities. Hence, we present all four metrics for a comprehensive
258 evaluation.

259 6. Numerical Results

260 6.1. Case A: Examining the scalability of the presented method with respect to the scale of the domain size, wave 261 frequency, and source location.

262 We consider two examples shown in Fig. 10. The first one (shown in Fig. 10(a)) considers the wave source at the
263 left boundary and the central frequency f of the Ricker pulse 50 kHz. The second one (shown in Fig. 10(b)) utilizes
264 the source on the top surface with f of 500 kHz. To accommodate two different frequencies, ten folds apart each
265 other, the size of the domain in the first example is set to be 1 m by 0.5 m while that of the second example is 0.1 m
266 by 0.05 m. The orders of magnitudes of horizontal-direction dimensions of cavities in the blind tests are up to 0.04 m
267 and 0.004 m in Examples 1 and 2, respectively. These examples demonstrate that our presented examples are scalable
268 to various sizes of domains, sizes of delamination cavities, the frequency regime of waves, and the location of a wave
269 source.

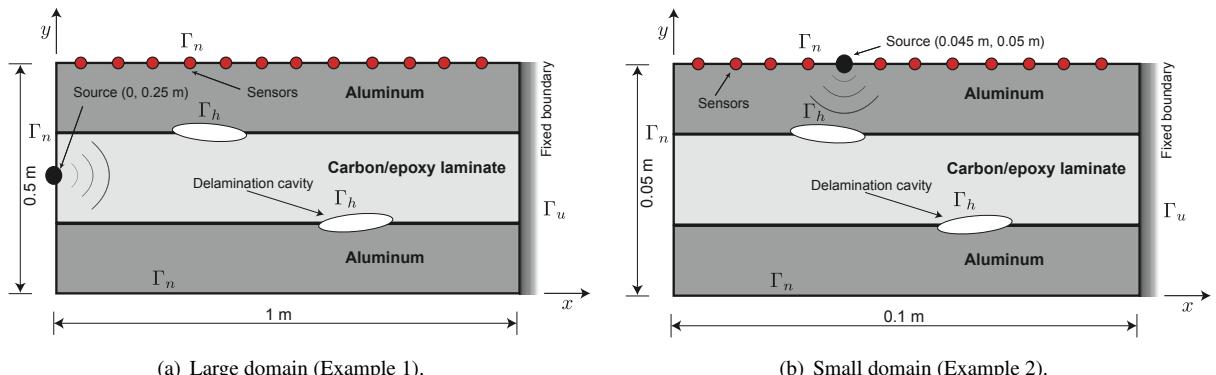


Figure 10: A schematic diagram of the data generation domain for Examples 1 and 2.

270 6.1.1. Performance during training for Examples 1 and 2

271 As this research problem involves a binary classification task, we show the convergence of binary cross-entropy
272 loss function in Eq. (14) and Precision in Eq. (15b) over epochs in Fig. 11. Aside from the convergence of the loss
273 function, we employed "Precision" as our exemplary independent evaluation metric², showing the progress of the
274 training process in Fig. 11(b). In Example 1, Fig. 11 shows that the loss function converges to zero and the Precision
275 metric reaches 100% within 20 epochs. If the curves were indicative of overfitting, the loss and Precision curves for

²Additionally, we present the performance of our CNN model across all four evaluation metrics: "Accuracy", "Precision", "Recall", and "F1-score" when we subsequently examine test data and perform a blind test.

276 training and validation data sets would not overlap, suggesting a lack of generalization during the learning phase. In
 277 Fig. 12, we observe the similar behavior of loss function and Precision curves over the epochs in Example 2 where
 278 we use a smaller domain, a source at the top of a higher frequency, and smaller cavity sizes than Example 1.

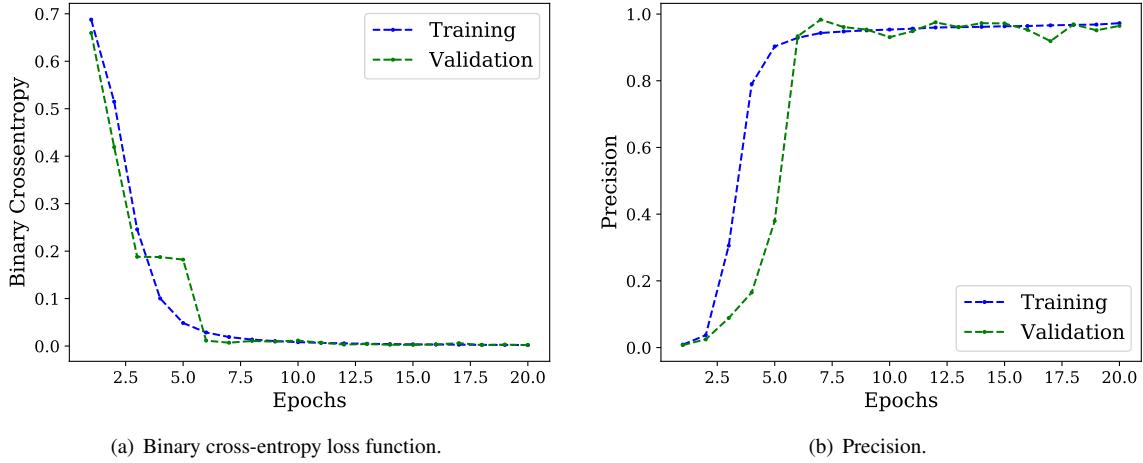


Figure 11: Convergence curve of the loss function and Precision over 20 epochs for Example 1.

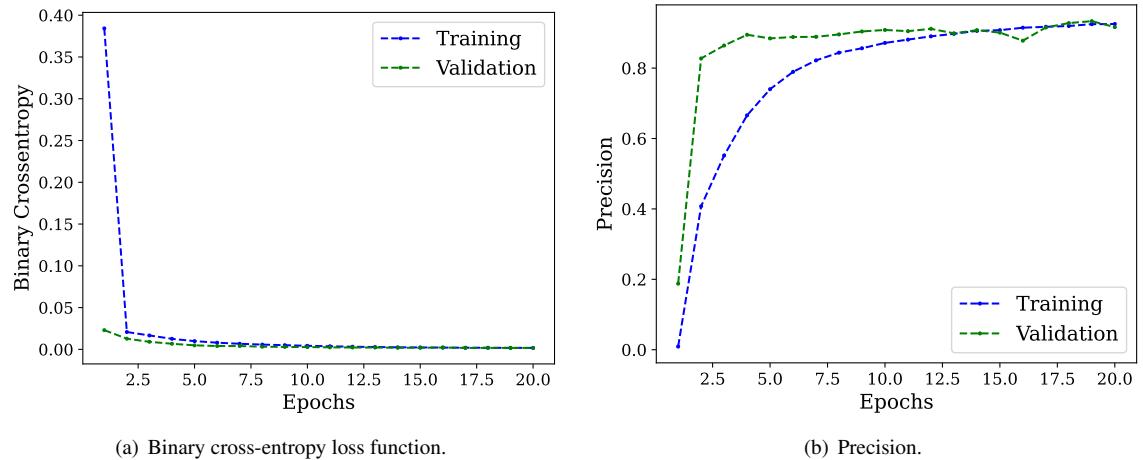


Figure 12: Convergence curve of the loss function and Precision over 20 epochs for Example 2.

279 6.1.2. Performance on test data set for Examples 1 and 2

280 Tables 2 and 3 present the overview of our trained CNN's performance on the 600 test data sets and show the
 281 performance of our trained CNN both in larger and smaller domains (Examples 1 and 2). To provide a detailed
 282 analysis, Tables 2 and 3 individually identify the best and worst predictions for the three types of test data sets (i.e., 1
 283 data set with zero target cavities, data sets with one target cavity, data sets with two target cavities).

- 284 • **Data set with zero target cavities:** Notably, we achieve perfect Accuracy for the domain that contains no void
 285 elements for both Examples 1 and 2. However, we are unable to compute the remaining three metrics due to
 286 the lack of tn , fp , and fn terms, which renders the expressions in Eqs. (15b), (15c), and (15d) indeterminate.
- 287 • **Data sets with one target cavity:** For the domain with one delamination cavity in Example 1, our CNN achieves
 288 an impressive Accuracy of 99.99%, a Precision of 100.00%, a Recall of 96.15%, and an F1-score of 98.04% for

289 the best prediction. Even the worst prediction for Example 1 resulted in an Accuracy of 99.95%, a Precision
 290 of 93.75%, a Recall of 94.94%, and an F1-score of 94.34%. Our CNN also shows an outstanding performance
 291 with an Accuracy of 99.95%, a Precision of 96.82%, a Recall of 91.03%, and an F1-score of 93.84% as shown
 292 in the best prediction result of Example 2. The worst prediction result of Example 2 also shows high values of
 293 the metrics: an Accuracy of 99.90%, a Precision of 84.51%, a Recall of 93.75%, and an F1-score of 88.89%.

294 **• Data sets with two target cavities:** Moreover, for the domain with two delamination cavities, our CNN achieves
 295 an Accuracy of 99.98%, a Precision of 97.83%, a Recall of 100.00%, and an F1-score of 98.90% for the best
 296 prediction in Example 1. On the other hand, the worst prediction for Example 1 results in an Accuracy of
 297 99.84%, a Precision of 93.07%, a Recall of 91.26%, and an F1-score of 92.16%. Example 2 also shows a great
 298 performance of our CNN as evidenced in the best prediction in Example 2 with an Accuracy of 99.88%, a
 299 Precision of 94.18%, a Recall of 89.91%, and an F1-score of 92% and the worst prediction in Example 2 with
 300 an Accuracy of 99.79%, a Precision of 82.57%, a Recall of 88.24%, and an F1-score of 85.31%.

Table 2: The test data set's (Example 1) evaluation metrics for CNN under Case A.

Figures	Accuracy (%)	Precision (%)	Recall (%)	F1-score (%)
Fig. 13 - Prediction (zero cavities)	100			
Fig. 14 - Best prediction (one cavity)	99.99	100.00	96.15	98.04
Fig. 15 -Worst prediction (one cavity)	99.95	93.75	94.94	94.34
Fig. 16 - Best prediction (two cavities)	99.98	97.83	100.00	98.90
Fig. 17 - Worst prediction (two cavities)	99.84	93.07	91.26	92.16

Table 3: The test data set's (Example 2) evaluation metrics for CNN under Case A.

