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Deletions and Insertions of the Symbol “0” and

Asymmetric/Unidirectional Error Control

Codes for the L1 Metric
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Abstract— This paper gives some theory and efficient design
of binary block codes capable of controlling the deletions of the
symbol “0” (referred to as 0-deletions) and/or the insertions
of the symbol “0” (referred to as 0-insertions). This problem
of controlling 0-deletions and/or 0-insertions (referred to as
0-errors) is shown to be equivalent to the efficient design of
L1 metric asymmetric error control codes over the natural
alphabet, IIN. In this way, it is shown that the t 0-insertion
correcting codes are actually capable of controlling much more;
namely, they can correct t 0-errors, detect (t + 1) 0-errors
and, simultaneously, detect all occurrences of only 0-deletions
or only 0-insertions in every received word (briefly, they are
t-Symmetric 0-Error Correcting/(t + 1)-Symmetric 0-Error
Detecting/All Unidirectional 0-Error Detecting (t-Sy0EC/(t+1)-
Sy0ED/AU0ED) codes). From the relations with the L1 distance
error control codes, new improved bounds are given for the
optimal t 0-error correcting codes. Optimal non-systematic code
designs are given. Decoding can be efficiently performed by
algebraic means using the Extended Euclidean Algorithm (EEA).

Index Terms— Deletion/insertion of zero errors, repetition/
sticky errors, L1 distance, asymmetric distance, elementary
symmetric functions, constant weight codes.

I. INTRODUCTION

LET A∗ be the set of all finite length sequences over an

alphabet A. In this paper, we are interested in the efficient

design of binary block codes capable of correcting t∈ IIN or

less deletions and/or insertions of a fixed binary symbol, say,

0∈ZZ2
def
= {0, 1} ⊆ IIN. In this error model, if

X = 0100101000101110∈ZZ
16
2 (1)

is a transmitted binary sequence of length n = 16, then

Y = 0010λ1λ100001λ1100100

= 001011000011100100 ∈ZZ
18
2 (2)

Manuscript received 10 December 2021; revised 19 June 2022; accepted
12 August 2022. Date of publication 2 September 2022; date of current
version 22 December 2022. This work was supported by the NSF under Grant
CCF-2006571. An earlier version of this paper was presented in part at
the 2019 IEEE International Symposium on Information Theory [DOI:
10.1109/ISIT.2019.8849470]. (Corresponding author: Luca G. Tallini.)

Luca G. Tallini is with the Facoltà di Scienze della Comunicazione,
Università degli Studi di Teramo, Campus di Coste Sant’Agostino,
64100 Teramo, Italy (e-mail: ltallini@unite.it).

Nawaf Alqwaifly is with the College of Engineering, Qassim University,
Buraydah 52571, Saudi Arabia (e-mail: alqwaifly@qec.edu.sa).

Bella Bose is with the School of Electrical Engineering and Com-
puter Science, Oregon State University, Corvallis, OR 97331 USA (e-mail:
bella.bose@oregonstate.edu).

Communicated by R. Gabrys, Associate Editor for Coding and Decoding.
Digital Object Identifier 10.1109/TIT.2022.3203594

is the received word obtained from X due to 3 deletions

(λ represents the empty symbol) and 5 insertions of the sym-

bol 0. The problem of designing efficient codes to control these

types of 0-deletion and/or insertion errors (briefly, 0-errors)

is an open research problem introduced by Levenshtein in

[21] which is important for at least two reasons. From the

application perspective, through the Gray mapping, correct-

ing t deletions or insertions of 0’s is equivalent to correct-

ing t repetition errors [37] (or, sticky errors) which occur

in high speed communication and data storage systems due

to synchronization loss [11], [25], [37]. From the theoretical

perspective, the design problem of t deletion and/or insertion

of 0’s Error Correcting (i. e., t-Symmetric 0-Error Correcting

(t-Sy0EC)) codes is important because it is a particular

instance of the general problem also introduced by Leven-

shtein in [22]. Even though the general problem of designing

asymptotically optimal codes capable of correcting at most

t deletions and/or insertions of any symbol appears to be

very difficult [14], [15], [20], [22], [24], [31], [32], some

efficient solutions have been given recently for the particu-

lar problems of correcting the 0-insertion errors (i. e., the

insertion of 0’s only) [11], [25] and the 0-errors (i. e., the

deletion and/or insertion of 0’s) [37]. In general many other

insertion/deletion (edit) channel models have been considered

in the literature [1], [2], [13], [16], [26]. Note that solution

to any restricted insertion/deletion channel models may give

hints on how to solve the general problem.

With regard to the 0-error problem, for all X, Y ∈ZZ
∗
2, let

d0-D/I(X, Y )
def
= the minimum number of deletions

and/or insertions of 0’s needed to

transform the binary word X to Y . (3)

For example, if X and Y are the words given in (1) and (2)

respectively, then d0-D/I(X, Y ) = 8. The above function intro-

duced in [21] is a distance (called here the deletion/insertion

of 0’s distance or 0-error distance). In fact, it is a graph

distance defined in the graph (N, E) where the set of nodes

is N
def
= ZZ

∗
2 and the set of edges is

E
def
=

�

(X, Y )∈N2 : d0-D/I(X, Y ) = 1
�

.

Synchronization errors due to 0-errors can be controlled by

inserting a marker or synchronization sequence between con-

secutive codewords in the sequences that are sent [13], [21].

Thus, we assume no synchronization errors due to erroneous

0018-9448 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 27,2024 at 18:16:17 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/ISIT.2019.8849470


TALLINI et al.: DELETIONS AND INSERTIONS OF THE SYMBOL “0” AND ASYMMETRIC/UNIDIRECTIONAL ERROR CONTROL CODES 87

receptions of sequences of codewords (i. e., we assume that

the receiver knows the length of the received word). In this

case, since 1-errors are forbidden in our error model,

wH(X) 6= wH(Y ) ⇐⇒ d0-D/I(X, Y ) = ∞; (4)

where wH(Z) ∈ IIN denotes the Hamming weight of any

Z ∈ IIN
∗. In this way, the metric space (ZZ∗

2, d0-D/I) or

its associated graph (N, E) remains partitioned into many

distinct connected components, one for each possible Ham-

ming weight, w = wH(X), of words X ∈ ZZ
∗
2. The major

contributions of the paper are as follows:

1) In Section II, an isometry is explicitly defined in (15)

which shows that the design of t-Sy0EC codes is equiv-

alent to the design of the L1 error correcting codes.

In this way, many combinatorial characterizations are

derived for t-Sy0EC codes. In particular, it is shown

that t-Sy0EC codes are equivalent to the disjoint union

of some L1 metric t-SyEC constant weight codes over

IIN of distinct weights and lengths. These last codes

can correct up to t symmetric L1 metric errors, detect

up to (t + 1) symmetric L1 metric errors and, simul-

taneously, detect all occurrences of only negative or

only positive L1 metric errors in every received word

(i. e., they are t Symmetric Error Correcting, (t + 1)
Symmetric Error Detecting and All Unidirectional Error

Detecting codes; or briefly, t-SyEC/(t+1)-SyED/AUED

codes [4]). For these reasons, the combinatorial equiv-

alence holds among t 0-deletion error correcting codes,

t 0-insertion error correcting codes, t-Sy0EC codes

(already proved by Levenshtein in [21]) and the more

powerful t-Sy0EC/(t+1)-Sy0ED/AU0ED codes capable

of correcting up to t symmetric 0-errors, detecting up to

(t+1) symmetric 0-errors and, simultaneously, detecting

all occurrences of only 0-deletions or only 0-insertions

in every received word.

2) In Section III, the general Algorithm 3.1 is defined

in Subsection III-B which efficiently reduces the

t-SyEC/(t + 1)-SyED/AUED decoding design prob-

lem for constant weight codes to the less power-

ful (τ−, τ+)-EC decoding design problem for the L1

metric. This implies that any efficient (τ−, τ+)-EC

scheme gives an efficient t-SyEC/(t + 1)-SyED/AUED

scheme which, in turn, gives efficient t-Sy0EC/(t + 1)-
Sy0ED/AU0ED codes because of the isometry discussed

in Section II. In this way, based on the σ-code the-

ory in [35], [36], [37], [38], [39], [40], and [41],

some non-systematic t-Sy0EC/(t + 1)-Sy0ED/AU0ED

codes together with their efficient t-Sy0EC/(t + 1)-
Sy0ED/AU0ED decoding algorithms are designed. Note

that, in [11] and [25], the authors have given codes

and decoding algorithms for t sticky-insertion error

correcting codes which can correct at most t insertions

of a repeated symbol [37] and are equivalent, through

the Gray mapping, to t 0-insertion (only) error correcting

codes. Such codes are constructed over prime fields and

over the Lee metric. Here, it is shown that we can

use the simpler L1 metric and prime power fields to

design them and because of these reasons the proposed

codes give better information rates and error control

performances (of t-Sy0EC/(t+1)-Sy0ED/AU0ED) than

those in [11] and [25]. In [37], for fixed t−, t+ ∈ IIN,

codes with decoding algorithms are given which can

(only) simultaneously correct t− sticky-deletions and

t+ sticky-insertions (named (t−, t+)-Insertion/Deletion

Of Repeated Symbol Error Correcting codes). Such

codes are designed by 1) Gray map reducing the t−
sticky-deletion and t+ sticky-insertion error correc-

tion problem to the t− 0-deletion and t+ 0-insertion

error correction problem which, in turn, is 2) reduced

into the t− negative and t+ positive error correction

problem for the L1 distance over IIN by using the

“bucket of 0’s mapping” defined here in (15). In [16],

and [21], some code design are given for t-Sy0EC. How-

ever, only totally asymmetric error correcting algorithm

(i. e., correcting only 0-deletions or only 0-insertions)

are shown and neither explicit nor practical algorithms

are defined which can perform (at least) t-Sy0EC [16].

