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Deletions and Insertions of the Symbol “0” and

Asymmetric/Unidirectional Error Control
Codes for the L Metric

Luca G. Tallini

Abstract— This paper gives some theory and efficient design
of binary block codes capable of controlling the deletions of the
symbol “0” (referred to as O-deletions) and/or the insertions
of the symbol “0” (referred to as O-insertions). This problem
of controlling O-deletions and/or O-insertions (referred to as
0-errors) is shown to be equivalent to the efficient design of
L1 metric asymmetric error control codes over the natural
alphabet, IN. In this way, it is shown that the ¢ O-insertion
correcting codes are actually capable of controlling much more;
namely, they can correct ¢ O-errors, detect (¢ + 1) O-errors
and, simultaneously, detect all occurrences of only O-deletions
or only O-insertions in every received word (briefly, they are
t-Symmetric 0-Error Correcting/(¢t + 1)-Symmetric O-Error
Detecting/All Unidirectional O-Error Detecting (¢-SyOEC/(t+1)-
SyOED/AUOED) codes). From the relations with the L, distance
error control codes, new improved bounds are given for the
optimal ¢ O-error correcting codes. Optimal non-systematic code
designs are given. Decoding can be efficiently performed by
algebraic means using the Extended Euclidean Algorithm (EEA).

Index Terms— Deletion/insertion of zero errors, repetition/
sticky errors, Li distance, asymmetric distance, elementary
symmetric functions, constant weight codes.

I. INTRODUCTION

ET A* be the set of all finite length sequences over an
alphabet A. In this paper, we are interested in the efficient
design of binary block codes capable of correcting ¢t € IN or

less deletions and/or insertions of a fixed binary symbol, say,

0eZ, def {0,1} C IN. In this error model, if

X =0100101000101110 € ZZ3° (1)
is a transmitted binary sequence of length n = 16, then

Y = 0010A1A100001A1100100
=001011000011100100 € ZZ3® )
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is the received word obtained from X due to 3 deletions
(A represents the empty symbol) and 5 insertions of the sym-
bol 0. The problem of designing efficient codes to control these
types of 0-deletion and/or insertion errors (briefly, O-errors)
is an open research problem introduced by Levenshtein in
[21] which is important for at least two reasons. From the
application perspective, through the Gray mapping, correct-
ing t deletions or insertions of 0’s is equivalent to correct-
ing t repetition errors [37] (or, sticky errors) which occur
in high speed communication and data storage systems due
to synchronization loss [11], [25], [37]. From the theoretical
perspective, the design problem of ¢ deletion and/or insertion
of 0’s Error Correcting (i. e., t-Symmetric 0-Error Correcting
(t-SyOEC)) codes is important because it is a particular
instance of the general problem also introduced by Leven-
shtein in [22]. Even though the general problem of designing
asymptotically optimal codes capable of correcting at most
t deletions and/or insertions of any symbol appears to be
very difficult [14], [15], [20], [22], [24], [31], [32], some
efficient solutions have been given recently for the particu-
lar problems of correcting the O-insertion errors (i. e., the
insertion of 0’s only) [11], [25] and the O-errors (i. e., the
deletion and/or insertion of 0’s) [37]. In general many other
insertion/deletion (edit) channel models have been considered
in the literature [1], [2], [13], [16], [26]. Note that solution
to any restricted insertion/deletion channel models may give
hints on how to solve the general problem.

With regard to the O-error problem, for all XY € ZZ3, let

do-pyr(X,Y) %“the minimum number of deletions
and/or insertions of 0’s needed to
transform the binary word X to Y. (3)

For example, if X and Y are the words given in (1) and (2)
respectively, then dy_p;(X,Y’) = 8. The above function intro-
duced in [21] is a distance (called here the deletion/insertion
of 0’s distance or O-error distance). In fact, it is a graph
distance defined in the graph (N, E) where the set of nodes

is N & 75 and the set of edges is

def

E={(X,Y)EN?: dopy(X,Y)=1}.

Synchronization errors due to O-errors can be controlled by
inserting a marker or synchronization sequence between con-
secutive codewords in the sequences that are sent [13], [21].
Thus, we assume no synchronization errors due to erroneous
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receptions of sequences of codewords (i. e., we assume that
the receiver knows the length of the received word). In this

case,

since 1-errors are forbidden in our error model,

wH(X) # U)H(Y) <~ dO—D/I(X; Y) = 0Q; 4)

where wy(Z) € IN denotes the Hamming weight of any
Z € IN*. In this way, the metric space (ZZ3,d.p) or
its associated graph (N, E) remains partitioned into many
distinct connected components, one for each possible Ham-
ming weight, w = wg(X), of words X € ZZ3. The major
contributions of the paper are as follows:

1)

2)

In Section II, an isometry is explicitly defined in (15)
which shows that the design of t-SyOEC codes is equiv-
alent to the design of the L error correcting codes.
In this way, many combinatorial characterizations are
derived for ¢-SyOEC codes. In particular, it is shown
that ¢-SyOEC codes are equivalent to the disjoint union
of some L; metric t-SyEC constant weight codes over
IN of distinct weights and lengths. These last codes
can correct up to ¢ symmetric L metric errors, detect
up to (¢ + 1) symmetric L, metric errors and, simul-
taneously, detect all occurrences of only negative or
only positive L; metric errors in every received word
(i. e., they are ¢t Symmetric Error Correcting, (¢t + 1)
Symmetric Error Detecting and All Unidirectional Error
Detecting codes; or briefly, t-SyEC/(t+ 1)-SyED/AUED
codes [4]). For these reasons, the combinatorial equiv-
alence holds among ¢ 0-deletion error correcting codes,
t O-insertion error correcting codes, t-SyOEC codes
(already proved by Levenshtein in [21]) and the more
powerful ¢-SyOEC/(t+1)-SyOED/AUOED codes capable
of correcting up to ¢ symmetric 0-errors, detecting up to
(t+1) symmetric 0-errors and, simultaneously, detecting
all occurrences of only 0-deletions or only O-insertions
in every received word.

In Section III, the general Algorithm 3.1 is defined
in Subsection III-B which efficiently reduces the
t-SyEC/(t + 1)-SyED/AUED decoding design prob-
lem for constant weight codes to the less power-
ful (7—,74)-EC decoding design problem for the L;
metric. This implies that any efficient (7_,74)-EC
scheme gives an efficient ¢-SyEC/(¢t + 1)-SyED/AUED
scheme which, in turn, gives efficient ¢-SyOEC/(¢ + 1)-
SyOED/AUOED codes because of the isometry discussed
in Section II. In this way, based on the o-code the-
ory in [35], [36], [37], [38], [39], [40], and [41],
some non-systematic ¢-SyOEC/(¢ + 1)-SyOED/AUOED
codes together with their efficient ¢-SyOEC/(t + 1)-
SyOED/AUOED decoding algorithms are designed. Note
that, in [11] and [25], the authors have given codes
and decoding algorithms for ¢ sticky-insertion error
correcting codes which can correct at most ¢ insertions
of a repeated symbol [37] and are equivalent, through
the Gray mapping, to ¢ O-insertion (only) error correcting
codes. Such codes are constructed over prime fields and
over the Lee metric. Here, it is shown that we can
use the simpler L; metric and prime power fields to
design them and because of these reasons the proposed

3)

codes give better information rates and error control
performances (of ¢-SyOEC/(t + 1)-SyOED/AUOED) than
those in [11] and [25]. In [37], for fixed t_,¢; € IN,
codes with decoding algorithms are given which can
(only) simultaneously correct t_ sticky-deletions and
t. sticky-insertions (named (¢_, ¢ )-Insertion/Deletion
Of Repeated Symbol Error Correcting codes). Such
codes are designed by 1) Gray map reducing the 7_
sticky-deletion and ¢ sticky-insertion error correc-
tion problem to the ¢_ 0O-deletion and ¢, O-insertion
error correction problem which, in turn, is 2) reduced
into the ¢_ negative and ¢ty positive error correction
problem for the L; distance over IN by using the
“bucket of 0’s mapping” defined here in (15). In [16],
and [21], some code design are given for {-SyOEC. How-
ever, only totally asymmetric error correcting algorithm
(i. e., correcting only O-deletions or only O-insertions)
are shown and neither explicit nor practical algorithms
are defined which can perform (at least) {-SyOEC [16].
Here, based on the o-code theory and the above
two mentioned reductions, ¢-SyOEC code designs are
explicitly defined together with their efficient algebraic
t-SyOEC/(t + 1)-SyOED/AUOED decoding algorithm.
In this way, the code’s maximal error control capabilities
are developed.

Section IV focuses on obtaining new non-asymptotic
bounds for the largest cardinality, D(n,t), of a
t-SyOEC/(t+1)-SyOED/AUOED binary code of length n
and what are their consequences in terms of the asymp-
totic bounds. To our knowledge, no non-asymptotic
bounds are given for this coding problem and this
perspective is new. In this way, we improve/generalize
known asymptotic bounds. In general, thanks to the
reduction of the design problem of £-SyOEC codes to the
design problem of L; metric ¢t-SyEC constant weight
codes over IN, any bound on the largest cardinality,
CW(IN,n,w,t)€IN, of a constant weight w code of
length n over the alphabet IN with minimum symmetric
L, distance greater than 2¢ gives a bound to D(n,t).
In this way, new non-asymptotic and asymptotic lower
and upper bounds are given here for D(n,t). The
lower bounds follow from the general o-code based
design. For t fixed, the Sidon set based codes in [16]
give very good asymptotic bounds which improve the
asymptotic bounds in [11], and [21]. For all n,t € IN,
the cardinality of our o-code theory based codes is
slightly bigger than the Sidon set based codes in [16].
The non-asymptotic upper bound (which follows from a
simple sphere packing argument for L; metric {-SyEC
constant weight codes over IN) allows to derive an
interesting upper bound, plotted in Figure 1, on the
asymptotic information rate of any infinite family of ¢-
SyOEC codes of length n. Noticeably, such upper bound
improves on the general case upper bound in [20] for
the values of 7 = t/n which roughly belong to the real
set [0.28,0.35] U [0.43,1).

Some concluding remarks are given in Section V.
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II. O-DELETION/INSERTION ERRORS
AND THE L1 METRIC

In this section, it is shown that the design problem of ¢-
SyOEC codes is equivalent to the design problem of some
L; metric asymmetric error control codes over the natural
alphabet, IN. Before describing this result, some background
materials are given first.

For meIN U {oo} let

def

Z., < {0,1,... Lef

,m—1}y CIN = Z.

Also, for x,y € Z,,, define the natural subtraction as r —
y = max{0,z — y}. For example, if x = 2 and y
0 then x — y = 2 and y — 2 = 0. Given any two words
X, Y € Z?, of length n € IN, the operations X NY € Z},,
XUY e, X+Y cIN", and X =~ Y € Z], are
defined as the digit by digit min, max, integer addition and
— operation between X and Y, respectively. For example,
if m=3,n=09, X =012012012 and Y = 000111222 then
XNY = 000011012, X UY = 012112222, X +Y =
012123234, X ~ Y = 012001000 and Y — X = 000100210.
In addition, the support of a word X = z122...2, € Z7,
is 0X = s182...8, € ZLY where s; = 1 if x; # 0 and
s; = 0 otherwise. For example 0(42101) = (11101). Given a
support 05 as an index set, say 95 = [1,n], every word in
X = x129... 0, € Z7, can be regarded as a multiset over
the index set 0S where each component, x; of X defines
the multiplicity of ¢ € OS as an element of X. In this way,
there is a one-to-one correspondence between m-ary words
and multisets; and the above operations can be regarded as
multisets operations too. So, in the following, we will identify
m-ary words of length n with multisets over an index set
containing n distinct elements (which, for code construction
purposes, will be contained in a field). The cardinality of a
word/multiset X = z122 ... 2, €2}, is the L; weight of X

0.5

0.6 0.7 0.8 0.9 1 1.1

T=t/n

Upper bound on the asymptotic information rate of ¢-SyOEC codes. The asymptotic information rate of any code design is below the above curve.

and is naturally defined as the real sum

X S wr, (0 €Y
i€0S
For example, [01232| = wy,, (01232) = 8. Note that for m =
2 the L; weight and the Hamming weight coincide. So, when
this creates no confusion we will indicate the weight of
X as w(X).