Figures	Accuracy (%)	Precision (%)	Recall (%)	F1-score (%)
Fig. 13 - Prediction (zero cavities)	100			
Fig. 14 - Best prediction (one cavity)	99.95	96.82	91.03	93.84
Fig. 15 -Worst prediction (one cavity)	99.90	84.51	93.75	88.89
Fig. 16 - Best prediction (two cavities)	99.88	94.18	89.91	92.00
Fig. 17 - Worst prediction (two cavities)	99.79	82.57	88.24	85.31

301 To provide a more intuitive understanding of the predictions, we present the visual representation of predicted
 302 cavities in each type of test data set consisting of 0, 1, and 2 targeted cavities in Figures 13 to 17, respectively.

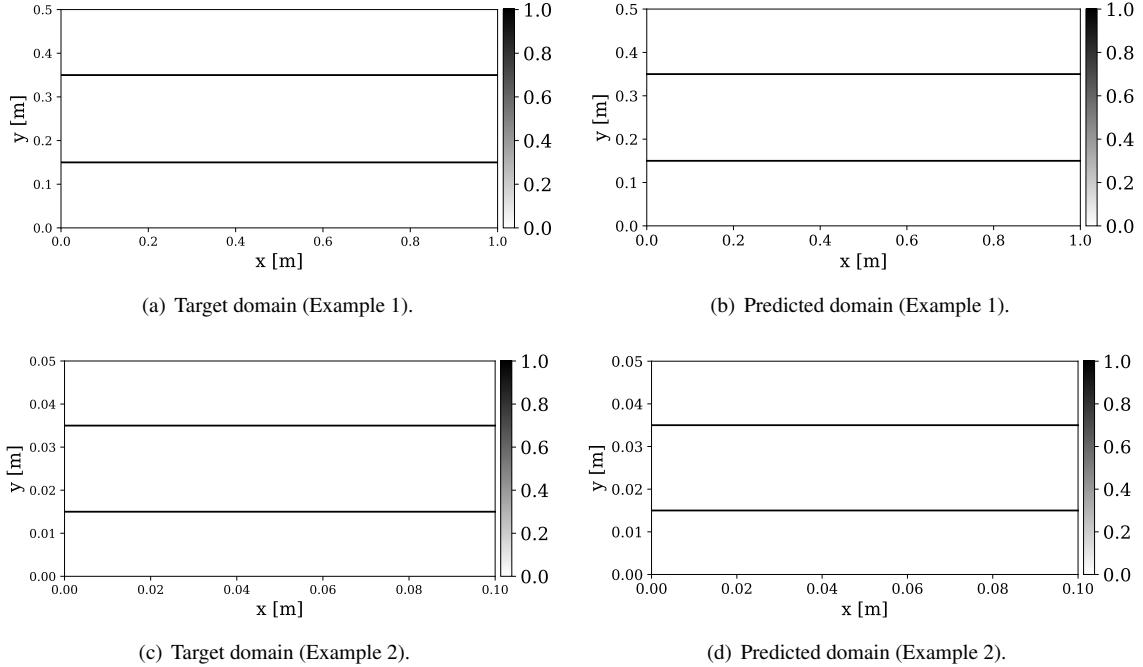


Figure 13: Prediction for zero target cavities in test data set under Case A.

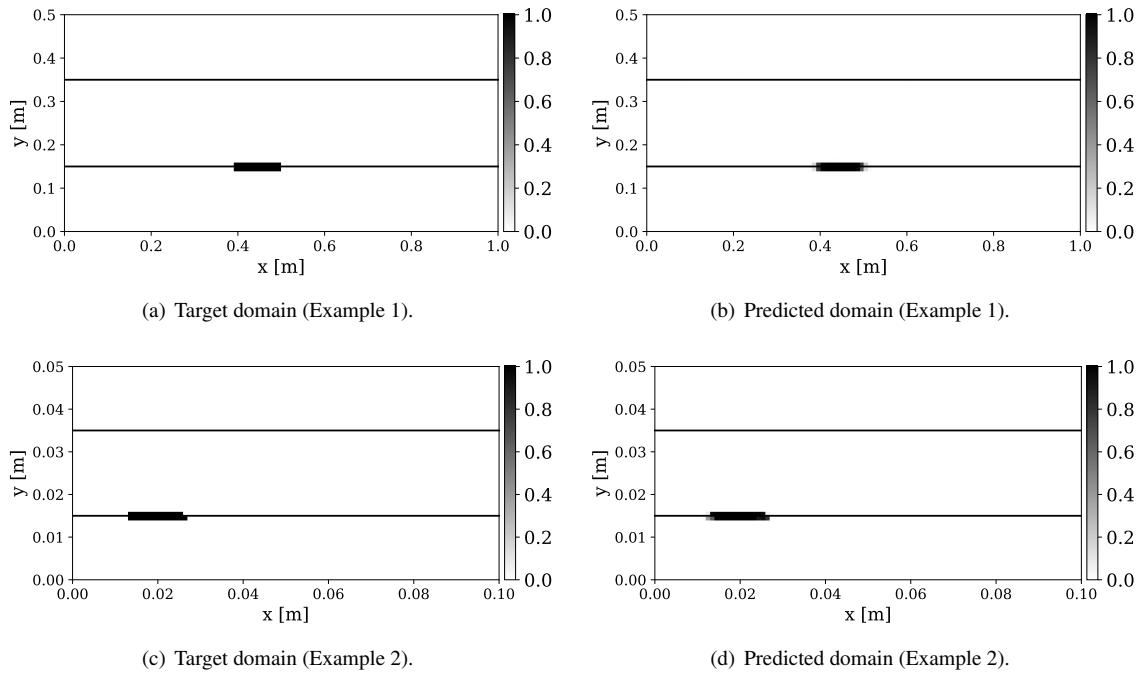


Figure 14: Best prediction for one target cavity in test data set under Case A.

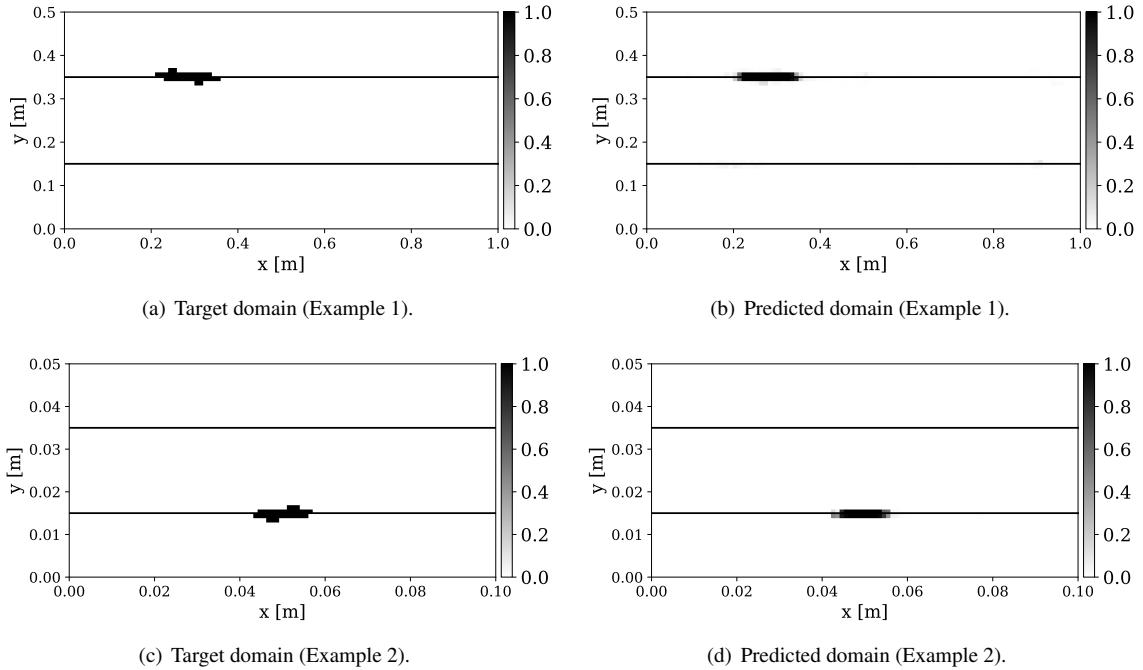


Figure 15: Worst prediction for one target cavity in test data set under Case A.

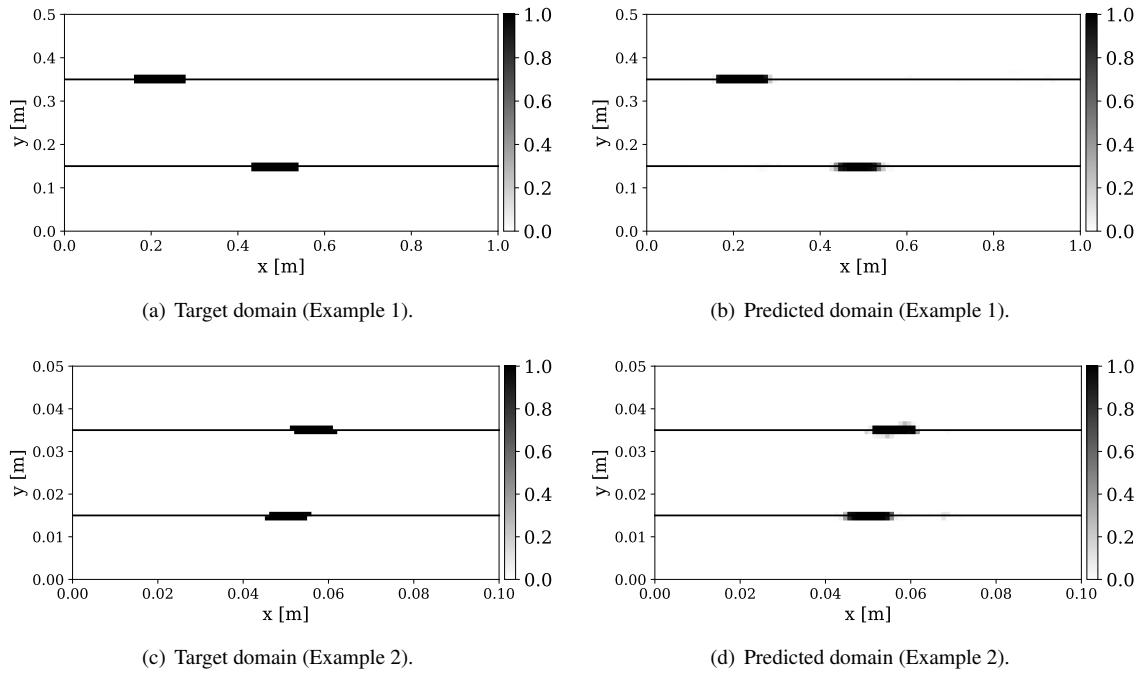


Figure 16: Best prediction for two target cavities in test data set under Case A.