Here, based on the σ-code theory and the above

two mentioned reductions, t-Sy0EC code designs are

explicitly defined together with their efficient algebraic

t-Sy0EC/(t + 1)-Sy0ED/AU0ED decoding algorithm.

In this way, the code’s maximal error control capabilities

are developed.

3) Section IV focuses on obtaining new non-asymptotic

bounds for the largest cardinality, D(n, t), of a

t-Sy0EC/(t+1)-Sy0ED/AU0ED binary code of length n
and what are their consequences in terms of the asymp-

totic bounds. To our knowledge, no non-asymptotic

bounds are given for this coding problem and this

perspective is new. In this way, we improve/generalize

known asymptotic bounds. In general, thanks to the

reduction of the design problem of t-Sy0EC codes to the

design problem of L1 metric t-SyEC constant weight

codes over IIN, any bound on the largest cardinality,

CW (IIN, n, w, t)∈IIN, of a constant weight w code of

length n over the alphabet IIN with minimum symmetric

L1 distance greater than 2t gives a bound to D(n, t).
In this way, new non-asymptotic and asymptotic lower

and upper bounds are given here for D(n, t). The

lower bounds follow from the general σ-code based

design. For t fixed, the Sidon set based codes in [16]

give very good asymptotic bounds which improve the

asymptotic bounds in [11], and [21]. For all n, t∈ IIN,

the cardinality of our σ-code theory based codes is

slightly bigger than the Sidon set based codes in [16].

The non-asymptotic upper bound (which follows from a

simple sphere packing argument for L1 metric t-SyEC

constant weight codes over IIN) allows to derive an

interesting upper bound, plotted in Figure 1, on the

asymptotic information rate of any infinite family of t-
Sy0EC codes of length n. Noticeably, such upper bound

improves on the general case upper bound in [20] for

the values of τ = t/n which roughly belong to the real

set [0.28, 0.35]∪ [0.43, 1).

Some concluding remarks are given in Section V.
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Fig. 1. Upper bound on the asymptotic information rate of t-Sy0EC codes. The asymptotic information rate of any code design is below the above curve.

II. 0-DELETION/INSERTION ERRORS

AND THE L1 METRIC

In this section, it is shown that the design problem of t-
Sy0EC codes is equivalent to the design problem of some

L1 metric asymmetric error control codes over the natural

alphabet, IIN. Before describing this result, some background

materials are given first.

For m∈IIN ∪ {∞} let

ZZm
def
= {0, 1, . . . , m − 1} ⊆ IIN

def
= ZZ∞.

Also, for x, y ∈ ZZm, define the natural subtraction as x .−
y = max{0, x − y}. For example, if x = 2 and y =
0 then x .− y = 2 and y .− x = 0. Given any two words

X, Y ∈ZZ
n
m of length n ∈ IIN, the operations X ∩ Y ∈ZZ

n
m,

X ∪ Y ∈ ZZ
n
m, X + Y ∈ IIN

n, and X .− Y ∈ ZZ
n
m are

defined as the digit by digit min, max, integer addition and
.− operation between X and Y , respectively. For example,

if m = 3, n = 9, X = 012012012 and Y = 000111222 then

X ∩ Y = 000011012, X ∪ Y = 012112222, X + Y =
012123234, X .− Y = 012001000 and Y .− X = 000100210.

In addition, the support of a word X = x1x2 . . . xn ∈ ZZ
n
m

is ∂X = s1s2 . . . sn ∈ ZZ
n
2 where si = 1 if xi 6= 0 and

si = 0 otherwise. For example ∂(42101) = (11101). Given a

support ∂S as an index set, say ∂S = [1, n], every word in

X = x1x2 . . . xn ∈ ZZ
n
m can be regarded as a multiset over

the index set ∂S where each component, xi of X defines

the multiplicity of i ∈ ∂S as an element of X . In this way,

there is a one-to-one correspondence between m-ary words

and multisets; and the above operations can be regarded as

multisets operations too. So, in the following, we will identify

m-ary words of length n with multisets over an index set

containing n distinct elements (which, for code construction

purposes, will be contained in a field). The cardinality of a

word/multiset X = x1x2 . . . xn∈ZZ
n
m is the L1 weight of X

and is naturally defined as the real sum

|X | def
= wL1(X)

def
=

X

i∈∂S

xi.

For example, |01232| = wL1(01232) = 8. Note that for m =
2 the L1 weight and the Hamming weight coincide. So, when

this creates no confusion we will indicate the weight of

X as w(X).
To better describe the error control properties of codes for

the L1 metric, the following distances between m-ary words

X, Y ∈ ZZ
n
m are considered in [38] and [40] (the “+” sign

below indicates an integer sum).

symmetric L1: dsy
L1

(X, Y )
def
= |Y .− X | + |X .− Y |, (5)

asymmetric L1: das
L1

(X, Y )
def
= max{|Y .− X |, |X .− Y |},

Hamming: dH(X, Y )
def
= |∂(Y .− X)| + |∂(X .− Y )|.

For example, if m = 5, n = 5, X = 01423, Y = 43213 then

|X .− Y | = 3, |Y .− X | = 6, |∂(X .− Y )| = 2,

|∂(Y .− X)| = 2 and dsy
L1

(X, Y ) = 3 + 6 = 9, das
L1

(X, Y ) =
max{6, 3} = 6 and dH(X, Y ) = 2 + 2 = 4. From the error

control perspective, if X is the transmitted word and Y is the

received word then Y .− X and X .− Y give the increasing

and decreasing error vectors, respectively. Thus,

X = Y − (Y .− X) + (X .− Y ).

Note that,

for all X, Y ∈ZZ
n
m, dH(X, Y ) ≤ dsy

L1
(X, Y ) (6)

because wH(X) = |∂X | ≤ |X | def
= wL1(X), for all X∈ZZ

n
m.

Constant weight codes play an important role in what

follows. Thus, given n, w∈ IIN and any numeric set A ⊆ IIN

as alphabet, let

S(A, n, w)
def
= {X∈An : wL1(X) = |X | = w} (7)
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be the set of all words over A of length n and constant

weight w. We readily note, from (7), that

S(A, n, w) =
[

x∈A

S(A, n − 1, w − x)x; (8)

where the above union is a disjoint union of sets and Sx ⊆ An

indicates the set of words obtained concatenating every word

in the set S ⊆ An−1 with x∈A. Hence, the general recurring

formula,

|S(A, n, w)| =
X

x∈A

|S(A, n − 1, w − x)|, (9)

holds for, say, the “A-nominal coefficient n choose w”,

|S(A, n, w)|. If A = ZZm then the cardinality of the above

set is the m-nominal coefficient n choose w

|S(ZZm, n, w)| =

�

n

w

�

m

=

m−1
X

v=0

�

n − 1

w − v

�

m

, (10)

for all integers m∈ IIN. The quantity
(

n
w

)

m
is the coefficient

of the monomial zw in the standard form of the polynomial

[1 + z + . . . + z(m−1)]n which, for m = 2, reduces to the

usual binomial coefficient (i. e.,
(

n
w

)

2
=
(

n
w

)

). The m-nomial

coefficient sequence has been studied in the ambit of m-ary

unordered codes and share many properties with the binomial

coefficient sequence obtained for m = 2 [28]. If instead,

A = ZZ∞ = IIN then we can define
�

n

w

�

∞

def
= |S(IIN, n, w)|

and note that the cardinality of S(IIN, n, w) is the composition

of a natural number w into n natural numbers. In this way,

|S(IIN, n, w)|def
=

�

n

w

�

∞

=

�

n + w − 1

n − 1

�

=

�

n + w − 1

w

�

.

(11)

In this case, the recursive formula (9) becomes

|S(IIN, n, w)| =

�

n

w

�

∞

=
w
X

v=0

�

n − 1

v

�

∞

= (12)

w
X

v=0

�

n + v − 2

n − 2

�

=

�

n + w − 1

n − 1

�

because x ≥ 0 and (w − x) ≥ 0 ( ⇐⇒ x, (w − x)∈IIN).

Now, if X ∈ZZ
∗
2 then X can be uniquely written as [21],

[23],

X = 0v110v210 . . .010vw10vw+1 (13)

where l = l(X) ∈ IIN indicates the length of any X ∈ A∗,

w = wH(X)∈ [0, l(X)] is the Hamming weight of X and, for

all integers i∈ [1, w + 1], vi
def
= vi(X)∈ZZl−w+1 ⊆ IIN is the

i-th run length of 0’s in the word X . Note that

vw+1 = (l(X) − w(X)) −
w
X

i=1

vi. (14)

Given the above representation, consider the following

bijective function (which we call here the bucket of 0’s

mapping)

V : ZZ∗
2 → ZZ

∗
∞ = IIN

∗ (15)

TABLE I

THE MAPPING V ACTING ON ZZ
4
2 . IN THE TABLE vw(X)+1 IS

IN BOLDFACE AND l(X) INDICATES THE

LENGTH OF ANY X∈A∗

which associates any X∈ZZ
∗
2 represented as in (13) with

V (X)
def
= (v1, v2, . . . , vw, vw+1)∈IIN

∗.

For example, if

X = 01 001 01 0001 01 1 1 0000000∈ZZ
∗
2

then

V (X) = (1, 2, 1, 3, 1, 0, 0, 7)∈IIN
∗.