To better describe the error control properties of codes for
the L; metric, the following distances between m-ary words
X,Y € ZL7, are considered in [38] and [40] (the “+4” sign
below indicates an integer sum).

symmetric L;: d}¥ (X,Y) Y = X| +|X = Y],

asymmetric Ly: d* (X,Y) % max{|Y = X|,|X = Y|},
Hamming: dp(X,Y) % |0(Y = X)|+|0(X = Y)|.

For example, if m =5, n =5, X = 01423, Y = 43213 then
X = Y] =3, Y = X| =6, 00X = Y) = 2
[0(Y = X)| =2 and diyl(X,Y) =3+6=9,dp(X,Y) =
max{6,3} = 6 and dy(X,Y) = 2 + 2 = 4. From the error
control perspective, if X is the transmitted word and Y is the
received word then ¥ — X and X = Y give the increasing
and decreasing error vectors, respectively. Thus,

X=Y—(Y=X)+(X=Y).

(5)

Note that,
forall X, Y €Z”

m?

dp(X,Y) <df (X,Y)  (6)
because wy (X) = |0X| < |X| % wy, (X), for all X € Z2™..

Constant weight codes play an important role in what
follows. Thus, given n,w € IN and any numeric set A C IN
as alphabet, let

S(A,n,w) C{XeA": wp,(X)=|X|=w} ()
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be the set of all words over A of length n and constant
weight w. We readily note, from (7), that

S(A,n,w) = U S(An —1,w—x)x; )
reA

where the above union is a disjoint union of sets and Sz C A"
indicates the set of words obtained concatenating every word
in the set S C A™~! with = € A. Hence, the general recurring
formula,

|S(A4, n,w)| = Z|S(A,n—1,w—a:)|, 9)
z€EA

holds for, say, the “A-nominal coefficient n choose w”,
|S(A4,n,w)|. If A = ZZ,, then the cardinality of the above
set is the m-nominal coefficient n choose w

s = (1) =3 (270

v=0

(10)

for all integers m € IN. The quantity (Z)m is the coefficient
of the monomial 2" in the standard form of the polynomial
14+ 2+ ... 4 20"~ which, for m = 2, reduces to the
usual binomial coefficient (i. e., (), = (I)). The m-nomial
coefficient sequence has been studied in the ambit of m-ary
unordered codes and share many properties with the binomial
coefficient sequence obtained for m = 2 [28]. If instead,

A = 7., = IN then we can define
(1) isannw)
w (oo}

and note that the cardinality of S(IN, n, w) is the composition
of a natural number w into n natural numbers. In this way,

() (7))

(11)
In this case, the recursive formula (9) becomes
s 1
S(IN, n, w)| = <”> = (” N > = (12)
w). = vo)
“/n+v—2 _(ntw-1
Z < n—2 > B < n—1 )

v=0
because > 0 and (w — ) > 0 (<= =z, (w — z) €IN).
Now, if X € ZZ5 then X can be uniquely written as [21],
(23],

X =0"10"210...010"»10%»+* (13)

where | = [(X) € IN indicates the length of any X € A*,
w =wy(X)€[0,I(X)] is the Hamming weight of X and, for
all integers i€ [1,w + 1], v; def 0i(X)€EZLy_yy1 CIN is the
i-th run length of 0’s in the word X. Note that

v = (U(X) = w(X)) =Y v (14)
i=1
Given the above representation, consider the following
bijective function (which we call here the bucket of 0’s
mapping)

V45— X, =IN" (15)

TABLE I

THE MAPPING V' ACTING ON zg. IN THE TABLE vy (x) 41 IS
IN BOLDFACE AND [(X) INDICATES THE
LENGTH OF ANY X € A*

100 = n[w0)] X [V0) = VOww [1v 00 [wvn)|
4 0

0000 || 4 1 4
000130
0010(|21 2 3
0100([12
1000103
0011200
0101([110
0110([101 3 2
1001|020
1010|011
1100|002
0111(/1000
1011|0100 4 1
1101|0010
1110|0001
111100000 5 0

4 1

which associates any X € ZZ7 represented as in (13) with

def

V(X) = (1)17U2,-~~,Uw,’0w+1)€]N*.

For example, if
X =0100101000101110000000 € ZZ3
then
V(Xx)=@1,2,1,3,1,0,0,7)cIN".

The mapping V' in (15), already considered by Levens-
thein in [21], defines a bijection from the set of all binary
words of any finite length » € IN and Hamming weight w
(=number of 1’s of the binary words) into the words over
IN of length w + 1 (=number of buckets defined by the w
1’s of the binary words) and L; weight n — w (= number of
0’s of the binary words). Except for the rightmost “1” which
is dropped, the function

Vol = IN* — 7L}

is nothing but the prefix free unary representation of a
sequence of integer numbers. Hence, both V and V! are
one-to-one mappings such that

V(S(Za,n,w)) = SIN,w + 1,n — w),
and
S(Zy,n,w) =V HS(IN,w + 1,n — w)).

For example, for n = 4, the mapping V acts on Z3 is as
reported in Table I. Let

V:Z; — IN* (16)

be the function obtained from V' by dropping the last compo-
nent; V' associates any X € ZZ3 represented as in (13) with

> def

V(X)= (v1,02,...,0,) EIN*.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 27,2024 at 18:16:17 UTC from IEEE Xplore. Restrictions apply.



90 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 1, JANUARY 2023

Obviously, since V' is a one-to-one function, it is possible to
reconstruct X from V(X); likewise, even though V is not
one-to-one (for example, V(0110) = V(011000) = (1,0)),
it is possible to reconstruct X from V(X) and n = I(X)
because of (14). In this case, v, can be considered as a
parity digit which makes the Ly weight wz, (V(X)) = n—w.
Both functions V and V play important roles in our code
designs and analysis. Consider the following example words

X =0100101000101110 €ZZS,
Y = 001001100001 11001 00s ZZ3°,
Y’ =0010010100010100 €ZZ3°.

Then their associated V' values are

V(X)=(1,2,1,3,1,0,0,1) € IN®,
V(Y)=(2,2,0,4,0,0,2,2) € IN®,
V(Y')=(221,3,1,2) €IN°

Note that if X is sent, Y’ can never be received because
7 = w(X) # w(Y’) = 5 and l-errors are forbidden in
our channel model; whereas, Y can erroneously be received
and the number of O-deletions (= 2) plus the number of
O-insertions (= 5) from X to Y is equal to the L; distance
between V(X) and V(Y), d7’ (V(X),V(Y)) =2+5=T.
In fact, in general, a sequence Y € ZZ3 is obtained from
the sequence X € ZZ5 due to t_ deletions and 7, inser-
tions of the symbol 0 if, and only if, w(Y) = w(X) and
d’ (V(Y), V(X)) =t_ +ty; thatis, V(Y) is obtained from
V(X) due to a negative error pattern of magnitude ¢_ and
a positive error pattern of magnitude ¢,. Hence, the bucket
of 0’s mapping X — V(X) reduces the ¢_ 0-deletion and
t+ O-insertion error correction problem into the {_ negative
and ¢ positive error correction problem for the L; distance
over IN.

Theorem 2.1 (Isometry Between (2L ,dy.pyr) and (IN*,d}")):
For all XY €ZZ3,

&Y (V(X),V(Y)) if w(X)=w(Y),

do-or (X, ¥) :{ ey iwaX§¢wEY§.
Relation (17) implies that dy_p;(X,Y’) < oo if, and only if,
w(X) = w(Y). So, if we extend the domain of d;’ from
IN! x IN', [ €IN, to IN* x IN* by letting Ay (U,V) = o0
whenever [(U) # [(V) then,

for all X,Y €Z3, dopy(X,Y)=d (V(X),V(Y)).

a7)

This implies that the mapping V' in (15) is an isometry between
the metric spaces (23, do.py) and (IN*, dzyl)

Proof: 1In order to prove (17), assume X,Y € ZZ5 with

w w(X) = w(Y) and recall the definition (3) of do.p.

Let e € IN be the number of 0-deletions and f € IN be the
number of O-insertions needed to transform the binary word
X to Y in such a way that dy_p/;(X,Y’) = e+ f. In particular,
let

def
e =et+e+...+eyps1

and

def
FE it fot .o+ forn

where e; € IN is the number of 0-deletions occurred in
the i-th run of 0’s of X and f; € IN is the number of
0-insertions occurred in the ¢-th run of 0’s of X, for all integers
i€[l,w+ 1]. In this way,
w41
dop(X,Y)=e+f= (ei+ fi)

i=1

(18)

and e; + f; € IN is the number of 0-operations (i. e., deletions
and/or insertions of the symbol 0) in the ¢-th run of 0’s to
transform X to Y, for all i€ [1, w + 1]. From the minimality
requirement in (3), since do.p/;(X,Y) = e + f, the quantity
e; + fi is minimum, for all ¢ € [1,w + 1]. Note that
vi(X) =v(Y)+e; — fi, forall integers i€ [1,w + 1].
(19)
Now, let i € [1,w + 1] be given. If ¢; > f; > 0 then f; =0
because e; + f; is minimum number of 0-operations in the
i-th run of 0’s to transform X to Y. Hence, from (19), the
absolute value,

|’U¢(X) — ’Uz'(Y)l = Uz(X) — ’Uz'(Y) = €; Z 0.

if instead, f; > e; > 0 then e; = 0 because e; + f; is the
minimum number of 0-operations in the ¢-th run of 0’s to
transform X to Y. Hence, from (19), v;(Y) = v;(X)+ fi—ei,
and

[0i(X) =0 (V)| = v (Y) —vi(X) = f; > 0.

In any case, the absolute value satisfies

vi(X) —vi(Y)| = e + fi,
for any given ¢ € [1,w + 1]. Hence,
w1
di, (V(X),V(Y)) =Y Jui(X) —ui(Y)| =
i=1
e+ f=dopup(X,Y).
because of (18). [ |

In general, the isometry V in (15) reduces the design
problem of error control codes for the insertion/deletion of 0’s
problem to the design problem of error control codes under
the L, metric. In particular, for all w € [0, n], the one-to-one
function V' transforms any word X € S(Zz,n,w) C ZZY into
a word V(X) = (v1,v2,...,0p+1) ESAN,w + 1,n — w) C
Z"*) . Furthermore, any fixed length n € IN binary code,
C C ZZ%, is union of block (i. e., constant) length n € IN
constant weight w € [0, n] codes, where the union is over w;
say, C = Uwe[o,n] Cuw, with Cyy € S(Z2, n,w). So, the image
of C through the isometry V' is equal to

veo=v| |J c|= UJ V. cmr

we[0,n] we0,n]

with A, V(Cw) € SIN,w + 1,n — w), for all w €

[0,n]. Since the dy.py distance between binary words of
distinct weight is oo, the insertion/deletion of 0’s code design
problem is reduced to the proper design of the L; metric
constant weight error control codes A,,, for all w € [0,n].
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Thus, in general, any L, distance error control property of
codes over IN reflects into the analogous dg.py; distance
error control property of codes over Zs because of Theo-
rem 2.1. So, from the L; metric asymmetric/unidirectional
coding theory [4], [6], [38], [40], [43] and Theorem 2.1, the
following theorem holds which gives only some (maximal)
error correction capabilities of ¢-SyOEC codes. Following the
classical asymmetric/unidirectional coding theory notation [4],
in the theorem below, ¢-Sy X C/d-Sy XD/AU XD indicates the
class of codes capable of correcting ¢ symmetric errors,
detecting d symmetric errors and, simultaneously detecting all
unidirectional errors; where the errors are of type X defined
as follows. If X =“OE” then the codes are in the binary
sequences domain of the function V in (15) and the errors
are O-errors, if instead X =“E” then then the codes are in the
integer sequences codomain of the function V' and the errors
are Ly distance errors. Analogously, (¢_,t)-0EC indicates
the class of codes capable of correcting ¢t deletions of 0’s and,
simultaneously, ¢ insertions of 0’s; and (¢_, ¢4 )-EC indicates
the class of codes capable of correcting ¢_ negative errors and,
simultaneously, ¢ positive errors in the L; metric [35], [36],
[37], [38], [39], [40], [41].