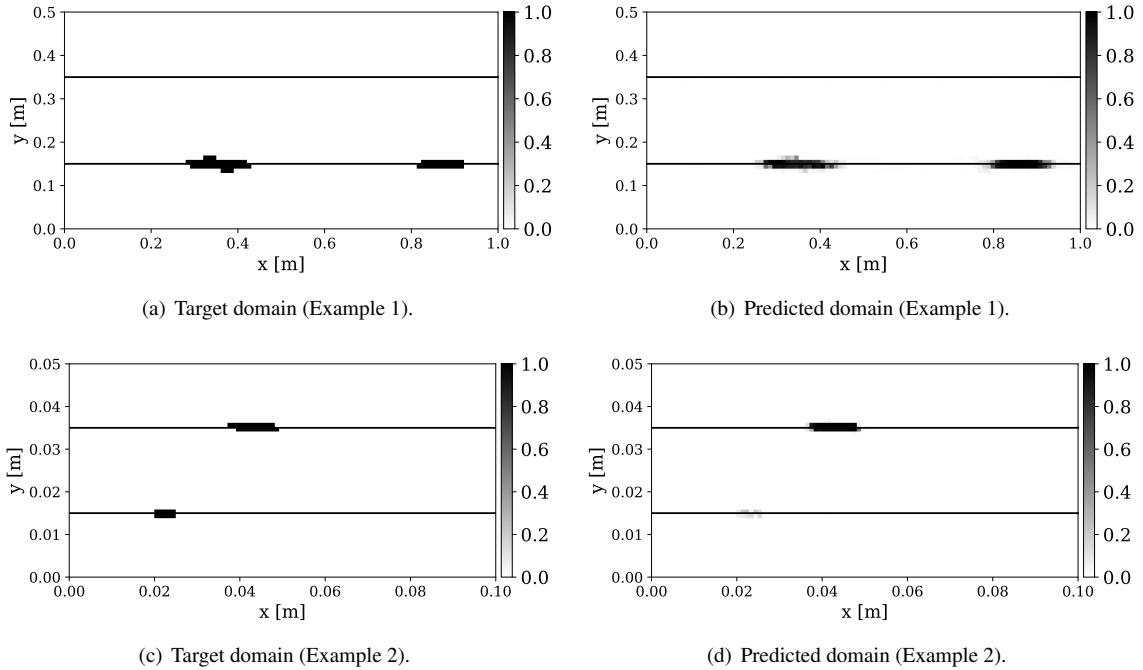


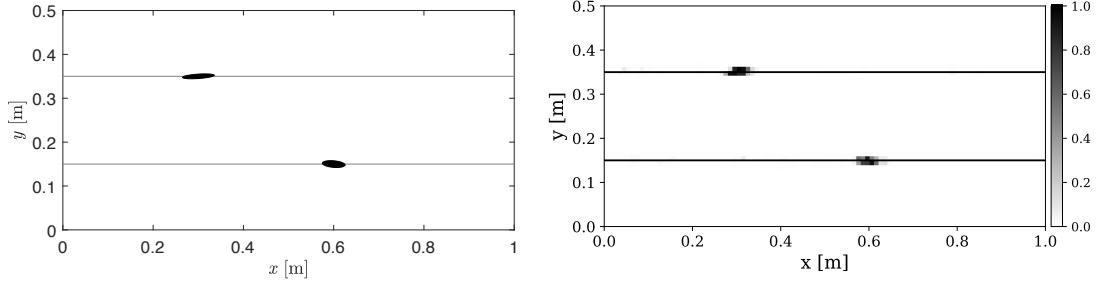
Figure 17: Worst prediction for two target cavities in test data set under Case A.

303 **6.1.3. Performance on blind test data sets for Examples 1 and 2**

304 The previous Section 6.1.2 employed test data sets that were generated by a level-set SEM wave solver to investi-
 305 giate the performance of our CNN. In this section, we present the performance of our CNN on blind test data that was
 306 generated using ANSYS Mechanical. By running the CNN using the measurement data from the third-party simulator
 307 that models the boundary of cavities explicitly (i.e., more accurately than our level-set wave solver), we avoid an in-
 308 verse crime. Namely, we virtually mimic a situation where our numerical simulator uses experimental data, which are
 309 true to real physics. Our blind tests also demonstrate how our CNN solver predicts delamination cavities when it is fed
 310 by the measurement data from ANSYS in consideration of (i) elliptical cavities of even smaller major axes than those
 311 in the training data and (ii) cavities with non-elliptical shapes. Namely, we test the performance of our CNN inversion
 312 solver for cavities of non-elliptical shapes that it has never been exposed to during the training phase. To obtain the
 313 blind test data set, we created an unstructured mesh of 8-node quadrilateral elements, each having an average element
 314 size of 0.0025 m for Example 1 and 0.00025 m for Example 2, via ANSYS's automatic mesh generation feature.
 315 Such ANSYS modeling is considered to be, again, more veracious to the real physics than that of the level-set solver,
 316 particularly in modeling of a cavity with a zero-traction boundary.

317 We utilize our CNN to identify delamination cavities in samples of blind test data sets from ANSYS. Namely,
 318 the measured wave signals from ANSYS modeling for the samples are fed into our trained CNN, which, in turn,
 319 yields the contour maps of the predicted void elements. They are, eventually, compared to the geometries of targeted
 320 cavities in ANSYS visually and numerically. Our CNN exhibited great performance on the samples (Figures 18 - 22).
 321 The Samples A1 to A3 correspond to the instances when the targeted delamination cavities, modeled by ANSYS, are
 322 elliptical, but with even smaller major axes (e.g., 0.01 to 0.02 m in Example 1 of a larger domain) than those (e.g.,
 323 0.03 to 0.08 m in Example 1) in the training data. In Samples A4 and A5, the targeted cavities are of non-elliptical
 324 shapes (e.g., Gaussian distribution or saw-tooth shape). Figs. 18 to 22 illustrate the target and prediction domains for
 325 all Samples A1 to A5. For brevity, the targeted and predicted cavities of Samples A1, A3, and A5 are presented only
 326 for Example 1 while those of Samples A2 and A4 are depicted for Example 2.

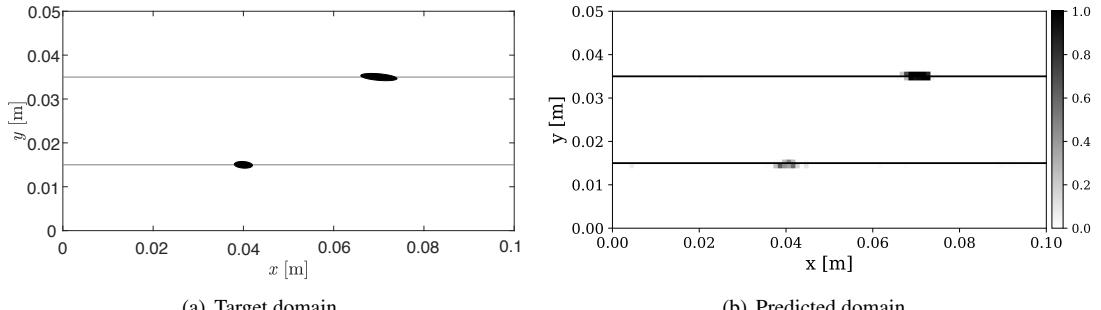
327 The numerical results of the evaluation metrics for all five blind test samples for both Examples 1 and 2 are
 328 presented in Tables 4 and 5. To this end, we map the geometries of targeted delamination cavities from ANSYS into
 329 a structured grid and identify equivalent targeted void elements in each sample. In the next Section 6.2, we compare
 330 the blind test results for various central frequencies of the source while its location is fixed.



(a) Target domain.

(b) Predicted domain.

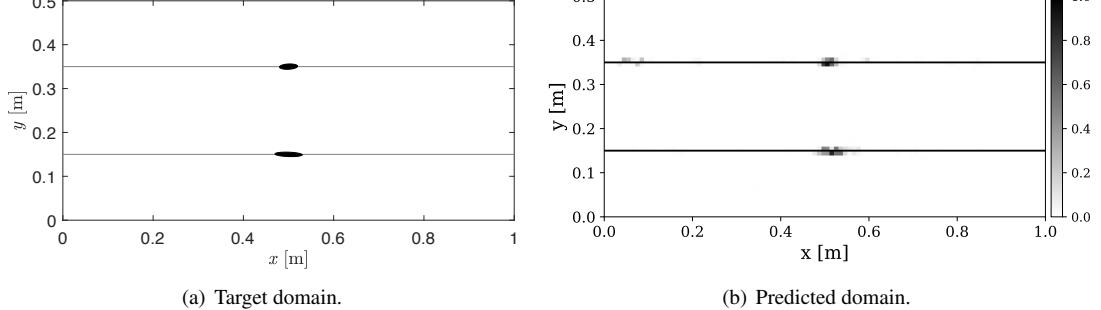
Figure 18: Blind test (Sample A1) for Example 1 under Case A.



(a) Target domain.

(b) Predicted domain.

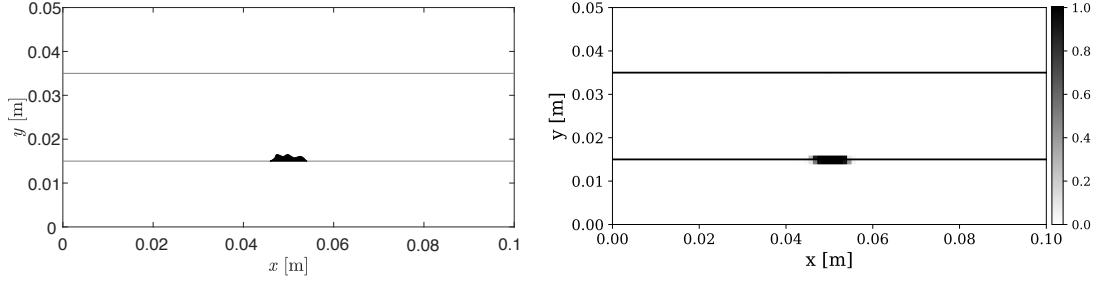
Figure 19: Blind test (Sample A2) for Example 2 under Case A.



(a) Target domain.

(b) Predicted domain.

Figure 20: Blind test (Sample A3) for Example 1 under Case A.



(a) Target domain.

(b) Predicted domain.

Figure 21: Blind test (Sample A4) for Example 2 under Case A.