The mapping V in (15), already considered by Levens-

thein in [21], defines a bijection from the set of all binary

words of any finite length n ∈ IIN and Hamming weight w
(=number of 1’s of the binary words) into the words over

IIN of length w + 1 (=number of buckets defined by the w
1’s of the binary words) and L1 weight n − w (= number of

0’s of the binary words). Except for the rightmost “1” which

is dropped, the function

V −1 : ZZ∗
∞ = IIN

∗ → ZZ
∗
2

is nothing but the prefix free unary representation of a

sequence of integer numbers. Hence, both V and V −1 are

one-to-one mappings such that

V (S(ZZ2, n, w)) = S(IIN, w + 1, n − w),

and

S(ZZ2, n, w) = V −1(S(IIN, w + 1, n − w)).

For example, for n = 4, the mapping V acts on ZZ
4
2 is as

reported in Table I. Let

V̂ : ZZ∗
2 → IIN

∗ (16)

be the function obtained from V by dropping the last compo-

nent; V̂ associates any X∈ZZ
∗
2 represented as in (13) with

V̂ (X)
def
= (v1, v2, . . . , vw)∈IIN

∗.
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Obviously, since V is a one-to-one function, it is possible to

reconstruct X from V (X); likewise, even though V̂ is not

one-to-one (for example, V̂ (0110) = V̂ (011000) = (1, 0)),
it is possible to reconstruct X from V̂ (X) and n = l(X)
because of (14). In this case, vw+1 can be considered as a

parity digit which makes the L1 weight wL1(V (X)) = n−w.

Both functions V and V̂ play important roles in our code

designs and analysis. Consider the following example words

X = 01 001 01 0001 01 1 1 0 ∈ZZ
16
2 ,

Y = 001 001 1 00001 1 1 001 00∈ZZ
19
2 ,

Y 0 = 001 001 01 0001 01 00 ∈ZZ
16
2 .

Then their associated V values are

V (X) = (1, 2, 1, 3, 1, 0, 0,1)∈IIN
8,

V (Y ) = (2, 2, 0, 4, 0, 0, 2,2)∈IIN
8,

V (Y 0) = (2, 2, 1, 3, 1,2) ∈IIN
6.

Note that if X is sent, Y 0 can never be received because

7 = w(X) 6= w(Y 0) = 5 and 1-errors are forbidden in

our channel model; whereas, Y can erroneously be received

and the number of 0-deletions (= 2) plus the number of

0-insertions (= 5) from X to Y is equal to the L1 distance

between V (X) and V (Y ), dsy
L1

(V (X), V (Y )) = 2 + 5 = 7.

In fact, in general, a sequence Y ∈ ZZ
∗
2 is obtained from

the sequence X ∈ ZZ
∗
2 due to t− deletions and t+ inser-

tions of the symbol 0 if, and only if, w(Y ) = w(X) and

dsy
L1

(V (Y ), V (X)) = t− + t+; that is, V (Y ) is obtained from

V (X) due to a negative error pattern of magnitude t− and

a positive error pattern of magnitude t+. Hence, the bucket

of 0’s mapping X → V (X) reduces the t− 0-deletion and

t+ 0-insertion error correction problem into the t− negative

and t+ positive error correction problem for the L1 distance

over IIN.

Theorem 2.1 (Isometry Between (ZZ∗
2,d0-D/I) and (IIN∗,dsy

L1
)):

For all X, Y ∈ZZ
∗
2,

d0-D/I(X, Y ) =

�
d

sy
L1

(V (X), V (Y )) if w(X)=w(Y ),

∞ if w(X) 6=w(Y ).
(17)

Relation (17) implies that d0-D/I(X, Y ) < ∞ if, and only if,

w(X) = w(Y ). So, if we extend the domain of dsy
L1

from

IIN
l × IIN

l, l∈ IIN, to IIN
∗ × IIN

∗ by letting dsy
L1

(U, V ) = ∞
whenever l(U) 6= l(V ) then,

for all X, Y ∈ZZ
∗
2, d0-D/I(X, Y ) = dsy

L1
(V (X), V (Y )).

This implies that the mapping V in (15) is an isometry between

the metric spaces (ZZ∗
2, d0-D/I) and (IIN∗, dsy

L1
).

Proof: In order to prove (17), assume X, Y ∈ ZZ
∗
2 with

w
def
= w(X) = w(Y ) and recall the definition (3) of d0-D/I .

Let e ∈ IIN be the number of 0-deletions and f ∈ IIN be the

number of 0-insertions needed to transform the binary word

X to Y in such a way that d0-D/I(X, Y ) = e+f . In particular,

let

e
def
= e1 + e2 + . . . + ew+1

and

f
def
= f1 + f2 + . . . + fw+1;

where ei ∈ IIN is the number of 0-deletions occurred in

the i-th run of 0’s of X and fi ∈ IIN is the number of

0-insertions occurred in the i-th run of 0’s of X , for all integers

i∈ [1, w + 1]. In this way,

d0-D/I(X, Y ) = e + f =

w+1
X

i=1

(ei + fi) (18)

and ei + fi∈IIN is the number of 0-operations (i. e., deletions

and/or insertions of the symbol 0) in the i-th run of 0’s to

transform X to Y , for all i∈ [1, w + 1]. From the minimality

requirement in (3), since d0-D/I(X, Y ) = e + f , the quantity

ei + fi is minimum, for all i∈ [1, w + 1]. Note that

vi(X) = vi(Y ) + ei − fi, for all integers i∈ [1, w + 1].

(19)

Now, let i∈ [1, w + 1] be given. If ei ≥ fi ≥ 0 then fi = 0
because ei + fi is minimum number of 0-operations in the

i-th run of 0’s to transform X to Y . Hence, from (19), the

absolute value,

|vi(X) − vi(Y )| = vi(X) − vi(Y ) = ei ≥ 0.

if instead, fi ≥ ei ≥ 0 then ei = 0 because ei + fi is the

minimum number of 0-operations in the i-th run of 0’s to

transform X to Y . Hence, from (19), vi(Y ) = vi(X)+fi−ei,

and

|vi(X) − vi(Y )| = vi(Y ) − vi(X) = fi ≥ 0.

In any case, the absolute value satisfies

|vi(X) − vi(Y )| = ei + fi,

for any given i∈ [1, w + 1]. Hence,

dsy
L1

(V (X), V (Y )) =

w+1
X

i=1

|vi(X) − vi(Y )| =

e + f = d0-D/I(X, Y ).

because of (18).

In general, the isometry V in (15) reduces the design

problem of error control codes for the insertion/deletion of 0’s

problem to the design problem of error control codes under

the L1 metric. In particular, for all w∈ [0, n], the one-to-one

function V transforms any word X∈S(ZZ2, n, w) ⊆ ZZ
n
2 into

a word V (X) = (v1, v2, . . . , vw+1)∈S(IIN, w + 1, n − w) ⊆
ZZ

w+1
n−w+1. Furthermore, any fixed length n∈IIN binary code,

C ⊆ ZZ
n
2 , is union of block (i. e., constant) length n ∈ IIN

constant weight w∈ [0, n] codes, where the union is over w;

say, C =
S

w∈[0,n] Cw, with Cw ⊆ S(ZZ2, n, w). So, the image

of C through the isometry V is equal to

V (C) = V

⎛



[

w∈[0,n]

Cw

⎞

 =
[

w∈[0,n]

V (Cw) ⊆ IIN
n

with Aw
def
= V (Cw) ⊆ S(IIN, w + 1, n − w), for all w ∈

[0, n]. Since the d0-D/I distance between binary words of

distinct weight is ∞, the insertion/deletion of 0’s code design

problem is reduced to the proper design of the L1 metric

constant weight error control codes Aw, for all w ∈ [0, n].
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Thus, in general, any L1 distance error control property of

codes over IIN reflects into the analogous d0-D/I distance

error control property of codes over ZZ2 because of Theo-

rem 2.1. So, from the L1 metric asymmetric/unidirectional

coding theory [4], [6], [38], [40], [43] and Theorem 2.1, the

following theorem holds which gives only some (maximal)

error correction capabilities of t-Sy0EC codes. Following the

classical asymmetric/unidirectional coding theory notation [4],

in the theorem below, t-SyXC/d-SyXD/AUXD indicates the

class of codes capable of correcting t symmetric errors,

detecting d symmetric errors and, simultaneously detecting all

unidirectional errors; where the errors are of type X defined

as follows. If X =“0E” then the codes are in the binary

sequences domain of the function V in (15) and the errors

are 0-errors, if instead X =“E” then then the codes are in the

integer sequences codomain of the function V and the errors

are L1 distance errors. Analogously, (t−, t+)-0EC indicates

the class of codes capable of correcting t− deletions of 0’s and,

simultaneously, t+ insertions of 0’s; and (t−, t+)-EC indicates

the class of codes capable of correcting t− negative errors and,

simultaneously, t+ positive errors in the L1 metric [35], [36],

[37], [38], [39], [40], [41].

Theorem 2.2 (Error Control Capabilities and Combinatorial

Characterizations of t-Sy0EC): Let t, t−, t+, τ ∈ IIN be any

numbers such that t− + t+ = t and τ ∈ [0, t]. If

C =
[

w∈[0,n]

Cw ⊆ ZZ
n
2

is a binary code of length n∈IIN and Cw
def
= C ∩S(ZZ2, n, w),

for all integer w∈ [0, n], then V (Cw) ⊆ S(IIN, w + 1, n−w),
for all w∈ [0, n]; and the following statements are equivalent:

1) C is a t-Sy0EC code (i. e., C is a t-Symmetric 0-error

Correcting Code);

2) C is a (t = t−, 0)-0EC code (i. e., C is a t deletion of 0’s

error correcting code);

3) C is a (0, t = t+)-0EC code (i. e., C is a t insertion of

0’s error correcting code);

4) d0-D/I(C) > 2t;
5) for all w ∈ [0, n], d0-D/I(Cw) > 2t ( ⇐⇒ Cw is a t-

Sy0EC);

6) for all w∈ [0, n], dsy
L1

(V (Cw)) ≥ 2(t + 1) ( ⇐⇒ V (Cw)
is a τ -SyEC/(2t − τ + 1)-SyED/AUED code over IIN);

7) for all w∈ [0, n], das
L1

(V̂ (Cw)) ≥ t + 1 ( ⇐⇒ V̂ (Cw) is

a (t−, t+)-EC code over IIN);

9) d0-D/I(C) > 2t + 1;

10) C is a τ -Sy0EC/(2t − τ + 1)-Sy0ED/AU0ED code.