Theorem 2.2 (Error Control Capabilities and Combinatorial
Characterizations of t-SyOEC): Let t,t_,t,,7 € IN be any
numbers such that t_ + ¢, =t and 7€]0,¢]. If

c= | cocz
we0,n]
is a binary code of length n€IN and C,, e NS(Zy, n,w),
for all integer w € [0, n], then V (Cyy) € S(IN,w + 1,n — w),
for all we |0, n]; and the following statements are equivalent:
1) C is a t-SyOEC code (i. e., C is a t-Symmetric 0-error
Correcting Code);
2) Cisa (t=t_,0)-0EC code (i. e., C is a t deletion of 0’s
error correcting code);
3) Cisa (0,t = t4)-0EC code (i. e., C is a ¢ insertion of
0’s error correcting code);
4) dO-D/I(C) > 2t;
5) for all w € [0,n], dop;(Cw) > 2t (<= C, is a t-
SyOEC);
6) for all we[0,n], d7’ (V(Cw)) = 2(t+1) (<= V(Cw)
is a 7-SyEC/(2t — 7 4+ 1)-SyED/AUED code over IN);
7) for all we [0,n], d3 (V(Cw)) = t+ 1 (== V(Cy) is
a (t—,t4)-EC code over IN);
9) dO-D/I(C) >2t4+1;
10) C is a 7-SyOEC/(2t — 7 + 1)-SyOED/AUOQED code.
Proof: The equivalences among 1), 2), 3) and 4) come
from [21]. The equivalence between 4) and 5) comes from
Theorem 2.1 or [21] because if w(X) # w(Y) then
do-py1(X,Y’) = co. The equivalence between 5) and 6) comes

because of Theorem 2.1, because Ay, & V(Cy) is a constant

weigh n — w code of length w + 1 over IN and because
di’ (A) > 2t < di’ (A) >2(t+1) (20)

is valid or any constant weight code .4 over IN. Following
the word/multiset notation at the beginning of this Section,

relation (20) holds true because, for all Uy, U € IN™,

|U1| =|U1 n U2| + |U1 - U2| =
|Uy NUz| + |Uz = Uy| = |Uq]
|Up = Us| = |Uz = Unl;

<~ (21)

and dzyl(Ul,UQ) = |U1 - U2| + |U2 - U1| Note that the
combinatorial characterization for any code, A C IN"™ to be
7-SyEC/(2t — 7 + 1)-SyED/AUED is that for all Uy,Us € A,
Uy = Us] > t+1 (see, for example [4], [6], [43]). So, the
combinatorial characterization for any constant weight w code,
A C S(IN, n,w) to be 7-SyEC/(2t — 7 4+ 1)-SyED/AUED is
d7’ (A) > 2(t+1) because for any two codewords U; and U
in a constant weight code, |Uy — Us| = |Uz =~ Uy| (from (21)).
Analogously, the equivalence between 6) and 7) comes from
the distance definitions as follows. Let A be the code obtained
by shortening the code .4 in one, say the last, compo-
nent. From (5), it is readily seen that if A C S(IN,n,w)
then

dY(A) 2 2(t+1) < df5(A) > t+1.

So, this equivalence follows because A, et V(Cw) is obtained

by shortening the constant weight code A, def V(Cy)) in

the last (i. e., the (w + 1)-th) component. Note that the
combinatorial characterization for any code, A C IN"™ to be
(t—,t4+)-EC code is that d7° (A) >t —t, +1=1t+1 (see,
for example, Theorem 1 in [40] with d_ = dy = 0). The
relation in 6) is equivalent to the relation in 9) because, from
Theorem 2.1, if w(X) # w(Y') then dyp;(X,Y) = co. The
relation in 6) implies 10) because the 7-SyOEC/(2¢t — 7 + 1)-
SyOED/AUOED decoding algorithm design problem for C can
be reduced to the 7-SyEC/(2t — 7+ 1)-SyED/AUED decoding
algorithms for V(C,), for all w € [0,n]; it is a matter, for
the receiver to compute the number, w, of received 1’s (recall
that 1-errors are forbidden) of the received word, R € ZZ;
and apply any 7-SyEC/(2t — 7 + 1)-SyED/AUED decoding
algorithm for A 4, = V(Cyw) € SIN,w + 1,n — w)
with input word V(R) € IN¥*+1. In fact, this is the decoding
strategy described in Sub-section III-B for 7 = ¢. On the other
hand, clearly 10) implies 1) and, so, 10) implies 6) because
of the above. [ ]

III. NON SYSTEMATIC CODE DESIGN

A. 0-Code Based Design

Our code design is based on the L metric error control o-
codes over Z,,, defined in [38] and [40]. The o-code theory is
based on the sigma polynomials of a word defined below. Let
meINU{oo}, F be any field and S C F be a set of n€IN
distinct elements in F used as index set. The o-polynomial
associated with a word X € ZZ" is defined as [38],

m

acdS—{0}
00(X) + 01(X)z + 02(X) 2% + ..

ox(z) def o (1 —az)® = (22)

.€F[z].
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For example, if n = 8, S = {0, a1, az, as, as,as,a6,a7} CF
and X = 23021000 = {0, 0,a1,a1,a1,as,as, a4} then

ox(2) =22(1 —a12)*>(1 — az2)*(1 — agz) =
1-2% — (a1 + 2a3 + aq) 2>+

(324 6a1az + 3aias +ai + 2azaq)z* + . ..

3.2

— (a3aay)2°.

Note that ox(z) is a polynomial of degree deg(ox) =
wr, (X) = |X| having wy(X) = |0X]| distinct roots in T,
each with multiplicity x,, for a € 9S C F. In particular, X
coincides with the multiset of all the inverses of the roots
of ox(z), where we let 1/0 4" 0. Hence, its coefficient
sequence is given by the elementary symmetric functions, 1,
01(X — {0}), 02(X — {0}), ... €T, of the elements in the
multiset X — {0} ordered in increasing order of their degrees,
and eventually right shifted by x¢€ZZ,, CIN if 0€9S C F.
At this point, the general definition of o-code is the following.
For all polynomials g(z),0(z) € F[z], the m-ary o-code of
length n associated with g and o is defined as

Cg,a dZEng,o(Zm; ’I’L) dZEf (23)
n | ox(2) = exo(z) mod g(z),
{X€ Zy | with ¢x €F — {og :

From the o-code theory in [35], [36], [37], [38], [39], [40],
and [41], the following relation holds (for example, see
Theorem 3.2 in [36] or Theorem 5 in [38]).

73 (Cg.0) = deg(g).

At this point, the code design idea is as follows. For
simplicity, we choose g(z) = 21 0(2) = 1+ 6(z2) € K[2]
and 0S C F — {0}. In this way, gcd(o,g) = 1, dgs (Cg.6) >
t+1 because of (24), and the non empty o-codes (23) simplify
as follows because o¢(X) = 1€ K:

ged(o,g) =1 = (24)

def def
C2t+17[, = CZH%U(IN,n) =

{X€eIN"|ox(z) = 0(z) mod 2!t }.

In this case, to define a t-SyOEC code C C ZZ%, the o-codes
in (25) are used in the function V codomain where V is given
in (16). So, X € C if, and only if oy v (2) = o(z) mod
2!*1, where o(z) is a monic polynomial of degree t. Note
that under the mapping X — oy (x)(2) mod 211 the set of
constant weight w vectors of length n over Zs (and in fact,
the set S(IN,w + 1,n — w)) is partitioned into |F|* classes,
D1,Ds, ... ,Dl]F‘lt, where, X and Y are in D; if, and only if,
7 (x)(2) = 0 (yy(2) mod z"*'. Now, we prove that each of

(25)

the V(D;)’s is an asymmetric L; distance ¢+ 1 code. Suppose
o def o def

X, YeD;, let V= V(X)and U = V(Y). Then, oy (2) =
0 (z) mod 2"t and this implies
oy -p(2) = 0p. () mod 2t (26)
because
for all A,BEIN", 04(2)op-a(2) =0p(2)oa-p(z), (27)

and ged (0as(2), g(z) = 2'™1) = 1. Now, if the asymmetric
L, distance between V and U is s < t + 1 then the

degrees of oy . 5(2) and oy . (2) are s < t 4+ 1 and thus,
oy -p(2) = 0p. ¢ (2) because of (26). This means, oy, . ;(2)
has 2s roots (i. e., the s roots of oy,.(2) and the s roots
of op.¢(2)), which gives a contradiction. Therefore, the
minimum asymmetric L; distance of the code V/(D;) is at
least ¢t + 1; for all ¢+ € [1,|F|"]. So, under the mapping
X — UV(X) (2) mod 21, the set S(Zz,n,w) is partitioned
into the |F|* classes D;’s. Thus, by pigeon-hole principle, one
of the classes, say D(F;n,w) should have at least () /|F|*
codewords and minimum O-error distance 2(¢t + 1) because 6)
is equivalent to 7) in Theorem 2.2. So, from Theorem 2.2,
the ¢-SyOEC code, C, can be simply defined by letting for
all w € [0,w], Cy f D(F;n,w) C S(Zo,n,w), where to
maximize |C|, the algebraic structure I is chosen to be the
smallest possible field if ¢ > 1 or the smallest group if ¢t = 1.
In this way, the number of codewords is

= £[(0)/ 1]

w=0

(28)

where F,, is the smallest field, I, whose cardinality is |F| > w,
when ¢t > 1 and F,, = (Z+1,+ mod (w + 1)) when ¢t = 1.
Note that if ¢ = 1 then the simpler group-theoretic code
construction for single asymmetric error correcting codes [18]
can be used; in this way, |F,| = w+ 1 and |C] > (27! —
1)/(n + 1) [11], [21]. In Subsection IV-A, the lower bound
in (28) is refined as in (62); where, recall that, D(n,t) is
the largest cardinality ¢-SyOEC/(¢ + 1)-SyOED/AUOED binary
code of length n. Table II shows a non-systematic code
obtained with the construction defined by the lower bound
in (28) for n = 7 and ¢t = 2. Table III shows an interesting
improvement of the code in Table II which is possibly optimal
and where known asymptotic lower bounds fail.