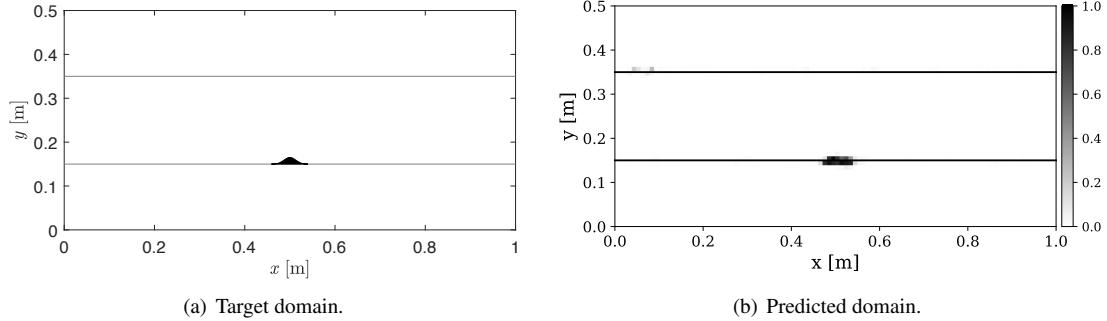


Figure 22: Blind test (Sample A5) for Example 1 under Case A.

Table 4: The evaluation metrics for CNN (Example 1) for the ANSYS generated blind test data set under Case A.

Samples	Targeted delamination cavities	Accuracy (%)	Precision (%)	Recall (%)	F1-score (%)
A1 - Fig. 18	Two cavities in different interfaces	99.88	91.67	68.75	78.57
A2	Two cavities in different interfaces	99.88	88.46	71.88	79.31
A3 - Fig. 20	Two cavities in different interfaces	99.87	87.50	63.64	73.68
A4	One cavity (saw-tooth shape)	99.83	80.00	55.56	65.57
A5 - Fig. 22	One cavity (Gaussian distribution shape)	99.83	81.48	52.38	63.77

Table 5: The evaluation metrics for CNN (Example 2) for the ANSYS generated blind test data set under Case A.

Samples	Targeted delamination cavities	Accuracy (%)	Precision (%)	Recall (%)	F1-score (%)
A1	Two cavities in different interfaces	99.84	91.67	61.11	73.33
A2 - Fig. 19	Two cavities in different interfaces	99.87	88.46	69.70	77.97
A3	Two cavities in different interfaces	99.85	84.38	61.36	71.05
A4 - Fig. 21	One cavity (saw-tooth shape)	99.81	86.00	51.81	64.66
A5	One cavity (Gaussian distribution shape)	99.81	87.04	48.45	62.25

331 6.2. Case B: Examining the performance of the method with respect to the frequency of the load for Example 1

332 In this section, we examine how well our CNN performs on blind test data in relation to the load frequency in
 333 Example 1. We explore three central frequencies (30 kHz, 40 kHz, and 50 kHz) of the Ricker-pulse wave source. We
 334 train three distinct CNN architectures with varied hyperparameter configurations, tailoring each to the training data
 335 for its respective frequency. A dedicated hyperparameter search is conducted for each wave source frequency problem
 336 to find optimal settings. Following a similar approach as outlined in Section 6.1.3, we generate blind test data sets for
 337 five samples using ANSYS. Our CNN demonstrates great performance across various central frequencies of the load
 338 for all samples.

339 The numerical results for the evaluation metrics of all five blind test Samples B1 to B5 are outlined in Tables 6
 340 and 7 for central frequencies of 40 kHz and 30 kHz, respectively. Earlier results for the central frequency of 50 kHz
 341 are available in Table 4 in Section 6.1.3. Notably, we consistently observe positive outcomes across all three load
 342 frequencies, underscoring the broad applicability of our proposed CNN-based approach, irrespective of the source
 343 wave frequency. We notice that training with a 50 Hz frequency leads to slightly better performance, as evidenced by
 344 improvements in the F1-score. Figure 23 illustrates the target and prediction domains for only Sample B1 for brevity.

345 We notice the slightly less accurate performance of our CNN when (i) targeted cavities are not elliptical shaped
 346 than otherwise; (ii) targeted cavities are located near the top or bottom surface or the fixed boundary; and (iii) targeted
 347 cavities are vertically oriented. This could be improved by introducing a variety of cavities of different sizes and

348 shapes in our training data sets. In the next Section 6.3, we examine that the presented method can be improved if the
 349 training data are further diversified in terms of the target cavity profiles.

Table 6: The evaluation metrics for CNN (Example 1, central frequency of 40 kHz) for the ANSYS generated blind test data set under Case B.

Samples	Targeted delamination cavities	Accuracy (%)	Precision (%)	Recall (%)	F1-score (%)
B1 - Fig. 23(c)	Two cavities in different interfaces	99.79	100	41.51	58.67
B2	Two cavities in different interfaces	99.80	100	48.00	64.86
B3	Two cavities in different interfaces	99.79	100	44.21	61.31
B4	One cavity (saw-tooth shape)	99.80	100	37.50	54.55
B5	One cavity (Gaussian distribution shape)	99.79	100	32.26	48.78

Table 7: The evaluation metrics for CNN (Example 1, central frequency of 30 kHz) for the ANSYS generated blind test data set under Case B.

Samples	Targeted delamination cavities	Accuracy (%)	Precision (%)	Recall (%)	F1-score (%)
B1 - Fig. 23(d)	Two cavities in different interfaces	99.81	77.27	41.46	53.97
B2	Two cavities in different interfaces	99.81	86.11	49.21	62.63
B3	Two cavities in different interfaces	99.81	88.10	46.84	61.16
B4	One cavity (saw-tooth shape)	99.82	100	40.00	57.14
B5	One cavity (Gaussian distribution shape)	99.81	100	34.48	51.28

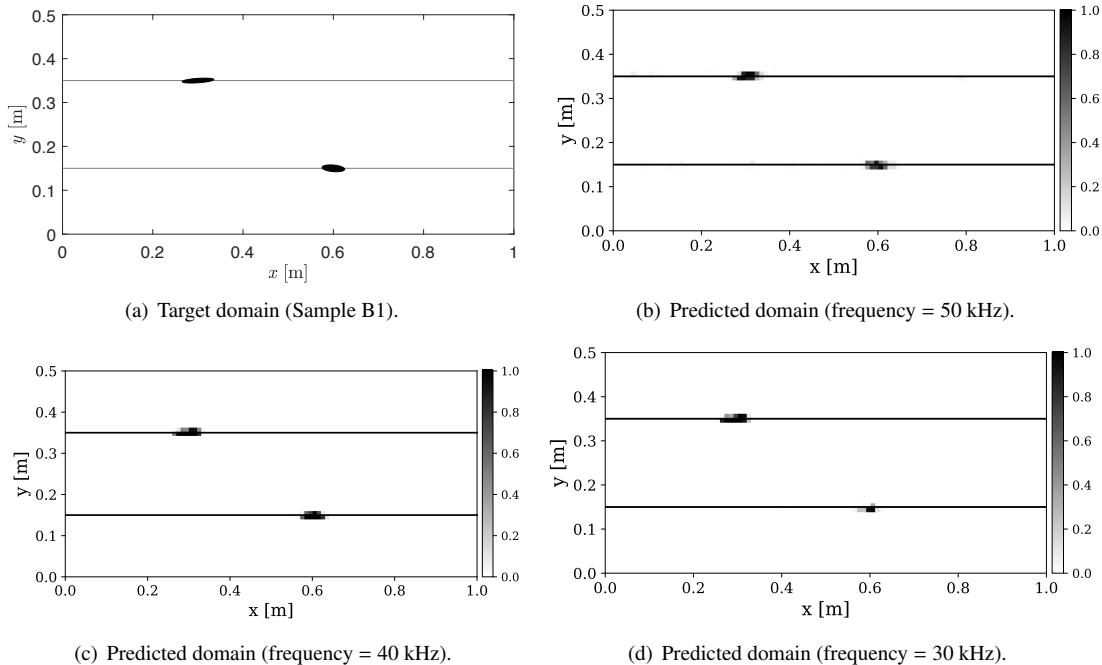


Figure 23: Blind test (Sample B1) for various central frequencies of the load under Case B.

350 6.3. Case C: Examining the effect of diversifying training data in terms of target cavity profiles for Examples 1 and 2

351 We train the CNNs using the data sets with more diversified target cavity profiles for Examples 1 and 2 than Case
 352 A. As distinction from Case A, the angle ranges from -88° to 88° in Case C, being more inclusive than the previous

range of -5° to 5° in Case A. The cavities are located throughout the entire domain in Case C (Case A populates them only along the interfaces), with their centers at $1.32\lambda \leq x \leq 16.45\lambda$ and $1.32\lambda \leq y \leq 8.22\lambda$ ($0.08 \text{ m} \leq x \leq 1 \text{ m}$ and $0.08 \text{ m} \leq y \leq 0.42 \text{ m}$ for Example 1; $0.008 \text{ m} \leq x \leq 0.1 \text{ m}$ and $0.008 \text{ m} \leq y \leq 0.042 \text{ m}$ for Example 2). The target profiles of training data include not only horizontally oriented cavities but also vertically oriented cavities, near-surface cracks, or those near the fixed boundary. We generate the blind test data sets, produced by ANSYS, simulating domains with two horizontally oriented cavities at different interfaces (Sample C1), a vertically oriented cavity at the interface (Sample C2), a cavity near the surface (Sample C3), and a cavity near the fixed boundary (Sample C4). Except for the aforementioned newly diversified profiles of target cavities in training data sets, all other conditions (e.g., boundary condition, source profile, sensor locations) remain the same as Case A.

To assess the effect of diversifying the cavity profiles of training data sets, we show the prediction results of blind tests. Figs. 24 and 26 depict the results of Samples C1 and C3 only for Example 1 while Figs. 25 and 27 present those of Samples C2 and C4 only for Example 2. The models have improved in detecting the locations of cavities because our CNN model is trained using data sets that consider both horizontally and vertically oriented cavities near the interface, surface, or fixed boundary. In Tables 8 and 9, the numerical results of the evaluation metrics for four blind test samples are presented for both Examples 1 and 2.