Proof: The equivalences among 1), 2), 3) and 4) come

from [21]. The equivalence between 4) and 5) comes from

Theorem 2.1 or [21] because if w(X) 6= w(Y ) then

d0-D/I(X, Y ) = ∞. The equivalence between 5) and 6) comes

because of Theorem 2.1, because Aw
def
= V (Cw) is a constant

weigh n − w code of length w + 1 over IIN and because

dsy
L1

(A) > 2t ⇐⇒ dsy
L1

(A) ≥ 2(t + 1) (20)

is valid or any constant weight code A over IIN. Following

the word/multiset notation at the beginning of this Section,

relation (20) holds true because, for all U1, U2∈IIN
n,

|U1| = |U1 ∩ U2| + |U1
.− U2| =

|U1 ∩ U2| + |U2
.− U1| = |U2| ⇐⇒ (21)

|U1
.− U2| = |U2

.− U1|;

and dsy
L1

(U1, U2) = |U1
.− U2| + |U2

.− U1|. Note that the

combinatorial characterization for any code, A ⊆ IIN
n to be

τ -SyEC/(2t − τ + 1)-SyED/AUED is that for all U1, U2∈A,

|U1
.− U2| ≥ t + 1 (see, for example [4], [6], [43]). So, the

combinatorial characterization for any constant weight w code,

A ⊆ S(IIN, n, w) to be τ -SyEC/(2t − τ + 1)-SyED/AUED is

dsy
L1

(A) ≥ 2(t+1) because for any two codewords U1 and U2

in a constant weight code, |U1
.− U2| = |U2

.− U1| (from (21)).

Analogously, the equivalence between 6) and 7) comes from

the distance definitions as follows. Let Â be the code obtained

by shortening the code A in one, say the last, compo-

nent. From (5), it is readily seen that if A ⊆ S(IIN, n, w)
then

dsy
L1

(A) ≥ 2(t + 1) ⇐⇒ das
L1

(A) ≥ t + 1.

So, this equivalence follows because Âw
def
= V̂ (Cw) is obtained

by shortening the constant weight code Aw
def
= V (Cw)) in

the last (i. e., the (w + 1)-th) component. Note that the

combinatorial characterization for any code, A ⊆ IIN
n to be

(t−, t+)-EC code is that das
L1

(A) ≥ t− − t+ + 1 = t + 1 (see,

for example, Theorem 1 in [40] with d− = d+ = 0). The

relation in 6) is equivalent to the relation in 9) because, from

Theorem 2.1, if w(X) 6= w(Y ) then d0-D/I(X, Y ) = ∞. The

relation in 6) implies 10) because the τ -Sy0EC/(2t − τ + 1)-
Sy0ED/AU0ED decoding algorithm design problem for C can

be reduced to the τ -SyEC/(2t−τ +1)-SyED/AUED decoding

algorithms for V (Cw), for all w ∈ [0, n]; it is a matter, for

the receiver to compute the number, w, of received 1’s (recall

that 1-errors are forbidden) of the received word, R ∈ ZZ
∗
2

and apply any τ -SyEC/(2t − τ + 1)-SyED/AUED decoding

algorithm for A def
= Aw = V (Cw) ⊆ S(IIN, w + 1, n − w)

with input word V (R)∈ IIN
w+1. In fact, this is the decoding

strategy described in Sub-section III-B for τ = t. On the other

hand, clearly 10) implies 1) and, so, 10) implies 6) because

of the above.

III. NON SYSTEMATIC CODE DESIGN

A. σ-Code Based Design

Our code design is based on the L1 metric error control σ-

codes over ZZm defined in [38] and [40]. The σ-code theory is

based on the sigma polynomials of a word defined below. Let

m∈IIN∪{∞}, F be any field and ∂S ⊆ F be a set of n∈IIN

distinct elements in F used as index set. The σ-polynomial

associated with a word X∈ZZ
n
m is defined as [38],

σX(z)
def
= zx0

Y

a∈∂S−{0}

(1 − az)xa = (22)

σ0(X) + σ1(X)z + σ2(X)z2 + . . .∈F[z].
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For example, if n = 8, ∂S = {0, a1, a2, a3, a4, a5, a6, a7} ⊆ F

and X = 23021000 = {0, 0, a1, a1, a1, a3, a3, a4} then

σX(z) = z2(1 − a1z)3(1 − a3z)2(1 − a4z) =

1 · z2 − (3a1 + 2a3 + a4)z
3+

(3a2
1+ 6a1a3 + 3a1a4 +a2

3 + 2a3a4)z
4 + . . .

− (a3
1a

2
3a4)z

9.

Note that σX(z) is a polynomial of degree deg(σX) =
wL1(X) = |X | having wH(X) = |∂X | distinct roots in F,

each with multiplicity xa, for a ∈ ∂S ⊆ F. In particular, X
coincides with the multiset of all the inverses of the roots

of σX(z), where we let 1/0
def
= 0. Hence, its coefficient

sequence is given by the elementary symmetric functions, 1,

σ1(X − {0}), σ2(X − {0}), . . . ∈ F, of the elements in the

multiset X −{0} ordered in increasing order of their degrees,

and eventually right shifted by x0∈ZZm ⊆ IIN if 0∈∂S ⊆ F.

At this point, the general definition of σ-code is the following.

For all polynomials g(z), σ(z) ∈ F[z], the m-ary σ-code of

length n associated with g and σ is defined as

Cg,σ
def
= Cg,σ(ZZm, n)

def
= (23)

�

X∈ZZ
n
m

�

�

�

�

σX(z) = cXσ(z) mod g(z),
with cX ∈F − {0}

�

.

From the σ-code theory in [35], [36], [37], [38], [39], [40],

and [41], the following relation holds (for example, see

Theorem 3.2 in [36] or Theorem 5 in [38]).

gcd(σ, g) = 1 ⇒ das
L1

(Cg,σ) ≥ deg(g). (24)

At this point, the code design idea is as follows. For

simplicity, we choose g(z) = zt+1, σ(z) = 1 + σ̂(z) ∈ K[z]
and ∂S ⊆ F − {0}. In this way, gcd(σ, g) = 1, das

L1
(Cg,σ) ≥

t+1 because of (24), and the non empty σ-codes (23) simplify

as follows because σ0(X) = 1∈K:

Czt+1,σ
def
= Czt+1,σ(IIN, n)

def
= (25)

{X∈IIN
n | σX(z) = σ(z) mod zt+1 } .

In this case, to define a t-Sy0EC code C ⊆ ZZ
n
2 , the σ-codes

in (25) are used in the function V̂ codomain where V̂ is given

in (16). So, X ∈ C if, and only if σV̂ (X)(z) = σ(z) mod

zt+1, where σ(z) is a monic polynomial of degree t. Note

that under the mapping X → σV̂ (X)(z) mod zt+1, the set of

constant weight w vectors of length n over ZZ2 (and in fact,

the set S(IIN, w + 1, n − w)) is partitioned into |F|t classes,

D1,D2, . . . ,D|F|t , where, X and Y are in Di if, and only if,

σV̂ (X)(z) = σV̂ (Y )(z) mod zt+1. Now, we prove that each of

the V̂ (Di)’s is an asymmetric L1 distance t+1 code. Suppose

X, Y ∈Di, let V̂
def
= V̂ (X) and Û

def
= V̂ (Y ). Then, σV̂ (z) =

σÛ (z) mod zt+1 and this implies

σV̂ .−Û (z) = σÛ .−V̂ (z) mod zt+1 (26)

because

for all A, B∈IIN
n, σA(z)σB .−A(z) = σB(z)σA .−B(z), (27)

and gcd
(

σ∂S(z), g(z) = zt+1
)

= 1. Now, if the asymmetric

L1 distance between V̂ and Û is s < t + 1 then the

degrees of σV̂ .−Û (z) and σÛ .−V̂ (z) are s < t + 1 and thus,

σV̂ .−Û (z) = σÛ .−V̂ (z) because of (26). This means, σV̂ .−Û (z)
has 2s roots (i. e., the s roots of σV̂ .−Û (z) and the s roots

of σÛ .−V̂ (z)), which gives a contradiction. Therefore, the

minimum asymmetric L1 distance of the code V̂ (Di) is at

least t + 1; for all i ∈ [1, |F|t]. So, under the mapping

X → σV̂ (X)(z) mod zt+1, the set S(ZZ2, n, w) is partitioned

into the |F|t classes Di’s. Thus, by pigeon-hole principle, one

of the classes, say D̃(F; n, w) should have at least
(

n
w

)

/|F|t
codewords and minimum 0-error distance 2(t + 1) because 6)

is equivalent to 7) in Theorem 2.2. So, from Theorem 2.2,

the t-Sy0EC code, C, can be simply defined by letting for

all w ∈ [0, w], Cw
def
= D̃(F; n, w) ⊆ S(ZZ2, n, w), where to

maximize |C|, the algebraic structure F is chosen to be the

smallest possible field if t > 1 or the smallest group if t = 1.