We want to mention that if ¢ > 1 then the lower bound given
here improves the lower bound given in [11] for two major
reasons. First, unlike the analysis in [11], our analysis shows
no restrictions on the design parameters, but the restriction
given by the definition of the integer sequence {|F,,| : w€IN}
alone, which, as a set, is equal to the prime power sequence
(given below in increasing order of its elements)

PP (2,3 4,5,7,8,9,11,13,16,17,...} &
{QIaQQaQBv <. }

(29)

Second, the prime sequence

P (2,3,5,7,11,13,17,.. }

on which the analysis in [11] is based, contains bigger gaps
between consecutive elements than the prime power sequence
because P C PP. In Table IV, the lower bound on the number
of codewords given by our proposed code is compared with
those of [11]. In all cases, the proposed codes give either more
number of codewords or the same number of codewords.
However, other choices of g(z) and 95 give better lower
bounds; and these are discussed in Subsection IV-A. The
considerations and code designs are exactly the same except
that the relations are taken mod g(z) instead of mod z!*1.
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TABLE II

NON-SYSTEMATIC CODE PARAMETERS WITHn = 7 AND ¢t = 2. HERE, THE LOWER BOUND IN (28) GIVES 14 BUT THE ACTUAL CODE DEFINING THE
LOWER BOUND IN (28) HAS |C| = 16 CODEWORDS. THE LOWER BOUND IN (62) GIVES 15 AND THE LOWER BOUND IN SECTION 4 OF [11]
(SEE TABLE IV) GIVES 13. ALSO, THE UPPER BOUND VALUE OBTAINED WITH (67) Is 29. IN (62) AND (67), THE FUNCTION
D(n,t) Is THE LARGEST CARDINALITY ¢-SYOEC/(¢ + 1)-SYOED/AUOED BINARY CODE OF LENGTH n

’ 1(X) = n‘w(X)‘ X HV(X) = V(X ) vt | LV (X)) = w(X) + 1@(\/(){))\ Fu \UV(X)(z) mod 23[|C| = 16 > 14 = LB in (28)‘
7 0 0000000 (|7 7 GF(2) 1>1]1/22] =1
7 1 100000006 6 GF(2) 2> [7/22] =

0000100 ||42
0101000([113
7 2 0100001140 3 5 GF(3) 1+ 222 3>[21/32] =3
0000101 {|410
1110000{|0004
0101010([1111
7 3 1100001 |/0040 4 4 GF (22) 1 5> [35/42] =3
1000011{/0400
0000111 ||4000
7 4 (1110100 (/00012 5 3 GF(5) 1+2 2> [35/52| =2
0010111 /21000
7 5 [1111100([000002 6 2 GF(7) 1 1>[21/7%] =1
7 6 [1111110{|0000001 7 GF(7) 1 1>[7/7?] =1
7 7 |1111111{{00000000 8 0 GF (2%) 1 > [1/82] =

TABLE III

IMPROVED CODE DESIGN PARAMETERS FOR . = 7 AND ¢ = 2. HERE, WE GIVE A CODE WITH CARDINALITY |C’| = 21 > 16 = |C|, WHICH IS BIGGER
THAN THE CODE C IN TABLE II. WE CONJECTURE C’ TO BE OPTIMAL. NOTE THAT, FOR THE VALUES n = 7 AND t = 2, THE ASYMPTOTIC
LEVENSHTEIN UPPER BOUND (3) IN [21] AND THE ASYMPTOTIC UPPER BOUND (22) IN [16] BOTH FAIL AND GIVE 20 < 21

’ 1(X) = n‘w(X)‘ X HV(X) — V(X )vws1 [I(V(X)) = w(X) + 1‘w(V(X))‘|C/| - 21‘
7 0

0000000 |7 1 7 1
1000000 |06
000100033 2 6 3
0000001 {|60

11000001005
0100100122 3 5 4
1000001050

0000011 /500

111000010004
0101010([1111
1100001/ 0040 4 4 5
10000110400

0000111 {|4000

111100000003
1110001 {00030
1100011{/00300 5 3 5
1000111103000
0001111 {| 30000

1111100

000002

1111110

0000001

1111111

00000000

B. t-SyOEC/(t + 1)-SyOED/AUOED Decoding Algorithm for
t-SyOEC Codes

LetC = UwE[O.n] Cy be a t-SyOEC code of length n, where
def

Cw = CNS(Zsy,n,w). From Theorem 2.2 with 7 = ¢, C
is actually a ¢-SyOEC/(t + 1)-SyOED/AUOED code and here
we give an efficient ¢-SyOEC/(t+ 1)-SyOED/AUOED decoding
algorithm for C exploiting, in this way, its maximum error
control capabilities. Such algorithm is as follows. If C'eC C

5 is sent and R € ZZ3 is received, the decoder computes
dof w(R) € [0,n] and applies Algorithm 3.1 below with

input 1) the constant L; weight w def
def w + 1 over the alphabet IN,

vV =

n — w code of length

def

AL AN, v,0) ¥ V(C,) C SN, w+ 1,1 — w)

and 2) the word Y = V(R) € IN”. On getting as output

the word X’ € IN” the decoder computes C’ dof V(X

(30)
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TABLE IV

A COMPARISON ON THE NUMBER OF CODEWORDS BETWEEN THE PROPOSED METHOD TO THAT IN SECTION 4. OF [11] (IN PARENTHESES). ALL THE
IS A PRIME NUMBER

VALUES ARE OBTAINED FROM (28); BUT THOSE FROM [11] ARE OBTAINED WITH THE RESTRICTION THAT \IFU,

(1. E., |Fy| €P). THE CODE LENGTH IS INDICATED WITH . AND ERROR CORRECTING CAPABILITY WITH ¢

[n\t]] 2] 3] 4] 5] 6] 7] 8]
1 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2)
2 3(3) 3(3) 3(3) 3(3) 3(3) 3(3) 3(3)
3 4(4) 4(4) 4(4) 4(4) 4(4) 4(4) 4(4)
4 5(5) 5(5) 5(5) 5(5) 5(5) 5(5) 5(5)
5 8(8) 6(6) 6(6) 6(6) 6(6) 6(6) 6(6)
6 10(9) 7(7) 7(7) 7(7) 7(7) 7(7) 7(7)
7 14(13) 3(8) 8(8) 3(8) 8(8) 3(8) 3(8)
8 19(18) 10(10) 9(9) 9(9) 9(9) 9(9) 9(9)
9 28(26) 14(13) 10(10) 10(10) 10(10) 10(10) 10(10)
10 42(38) 15(14) 11(11) 11(11) 11(11) 11(11) 11(11)
11 68(60) 21(20) 12(12) 12(12) 12(12) 12(12) 12(12)
12 107(94) 27(24) 13(13) 13(13) 13(13) 13(13) 13(13)
13 179(156) 38(33) 16(15) 14(14) 14(14) 14(14) 14(14)
14 307(261) 56(47) 19(18) 15(15) 15(15) 15(15) 15(15)
15 529(446) 84(68) 24(22) 16(16) 16(16) 16(16) 16(16)
16 924(775) 133(107) 29(24) 17(17) 17(17) 17(17) 17(17)
17 1635(1376) 217(174) 41(35) 18(18) 18(18) 18(18) 18(18)
18 2906(2469) 354(280) 57(46) 20(20) 19(19) 19(19) 19(19)
19 5206(4485) 589(472) 85(68) 24(22) 20(20) 20(20) 20(20)

20 9367(8198) 993(809) 127(99) 31(26) 21(21) 21(21) 21(21)
21 16940(15057) 1693(1401) 198(155) 37(31) 22(22) 22(22) 22(22)
22 30775(27739) 2911(2456) 309(245) 50(41) 23(23) 23(23) 23(23)
23 56173(51233) 5040(4329) 502(405) 70(57) 24(24) 24(24) 24(24)
24 102988(94823) 8799(7680) 822(676) 99(80) 20(27) 25(25) 25(25)
25 189666(175897) 15467(13677) 1365(1142) 148(119) 33(30) 26(26) 26(26)
26 350742(327071) 27361(24452) 2289(1944) 222(180) 38(34) 27(27) 27(27)
27 651081(609761) 48698(43894) 3885(3346) 350(288) 52(43) 28(28) 28(28)
28 1212671(1139852) 87153(79105) 6641(5786) 558(466) 69(58) 29(29) 29(29)
29 2265130(2136335) 156748(143113) 11452(10073) 907(766) 97(82) 31(31) 30(30)
30 4241040(4013493) 283106(259870) 19871(17627) 1497(1278) 141(119) 34(33) 31(31)
31 7956075(7555602) 513158(473476) 34689(31005) 2499(2155) 213(179) 41(38) 32(32)
32 14949764(14247760) 932969(865220) 60863(54779) 4204(3659) 328(277) 51(46) 33(33)
33 28131692(26902762) 1700592(1584988) 107245(97172) 7126(6256) 524(445) 64(56) 34(34)
34 53009586(50848760) 3106921(2909318) 189659(172941) 12152(10757) 844(725) 84(74) 35(35)
35 100029016(96180476) 5688586(5348587) 336508(308630) 20832(18583) 1378(1194) 120(104) 37(37)
36 189041792(182028906) 10438266(9845096) 598893(552020) 35884(32233) 2280(1992) 177(154) 41(40)
37 357858744(344666584) 19197637(18139555) 1069087(989121) 62073(56081) 3802(3343) 268(231) 47(45)
38 678652915(652912787) 35394109(33450055) 1914333(1774962) 107802(97826) 6375(5645) 424(367) 57(53)
39 1289471483(1237458799) 65425462(61732235) 3438899(3189221) 187963(171007) 10755(9571) 672(585) 69(65)
40 2454854787(2346795440)|  121268674(114023746) 6198496(5737240)|  329053(299485)| 18244(16286) 1087(952) 95(86)
41 4682570390(4454101119)|  225404144(210817704)| 11211673(10333798)|  578437(525380)| 31110(27789)| 1779(1559)| 135(121)
42 8948582405(8461990103)| 420124150(390246164)| 20351513(18638792)| 1021132(923224)| 53318(47541)| 2936(2578)| 195(173)
43]]  17130848687(16095622815)| 785148313(723442191)| 37072583(33672617)| 1810358(1625288)| 91848(81517)| 4892(4287)| 304(265)
44||  32846089219(30659137728) | 1470985850(1343471455)|  67762062(60949036) | 3223173(2867089)|159014(140106)| 8204(7156)| 472(410)
45]]  63064193961(58494107149) | 2762154375(2499987313)| 124253656(110569059)| 5762117(5069592) | 276661(241408) | 13846(11989)| 755(653)
46|[121223228302(111796305517) | 5197012977(4662765181) | 228508108(201105822) | 10340963(8988381) | 483669(417129) | 23522(20172) | 1226(1050)

as the estimate of the sent codeword C. The output signal
cor € {0,1} is such that if cor 1 then O-errors are
corrected.

The following Algorithm 3.1 is a general efficient error
control algorithm for any me-ary constant weight w code,
A, of length n with minimum L; distance dSLy1 (A) >
2(t + 1). Note that Algorithm 3.1 efficiently reduces the
t-SyEC/(t+1)-SyED/AUED decoding design problem for con-
stant weight codes to the less powerful (7_, 74 )-EC decoding
design problem; proving that the two problems are indeed
equivalent.

Algorithm 3.1 (General t-SyEC/(t+1)-SyED/AUED Decod-
ing Algorithm for Constant Weight Codes):
Input:
1) The constant weight code A def Az, C S(Z,,,n,w),
where

def >

Ty = w—wp, (X)€@, XecA,

is the parity digit; together with a set, Dec(fi), of any
(possibly efficient) (t—,7+)-EC decoding algorithms,
say Dec(A,7_,74), for the shortened code A, for all

7,74 €IN such that 7 + 7, =t < d}’ (A); and,
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2) the (received) word Y = Yy, € Z", with Y € ZZ"!

and y, € Zy,
Output:
1) A word X' = X'a], € Z,, where X' € Z;"" and

x), € Z,, (the word X’ represents the estimate of the
sent codeword X % X T, €A); and,
2) a signal cor€{0,1} such that if cor = 1 then errors are
corrected; 1. e., X' = X.
Execute the following steps.

S1: Compute
AXY)E Y —w=y=X|—|X=Y]. @D
S2: If |A(X,Y)| > ¢ + 1 then set cor = 0, set X’ to be any
word, output cor, output X’ and exit.

S3: Otherwise, if |[A(X,Y)| < ¢ then execute the following

steps.
S3.1: Compute
t—AX,Y t+ AX,Y
2 2
Note that 0 < 7_, 7 <t (because |A(X,Y)| < t) and
t—AX,Y t+AX,Y
ot < é Y) |t ; Y) o 3y

$3.2: With the word Y € 7271 as input, execute the algorithm
Dec(A,7—,t—7_) for A. Let X' € Z! be its output word.
$3.3: Set X' = X'/, e Aif X’€ A, and X' = any word if
'd &z A; where

x, =w—wr, (X' (34)
is the parity digit of X".
S3.4: Set
1if X’ dd¥ (X, Y)<t
cor = 41 60./4 and d}’ (X', Y) <t, (35)
Ootherwise

S3.5: Output X, output cor and exit.