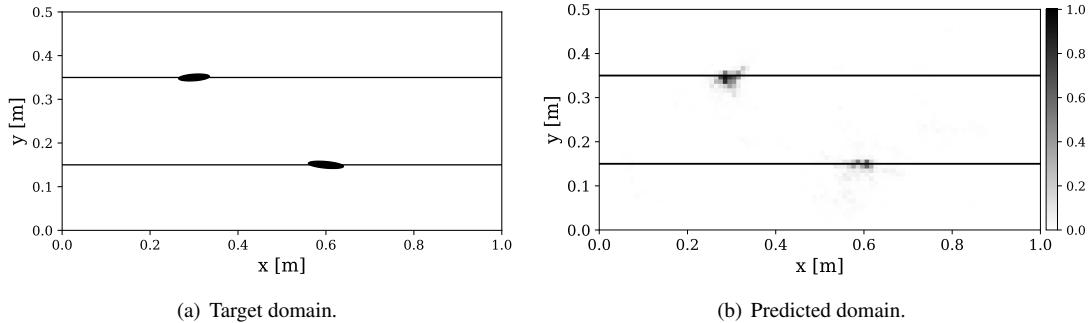


Figure 24: Blind test (Sample C1) for Example 1 under Case C: Two horizontally oriented delamination cavities.

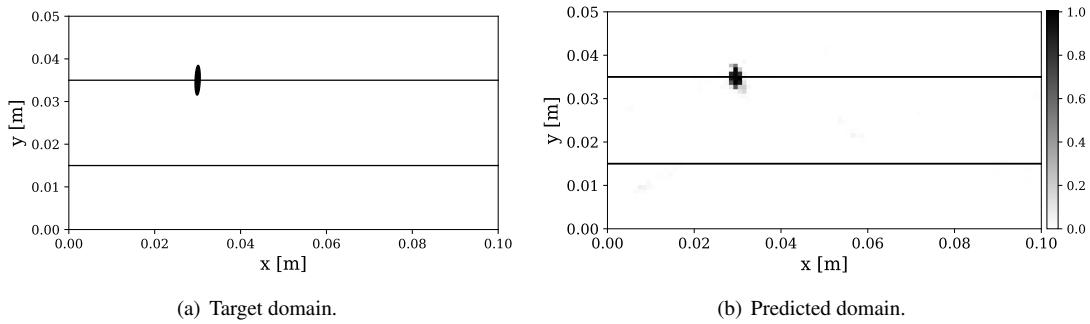


Figure 25: Blind test (Sample C2) for Example 2 under Case C: One vertically oriented cavity.

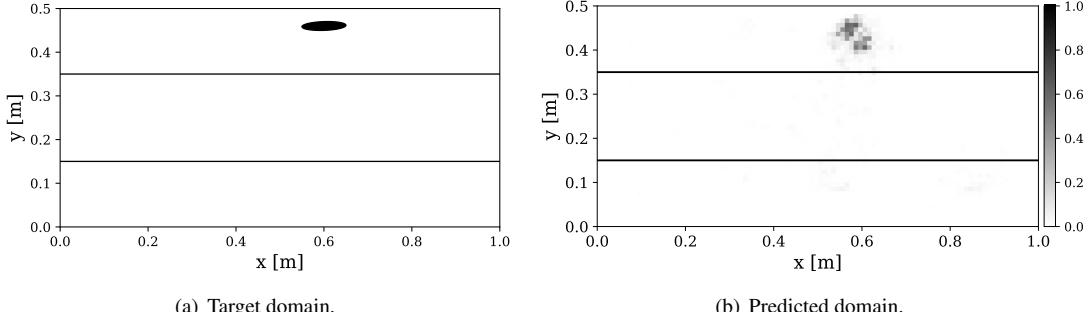


Figure 26: Blind test (Sample C3) for Example 1 under Case C: One cavity near the surface.

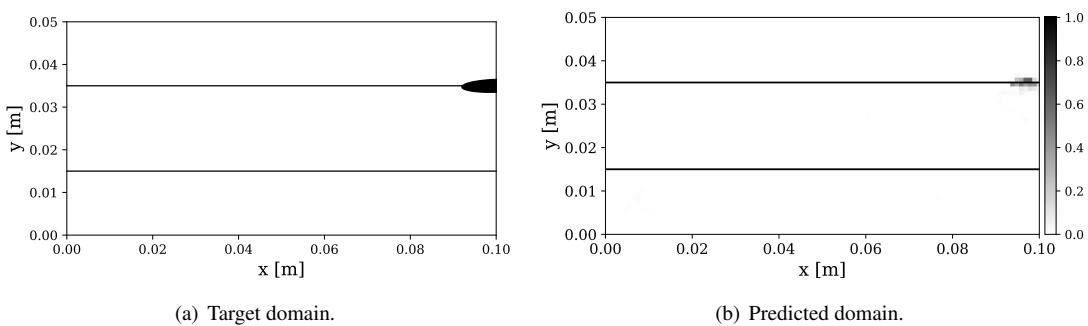


Figure 27: Blind test (Sample C4) for Example 2 under Case C: One delamination cavity near the fixed boundary.

Table 8: The evaluation metrics for CNN for the ANSYS generated blind test data set for Example 1 under Case C.

Samples	Targeted cavities	Accuracy (%)	Precision (%)	Recall (%)	F1-score (%)
C1 - Fig. 24	Two delamination cavities in different interfaces	99.72	45.00	75.00	56.25
C2	One vertically oriented cavity in the interface	99.81	57.14	69.57	62.75
C3 - Fig. 26	One cavity near the surface	99.72	49.18	54.55	51.72
C4	One delamination cavity near the fixed boundary	99.78	60.00	64.29	62.07

Table 9: The evaluation metrics for CNN for the ANSYS generated blind test data set for Example 2 under Case C.

Samples	Targeted cavities	Accuracy (%)	Precision (%)	Recall (%)	F1-score (%)
C1	Two delamination cavities in different interfaces	99.58	15.00	42.86	22.22
C2 - Fig. 25	One vertically oriented cavity in the interface	99.71	32.14	47.37	38.30
C3	One cavity near the surface	99.74	42.62	60.47	50.00
C4 - Fig. 27	One delamination cavity near the fixed boundary	99.73	33.33	60.00	42.86

368 **6.4. Case D: Examining the performance of the method for a domain (Example 3) of a different dimensional ratio**
369 **from Examples 1 and 2**

370 In this section, we train the new CNN model with a different dimensional ratio from Examples 1 and 2. We reduce
371 the thickness of aluminum from 0.015 m to 0.005 m while the thickness of the Carbon/epoxy laminate remains as 0.02
372 m, as illustrated in Fig. 28. Similar to Example 2 in Case C, we create elliptical cavities with a major axis between

373 0.003 m and 0.008 m, a minor axis between 0.001 m and 0.0015 m, and an orientation between -88° and 88° . The
 374 center of cavities is located at $0.004 \text{ m} \leq x \leq 0.1 \text{ m}$ and $0.004 \text{ m} \leq y \leq 0.026 \text{ m}$. We use the central frequency of the
 375 Ricker wave source as 500 kHz and apply it in the y -direction at $(0.045 \text{ m}, 0.03 \text{ m})$. To train the model, we collect
 376 the displacement data in the y -direction at a total of 41 sensors located on the upper surface at intervals of 0.002 m
 377 between $x = 0.01 \text{ m}$ and $x = 0.09 \text{ m}$ at $y = 0.03 \text{ m}$. The blind test data sets for four samples are generated using
 378 ANSYS, as in Section 6.3, considering cavities near the interface, surface, or fixed boundary.

379 Figures 29 to 32 demonstrate the ability of our CNN model to detect cavities in the domain for Example 3. More-
 380 over, we find that transitioning to a different dimensional ratio does not significantly impact the CNN's performance—
 381 it consistently identifies the presence of single or double cavities and accurately locates their positions within the
 382 domain. Additionally, the model continues to successfully reconstruct the cavity's shapes by predicting the associated
 383 elements. The numerical results for the prediction of blind test data for this dimensional ratio are summarized in Table
 384 10.

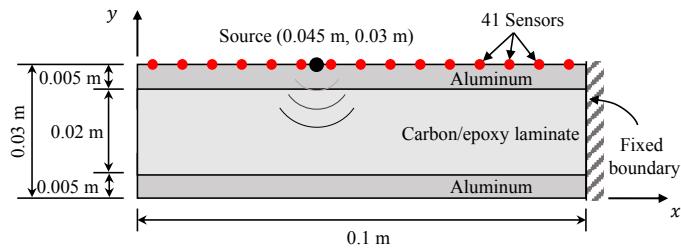


Figure 28: A schematic diagram of the data generation domain for Example 3.

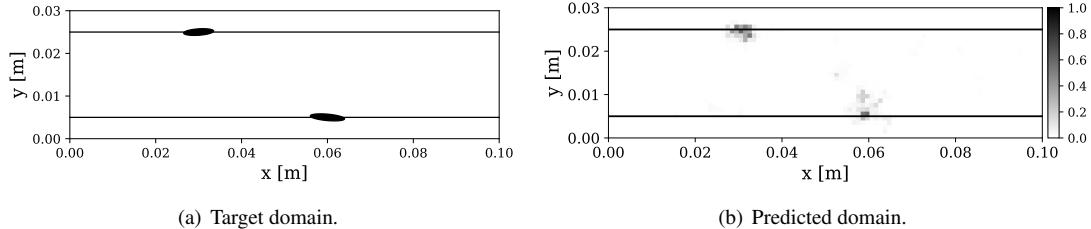


Figure 29: Blind test (Sample D1) for Example 3 under Case D: Two horizontally oriented cavities.

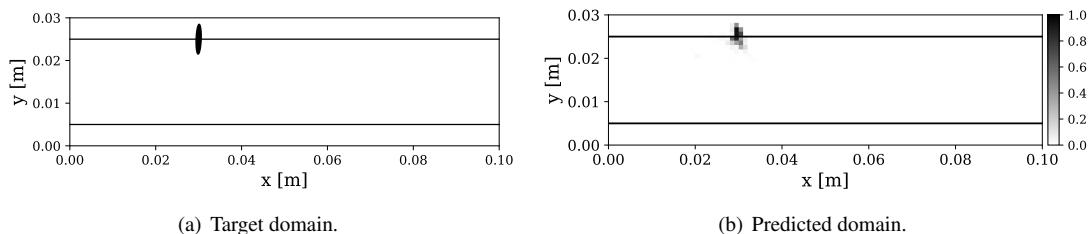


Figure 30: Blind test (Sample D2) for Example 3 under Case D: One vertically oriented cavity.