In this way, the number of codewords is

|C| ≥
n
X

w=0

��

n

w

��

|Fw|t
�

. (28)

where Fw is the smallest field, F, whose cardinality is |F| > w,

when t > 1 and Fw = (ZZw+1, + mod (w + 1)) when t = 1.

Note that if t = 1 then the simpler group-theoretic code

construction for single asymmetric error correcting codes [18]

can be used; in this way, |Fw| = w + 1 and |C| ≥ (2n+1 −
1)/(n + 1) [11], [21]. In Subsection IV-A, the lower bound

in (28) is refined as in (62); where, recall that, D(n, t) is

the largest cardinality t-Sy0EC/(t+1)-Sy0ED/AU0ED binary

code of length n. Table II shows a non-systematic code

obtained with the construction defined by the lower bound

in (28) for n = 7 and t = 2. Table III shows an interesting

improvement of the code in Table II which is possibly optimal

and where known asymptotic lower bounds fail.

We want to mention that if t > 1 then the lower bound given

here improves the lower bound given in [11] for two major

reasons. First, unlike the analysis in [11], our analysis shows

no restrictions on the design parameters, but the restriction

given by the definition of the integer sequence {|Fw| : w∈IIN}
alone, which, as a set, is equal to the prime power sequence

(given below in increasing order of its elements)

PP
def
= {2, 3,4, 5, 7,8,9, 11, 13,16, 17, . . .} def

= (29)

{q1, q2, q3, . . .}.

Second, the prime sequence

P
def
= {2, 3, 5, 7, 11, 13, 17, . . .}

on which the analysis in [11] is based, contains bigger gaps

between consecutive elements than the prime power sequence

because P ( PP. In Table IV, the lower bound on the number

of codewords given by our proposed code is compared with

those of [11]. In all cases, the proposed codes give either more

number of codewords or the same number of codewords.

However, other choices of g(z) and ∂S give better lower

bounds; and these are discussed in Subsection IV-A. The

considerations and code designs are exactly the same except

that the relations are taken mod g(z) instead of mod zt+1.
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TABLE II

NON-SYSTEMATIC CODE PARAMETERS WITH n = 7 AND t = 2. HERE, THE LOWER BOUND IN (28) GIVES 14 BUT THE ACTUAL CODE DEFINING THE

LOWER BOUND IN (28) HAS |C| = 16 CODEWORDS. THE LOWER BOUND IN (62) GIVES 15 AND THE LOWER BOUND IN SECTION 4 OF [11]
(SEE TABLE IV) GIVES 13. ALSO, THE UPPER BOUND VALUE OBTAINED WITH (67) IS 29. IN (62) AND (67), THE FUNCTION

D(n, t) IS THE LARGEST CARDINALITY t-SY0EC/(t + 1)-SY0ED/AU0ED BINARY CODE OF LENGTH n

TABLE III

IMPROVED CODE DESIGN PARAMETERS FOR n = 7 AND t = 2. HERE, WE GIVE A CODE WITH CARDINALITY |C0| = 21 > 16 = |C|, WHICH IS BIGGER

THAN THE CODE C IN TABLE II. WE CONJECTURE C0 TO BE OPTIMAL. NOTE THAT, FOR THE VALUES n = 7 AND t = 2, THE ASYMPTOTIC

LEVENSHTEIN UPPER BOUND (3) IN [21] AND THE ASYMPTOTIC UPPER BOUND (22) IN [16] BOTH FAIL AND GIVE 20 < 21

B. t-Sy0EC/(t + 1)-Sy0ED/AU0ED Decoding Algorithm for

t-Sy0EC Codes

Let C =
S

w∈[0,n] Cw be a t-Sy0EC code of length n, where

Cw
def
= C ∩ S(ZZ2, n, w). From Theorem 2.2 with τ = t, C

is actually a t-Sy0EC/(t + 1)-Sy0ED/AU0ED code and here

we give an efficient t-Sy0EC/(t+1)-Sy0ED/AU0ED decoding

algorithm for C exploiting, in this way, its maximum error

control capabilities. Such algorithm is as follows. If C ∈C ⊆

ZZ
n
2 is sent and R ∈ ZZ

∗
2 is received, the decoder computes

w
def
= w(R) ∈ [0, n] and applies Algorithm 3.1 below with

input 1) the constant L1 weight ω
def
= n − w code of length

ν
def
= w + 1 over the alphabet IIN,

A def
= A(IIN, ν, ω)

def
= V (Cw) ⊆ S(IIN, w + 1, n − w) (30)

and 2) the word Y = V (R) ∈ IIN
ν . On getting as output

the word X 0 ∈ IIN
ν the decoder computes C0 def

= V −1(X 0)
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TABLE IV

A COMPARISON ON THE NUMBER OF CODEWORDS BETWEEN THE PROPOSED METHOD TO THAT IN SECTION 4. OF [11] (IN PARENTHESES). ALL THE

VALUES ARE OBTAINED FROM (28); BUT THOSE FROM [11] ARE OBTAINED WITH THE RESTRICTION THAT |Fw| IS A PRIME NUMBER

(I. E., |Fw|∈P). THE CODE LENGTH IS INDICATED WITH n AND ERROR CORRECTING CAPABILITY WITH t

as the estimate of the sent codeword C. The output signal

cor ∈ {0, 1} is such that if cor = 1 then 0-errors are

corrected.

The following Algorithm 3.1 is a general efficient error

control algorithm for any m-ary constant weight w code,

A, of length n with minimum L1 distance dsy
L1

(A) ≥
2(t + 1). Note that Algorithm 3.1 efficiently reduces the

t-SyEC/(t+1)-SyED/AUED decoding design problem for con-

stant weight codes to the less powerful (τ−, τ+)-EC decoding

design problem; proving that the two problems are indeed

equivalent.

Algorithm 3.1 (General t-SyEC/(t+1)-SyED/AUED Decod-

ing Algorithm for Constant Weight Codes):

Input:

1) The constant weight code A def
= Âxn ⊆ S(ZZm, n, w),

where

xn
def
= w − wL1(X̂)∈ZZm, X̂∈Â,

is the parity digit; together with a set, Dec(Â), of any

(possibly efficient) (τ−, τ+)-EC decoding algorithms,

say Dec(Â, τ−, τ+), for the shortened code Â, for all

τ−, τ+∈IIN such that τ− + τ+ = t < das
L1

(Â); and,
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2) the (received) word Y = Ŷ yn ∈ ZZ
n
m with Ŷ ∈ ZZ

n−1
m

and yn∈ZZm.

Output:

1) A word X 0 = X̂ 0 x0
n ∈ ZZ

n
m, where X̂ 0 ∈ ZZ

n−1
m and

x0
n ∈ ZZm (the word X 0 represents the estimate of the

sent codeword X
def
= X̂ xn∈A); and,

2) a signal cor∈{0, 1} such that if cor = 1 then errors are

corrected; i. e., X 0 = X .

Execute the following steps.

S1: Compute

∆(X, Y )
def
= |Y | − w = |Y .− X | − |X .− Y |. (31)

S2: If |∆(X, Y )| ≥ t + 1 then set cor = 0, set X 0 to be any

word, output cor, output X 0 and exit.

S3: Otherwise, if |∆(X, Y )| ≤ t then execute the following

steps.

S3.1: Compute

τ−
def
=

�

t − ∆(X, Y )

2

�

and τ+
def
=

�

t + ∆(X, Y )

2

�

. (32)

Note that 0 ≤ τ−, τ+ ≤ t (because |∆(X, Y )| ≤ t) and

τ− + τ+ ≤ t − ∆(X, Y )

2
+

t + ∆(X, Y )

2
= t. (33)

S3.2: With the word Ŷ ∈ZZ
n−1
m as input, execute the algorithm

Dec(Â, τ−, t− τ−) for Â. Let X̂ 0∈ZZ
n−1
m be its output word.

S3.3: Set X 0 = X̂ 0 x0
n ∈A if X̂ 0∈Â, and X 0 = any word if

X̂ 0 6∈Â; where

x0
n = w − wL1(X̂

0) (34)

is the parity digit of X̂ 0.

S3.4: Set

cor =

�

1if X 0∈A and dsy
L1

(X 0, Y ) ≤ t,

0otherwise
(35)

S3.5: Output X 0, output cor and exit.

Theorem 3.1 (Correctness of Algorithm 3.1): Given m ∈
IIN ∪ {∞} and n, w, t ∈ IIN, let A be any m-ary constant

weight w code of length n with minimum L1 distance

dsy
L1

(A) ≥ 2t + 2 ⇐⇒ das
L1

(Â) ≥ t + 1. (36)

If for all (sent codeword) X∈A and (received word) Y ∈ZZ
n
m,

�

eitherδ(X, Y )
def
= min{|Y .− X |, |X .− Y |} = 0,

or dsy
L1

(X, Y ) ≤ t + 1,
(37)

then Algorithm 3.1 gives the correct output as a t-SyEC/(t+1)-
SyED/AUED decoding algorithm for A; that is, by definition

of t-SyEC/(t + 1)-SyED/AUED decoding,

C1) if (37) holds and cor = 1 then X 0 = X ; and,

C2) if dsy
L1

(X, Y ) ≤ t then cor = 1 (and hence, X 0 = X).

Proof: Let X ∈ A, Y ∈ ZZ
n
m and assume (37) holds.