Theorem 3.1 (Correctness of Algorithm 3.1): Given m €
IN U {0} and n,w,t € IN, let A be any m-ary constant
weight w code of length n with minimum L; distance

dy’ (A) > 2t +2 dE(A)>t+1.  (36)
If for all (sent codeword) X € .4 and (received word) Y € ZZ”",,

<~

{eltheré(X V) © min{]y = X[, X = Y|} =0, 37

or dyY(X,Y)<t+1,

then Algorithm 3.1 gives the correct output as a t-SyEC/(t+1)-
SyED/AUED decoding algorithm for A; that is, by definition
of t-SyEC/(t + 1)-SyED/AUED decoding,
C1) if (37) holds and cor = 1 then X’ = X; and,
C2) if d}’ (X,Y) <t then cor = 1 (and hence, X' = X).
Proof: Let X € A, Y € ZZ?, and assume (37) holds.
First, let us prove that if cor = 1 then X’ = X. Note that
cor = 1if, and only if, step S3.4 is executed and (35) evaluates
to 1. In particular, if cor = 1 then X € A, |[A(X,Y)] < ¢,
X'e A and df-f’l(X’,Y) < t. And so, X € A, df:yl(X,Y) <
t+1, X' € Aand d}’ (X',Y) < t because of (37) and
d’ (X,Y) = |A(X,Y)] +26(X,Y). Hence, X € A, X' € A

and d7’ (X, X') < d? (X, V) +d/ (Y, X') St + 1+t <
2t 4 2. This implies X" = X because d}” (A) > 2(t+1). So,
condition C1) of the theorem is satisfied. Now we prove that if

d7’ (X,Y) < t then cor = 1. First note that from (5) and (31),

the following relations hold for any X ¥ X Tn,Y def Yy, €

IN"~1 < IN,,:

X< x - y] = ) ALY
< - 7
R . AV (X, Y)+ AX,Y
v = X|<|Y - X| = L, )2 ( ). 58

Now, if d}¥ (X,Y) <t then |A(X,Y)| < d}’ (X,Y) <t and
so, step S3 is executed. In this case, from the relations in (38),
dy’ (X,Y) < t,(32) and (33), it follows,

X ~V|<7, and |[Y = X|<7, <t—7_. (39)

From the hypothesis (36), d7° (A A) > ¢+ 1, and so, from (39),
decoding algorithm Dec(A, T_,t — 7-) will give the correct
output in step S3.2. Hence, X’ = X € A, and so, from (34),
X'=XeAand d’ (X',Y) = d}Y (X,Y) < t. This implies
that cor = 1 is set in (35). In this way, also condition C2) of
the theorem is satisfied. [ ]
In the case of the o-codes in (23), the efficient (7_, 7 )-EC
decoding algorithm, Dec(A, 7_,7,), for the code A is based
on the key equation [35], [36], [37], [38], [39], [40], [41],

ox(z)oy-x(2) =oy(2)ox-y(z), foral X, Y €Z?  (40)

relating the o-polynomials (22). Again, for simplicity, assume
9S C F — {0} with [0S] = n — 1, g(z) = 2'*! with
ged{2!*1,5(2)} = 1, so that

AEC o 5(Z
(1)

and, hence,

Ad;fAzt‘H,&(zmanvw) =
X = X’xn with
Ty = w —wi, (X),
o1(X) =61,
0'2()5) = 5‘2, ey
O't(X) :5',5

If X = aneA = Axn is sent and Y = f/ynEIN" is
received then, from (40),

forall X€ A C Z" " and Y e IN" 1,
oy . x(2) = [0y (2)/0(2)]o g . (2) mod 2T (43)

where oy . ¢(2) and 0 . (%) are unknown and [0y (2)/0(2)]
is known to the receiver. In this way, algorithm Dec(fl, T\ T4+)
consists in solving the equation (43) with the constrains
deg(oy.¢) < ty and deg(og.y) < t_ required by
(t—,74)-EC decoding. This can be efficiently performed
with the Extended Euclidean Algorithm. Note, however, that
Algorithm 3.1 is of general type and can be efficiently applied
to any constant weight code, .4, with minimum distance

Xexm, (42)
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2t + 2 having efficient (7_, 74 )-EC decoding algorithms for
its shortened code, A. So, in general, efficiently decodable
t-SyOEC based o-codes can be defined by choosing as A the
general codes in (23). In this case, the ¢-SyOEC codes are,
C =

U {(Xezp: v(X)eA,, 6, (Zm.w+1,n—w)};
we[0,n]

where, for all w € [0,n], the field F,,,, the code support
08w+ C F, and the polynomial g,, ;(z) €F,,[z] define a given
triplet, (Fy,, 05w, guw(2)), of set T'(w, t) in (50); and 7, 4(2) €
Fy.t[2] is a given polynomial such that gcd(Gy ¢, guw,t) = 1.
Note that, if the receiver knows the check information,
c ov(x)(2) mod g(z), of any sent word X € ZZ} then
it is capable of decoding the corresponding received word,
Y € ZZ5. Following and improving the fixed length recursive
code design idea in [37], in [42], we have given systematic
code designs whose strategy is to recursively send a (¢t — 1)-
SyOEC encoding of C' to the receiver; strangely enough,
the (¢ — 1)-SyOEC capability is enough for the recursive
t-SyOEC design to be well defined. This comes from the
combinatorial properties of the constant weight o-codes. So,
for these recursive codes, the challenging problem is to give
a well defined ¢-SyOEC/(t + 1)-SyOED/AUOED error control
algorithm by keeping the redundancy below the optimal value
of tlog, k + o(tlogn) given by Theorem 4.1 of Section IV.
In fact, [42] gives fixed length n € IIN systematic recursive
o-code based asymptotically optimal codes to efficiently
encode k information bits. These codes have efficient
t-SyOEC/(t + 1)-SyOED/AUOQED error control algorithms and
redundancy n — k < tlog, k4 o(tlogn) bits, for all k,t€IN.

IV. BOUNDS ON THE CARDINALITY OF THE
OPTIMAL t-SYOEC CODES

For all n,t € IN, let D(n,t) be the largest cardinality of
a t-SyOEC/(t + 1)-SyOED/AUOQED binary code of length n.
In this section we are mainly interested in finding lower and
upper bounds on D(n,t) which depend on n and ¢ where
both are considered as variables. In particular, we find bounds
which hold true except at most a finite number of couples
(n,t) € IN?; that is, bounds which are asymptotic in, say,
s ¥y + t. We are not aware of such a perspective in the
literature, where ¢ is always assumed to be a constant. Note
that, a priori, for this coding problem, n could be fixed and
t could go to infinity. In this setting, asymptotically optimal
codes can be defined as follows.

Definition 4.1 (Asymptotically Optimal Codes): A family
of ¢-SyOEC/(t + 1)-SyOED/AUQOED binary codes of length
n, C(n,t) C Z%, n,t € IN, is asymptotically optimal if,

and only if, the ratio between the redundancy of C(n,t) and
the optimal redundancy approaches 1 as s ©f o+t grows
large; i. e.,

2% 7 Togy | D(n, 1)

Thanks to Theorem 2.2 and this perspective, many bounds
can be reproved, improved and generalized. In particular, the
following theorem will be shown in this section.

Theorem 4.1 (On the Optimal Redundancy): Let n,t def

t(n)eIN. If
logot =o(logn) < t= 9o(logn)

(for example, t = 2V1°82m — 90(logn)) then, the optimal
redundancy of the ¢-SyOEC/(t + 1)-SyOED/AUQED binary
codes is

n —logy |D(n,t)| = tlogs n + o(tlogn). (44)

So, any family of ¢-SyOEC/(t + 1)-SyOED/AUOED binary
codes whose redundancy is tlog,n + o(tlogn) and t =
20(logn) s asymptotically optimal according to Definition 4.1.
For ¢ constant, relation (44) was noticed in [25] for the sticky-
insertion error correcting codes. Note, on the other hand, if ¢ >
n — 1 then the optimal redundancy is

n-— 1Og2 |D(7’l,t)| =n- 10g2(n + 1)7

as implied by Theorem 4.3 below. The upper bound side
of (44) will be proved after Theorem 4.4 and the lower bound
side of (44) will be proved after Theorem 4.7.

Now, a tight relation between D(n,t) and the L; distance
codes is given below in Theorem 4.2. Given any numeric
alphabet A C IN, n,w € IN, a constant weight w code of
length n over the alphabet A is a block code of length n over
A where every codeword weight is exactly w. A constrained
weight w code of length n over the alphabet A is a block code
of length n over A where every codeword weight belongs in
the integer interval [(w — max,e 4 @), w]. Furthermore, let

1) CW(A,n,w,t) € IN be the largest cardinality of a
constant weight w code of length n over the alphabet
A with minimum symmetric L distance greater than 2t;
and,

2) LW(A,n,w,t) € IN be the largest cardinality of a
constrained weight w code of length n over the alphabet
A with minimum asymmetric L, distance greater than ¢.

Theorem 4.2: First, for any n,w,t€IN,

CW(zm; n+ 17w7t) = LW(vana w, t)v

for all meIN U {co}. (45)
Then, for all n,t <IN,
D(n,t) = Z CW(IN,w+1,n—w,t) =
we[0,n]
> LWAN,w,n—w,t). (46)
we[0,n]

So, any lower or upper bound on the function LW (IN, n, w, t)
(or, equivalently, CW(IN,n + 1,w,t)) gives bounds on
D(n,t).

Proof: First, relation (45) holds because if A ef Aanrl
is any constant weight w code of length n over ZZ,, then
the parity digit v,41 € [w — (m — 1),w] N IN if, and only
if, w — vpq1 € [0,m — 1] NIN = ZZ,, and because of the
minimum distance relation,

457 (A) = 2453 (A).
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At this point, relation (46) is a direct consequence of the

isometry V' and Theorem 2.2. [ |
To derive the bounds on D(n,t), first, let us use some easily

computable values of LW (IN, w,n — w,t) in (46). Let

CW(v,w,t) & CWAN, v,w,1)
and
LW (v,w,t) def LW(N,v,w,t),

for all v,w e IN. We have
Theorem 4.3: For all, n,t€IN,

n+1 ift>n-—1,
D(?’lt)_ n n—t—1
)24+ | — | + LW (w,n—w,t)+t
| Y v
ift<n-—1.
47)

In particular,

D(n,00) =n+1lif t >n —1,
n+2 ift=n-—2,
n+4 ift=n—3.

Proof: From (46), we have

D(n,t) = (48)

D(n,t)=LW(0,n,t) + LW(1,n—1,t)+

LW(2,n—2,t)+ ...+ LW(n—t—1,t+1,1) +
LW(n—tt,t) +LW(n—t+1,t—1,t)+...+
LW (n,0,t) =

S LW(n—w,w,t). (49)
w=0

With regard to the ¢+ 1 terms in the third line of (49), if v € IN
is any and w € [0,¢] then LW (v,w,t) = 1. In fact, if X,Y €
INY and 0 < | X, |Y| <t then

X[ = XNY[+|X =Y,

Y=Y nX|+]Y - X|

and

9(X,Y)=max{|X = Y|,[V =~ X|}=
max{| X[, [Y[} = [X 0 Y[ <max{[X], [Y]} <t;

That is, no minimum asymmetric distance ¢ + 1 constrained
w€[0,t] code exists with 2 codewords; i. e., 1 > LW (v, w, t).
On the other hand, any code with only one codeword has
minimum asymmetric distance ¢ + 1; i. e., LW (v,w,t) > 1;
and so, LW (v,w,t) = 1 for all w < t. With regard to
the two terms in the first line of (49), note that obviously,
LW(0,n,t) = CW(IN,1,n,t) = 1, whereas,

LW(,n—1,t) = [HLJ .