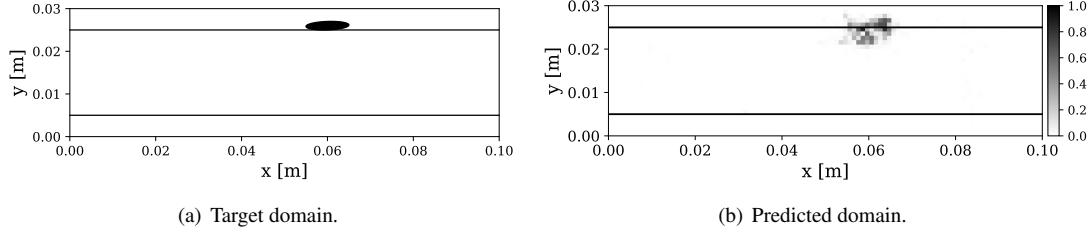


Figure 31: Blind test (Sample D3) for Example 3 under Case D: One cavity near the surface.

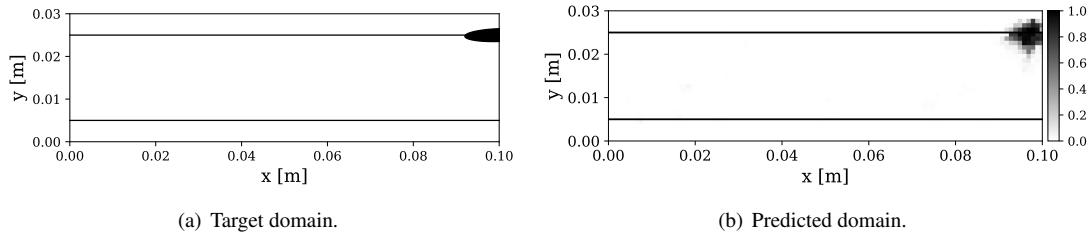


Figure 32: Blind test (Sample D4) for Example 3 under Case D: One cavity near the fixed boundary.

Table 10: The evaluation metrics for CNN (Example 3) for the ANSYS generated blind test data set under Case D.

Samples	Targeted cavities	Accuracy (%)	Precision (%)	Recall (%)	F1-score (%)
D1 - Fig. 29	Two delamination cavities in different interfaces	99.47	25.00	83.33	38.46
D2 - Fig. 30	One vertically oriented cavity in the interface	99.60	32.14	64.22	42.86
D3 - Fig. 31	One cavity near the surface	99.42	50.82	43.66	46.97
D4 - Fig. 32	One delamination cavity near the fixed boundary	99.48	55.56	48.08	51.55

385 6.5. Case E: Examining the performance of the method with respect to the number of sensors.

386 In this section, we discuss the outcomes of our parametric study, focusing on the correlation between the number
 387 of sensors and the predictive performance of the neural network. To evaluate the model's predictive accuracy, we
 388 analyze true positives (correct identification of void elements) and false positives (incorrect identification of non-void
 389 elements as void elements) in the test data set of Examples 1 and 2 under Case C and Example 3 under Case D in
 390 Figures 33 and 34, respectively.

391 Figures 33(a) and 33(b) illustrate the correct identification of void elements (true positives) in domains containing
 392 1 and 2 cavities, respectively. Notably, an increase in the number of sensors, exemplified by the yellow bars (41
 393 sensors), consistently leads to improved void element identification compared to trained models with fewer sensors
 394 (11 sensors in blue and 21 sensors in orange). The use of fewer sensors can significantly hinder the neural network's
 395 capability to predict void elements.

396 Further analysis of Figures 34(a) and 34(b), which depict false positives (instances where non-void elements
 397 are incorrectly identified as void elements), shows that employing more sensors is associated with a decrease in
 398 misidentifying void elements. This observation suggests that a greater number of sensors facilitates the neural network
 399 in learning intricate feature relationships between input- and output-layer data, contributing to enhanced void element
 400 identification.

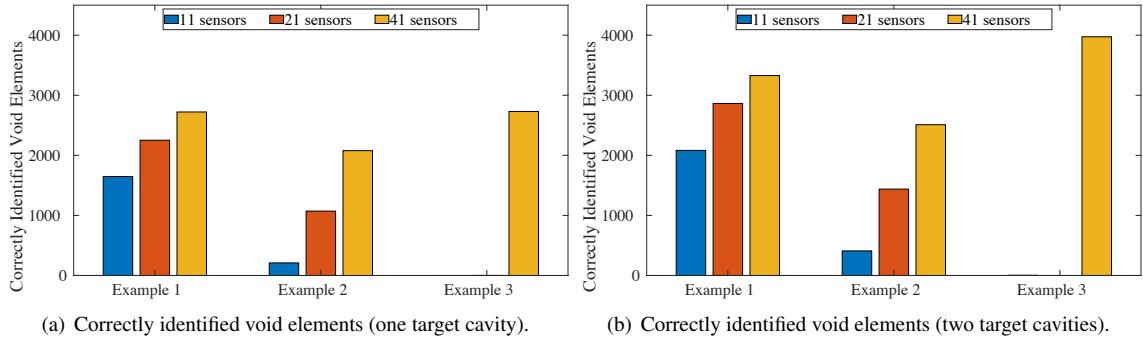


Figure 33: Parametric study investigating the impact of sensor configurations on the predictive performance of our CNN in correctly identifying void elements (i.e., the number of true positives) when there are (a) one or (b) two target cavities.

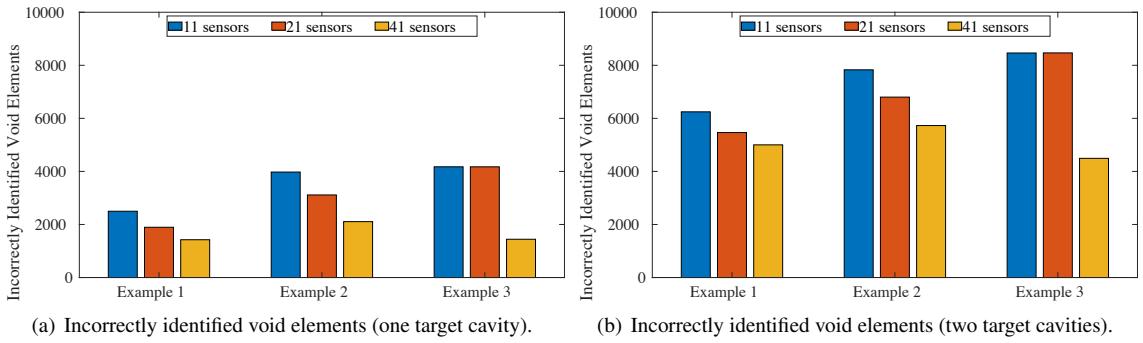


Figure 34: Parametric study investigating the impact of sensor configurations on the predictive performance of our CNN in incorrectly identifying void elements (i.e., the number of false positives) when there are (a) one or (b) two target cavities.

401 7. Conclusion

402 We discuss a novel method to detect delamination cavities in a 2D plane-strain anisotropic structure subjected to
403 elastic waves. This paper presents the following methodological contributions.

404 • In order to accelerate the data generation process, we utilize the SEM method endowed with the explicit time
405 integration and the level-set method. Namely, we rapidly solve a series of forward problems with varying
406 sizes, shapes, and locations of delamination cavities located across an orthotropic material (e.g., carbon fiber-
407 reinforced epoxy) and an isotropic layer (e.g., aluminum) without remeshing for varying parameters of the
408 geometries of targeted cavities. In that, we systematically capture (via the level-set method) void elements
409 within a set of cavities that are populated with a random number, location, and configurations. The binary
410 information (i.e., void or non-void element) of all the elements and the measured wave signals at sensors are
411 utilized to train our CNN.

412 • Once the CNN learns from these training data sets, our CNN categorizes each element in the domain as either
413 a void or non-void one. Clusters of identified void elements reconstruct targeted cavities although they are
414 arbitrary in their numbers and shapes. The advantage of such element-wise classification is that a neural network
415 does not need to be informed of the prior information about the target cavities (e.g., their number and their
416 shapes). Therefore, our CNN can identify targeted cavities, which are arbitrary in terms of shapes, numbers,
417 locations, and size using only measurement data.

418 This work also utilizes blind test data produced by ANSYS Mechanical, which simulates the boundaries of the
419 delamination cavities explicitly by using an unstructured mesh of fine resolution. Thus, we do not commit an inverse

420 crime in this work by mimicking a situation where our numerical simulator uses experimental data. The blind test also
421 examines the performance of our CNN inversion solver for cavities of non-elliptical shapes (e.g., Gaussian distribution
422 or saw-tooth shape) that it has never been exposed to during the training phase.

423 The following summarizes the findings from our numerical results.

- 424 • For domains with different scales in domain size, cavity sizes, and wave frequencies, our training consistently
425 demonstrates the convergence of the loss function to a minimum, ensuring great performance for accurate
426 cavity detection, also validated through visual inspection and numerical results. In blind tests, our CNN solver
427 effectively detects delamination cavities, considering (i) elliptical cavities of even smaller major axes than those
428 in the training data and (ii) cavities with non-elliptical shapes.
- 429 • From a numerical simulation, examining the performance of our CNNs with respect to only the central fre-
430 quency of a wave source, we found that the accuracy of the CNN is not significantly affected by changing the
431 central frequency (e.g., 30, 40, and 50 kHz).
- 432 • The performance of our CNN is improved once we consider target cavities of a broader range of shapes (e.g.,
433 a larger range of inclined angles) and locations (e.g., not just along the interfaces but also around the top and
434 bottom surfaces and the fixed boundary) in our training data sets.
- 435 • Our CNN model successfully detects cavities near the interface, surface, and fixed boundary in a sandwiched
436 composite structure of various dimensional ratios.
- 437 • The evaluation of our CNN's correct and incorrect identification of void elements indicates that an increase in
438 the number of sensors consistently improves the accuracy of cavity identification.

439

440 **Acknowledgment**

441 This material is based upon work supported by the National Science Foundation under Award CMMI-2053694.
442 Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and
443 do not necessarily reflect the views of the National Science Foundation. The authors are also grateful for the support
444 by the Faculty Research and Creative Endeavors (FRCE) Research Grant-48058 at Central Michigan University. This
445 paper is contribution # TBD of the Central Michigan University Institute for Great Lakes Research. The authors
446 greatly appreciate anonymous reviewers, who have helped improve the manuscript.

447 **Data Availability**

448 Some or all data, models, or code generated or used during the study are available from the corresponding author by
449 request.

450 **Appendix A. On the Spectral Element Modeling**

451 To improve computational efficiency in terms of computing time and memory usage, the global mass matrix,
452 \mathbf{M} , can be diagonalized due to its efficient matrix-vector multiplication and matrix inversion compared to the non-
453 diagonal mass matrix. While the lumped mass model is a straightforward way to diagonalize the mass matrix, we
454 utilize the SEM [37], which utilizes high-order polynomials as basis functions with the Gauss-Lobatto-Legendre
455 (GLL) numerical integration within the framework of a typical finite element modeling, to avoid the approximation
456 error of the mass lumping but still diagonalize \mathbf{M} . Thus, the SEM leads to a higher accuracy of the solution than the
457 mass lumping.