First, let us prove that if cor = 1 then X 0 = X . Note that

cor = 1 if, and only if, step S3.4 is executed and (35) evaluates

to 1. In particular, if cor = 1 then X ∈ A, |∆(X, Y )| ≤ t,
X 0 ∈A and dsy

L1
(X 0, Y ) ≤ t. And so, X ∈A, dsy

L1
(X, Y ) ≤

t + 1, X 0 ∈ A and dsy
L1

(X 0, Y ) ≤ t because of (37) and

dsy
L1

(X, Y ) = |∆(X, Y )| + 2δ(X, Y ). Hence, X ∈A, X 0∈A

and dsy
L1

(X, X 0) ≤ dsy
L1

(X, Y ) + dsy
L1

(Y, X 0) ≤ t + 1 + t <
2t + 2. This implies X 0 = X because dsy

L1
(A) ≥ 2(t + 1). So,

condition C1) of the theorem is satisfied. Now we prove that if

dsy
L1

(X, Y ) ≤ t then cor = 1. First note that, from (5) and (31),

the following relations hold for any X
def
= X̂xn, Y

def
= Ŷ yn∈

IIN
n−1
m × IINm:

|X̂ .− Ŷ | ≤ |X .− Y | =
dsy

L1
(X, Y ) − ∆(X, Y )

2
,

|Ŷ .− X̂ | ≤ |Y .− X | =
dsy

L1
(X, Y ) + ∆(X, Y )

2
. (38)

Now, if dsy
L1

(X, Y ) ≤ t then |∆(X, Y )| ≤ dsy
L1

(X, Y ) ≤ t and

so, step S3 is executed. In this case, from the relations in (38),

dsy
L1

(X, Y ) ≤ t, (32) and (33), it follows,

|X̂ .− Ŷ | ≤ τ−, and |Ŷ .− X̂| ≤ τ+ ≤ t − τ−. (39)

From the hypothesis (36), das
L1

(Â) ≥ t + 1, and so, from (39),

decoding algorithm Dec(Â, τ−, t − τ−) will give the correct

output in step S3.2. Hence, X̂ 0 = X̂ ∈Â, and so, from (34),

X 0 = X ∈A and dsy
L1

(X 0, Y ) = dsy
L1

(X, Y ) ≤ t. This implies

that cor = 1 is set in (35). In this way, also condition C2) of

the theorem is satisfied.

In the case of the σ-codes in (23), the efficient (τ−, τ+)-EC

decoding algorithm, Dec(Â, τ−, τ+), for the code Â is based

on the key equation [35], [36], [37], [38], [39], [40], [41],

σX(z)σY .−X(z) = σY (z)σX .−Y (z), for all X, Y ∈ZZ
n
m, (40)

relating the σ-polynomials (22). Again, for simplicity, assume

∂S ⊆ F − {0} with |∂S| = n − 1, g(z) = zt+1 with

gcd{zt+1, σ̃(z)} = 1, so that

Â def
= Czt+1,σ̃(ZZm, n − 1) =






X̂∈ZZ
n−1
m

�

�

�

�

�

�

σ1(X̂) = σ̃1,

σ2(X̂) = σ̃2, . . .,
σt(X̂) = σ̃t







(41)

and, hence,

A def
= Azt+1,σ̃(ZZm, n, w)

def
=



















X∈ZZ
n
m

�

�

�

�

�

�

�

�

�

X = X̂ xn with
xn = w − wL1(X̂),
σ1(X̂) = σ̃1,

σ2(X̂) = σ̃2, . . .,
σt(X̂) = σ̃t



















. (42)

If X = X̂ xn ∈ A = Âxn is sent and Y = Ŷ yn ∈ IIN
n is

received then, from (40),

for all X̂∈Â ⊆ ZZ
n−1
m and Ŷ ∈IIN

n−1,

σŶ .−X̂(z) = [σŶ (z)/σ(z)]σX̂ .−Ŷ (z) mod zt+1 (43)

where σŶ .−X̂(z) and σX̂ .−Ŷ (z) are unknown and [σŶ (z)/σ(z)]

is known to the receiver. In this way, algorithm Dec(Â, τ−, τ+)
consists in solving the equation (43) with the constrains

deg(σŶ .−X̂) ≤ t+ and deg(σX̂ .−Ŷ ) ≤ t− required by

(τ−, τ+)-EC decoding. This can be efficiently performed

with the Extended Euclidean Algorithm. Note, however, that

Algorithm 3.1 is of general type and can be efficiently applied

to any constant weight code, A, with minimum distance
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2t + 2 having efficient (τ−, τ+)-EC decoding algorithms for

its shortened code, Â. So, in general, efficiently decodable

t-Sy0EC based σ-codes can be defined by choosing as Â the

general codes in (23). In this case, the t-Sy0EC codes are,

C =
[

w∈[0,n]

�

X∈ZZ
n
2 : V (X)∈Agw,t,σ̃w,t

(ZZm, w + 1, n − w)
�

;

where, for all w ∈ [0, n], the field Fw,t, the code support

∂Sw,t ⊆ Fw and the polynomial gw,t(z)∈Fw[z] define a given

triplet, (Fw, ∂Sw, gw(z)), of set Γ(w, t) in (50); and σ̃w,t(z)∈
Fw,t[z] is a given polynomial such that gcd(σ̃w,t, gw,t) = 1.

Note that, if the receiver knows the check information,

C
def
= σV (X)(z) mod g(z), of any sent word X ∈ ZZ

n
2 then

it is capable of decoding the corresponding received word,

Y ∈ZZ
∗
2. Following and improving the fixed length recursive

code design idea in [37], in [42], we have given systematic

code designs whose strategy is to recursively send a (t − 1)-
Sy0EC encoding of C to the receiver; strangely enough,

the (t − 1)-Sy0EC capability is enough for the recursive

t-Sy0EC design to be well defined. This comes from the

combinatorial properties of the constant weight σ-codes. So,

for these recursive codes, the challenging problem is to give

a well defined t-Sy0EC/(t + 1)-Sy0ED/AU0ED error control

algorithm by keeping the redundancy below the optimal value

of t log2 k + o(t log n) given by Theorem 4.1 of Section IV.

In fact, [42] gives fixed length n ∈ IIN systematic recursive

σ-code based asymptotically optimal codes to efficiently

encode k information bits. These codes have efficient

t-Sy0EC/(t + 1)-Sy0ED/AU0ED error control algorithms and

redundancy n−k ≤ t log2 k + o(t logn) bits, for all k, t∈IIN.

IV. BOUNDS ON THE CARDINALITY OF THE

OPTIMAL t-SY0EC CODES

For all n, t ∈ IIN, let D(n, t) be the largest cardinality of

a t-Sy0EC/(t + 1)-Sy0ED/AU0ED binary code of length n.

In this section we are mainly interested in finding lower and

upper bounds on D(n, t) which depend on n and t where

both are considered as variables. In particular, we find bounds

which hold true except at most a finite number of couples

(n, t) ∈ IIN
2; that is, bounds which are asymptotic in, say,

s
def
= n + t. We are not aware of such a perspective in the

literature, where t is always assumed to be a constant. Note

that, a priori, for this coding problem, n could be fixed and

t could go to infinity. In this setting, asymptotically optimal

codes can be defined as follows.

Definition 4.1 (Asymptotically Optimal Codes): A family

of t-Sy0EC/(t + 1)-Sy0ED/AU0ED binary codes of length

n, C(n, t) ⊆ ZZ
n
2 , n, t ∈ IIN, is asymptotically optimal if,

and only if, the ratio between the redundancy of C(n, t) and

the optimal redundancy approaches 1 as s
def
= n + t grows

large; i. e.,

lim
s→∞

n − log2 |C(n, t)|
n − log2 |D(n, t)| = 1.

Thanks to Theorem 2.2 and this perspective, many bounds

can be reproved, improved and generalized. In particular, the

following theorem will be shown in this section.

Theorem 4.1 (On the Optimal Redundancy): Let n, t
def
=

t(n)∈IIN. If

log2 t = o(log n) ⇐⇒ t = 2o(log n)

(for example, t = 2
√

log2 n = 2o(log n)) then, the optimal

redundancy of the t-Sy0EC/(t + 1)-Sy0ED/AU0ED binary

codes is

n − log2 |D(n, t)| = t log2 n + o(t log n). (44)

So, any family of t-Sy0EC/(t + 1)-Sy0ED/AU0ED binary

codes whose redundancy is t log2 n + o(t log n) and t =
2o(log n) is asymptotically optimal according to Definition 4.1.

For t constant, relation (44) was noticed in [25] for the sticky-

insertion error correcting codes. Note, on the other hand, if t ≥
n − 1 then the optimal redundancy is

n − log2 |D(n, t)| = n − log2(n + 1),

as implied by Theorem 4.3 below. The upper bound side

of (44) will be proved after Theorem 4.4 and the lower bound

side of (44) will be proved after Theorem 4.7.

Now, a tight relation between D(n, t) and the L1 distance

codes is given below in Theorem 4.2. Given any numeric

alphabet A ⊆ IIN, n, w ∈ IIN, a constant weight w code of

length n over the alphabet A is a block code of length n over

A where every codeword weight is exactly w. A constrained

weight w code of length n over the alphabet A is a block code

of length n over A where every codeword weight belongs in

the integer interval [(w − maxa∈A a), w]. Furthermore, let

1) CW (A, n, w, t) ∈ IIN be the largest cardinality of a

constant weight w code of length n over the alphabet

A with minimum symmetric L1 distance greater than 2t;
and,

2) LW (A, n, w, t) ∈ IIN be the largest cardinality of a

constrained weight w code of length n over the alphabet

A with minimum asymmetric L1 distance greater than t.