The above equality comes because with one symbol in ZZ,,
the code

{0,(t+1),2(t+1),....([n/(t+1)] = 1)(t+ 1)}

is optimal (see also Theorem 2.4 in [8]). All this implies (47).
With regard to (48), if t > n—1 then D(n,t) = n+1 because
of (47). However, in this case, no two distinct codewords of
any code can have the same weight so that the minimum dy_p,;
distance of the code is oo (i. e., it can correct any number of
0-errors) and any optimal code contains exactly one codeword
for any of the n + 1 distinct weights. In this case, the optimal
code is a zero error capacity code [8] with strictly positive
information rate given by log,(n+1)/n. The remaining cases,
t =n—2 and n — 3, of (48) come from (47) and the equality
LW(2,n—2,n—3)=3. [ ]

Given (47), in the following we assume ¢+ 1 < n because,
otherwise, D(n,t) = n+ 1 and it is completely determined.
In this case, note that s = n +t — oo if, and only if n —
00; so, asymptotic relations can be intended as the length n
grows large. Now, the remaining terms CW (IN,w + 1,n —
w,t) = LW (w,n —w, t) of the sum in (46) will be bounded
as described in Subsections IV-A and IV-B.

A. Lower Bounds and General o-Code Based Design

With regard to the non-asymptotic lower bound, the code
designs are based on the o-code theory developed here in
Section III and in [35], [36], [37], [38], [39], [40], and [41].
More precisely, for all w,t€IN, let

F is a finite field containing a
set 9S C F with |0S] = w,
I'(w,t) %ef (F,0S,9)| g(z) € Flz] is monic with ; ,
deg(g) =t+1 and
dSN{a€eF:g(a)=0}=0
(50)

Also, for all finite field F and monic polynomial g(z) €F[z],
let
def  #(9)
P(F = ;
(F.9) |F| -1’

(51

where ¢(g) indicates the number of polynomials in IF of degree
less than deg(g) which are co-prime with g(z). If g(z) € F[z]
is monic and has the following factorization in F[z],

h

g(z) = [ TlpaC=),

i=1
with p;(z) € [F[z] distinct irreducible polynomials and
m; € IN, for all ¢ = 1,2,...,h, then ¢(g) can be easily
computed as [35], [36],

h
o(g) = H (|F|deg(m) _ 1) |}F|(mi71)deg(pi).
i=1
By using the pigeon principle as in Subsection III-A and the
results in [35] and [36], if (Fy.t, Sw.t; Guw.e) € T'(w,t), with
w € IN, then

[ <Z>/Q)(Fw7t79w,t)—‘ < LW (w,n — w,1);

for all n € IN. Hence, from (47), the following non-asymptotic
lower bounds on D(n,t) hold for all n,tcIN. If

(Fw,tv Sw,t; gw,t) €F(w7 t)a
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with weIN, is any triplet sequence then

n n—t—1 n
2+ [H_—l—‘ + wz:; [<w>/<1>(]Fw,t,gw,t)—‘ +t < D(n,t).
(52)

Now, note that the triplets (Fy, ¢, 0Sw ¢, gw,t) €' (w, t) which
give the minimum value of ®(F, +, g, ¢) € IN, will depend on
the number of irreducible polynomials of any given degree and
may be computed easily; for all w € IN. However, finding in
general the minimizing triplet sequences is beyond the scope
of this paper [10]; but, some relevant choices of these triplets
can be given refining an example in [35] and [36] as follows.
Assume ¢ > 1. In this case, for all w € IN, let Iﬁ‘w be the
smallest field, IF, whose cardinality is |F| > w, g dof || €
IN, ¢, prime power and 0., def Gqw — weIN. If we let F def
Fo def F,, 08 def 0Swt C [, be any subset such that
|0Sw.t] = w < ¢y, the number d€IN be

A 41-6,>2

and the degree ¢ + 1 polynomial g(z) €[, [z] be

g(z) o gw,t(z) o (53)

H (Z _ Oé) . [a(z)] |d/2]—(d mod 2) | [b(Z)](d mod 2)
aEIF‘M,fSw,t

with a(z),b(z) € Fy 2] irreducible polynomials in F,, such

that deg(a) = 2 and deg(b) = 3 (note that there exists at least

one irreducible polynomial for each degree), then, from (51)
and |F| = |Fy| = qu,

@(’LU7 t) déf (Fw, g) d:ef (54)
(qw _ 1)511, (q72v _ 1) q’tLiUfS-(d mod 2)—2 (qg} . 1) (d mod 2) _
quw — ]-
(Qw _ 1)6w (Qw + 1) qg;&(d mod 2)—2 (qq?i; . 1)((1 mod 2) :
and the lower bound in (52) will give,
n
D(nat)22+t+’7t+—1—‘+ (55)

Sl ()

102::2 {(Qw_l)él“(qw‘f'l)qi3I(dm0d2)Q(qi_l)(dmon) ’

In [16], the authors proposed Sidon sets to design good
t-SyOEC codes. However, as the authors in [16] mention,
in general, the Sidon set code design to be practical should
satisfy various requisites; among which, it should have an
efficient decoding algorithm. In general, note that, for Sidon
set based codes computing the error pattern from the syndrome
of the received word may be difficult as ¢ grows large because
the only solution may be a table look-up method. It turns out
that our o-codes (23) are Sidon set based codes (see Section III
in [10]) and, as shown in Subsection III-B, they also have an
efficient ¢-SyOEC/(¢ + 1)-SyOED/AUOED decoding algorithm
which exploits the maximum error correcting capabilities of
the codes. Sidon set o-codes (23) can also be good in term of
redundancy, In fact, Bose-Chowla Sidon sets [5] are proposed

in [16] to design large ¢t-SyOEC codes and, hence, derive good
asymptotic lower bounds of ¢-SyOEC codes, say as

n n
Buy ™ Buy(n.) S ( ) / By, 1) < D(n, ).

w
w=0

(56)

Note that the Bose-Chowla designs of Sidon sets work well
when 6, % ¢, —we {0,1}, so for a fair comparison with

the lower bound in (55) given as,

BY Bn,t) 2 (n>/<i>(w,t) < D(n,t), (57

w
w=0

analogously to Theorem 6.1 in [18], we let

¢, +qt + ..+ 1if 6, = 0 (B-C design),
qt, — 1 if §,, = 1 (B-C design),

qt, —qit if 0, > 1.

def
Qy1(w, t) =

(58)

Even with this choice, comparing (54) with (58) it can be seen
that, for all w,t€IN, with ¢ > 2,

D (w, t) > 1 1

= > 1+ ;
& (w, t) az

Py (w, 1) . (Z) >

d(w,t) Py (w, t) —
()

o (w, 1)

oW
Q12U Qg (w,t) —

(7=
N
—
+
m|'—‘

KA

1
B[,b](n,t) + q_QB[IG](n7t) = (1 + q_2> Big(n, t)-

n n
Bertrand’s postulate [3] states that for any integer ¢ > 1 there
is always at least one prime p such that ¢ < p < 2¢; and so,
the following non-asymptotic lower bound holds.

- 1
B(n,t) > Byg(n,t) + mBnm(na t). (59)
If ¢ = 2 then an analogous non-asymptotic bound can be

obtained. This and relation (59) show that the simple choice
of g(z) € Fylz] in (53) gives some small lower bound
improvement with respect to the Bose-Chowla Sidon sets
choice; for all n,t € IN. We just mention that using the
minimum value of (51) found in [10] for t+1 < g, < n, some
even larger Sidon set o-codes can be obtained. In any case, all
these mean that Sidon set o-codes (23) are good codes in terms
of both redundancy and decoding complexity. In this paper
we are mainly focusing on efficient decoding of good codes
and these o-code based codes, in general, may be difficult
to encode if their cardinality is big. However, if n is small,
say n < 46 as in Table IV, converting information words to
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codewords and viceversa can be implemented with table look-
ups. With small table look-ups, various efficient and practical
schemes can be designed as the following simple example.

Example 4.1 (Efficient Systematic t-SyOEC/(t + 1)-SyOED/
AUOED Coding Scheme): Let k € IN be the number of
information bits that need to be encoded in a systematic
t-SyOEC code. Given such k, let F = Fj be the smallest
field such that £ < |F| and 9S C F — {0} be the index set
with k = |0S| ~ |F| distinct non-zero field elements. For an
information word X € z’g, let

def

Vx E7(X)0F 1 VED e INF,

From (22), the o-polynomial of Vx is

oy (2) =1+ 01(Vx)z + 02(Vx)2> + .. .€F[2]

and so,

9 t

oy, (2) mod 2 =1401(Vx)z+o2(Vx)2? + -+ + 0 (Vx)2".
Encoding: let

&P F -l C 8(Za,r, |r/2]) (60)

be any redundancy efficient encoding to a ¢-SyOEC balanced
code of fixed length r € IN, say for example, C(()t) =V-1A)
with A given in (42) defined with the field IF|,./2|. Note that,
since

k= 08] ~ |F| ~ ||

is small we have that such encodings can be efficiently
precomputed and implemented with small table look-ups.
At this point, the systematic ¢-SyOEC/(t 4 1)-SyOED/AUOED
encoding, say

EW @k — ¢V C @kt
is defined as

cOX)Yx 0 ¢y,

X E(o1(Vx) EP(02(Vx)) .. &7 (01(Vx)).

Decoding: the t-SyOEC/(t + 1)-SyOED/AUOED decoding pro-
cedure is simple. Assume €M) (X)eC® is sent and F € ZZ}
is received in such a way that F' is affected by either (¢ + 1)
0-errors or only 0-deletions or only O-insertions. Upon receiv-
ing the binary sequence

FYy D, D,...D,

where D; € ZZ} is the received version of C; = Sét) (o:(Vx)),
for all © = 1,2,...,t, the decoder, from right to left parses
F to compute Dy, D;_1, ..., D; and, hence, Y. It can do so
by counting the number of received bits and the number of
received bits equal to 1 in F" and putting a “cutting comma” in
the sequence exactly between the ¢-th and (¢ + 1)-th received
bit where

if r < U r/2)s
ifi),/0) <7 <i|p/2/415
irj2)+1 — Lif 4201 <1

def | 'L/
c=r

and 4., € IN indicates the number of received bits just after
the reception of the w-th bit equal to 1 in a binary sequence,

for all w € IN. For i = ¢,t — 1,...,1, as soon as the
receiver has parsed D;, it decodes it with the ¢-SyOEC/(t+1)-
SyOED/AUOED decoding algorithm described in Section III.
If for some i € [1,1], the decoding algorithm for D; detects
an error then the receiver detects an error. Otherwise, if for
all 7€ [1,¢], the decoding algorithm for D; corrects the errors,
the receiver assumes D; = C; and computes

oi(Vy) = [z-:g”} ~(Di)eF.