458 We use three integration points for each direction in the quadratic 9-node element to perform the GLL numerical
459 integration in this study. The basis function ψ for each direction in the local coordinate (ξ and η in a 2D) can be
460 expressed using the second-order Legendre polynomial. For instance, when ξ is considered,

$$\psi_p(\xi) = \frac{1}{6L_2(\xi_p)} \frac{(1-\xi^2)L'_2(\xi)}{\xi - \xi_p}, \quad p = 1, 2, 3, \quad -1 \leq \xi \leq 1, \quad (\text{A.1})$$

461 where ξ_p is the p -th local node's coordinate (i.e., $\xi_1 = -1$, $\xi_2 = 0$, and $\xi_3 = 1$) and $L_2(\xi)$ denotes the second-order
462 Legendre polynomial defined as:

$$L_2(\xi) = \frac{1}{2} (3\xi^2 - 1). \quad (\text{A.2})$$

463 The shape function ϕ for the quadratic 9-node element in the local coordinate (ξ, η) , $\xi, \eta \in [-1, 1]$, is built as
464 follows:

$$\phi_i(\xi, \eta) = \psi_p(\xi)\psi_q(\eta), \quad p, q = 1, 2, 3, \text{ and } i = 1, \dots, 9. \quad (\text{A.3})$$

465 The combination of p and q values for each i in Eq. (A.3) are determined per Fig. A.35.

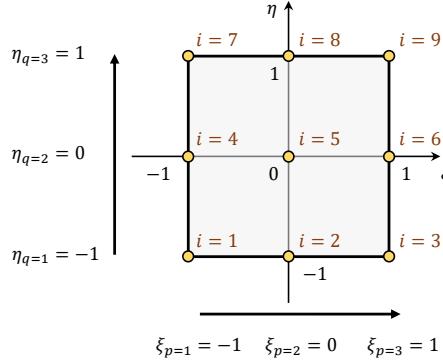


Figure A.35: The quadratic 9-node element in the local coordinate.

466 Table A.11 presents the location of nodes, integration points, and the corresponding weight factors (w_p and w_q)
467 for the GLL quadrature used in this paper.

Table A.11: Location of integration points and weight factors for the GLL quadrature.

p, q	Location of integration points ξ_p and η_q	Weight factors w_p and w_q
1	-1	1/3
2	0	4/3
3	1	1/3

468 The element-level calculation of \mathbf{M}^e in the local coordinate system is as follows:

$$M_{ij}^e = \int_{\Omega^e} \rho \phi_i(x, y) \phi_j(x, y) d\Omega = \int_{-1}^1 \int_{-1}^1 \rho \phi_i(\xi, \eta) \phi_j(\xi, \eta) |\mathbf{J}| d\xi d\eta, \quad i, j = 1, \dots, 9, \quad (\text{A.4})$$

469 where $|\mathbf{J}|$ is the determinant of the Jacobian matrix. By using three integration points in each direction with the GLL
470 quadrature method, Eq. (A.4) becomes

$$M_{ij}^e = \sum_{p=1}^3 \sum_{q=1}^3 w_p w_q \rho \phi_i(\xi_p, \eta_q) \phi_j(\xi_p, \eta_q) |\mathbf{J}|, \quad (\text{A.5})$$

471 and \mathbf{M}^e is characterized as:

$$M_{ij}^e = \begin{cases} M_{ij}^e = 0, & i \neq j \\ M_{ij}^e \neq 0, & i = j. \end{cases} \quad (\text{A.6})$$

472 The global mass matrix, \mathbf{M} in Eq. (B.1), can be obtained from the assembly of \mathbf{M}^e , and then \mathbf{M} is diagonalized.

473 Appendix B. Explicit Time Integration Method

474 We introduce an explicit time integration method, leveraged by the diagonal mass matrix naturally arisen from the
475 SEM, to solve nodal displacements and velocities. The system of the global matrices and the force vector in Eq. (10)
476 can be transformed into a system of first-order differential equations, by assuming $\mathbf{y} = \dot{\mathbf{u}}$ and multiplying by the
477 inverse of the mass matrix into Eq. (10), as:

$$\begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\mathbf{y}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{M}^{-1}\mathbf{K} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{y} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{M}^{-1}\mathbf{F} \end{bmatrix}, \quad (\text{B.1})$$

478 where $\mathbf{y} = [\dot{\mathbf{u}}_x; \dot{\mathbf{u}}_y]$. By substituting $\dot{\mathbf{s}} = [\dot{\mathbf{u}}; \dot{\mathbf{y}}]$, $\mathbf{s} = [\mathbf{u}; \mathbf{y}]$ into Eq. (B.1), the second-order differential equation system
479 in Eq. (10) can be transformed into a system of first-order differential equations in every discrete time step n :

$$\dot{\mathbf{s}}_n = \mathbf{J}\mathbf{s}_n + \mathbf{F}_n^{\text{eff}}, \quad (\text{B.2})$$

480 where $\mathbf{J} = [\mathbf{0}, -\mathbf{I}; -\mathbf{M}^{-1}\mathbf{K}, \mathbf{0}]$, and $\mathbf{F}^{\text{eff}} = [\mathbf{0}; \mathbf{M}^{-1}\mathbf{F}]$.

481 We adopt the explicit time integration scheme, the fourth-order Runge-Kutta method, to solve for the global
482 solution vector of the first-order system in Eq. (B.2), for each discrete time step. The displacements and velocities for
483 the next step (\mathbf{s}_n) can be calculated from a previous time step (\mathbf{s}_{n-1}) using the Runge-Kutta method with a time step Δt
484 as seen below:

$$\mathbf{s}_n = \mathbf{s}_{n-1} + \frac{\Delta t}{6} (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4), \quad (\text{B.3})$$

485 where the vector \mathbf{k}_i are called i -th stage derivative of the 4th-order Runge-Kutta integration scheme as:

$$\mathbf{k}_1 = \frac{\partial \mathbf{s}}{\partial t} (t_{n-1}, \mathbf{s}_{n-1}) = \mathbf{J}\mathbf{s}_{n-1} + \mathbf{F}_{n-1}^{\text{eff}}, \quad (\text{B.4})$$

$$\mathbf{k}_2 = \frac{\partial \mathbf{s}}{\partial t} \left(t_{n-1} + \frac{\Delta t}{2}, \mathbf{s}_{n-1} + \frac{\Delta t}{2} \mathbf{k}_1 \right) = \mathbf{J} \left(\mathbf{s}_{n-1} + \frac{\Delta t}{2} \mathbf{k}_1 \right) + \mathbf{F}_{n-0.5}^{\text{eff}}, \quad (\text{B.5})$$

$$\mathbf{k}_3 = \frac{\partial \mathbf{s}}{\partial t} \left(t_{n-1} + \frac{\Delta t}{2}, \mathbf{s}_{n-1} + \frac{\Delta t}{2} \mathbf{k}_2 \right) = \mathbf{J} \left(\mathbf{s}_{n-1} + \frac{\Delta t}{2} \mathbf{k}_2 \right) + \mathbf{F}_{n-0.5}^{\text{eff}}, \quad (\text{B.6})$$

$$\mathbf{k}_4 = \frac{\partial \mathbf{s}}{\partial t} (t_n, \mathbf{s}_{n-1} + \Delta t \mathbf{k}_3) = \mathbf{J} (\mathbf{s}_{n-1} + \Delta t \mathbf{k}_3) + \mathbf{F}_n^{\text{eff}}, \quad (\text{B.7})$$

486 and

$$\mathbf{F}_{n-0.5}^{\text{eff}} = \begin{bmatrix} \mathbf{0} \\ \mathbf{M}^{-1}\mathbf{F} \left(t_{n-1} + \frac{\Delta t}{2} \right) \end{bmatrix}. \quad (\text{B.8})$$

487 A time step size is selected to satisfy the following CFL condition for convergence, useful for explicit time inte-
 488 gration schemes:

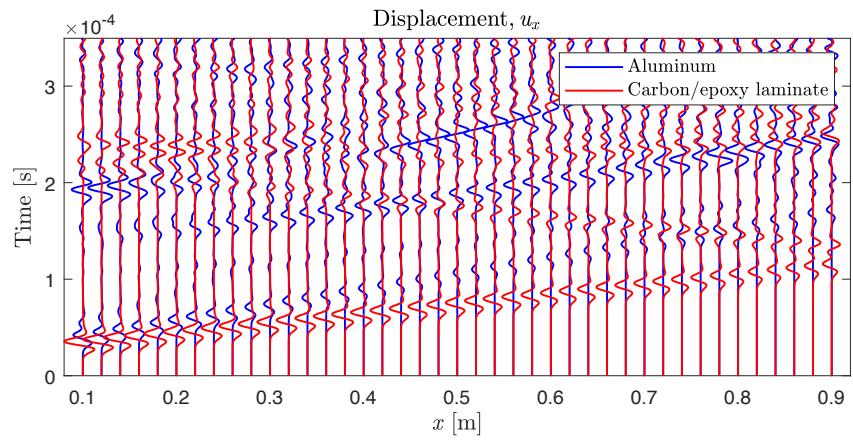
$$C = \frac{v_{max} (\Delta t)}{r_{min}} \leq C_{max}, \quad (B.9)$$

489 where C is the Courant number, v_{max} is the largest wave speed of the material(s) used in the model, Δt is the time
 490 step size, r_{min} is the smallest distance between nodes in the finite element model, and C_{max} is the maximum allowable
 491 Courant number. Choosing $C_{max} = 1.0$, the time steps used in this study meet the following condition:

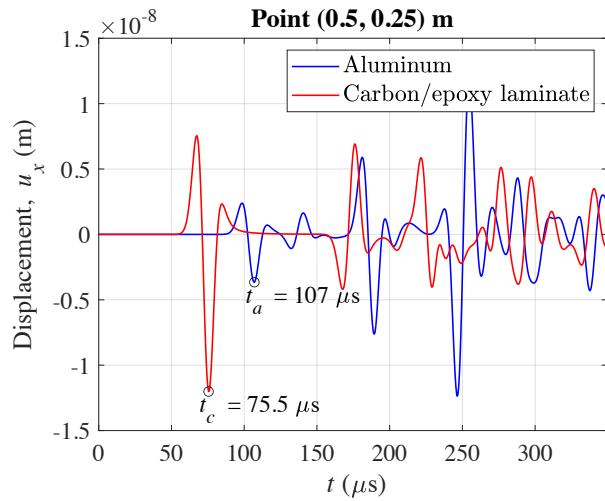
$$\Delta t \leq \frac{r_{min}}{v_{max}}. \quad (B.10)$$