Theorem 4.2: First, for any n, w, t∈IIN,

CW (ZZm, n + 1, w, t) = LW (ZZm, n, w, t),

for all m∈IIN ∪ {∞}. (45)

Then, for all n, t∈IIN,

D(n, t) =
X

w∈[0,n]

CW (IIN, w + 1, n− w, t) =

X

w∈[0,n]

LW (IIN, w, n − w, t). (46)

So, any lower or upper bound on the function LW (IIN, n, w, t)
(or, equivalently, CW (IIN, n + 1, w, t)) gives bounds on

D(n, t).

Proof: First, relation (45) holds because if A def
= Âvn+1

is any constant weight w code of length n over ZZm then

the parity digit vn+1 ∈ [w − (m − 1), w] ∩ IIN if, and only

if, w − vn+1 ∈ [0, m − 1] ∩ IIN = ZZm and because of the

minimum distance relation,

dsy
L1

(A) = 2das
L1

(Â).
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At this point, relation (46) is a direct consequence of the

isometry V and Theorem 2.2.

To derive the bounds on D(n, t), first, let us use some easily

computable values of LW (IIN, w, n − w, t) in (46). Let

CW (ν, ω, t)
def
= CW (IIN, ν, ω, t)

and

LW (ν, ω, t)
def
= LW (IIN, ν, ω, t),

for all ν, ω∈IIN. We have

Theorem 4.3: For all, n, t∈IIN,

D(n, t) =



























n + 1 if t ≥ n − 1,

2 +

�

n

t + 1

�

+

n−t−1
X

w=2

LW (w, n − w, t) + t

if t < n − 1.

(47)

In particular,

D(n, t) =







D(n,∞) = n + 1if t ≥ n − 1,
n + 2 if t = n − 2,
n + 4 if t = n − 3.

(48)

Proof: From (46), we have

D(n, t)= LW (0, n, t) + LW (1, n− 1, t)+

LW (2, n − 2, t) + . . . + LW (n − t − 1, t + 1, t)+

LW (n − t, t, t) + LW (n − t + 1, t − 1, t) + . . . +

LW (n, 0, t) =
n
X

ω=0

LW (n − ω, ω, t). (49)

With regard to the t+1 terms in the third line of (49), if ν∈IIN

is any and ω∈ [0, t] then LW (ν, ω, t) = 1. In fact, if X, Y ∈
IIN

ν and 0 ≤ |X |, |Y | ≤ t then

|X | = |X ∩ Y | + |X .− Y |,
|Y | = |Y ∩ X |+ |Y .− X |

and

das
L1

(X, Y )= max{|X .− Y |, |Y .− X |}=

max{|X |, |Y |} − |X ∩ Y |≤max{|X |, |Y |}≤ t;

That is, no minimum asymmetric distance t + 1 constrained

ω∈ [0, t] code exists with 2 codewords; i. e., 1 ≥ LW (ν, ω, t).
On the other hand, any code with only one codeword has

minimum asymmetric distance t + 1; i. e., LW (ν, ω, t) ≥ 1;

and so, LW (ν, ω, t) = 1 for all ω ≤ t. With regard to

the two terms in the first line of (49), note that obviously,

LW (0, n, t) = CW (IIN, 1, n, t) = 1, whereas,

LW (1, n − 1, t) =

�

n

t + 1

�

.

The above equality comes because with one symbol in ZZn,

the code

{0, (t + 1), 2(t + 1), . . . , (dn/(t + 1)e − 1)(t + 1)}

is optimal (see also Theorem 2.4 in [8]). All this implies (47).

With regard to (48), if t ≥ n−1 then D(n, t) = n+1 because

of (47). However, in this case, no two distinct codewords of

any code can have the same weight so that the minimum d0-D/I

distance of the code is ∞ (i. e., it can correct any number of

0-errors) and any optimal code contains exactly one codeword

for any of the n + 1 distinct weights. In this case, the optimal

code is a zero error capacity code [8] with strictly positive

information rate given by log2(n+1)/n. The remaining cases,

t = n− 2 and n− 3, of (48) come from (47) and the equality

LW (2, n− 2, n − 3) = 3.

Given (47), in the following we assume t + 1 < n because,

otherwise, D(n, t) = n + 1 and it is completely determined.

In this case, note that s = n + t → ∞ if, and only if n →
∞; so, asymptotic relations can be intended as the length n
grows large. Now, the remaining terms CW (IIN, w + 1, n −
w, t) = LW (w, n − w, t) of the sum in (46) will be bounded

as described in Subsections IV-A and IV-B.

A. Lower Bounds and General σ-Code Based Design

With regard to the non-asymptotic lower bound, the code

designs are based on the σ-code theory developed here in

Section III and in [35], [36], [37], [38], [39], [40], and [41].

More precisely, for all w, t∈IIN, let

Γ(w, t)
def
=



















(F, ∂S, g)

�

�

�

�

�

�

�

�

�

F is a finite field containing a
set ∂S ⊆ F with |∂S| = w,

g(z) ∈ F[z] is monic with
deg(g) = t + 1 and

∂S ∩ {α∈F : g(α) = 0} = ∅



















,

(50)

Also, for all finite field F and monic polynomial g(z)∈F[z],
let

Φ(F, g)
def
=

φ(g)

|F| − 1
; (51)

where φ(g) indicates the number of polynomials in F of degree

less than deg(g) which are co-prime with g(z). If g(z)∈F[z]
is monic and has the following factorization in F[z],

g(z) =

h
Y

i=1

[pi(z)]mi ,

with pi(z) ∈ F[z] distinct irreducible polynomials and

mi ∈ IIN, for all i = 1, 2, . . . , h, then φ(g) can be easily

computed as [35], [36],

φ(g) =

h
Y

i=1

 

|F|deg(pi) − 1
!

|F|(mi−1) deg(pi).

By using the pigeon principle as in Subsection III-A and the

results in [35] and [36], if (Fw,t, Sw,t, gw,t) ∈ Γ(w, t), with

w∈IIN, then
��

n

w

��

Φ(Fw,t, gw,t)

�

≤ LW (w, n − w, t);

for all n∈IIN. Hence, from (47), the following non-asymptotic

lower bounds on D(n, t) hold for all n, t∈IIN. If

(Fw,t, Sw,t, gw,t)∈Γ(w, t),
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with w∈IIN, is any triplet sequence then

2 +

�

n

t + 1

�

+

n−t−1
X

w=2

��

n

w

��

Φ(Fw,t, gw,t)

�

+ t ≤ D(n, t).

(52)

Now, note that the triplets (Fw,t, ∂Sw,t, gw,t)∈Γ(w, t) which

give the minimum value of Φ(Fw,t, gw,t)∈IIN, will depend on

the number of irreducible polynomials of any given degree and

may be computed easily; for all w∈IIN. However, finding in

general the minimizing triplet sequences is beyond the scope

of this paper [10]; but, some relevant choices of these triplets

can be given refining an example in [35] and [36] as follows.

Assume t > 1. In this case, for all w ∈ IIN, let F̂w be the

smallest field, F, whose cardinality is |F| ≥ w, qw
def
= |F̂w| ∈

IIN, qw prime power and δw
def
= qw − w∈IIN. If we let F

def
=

Fw,t
def
= F̂w, ∂S

def
= ∂Sw,t ⊆ F̂w be any subset such that

|∂Sw,t| = w ≤ qw, the number d∈IIN be

d
def
= t + 1 − δw ≥ 2

and the degree t + 1 polynomial g(z)∈ F̂w[z] be

g(z)
def
= gw,t(z)

def
= (53)

Y

α∈F̂w−Sw,t

(z − α) · [a(z)]bd/2c−(d mod 2) · [b(z)](d mod 2)

with a(z), b(z) ∈ F̂w[z] irreducible polynomials in F̂w such

that deg(a) = 2 and deg(b) = 3 (note that there exists at least

one irreducible polynomial for each degree), then, from (51)

and |F| = |F̂w| = qw,

Φ̂(w, t)
def
= Φ

 

F̂w, g
!

def
= (54)

(qw − 1)δw
(

q2
w − 1

)

q
d−3·(d mod 2)−2
w

(

q3
w − 1

)(d mod 2)

qw − 1
=

(qw − 1)δw (qw + 1) qd−3·(d mod 2)−2
w

(

q3
w − 1

)(d mod 2)
;

and the lower bound in (52) will give,

D(n, t) ≥ 2 + t +

�

n

t + 1

�

+ (55)

n−t−1
X

w=2

"

(

n
w

)

(qw−1)δw(qw+1)q
d−3·(dmod2)−2
w (q3

w−1)(dmod2)

#

.

In [16], the authors proposed Sidon sets to design good

t-Sy0EC codes. However, as the authors in [16] mention,

in general, the Sidon set code design to be practical should

satisfy various requisites; among which, it should have an

efficient decoding algorithm. In general, note that, for Sidon

set based codes computing the error pattern from the syndrome

of the received word may be difficult as t grows large because

the only solution may be a table look-up method. It turns out

that our σ-codes (23) are Sidon set based codes (see Section III

in [10]) and, as shown in Subsection III-B, they also have an

efficient t-Sy0EC/(t + 1)-Sy0ED/AU0ED decoding algorithm

which exploits the maximum error correcting capabilities of

the codes. Sidon set σ-codes (23) can also be good in term of

redundancy, In fact, Bose-Chowla Sidon sets [5] are proposed

in [16] to design large t-Sy0EC codes and, hence, derive good

asymptotic lower bounds of t-Sy0EC codes, say as

B[16]

def
= B[16](n, t)

def
=

n
X

w=0

�

n

w

��

Φ[16](w, t) ≤ D(n, t).