Knowing, 7(z) def Tp (2) mod 21, as described at the end
of Section III, the receiver can apply the ¢-SyOEC/(t + 1)-
SyOED/AUOED decoding Algorithm 3.1 with input the con-
stant weight code

A= Azt+175(zm, w¥)+ 1L, kE—w(Y)) C
VI(S(Zy, k,w(Y))) € S(IN,w(Y) + 1,k —w(Y))

given in (42) and V(Y) e IN*()+1 If Algorithm 3.1 detects
errors (i. e., cor = 0) then the receiver detects errors and
outputs a guessed codeword; if it corrects errors (i. e., cor = 1)
then the receiver outputs the word B’ = V-1 (V') e Z&; V' €
IN being the output word from Algorithm 3.1. Note that in any
of the 4 possible cases: 1) F' is affected by at most ¢ 0-errors,
2) F is affected by exactly (¢ + 1) O-errors, 3) F is affected
only by O-deletions and 4) F' is affected only by O-insertions;
this ¢-SyOEC/(¢+1)-SyOED/AUOED procedure works; namely,
incase 1) cor =1 and so F' = E(t)(X); whereas, in the other
three cases, if (by any chance) cor = 1 then E' = £ (X).
Redundancy Analysis: The overall code length is

N def k + tr. From the base code design choice (60),
it follows,
|C(t)| > (LT/QJ) ~ 9rtt—tlog, r—(1/2)log, r—0.326
© T /21’

because of the pigeon principle, the Bertrand’s postulate [3]
and the Stirling’s approximation. So, choose r € IN as the
smallest integer such that |F| < |C(()t)| in such a way that Eét)
be well defined as an encoding. This and k& = |0S| ~ |F| ~
|C(()t)|, implies,
logy [F| ~r+t— (t+1/2)logyr =
r = logy [F| + (¢ + 1/2) log, log, [F| — =
logy k + (t 4+ 1/2)logs logy k — t;
and so, the overall code redundancy is N — k = tlog, k +
t(t + 1/2)log, log, k — t2. Since k < N, this implies that,
N —k —tlogy N - N —k —tlogy k
tlogy N tlogy N
O(t*loglog k) - O(tloglogN) o tloglog N
tlogy N logy N n log N ’
Hence, if t = t(N) = o (log N/ loglog N) then
N —k —tlogy N tloglog N
=0 — 05
tlogy N log N
and this systematic ¢-SyOEC/(t + 1)-SyOED/AUOED cod-
ing scheme example is asymptotically optimal according to
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Definition 4.1 because of Theorem 4.1. For example, if t = 2
and 7 = 18 then (|}, )/ [r/2]" = 601 and so this simple
design gives a systematic 2-SyOEC/3-SyOED/AUOED coding
scheme with k£ = 601 information bits and length

N=k+2t=6014+2-18 = 637.

Note that, if ¢ = 2 and r > 18 then 0 < 2tlogy N —
tr — —+oo0. |

To reach the asymptotical optimal redundancy, Theorem 4.1
tells us that ¢ can be as big as t = t(n) = 2°(ogn)
showing some room for improvement. The above Example
4.1 shows that the challenging design problem for reaching
the asymptotical optimal redundancy is essentially a matter
of appropriately governing synchronization within the various
parts of a codeword. Note that in designing systematic codes
there are at least two parts: the information part and the check
part. As mentioned before, [42] fills this gap and more by
giving fixed length n € IN systematic recursive o-code based
codes with efficient ¢-SyOEC/(¢ + 1)-SyOED/AUQOED error
control algorithms and redundancy n—k < tlog, k+o(tlogn)
bits; and all this for any k, ¢ IN.

If ¢ = 1 then the multiplication operation of a field is
not needed and the single asymmetric error correcting group-
theoretic code [6], [7], [18] based design can be used. In this
case, for all w € IN, Iﬁ‘wyl can be any Abelian group with
w + 1 distinct elemants, 8S,, 1 = ¥, ; — {0} and we obtain,

25 [()/ o] soen @

=0

which is the lower bound given in [11]. So, let F,, be the
smallest field, F, whose cardinality is [F| > w, when ¢t > 1;
and [F,, be any Abelian group of cardinality no less than w41
(such as the cyclic group (Zy,11,+ mod (w + 1))) when
t = 1. Note that |F,,| < |F,,|. In Subsection III-A, for a given
tcIN, we let
(Fut, 0w t, Guit) = (Fup, By — {0}, '), for all weIN.

With this simplifying choice of triplet sequence, the lower
bound in (52) becomes,

2+t+{%}+n§:7( )/u@ ﬂ < D(n,t); (62)

which is worse than the lower bounds in (52) and (55), but
still improves the non-asymptotic lower bounds found in the
literature.

From (28) a new non-asymptotic lower bound can be
derived which relates D(n,t) with the prime power gap
sequence.

Theorem 4.4: Let PP the prime power sequence as in (29),

qo def 1 and,

def
Ty, = max  (g; —

for all weIN — {0}.
q; €PPNI0,|F ] 4 orattw { }

q'ifl)a

If neIN and ¢t % t(n)€IN is any then

()]

2 [1 4 2y + (n mod Q)Y G
n

2n+t
or +1\"
2<1+%> ot
n

Considering primes only, Cramér’s conjecture asymptotically
quantifies the gap value between two consecutive primes to
be as small as O (log2 p); p being the smallest between the
two prime values [9]. If this conjecture is true then I',, =
O (log2 n) as n gets large. In any case, Bertrand’s postulate [3]
states that for any integer ¢ > 1 there is always at least one
prime p such that ¢ < p < 2¢. This implies, I',, < n.
Proof: For all velIN, let

Sy X Fy|— (v+1)>0 (64)

and i(v) € IN be the index such that |F,| = ¢;,) € PP.
From the minimality of |F,| in the definition of F,, we have
v+ 1> gip)—1 €PP, and so,

0<0, =|Fy|—(v+1)=
Qi) — (v + 1) < Gi(w) —
So, for all weIN and for all integer u € [0, w],

(63)

Qi(v)—1-

0<6d, < max 6, < max (Qi(v) -
vE[0,w] vel0,w]

max (¢ —¢qi—1) =Ty =
4 E€PPN[0, |Fy|]
0 S 5u S Fw - 1; (65)

Now, from the definition of D(n,t), (28), (64), (65) and
ZLZ? (Z) > 271 it follows,

£[()/m =5 () -
> (1) wrirany
(0)/esrr>

Qi(v)—l) =

for all integer u € [0, w].

D(n,t) >

Ii

o

N
g 3

N———
—
S
~
[\)
=
_|_
=
3
~
~
V

(/2] + Tpuya)’

2n—1

;Zi%)t (1+ (n mod 2)/7} + 2, 9] /n)t

nt 2014 [2T7, /91 + (n mod 2)] /n}t
This implies (63); hence, the Theorem. |
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TABLE V

CODE EXAMPLE WITHn = 5 AND ¢ = 1. EXAMPLE OF A 1-SYOEC/2-SYOED/AUOED CODE C OF LENGTH 5 WITH |C| = 14 CODEWORDS. FOR
n = 5AND¢ = 1 THE NON-ASYMPTOTIC LOWER BOUND IN (61) GIVES 13, THE NON-ASYMPTOTIC UPPER BOUND IN (68) GIVES 16; HOWEVER,
THE ASYMPTOTIC Upper BOUND IN [11], [16], [21] GIVES (INCORRECTLY) |64/5] = 12. WE BELIEVE C TO BE OPTIMAL

’um=nWmﬂ‘xme:Vu%wMuwx»:mm+qmwmma=m

5 0 |00000||5

1 5 1

1000004
00100||22
00001 |40

5 1

2 4 3

11000({003
01010111
10001 ({030
00011300

11100|{ 0002
11001|{0020
10011({0200
001112000

11110({00001

11111000000

From Theorem 4.4, the relation I'f,, /o7 < n/2 — 2 (which
is valid for n > 6), if n€IN, with n > 6, and t = ¢(n) €eIN
is any then

n—logy |D(n, t)| <
207 + 1
tlogon —t + tlog, (1+ %) +1<

tlogon+ 1 = tlogy, n + o(tlogn);

which proves the upper bound side of (44).

Relation (63) is non-asymptotic. However, if ¢t = ¢(n) is
small with respect to n and, in particular, ¢t = t(n) = o(n/T,)
then (63) gives the following asymptotic lower bound,

1 2n+t

D(n,t) > - - ;

(n’ )r\/ 2 ’I’Lt I

which is only half the asymptotic lower bound proved in

[11] and [16] for fixed ¢. But something more can be done.
In particular, if A€ (0,1/2) is a real constant,

(66)

v v(n) 2 n + o(n)

and

t =t(n) = o(min{n/logn,n/Ty,})
then, as n grows,

pe0z 2 [ () mr]= 2] () rer]

Enj (Z)/(wﬂ)td f o).

w=0

n

In this case, by integrating ¢ times (1 4+ )" = > " _ z%,
letting z = 0 to find the ¢ integration constants and then letting
x = 1, it follows

C(n t) < 2n+t _ 2n+t
Y n4+1D)(n+2) .- (n+t) ﬂ(n—i—t)
N\t

if s = n +t grows large. Furthermore, if ¢ = o(n) then
2/ (VT 2 27t /nt All these imply the following
theorem which generalizes the asymptotic lower bound result
in [11] and [16].

Theorem 4.5: If t = t(n) = o(min{n/logn,n/T,}) then
D(n,t) = 2ntt /nt,

We mention that the bound in (63) and C(n,t) are bigger
than the hypergraph based non constructive non asymptotic
lower bound given in [19].

B. Upper Bounds

With regard to the non-asymptotic upper bound, using a
sphere packing argument applied to constrained weight n — w
codes of length w over the alphabet IN with minimum
asymmetric L, distance greater than ¢, we will prove here
that for t < n,

wen-no| (222 (1)

So, from the equality (47), the following simple explicit non-
asymptotic upper bound holds for D(n,t).

D(n,t) < _ztfl K:L;ﬁt)/ (nt%)J +t+ 1. (67)

w=0
Note that the above bound can be used to prove (48) and,
most importantly, to get the interesting big picture information
represented in Figure 1. We are not aware of any explicit non-
asymptotic upper bound for D(n,t). When ¢ = 1, from (67),
we obtain the following new non-asymptotic upper bound for
D(n, 1),

n—2

D(n, 1) gZ:OKZﬁ)/(nH)J +2< (68)
FW (4 2)(n— 1)/2_2J |

n+2

Note that, if » = 5 then the asymptotic upper bound
n [11], [16], and [21] for t = 1 gives D(n,1) < 2"F1/n <
64/5 = 12.8, however the code example in Table V contains
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14 codewords (may be, it is optimal). On the other hand, the
above upper bound (correctly) gives D(5,1) < 16.

Recall the general definitions of the values CW (A, n, w, t)
and LW (A, n,w,t) given at the beginning of this Section IV.
The following theorems give a simple upper bound on the
cardinality of t-asymmetric/unidirectional EC codes over Z,,,,
meIN U {oo}.

Theorem 4.6: For all m € IN U {co} and n,w,t € IN the
following relation holds.

CW(Zy,,n+ 1, w,t) = LW(Z

>, 0./50).)

>
(m,t) < min{m — 1,¢}.

my My w, 1) < (69)

v=w—(m—1)

where
def
= p

In particular, if m = oo then

s (5 (1) oo

Proof: See the Appendix. [ ]
From Theorem 4.2 and Theorem 4.6, the non-asymptotic
upper bound on ¢-SyOEC codes can be derived easily in the
following theorem.
Theorem 4.7 (Explicit Upper bound on t-SyOEC): 1If C C
773 is any t-SyOEC binary code of length n then

n—t—1
Z LW(IN,w,n—w,t)+t+1<
w=0

C| < D(n,t) =

n—t—1
2:{(n+%>/(n+%>J+t+1§ an
= w4+t t
—— Z (n + 2t> ti: (n + Zt)
=0 =0 +t41<

n+ 2t
t
2t
g2t _ 5 (" + 2t>

-
=0 n+2t n+ 2t
t+1<2 .
(n+%> Trrls /( t

t

where the above inequalities hold for any n,t € IN.