492 **Appendix C. Evaluation of the maximum wave velocity of the considered materials**

493 We could analytically compute the maximum wave velocity of the considered materials and ensure that the
 494 CFL condition (defined in Eq. (B.9)) is satisfied. Namely, the maximum wave velocity of aluminum is calculated
 495 $v_a = \sqrt{\frac{E(1-\nu)}{\rho(1+\nu)(1-2\nu)}} = 6153$ m/s while that of carbon/epoxy laminate is $v_{xx} = \sqrt{\frac{E_{xx}}{\rho}} = 9837$ m/s [38]. To confirm
 496 our analytical evaluation, we simulate wave propagation in a homogeneous domain with aluminum or carbon/epoxy
 497 laminate. The size of the homogeneous domain is 1×0.5 m, identical to that of Fig. 3(a), with no cavities. The bound-
 498 ary and loading conditions are the same as the simulation for verification of our level-set SEM solver. Fig. C.36(a)
 499 presents a comparison of displacement-time histories in the x -direction at the middle of the domain ($y = 0.25$ m) for
 500 both the aluminum domain and carbon/epoxy laminate. The comparison is conducted at intervals of 0.02 m between
 501 $x = 0.1$ m and $x = 0.9$ m at $y = 0.25$ m. Fig. C.36(b) presents displacement-time histories for both domains at point
 502 ($x = 0.5, y = 0.25$) m. In the case of the aluminum domain, the peak of the Ricker-pulse wave source initiates at
 503 $(0, 0.25)$ m after $t_i = 24 \mu\text{s}$, and reaches point $(0.5, 0.25)$ m at the arrival time of about $t_a = 107 \mu\text{s}$, taking a total of
 504 about $83 \mu\text{s}$. On the other hand, for the carbon/epoxy laminate, the arrival time t_c is $75.5 \mu\text{s}$, taking a total of $51.5 \mu\text{s}$.
 505 The maximum wave velocity of each material can be numerically estimated by using the aforementioned travel time
 506 for each. The numerically estimated velocities of the materials are very close to their analytical counterparts, men-
 507 tioned above.



(a) Along the x -axis at $y = 0.25$ m.



(b) At the sampling location (0.5 m, 0.25 m).

Figure C.36: Comparison of displacement-time histories of the aluminum domain and carbon/epoxy laminate.

508 **References**

[1] A. Asundi, A. Y. Choi, Fiber metal laminates: an advanced material for future aircraft, *Journal of Materials processing technology* 63 (1997) 384–394.

[2] P. Zuluaga-Ramírez, M. Frövel, T. Belenguer, F. Salazar, Non contact inspection of the fatigue damage state of carbon fiber reinforced polymer by optical surface roughness measurements, *NDT & E International* 70 (2015) 22–28.

[3] N. Chawla, K. Chawla, Metal-matrix composites in ground transportation, *JoM* 58 (2006) 67–70.

[4] M. Martarelli, P. Chiariotti, M. Pezzola, P. Castellini, Delamination detection in composites by laser ultrasonics, in: *AIP Conference Proceedings*, volume 1600, American Institute of Physics, 2014, pp. 405–412.

[5] N. Takeda, S. Minakuchi, Y. Okabe, Smart composite sandwich structures for future aerospace application-damage detection and suppression: A review, *Journal of Solid Mechanics and Materials Engineering* 1 (2007) 3–17.

[6] A. Katunin, K. Dragan, M. Dziendzikowski, Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques, *Composite structures* 127 (2015) 1–9.

[7] R. Gupta, D. Mitchell, J. Blanche, S. Harper, W. Tang, K. Pancholi, L. Baines, D. G. Bucknall, D. Flynn, A review of sensing technologies for non-destructive evaluation of structural composite materials, *Journal of Composites Science* 5 (2021) 319.

[8] M. Mitra, S. Gopalakrishnan, Guided wave based structural health monitoring: A review, *Smart Materials and Structures* 25 (2016) 053001.

[9] N. Nazeer, M. Ratassepp, Z. Fan, Damage detection in bent plates using shear horizontal guided waves, *Ultrasonics* 75 (2017) 155–163.

[10] Z. Su, L. Ye, Y. Lu, Guided Lamb waves for identification of damage in composite structures: A review, *Journal of sound and vibration* 295 (2006) 753–780.

[11] S. K. Chakrapani, D. Barnard, V. Dayal, Finite element simulation of core inspection in helicopter rotor blades using guided waves, *Ultrasonics* 62 (2015) 126–135.

[12] C. Schaal, A. Mal, Core-skin disbond detection in a composite sandwich panel using guided ultrasonic waves, *Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems* 1 (2017) 011006. doi:10.1115/1.4037544.

[13] S. Sikdar, S. Banerjee, Identification of disbond and high density core region in a honeycomb composite sandwich structure using ultrasonic guided waves, *Composite Structures* 152 (2016) 568–578.

[14] K. Balasubramaniam, S. Sikdar, R. Soman, P. Malinowski, Multi step structural health monitoring approaches in debonding assessment in a sandwich honeycomb composite structure using ultrasonic guided waves, *Measurement* 194 (2022) 111057.

[15] S. M. H. Hosseini, C. Willberg, A. Kharaghani, U. Gabbert, Characterization of the guided wave propagation in simplified foam, honeycomb and hollow sphere structures, *Composites Part B: Engineering* 56 (2014) 553–566.

[16] R. K. Munian, D. R. Mahapatra, S. Gopalakrishnan, Lamb wave interaction with composite delamination, *Composite Structures* 206 (2018) 484–498.

[17] S. Finnveden, Spectral finite element analysis of the vibration of straight fluid-filled pipes with flanges, *Journal of Sound and Vibration* 199 (1997) 125–154. doi:10.1006/jsvi.1996.0602.

[18] L. Gavrić, Computation of propagative waves in free rail using a finite element technique, *Journal of Sound and Vibration* 185 (1995) 531–543. doi:10.1006/jsvi.1995.0398.

[19] B. R. Mace, D. Duhamel, M. J. Brennan, L. Hinke, Finite element prediction of wave motion in structural waveguides, *The Journal of the Acoustical Society of America* 117 (2005) 2835–2843. doi:10.1121/1.1887126.

[20] C. Schaal, S. Zhang, H. Samajder, A. Mal, An analytical study of the scattering of ultrasonic guided waves at a delamination-like discontinuity in a plate, *Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science* (2017) 1–14. doi:10.1177/0954406217700176.

[21] D. Balageas, C.-P. Fritzen, A. Güemes, *Structural health monitoring*, ISTE Ltd, London, UK, 2006.

[22] D. Rabinovich, D. Givoli, S. Vigdergauz, XFEM-based crack detection scheme using a genetic algorithm, *International Journal for Numerical Methods in Engineering* 71 (2007) 1051–1080.

[23] D. Rabinovich, D. Givoli, S. Vigdergauz, Crack identification by ‘arrival time’ using XFEM and a genetic algorithm, *International Journal for Numerical Methods in Engineering* 77 (2009) 337–359.

[24] H. Waisman, E. Chatzi, A. W. Smyth, Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms, *International Journal for Numerical Methods in Engineering* 82 (2010) 303–328.

[25] E. N. Chatzi, B. Hiriyur, H. Waisman, A. W. Smyth, Experimental application and enhancement of the XFEM–GA algorithm for the detection of flaws in structures, *Computers & Structures* 89 (2011) 556–570.

[26] J. Jung, C. Jeong, E. Taciroglu, Identification of a scatterer embedded in elastic heterogeneous media using dynamic XFEM, *Computer Methods in Applied Mechanics and Engineering* 259 (2013) 50–63.

[27] L. Zhang, G. Yang, D. Hu, X. Han, An approach based on level set method for void identification of continuum structure with time-domain dynamic response, *Applied Mathematical Modelling* 75 (2019) 446–480.

[28] S. Jiang, L. Zhao, C. Du, Combining dynamic XFEM with machine learning for detection of multiple flaws, *International Journal for Numerical Methods in Engineering* 122 (2021) 6253–6282.

[29] C. Humer, S. Höll, C. Kralovec, M. Schagerl, Damage identification using wave damage interaction coefficients predicted by deep neural networks, *Ultrasonics* 124 (2022) 106743. URL: <https://www.sciencedirect.com/science/article/pii/S0041624X22000555>. doi:https://doi.org/10.1016/j.ultras.2022.106743.

[30] T. Latête, B. Gauthier, P. Belanger, Towards using convolutional neural network to locate, identify and size defects in phased array ultrasonic testing, *Ultrasonics* 115 (2021) 106436. URL: <https://www.sciencedirect.com/science/article/pii/S0041624X21000731>. doi:https://doi.org/10.1016/j.ultras.2021.106436.

[31] Y. Mei, J. Chen, Y. Zeng, L. Wu, Z. Fan, Laser ultrasonic imaging of complex defects with full-matrix capture and deep-learning extraction, *Ultrasonics* 129 (2023) 106915. URL: <https://www.sciencedirect.com/science/article/pii/S0041624X22002219>. doi:https://doi.org/10.1016/j.ultras.2022.106915.

571 [32] F. M. Pranto, S. Maharjan, C. Jeong, Level-set and learn: Convolutional neural network for classification of elements to identify an arbitrary
572 number of voids in a 2D solid using elastic waves, *Journal of Engineering Mechanics* 149 (2023) 04023035.

573 [33] P. Vanucci, Anisotropic elasticity, lecture notes in applied and computational mechanics, 2018.

574 [34] H. Sun, H. Waisman, R. Betti, A multiscale flaw detection algorithm based on XFEM, *International Journal for Numerical Methods in*
575 *Engineering* 100 (2014) 477–503.

576 [35] G. Sun, Z. Zhou, Non-contact detection of delamination in layered anisotropic composite materials with ultrasonic waves generated and
577 detected by lasers, *Optik* 127 (2016) 6424–6433.

578 [36] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: *Proceedings*
579 *of the IEEE international conference on computer vision*, 2015, pp. 1026–1034.

580 [37] D. Komatitsch, J.-P. Vilotte, The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological
581 structures, *Bulletin of the seismological society of America* 88 (1998) 368–392.

582 [38] G. Baum, C. Habeger, E. Fleischman, Measurement of the orthotropic elastic constants of paper, in: *The role of fundamental research in*
583 *paper-making*, *Trans. of the VIIth Fund. Res. Symp.* Cambridge, 1981. doi:10.15376/frc.1981.1.453.