Proof: The leftmost relations in the first line of (71) come
from Theorem 4.2 and Theorem 4.3. The remaining relations
follow from (70) and

LW(IN,w,n —w,t)

(e )
29/

(n+1)! wlt! |
umn+t—wy'@w¢nJ_

(n+2t)! ' (n+t)lt! _
hn—l—t—w)!(w—i—t)! (n+2t)!J
G5/ = G/ 007

So, the theorem is proved. |

In Lemma 2 of [21], Levenshtein proved that if ¢ is fixed
and n — oo then D(n,t) < ¢12"+"/nt. This asymptotic upper
bound was generalized and improved in [16] by a factor of
(tf3)/2t/3 = 2[r(1/3)=1/3]t — 90.585:1 Note that even though
the upper bound in Theorem 4.7 is roughly only 2°(*) times
bigger than these asymptotic upper bounds, the bounds in (71)
hold true for any value of ¢,n € IN (and not only for fixed
constant t). In particular, we note that Levenshtein’s argument
in proving his upper bound can be carried out only if ¢ is
roughly less than n/4, in which case, however, if

pe Mn - \/W) /4J
and ¢ = o(n/logn) then,

D(n,t) =D, (n,t) + D, (n,t) <

IOEDIRE
e )

In fact, let h(z) be the binary entropy function,

h(x) def —[zlogyx + (1 — z)logy(1 — )], with z€][0, 1].

Using the well known bound

Z (n) < ohw/mm - for n,welN and we(0,n/2),

v=0 w
(72)
by letting
o et n  y/2tnlog,n qef n
o b VTN OB R Al B A
2 2 2
we have that if
A V/2tnlog, n _ \/tlogen 0
n 2n 2n

4 2
—n+ — -logy,e = —n+ 2tlogy n;
n
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and so,
2u n n
Z <n> < 2h(2u/n)-n ~ 2n72t logyn 2 _ 2_
v=0 v B (nt)Q th

However, if ¢t = o(y/n) = o(n/logn) then
2n+1 on 2n+1 on
Dty <2nt /(M) +2- < S+ S 2=
t n2t n2t

as n — oo. In this way, Levenshtein’s asymptotic upper bound
can be generalized as follows.

Theorem 4.8: If t = t(n) = o(y/n) then D(n,t) < 24127
The above theorem is more than enough to prove the lower
bound side of (44).

Since ¢t = t(n) € IN can be any in (71), some interesting
big picture considerations can be derived from (71). In fact,
the following theorem holds.

Theorem 4.9: For any n,t€IN and s def n + 2t€IN,

o[1—h(t/s)]s+ (08, 1)/2+3/2
if te (0, (n —2)/2),

D(n,t) < olh((2t+1)/s)=h(t/s)]s+(logy ) /243/2 4 ¢ 4 1
ifte[(n—2)/2,n—1),
n+1 iften—1,4+00);
where, note

t t 1 1-2/n 1
;—n+2t€(071'1_1/n>—(0’1)
and
n—2
t€|:T,7’l—1) <~
t 1 1-2/n1 1-1/n 11
_E — . , o ~ -, = <:’>
s |4 1-1/n"3 1-2/(3n) 4’3
20+1  2t+1 [1 2 1-1/(2n) 12
s n+2t [2°3 1-2/(3n) 2’3

Proof: From the following well known approximation
2rnne et/ (12D <l < \rnne et/ (120,

the following lower bound holds

(n) 2h(w/n)n
>
w

VSn(w/m)(1 —w/n)

2h,(w/n)~n—(1/2) [logy w+3+logs (1—w/n)]

(73)

for n,weIN and we[l,n — 1].

So, the theorem follows from (72), (73), h(1 — z) = h(x)
and, depending on the cases t € (0,(n — 2)/2) and t € [(n —
2)/2,n—1)], from the two upper bounds in the last line of (71).
Note that D(n,t) = n+ 1 if ¢t € [n — 1,+00) because of
Theorem 4.3. ]

A direct consequence of Theorem 4.9 is the following
theorem.

Theorem 4.10 (Upper Bound on the Asymptotic Information
Rate of t-SyOEC Codes): For any n,t€IN let 7 et t/nelR

and
{1 —h <1+T2T>] e
if 7€(0,1/2),
IUBw (1) % {h <1 _2:27> ! <1+L271>j7(el [1/22?)1),
| if T€[l,+00).

The asymptotic information rate of any infinite family of
t-SyOEC codes of length n with £ € IR information bits,
n,t€IN, satisfies the following relations,

logy, D(n,t) < IUB.(7)
= o0 .

n— o0 n

lim E < lim

n—oo N

Proof: First note that k < log, D(n,t), for all n,t€IN;
and so, lim,_,o k/n < lim,,_, o logy, D(n,t)/n. Now, since

1 t)/2 2
te(0,n—1) = lim M:O,
n—oo n
it follows,
-2
s=n-+2t andﬁe{n2 ,n—l) =
2 1
() ()20 -
s
2t +1 t 1 3
(55) - (5] g0 -
s 2
t—|—1
nllnéoﬁlogQ( T TR ((2t+1)/5)—h(t/s)]s+(log, t)/2+3/2> =0,
and
t t
N N S V5N
s n+2t  1+2(t/n) n 1—2(t/s)

So, by letting 7 def t/n, from Theorem 4.9, it follows,
10g2 D(TL, t) §

lim
(1 —"h(t/s))(s/n) if t/s€(0,1/4),
(h(2t/s) — h(t/s))(s/n) ift/se€[l/4,1/3), =
0 if t/se[l/3, +00);
IU B (7);
and the theorem is proved. [ ]

Figure 1 gives the plot of IU B (7). Note that the quantity
TUBo(7) is an upper bound for the general (deletion) case
channel model because of Lemma 1 in [22]. Comparing this
plot with the analogous plot in [20] for the general case it can
be noticed that /U B, (7) improves on the general case upper
bound in [20] for the values of 7 = ¢/n which roughly belong
to the real set [0.28,0.35] U [0.43,1).
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V. CONCLUDING REMARKS

Some theory and efficient design of binary block codes
capable of controlling the deletions and/or insertions of the
symbol “0” (i. e., the O-errors) are given. It is shown that
the design of codes for insertion and/or deletion of zeros is
equivalent to the design of the L; metric error control codes.
Some close to optimal non-systematic codes for correcting
these errors are described and their encoding and decoding
methods are also explained. Based on the theory given here,
some efficient ¢-SyOEC systematic codes are given in [42].

Please note that based on the theory developed in this paper
and [6], [8], [35], [36], [37], [38], [39], [40], [41], [43],
whenever it is possible to define an isometry from the metric
space which characterizes a given coding problem to the L;
metric (as the mapping V' in (15)), any information on codes
for the L; metric reflects in the analogous information for that
coding problem. In particular, as we mentioned in Section II,
the sticky channel error control problem [11], [25], [37] can
be reduced to the L; metric error control problem through
the isometry given by the composition of the Gray mapping
and the V mapping. Also, using Theorem 4.6 and L; error
control codes over ZZ,,, with m € IN U {oco}, lower bounds,
upper bounds, code designs and decoding algorithms can be
given for the ¢-SyOEC codes which satisfy the RLL(d, k)
constraint [23], [26]. This is because the set of all RLL(d, k)
binary words of length n and weight w with the do.p/r
metric can be put in bijection with (Z}""] ; d;") through
the following isometry

0Y110%1...0" 10"+ — (v; —d,vy —d, ..., vy — d).

Likewise, the bit-shift coding problem described in [17]
and [23] can be solved with the following isometry from
the appropriate metric space (S(Zs, n, w), dpit—shift) into the
metric space (Zﬁ, dSLyl)

0"110%21 ... 0" 10"+«
(v,v1+va+1,.. .00 +va+ ... F+o,+w—1)

which associates any binary word with its support. Also, the
generalization to the g-ary case, g € IIN, of this 0-error problem
is possible. In this case, assuming for notational convenience
that x-errors are possible if, and only if x € Z, — {0} o
{1,2,...,(g—1)}, then this, say “O-reliable symbol problem”,
can be solved with the isometry

1122 (g —1)"«-10
1%a2Va+1 | (g —1)"2-10

1vw(q—1)+1 2vw(q—1)+2 . (q _ 1)v(w+1)(q—1) s

(V1, V2, -+ V(1) (g—1))3

where w indicates the number of 0 in any g¢-ary word.
Instead, note that the g-ary repetition error problem can be
solved with the simpler isometry mentioned in [37]. Also the
above mentioned binary problems and many others could be
generalized to the g-ary case and addressed analogously.

APPENDIX

Theorem 5.1 (Sphere Packing Upper Bound on the Cardi-
nality of Asymmetric Error Control Codes Over ., ):

For all m e INU{oo} and n, w, t € IN the following relation
holds.

CW(ZTYH n+1,w,t) = LW(Zp,n,w, t) <
w+t t

0/ B

v m+p =0 T)m ’

m,t) def min{m — 1,¢}.

v=w—(m—1)

where

def
p=

In particular, if m = oo then

i< (1) /(02

Proof: The above upper bound for LW (ZZ,,,,n,w,t) can
be derived by using a sphere packing argument as follows. For
any X € ZZ7, consider the “(positive) m-ary asymmetric ball
centered at X with radius ¢” defined (in Frobenius notation) as

B(X,t) ¥ By (n, Zm, X, 1) = X + B(0,) = (74)

{ZeIN": Z=X+E, E€Z}, and |E| < t};
where, from (7),

B,0) = {BeZ: B <1} =
t t
UtEez;,: |E|=71} =] 8(Zn.n,7).
=0 T7=0

Since the above union is a disjoint union of spheres, from (74)
it follows

|B(X,t)|=|6(@,t)|=z|5(zm,n,r)|=z(Z) . (75)
7=0 m

=0

In particular, if m = oo then

t
B(X, )| =1B(0,1)] =) |SOIN,n,7)| = (76)
=0

zt: (n+7— 1) B (n+t>

= n—1 n
because of (12). Now, let A C 7L}, be any m-ary code of
length n and

BA )< | B(X.1).

XeA

7

If the minimum asymmetric L; distance of A is dg® (A) >t
then the code A is a (0,t)-EC code, and so,

forall X,YeA, X #Y = B(X,t)nB(Y,t)=0. (78)

In fact, if Ze€B(X,t)NB(Y,t) # () then |[X ~ V| < |X =
Z|4+1Z Y| <0+t=tand |[Y = X|<|Y = Z| +|Z =
X| <0+t =t and so, df’ (X,Y) = min{|X = Y|, |V =

X} < t. That is, d§’ (A) < t. From (78), the union in (77)
is a disjoint union of m-ary asymmetric balls. From (75),
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these m-ary asymmetric balls have the same cardinality.

So, if d%* (A) > t then

BAOI=| [ B, )= IBX,0)|=IB0,1)] - Al

XeA XeA
that is,
o IB(A D)
Al = ———=. (79)
A= 150,09

Note that, if A = ZZ,, then max,c4 a = (m — 1). So, if A is
a constrained weight

we [w - maxa,w} =[w—(m-—1),w]
acA
code then, from (77),

w-+t
BAn= | Bx.nc |

XeA

S(Z’fn-}-lu n? v)?

v=w—(m—1)

£ £ . .
where e wim,t) def min{m — 1,¢}. Since, the rightmost
union above is a disjoint union, it follows

w-+t

B <| U
v=w—(m—1)

w-+t

>

v=w—(m—1)

w+t
) v maH

S(szruv n, ’U) =

|S(Zm+u,n,v)| = (80)

b))

v=w—(m—1

In particular, if m = oo then

w—+t w—t
BA, )] < || SIN,n,v)| = [SON,n,v)| = (81)
v=0 v=0
wi_:t n+v—1 _(ntw+t
s n—1 o n '

because of (12). So, if A is a constrained weight w € [w— (m—

1), w] code and d$? (A) > t then, from (79), (75) and (80),

G BAY (n) t (n)
A= 22l < :
. 1B@. 1) ~ v—wz(;nl) Y m Tz:% ™/ m

In particular, if m = oo then

_IB(A )] <n+;t}+t>/ (n:t> _

|fl| =—— <
1B, 1)
[S(IN,n + 1,w + t)]
|S(IN, n +1,1)]
because of (79), (76) and (81). At this point, the upper bounds
on LW (Z,,,n,w,t), for all meIN U {oc}, follow because

the last two inequalities are valid for any constrained weight
wew — (m — 1),w] code, A, such that d§’ (A) > t. [ |
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