(56)

Note that the Bose-Chowla designs of Sidon sets work well

when δw
def
= qw − w ∈ {0, 1}, so for a fair comparison with

the lower bound in (55) given as,

B̂
def
= B̂(n, t)

def
=

n
X

w=0

�

n

w

��

Φ̂(w, t) ≤ D(n, t), (57)

analogously to Theorem 6.1 in [18], we let

Φ[16](w, t)
def
=











qt
w + qt−1

w + . . . + 1 if δw = 0 (B-C design),

qt
w − 1 if δw = 1 (B-C design),

qt
w − qt−1

w if δw > 1.

(58)

Even with this choice, comparing (54) with (58) it can be seen

that, for all w, t∈IIN, with t > 2,

Φ[16](w, t)

Φ̂(w, t)
≥ 1 +

1

q2
w

;

and so,

B̂(n, t) =
n
X

w=0

(

n
w

)

Φ̂(w, t)
=

n
X

w=0

$

Φ[16](w, t)

Φ̂(w, t)

%

·
(

n
w

)

Φ[16](w, t)
≥

n
X

w=0

�

1 +
1

q2
w

�

·
(

n
w

)

Φ[16](w, t)
=

B[16](n, t) +

n
X

w=0

1

q2
w

·
(

n
w

)

Φ[16](w, t)
≥

B[16](n, t) +
1

q2
n

n
X

w=0

(

n
w

)

Φ[16](w, t)
=

B[16](n, t) +
1

q2
n

B[16](n, t) =

�

1 +
1

q2
n

�

B[16](n, t).

Bertrand’s postulate [3] states that for any integer c > 1 there

is always at least one prime p such that c < p < 2c; and so,

the following non-asymptotic lower bound holds.

B̂(n, t) ≥ B[16](n, t) +
1

4n2
B[16](n, t). (59)

If t = 2 then an analogous non-asymptotic bound can be

obtained. This and relation (59) show that the simple choice

of g(z) ∈ F̂w[z] in (53) gives some small lower bound

improvement with respect to the Bose-Chowla Sidon sets

choice; for all n, t ∈ IIN. We just mention that using the

minimum value of (51) found in [10] for t+1 < qw � n, some

even larger Sidon set σ-codes can be obtained. In any case, all

these mean that Sidon set σ-codes (23) are good codes in terms

of both redundancy and decoding complexity. In this paper

we are mainly focusing on efficient decoding of good codes

and these σ-code based codes, in general, may be difficult

to encode if their cardinality is big. However, if n is small,

say n ≤ 46 as in Table IV, converting information words to
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codewords and viceversa can be implemented with table look-

ups. With small table look-ups, various efficient and practical

schemes can be designed as the following simple example.

Example 4.1 (Efficient Systematic t-Sy0EC/(t + 1)-Sy0ED/

AU0ED Coding Scheme): Let k ∈ IIN be the number of

information bits that need to be encoded in a systematic

t-Sy0EC code. Given such k, let F = Fk be the smallest

field such that k < |F| and ∂S ⊆ F − {0} be the index set

with k = |∂S| ' |F| distinct non-zero field elements. For an

information word X∈ZZ
k
2 , let

V̂X
def
= V̂ (X)0k−l(V̂ (X))∈IIN

k.

From (22), the σ-polynomial of V̂X is

σV̂X
(z) = 1 + σ1(V̂X)z + σ2(V̂X)z2 + . . .∈F[z]

and so,

σV̂X
(z) mod z

t+1=1+σ1(V̂X)z+σ2(V̂X)z2 + · · · + σt(V̂X)zt.

Encoding: let

E(t)
0 : F → C(t)

0 ⊆ S(ZZ2, r, br/2c) (60)

be any redundancy efficient encoding to a t-Sy0EC balanced

code of fixed length r∈IIN, say for example, C(t)
0 = V −1(A)

with A given in (42) defined with the field Fbr/2c. Note that,

since

k = |∂S| ' |F| ' |C(t)
0 |

is small we have that such encodings can be efficiently

precomputed and implemented with small table look-ups.

At this point, the systematic t-Sy0EC/(t + 1)-Sy0ED/AU0ED

encoding, say

E(t) : ZZk
2 → C(t) ⊆ ZZ

k+rt
2 ,

is defined as

E(t)(X)
def
=X C1 C2 . . . Ct

def
=

X E(t)
0 (σ1(V̂X)) E(t)

0 (σ2(V̂X)) . . . E(t)
0 (σt(V̂X)).

Decoding: the t-Sy0EC/(t+1)-Sy0ED/AU0ED decoding pro-

cedure is simple. Assume E(t)(X)∈C(t) is sent and F ∈ZZ
∗
2

is received in such a way that F is affected by either (t + 1)
0-errors or only 0-deletions or only 0-insertions. Upon receiv-

ing the binary sequence

F
def
= Y D1 D2 . . . Dt,

where Di∈ZZ
∗
2 is the received version of Ci = E(t)

0 (σi(V̂X)),
for all i = 1, 2, . . . , t, the decoder, from right to left parses

F to compute Dt, Dt−1, . . ., D1 and, hence, Y . It can do so

by counting the number of received bits and the number of

received bits equal to 1 in F and putting a “cutting comma” in

the sequence exactly between the c-th and (c + 1)-th received

bit where

c
def
=







ibr/2c if r ≤ ibr/2c,
r if ibr/2c < r < ibr/2c+1,
ibr/2c+1 − 1if ibr/2c+1 ≤ r;

and iw ∈ IIN indicates the number of received bits just after

the reception of the w-th bit equal to 1 in a binary sequence,

for all w ∈ IIN. For i = t, t − 1, . . . , 1, as soon as the

receiver has parsed Di, it decodes it with the t-Sy0EC/(t+1)-
Sy0ED/AU0ED decoding algorithm described in Section III.

If for some i ∈ [1, t], the decoding algorithm for Di detects

an error then the receiver detects an error. Otherwise, if for

all i∈ [1, t], the decoding algorithm for Di corrects the errors,

the receiver assumes Di = Ci and computes

σi(V̂X) =
h

E(t)
0

i−1

(Di)∈F.

Knowing, σ̃(z)
def
= σV̂X

(z) mod zt+1, as described at the end

of Section III, the receiver can apply the t-Sy0EC/(t + 1)-
Sy0ED/AU0ED decoding Algorithm 3.1 with input the con-

stant weight code

A =Azt+1,σ̃(ZZm, w(Y ) + 1, k − w(Y )) ⊆
V (S(ZZ2, k, w(Y ))) ⊆ S(IIN, w(Y ) + 1, k − w(Y ))

given in (42) and V (Y )∈IIN
w(Y )+1. If Algorithm 3.1 detects

errors (i. e., cor = 0) then the receiver detects errors and

outputs a guessed codeword; if it corrects errors (i. e., cor = 1)

then the receiver outputs the word E0 = V −1(V 0)∈ZZ
k
2 ; V 0∈

IIN being the output word from Algorithm 3.1. Note that in any

of the 4 possible cases: 1) F is affected by at most t 0-errors,

2) F is affected by exactly (t + 1) 0-errors, 3) F is affected

only by 0-deletions and 4) F is affected only by 0-insertions;

this t-Sy0EC/(t+1)-Sy0ED/AU0ED procedure works; namely,

in case 1) cor = 1 and so E0 = E(t)(X); whereas, in the other

three cases, if (by any chance) cor = 1 then E0 = E(t)(X).
Redundancy Analysis: The overall code length is

N
def
= k + tr. From the base code design choice (60),

it follows,

|C(t)
0 | ≥

(

r
br/2c

)

dr/2et ' 2r+t−t log2 r−(1/2) log2 r−0.326

because of the pigeon principle, the Bertrand’s postulate [3]

and the Stirling’s approximation. So, choose r ∈ IIN as the

smallest integer such that |F| ≤ |C(t)
0 | in such a way that E(t)

0

be well defined as an encoding. This and k = |∂S| ' |F| '
|C(t)

0 |, implies,

log2 |F| ' r + t − (t + 1/2) log2 r ⇒
r ' log2 |F| + (t + 1/2) log2 log2 |F| − t =

log2 k + (t + 1/2) log2 log2 k − t;

and so, the overall code redundancy is N − k = t log2 k +
t(t + 1/2) log2 log2 k − t2. Since k ≤ N , this implies that,

N − k − t log2 N

t log2 N
≤ N − k − t log2 k

t log2 N
=

Θ(t2 log log k)

t log2 N
≤ Θ(t log log N)

log2 N
= Θ

�

t log log N

log N

�

.

Hence, if t = t(N) = o (log N/ log log N) then

N − k − t log2 N

t log2 N
= Θ

�

t log log N

log N

�

→ 0;

and this systematic t-Sy0EC/(t + 1)-Sy0ED/AU0ED cod-

ing scheme example is asymptotically optimal according to
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Definition 4.1 because of Theorem 4.1. For example, if t = 2

and r = 18 then
(

r
br/2c

)

/ dr/2et
= 601 and so this simple

design gives a systematic 2-Sy0EC/3-Sy0ED/AU0ED coding

scheme with k = 601 information bits and length

N = k + 2t = 601 + 2 · 18 = 637.

Note that, if t = 2 and r ≥ 18 then 0 < 2t log2 N −
tr → +∞.

To reach the asymptotical optimal redundancy, Theorem 4.1

tells us that t can be as big as t = t(n) = 2o(log n)

showing some room for improvement. The above Example

4.1 shows that the challenging design problem for reaching

the asymptotical optimal redundancy is essentially a matter

of appropriately governing synchronization within the various

parts of a codeword. Note that in designing systematic codes

there are at least two parts: the information part and the check

part. As mentioned before, [42] fills this gap and more by

giving fixed length n∈IIN systematic recursive σ-code based

codes with efficient t-Sy0EC/(t + 1)-Sy0ED/AU0ED error

control algorithms and redundancy n−k ≤ t log2 k+o(t log n)
bits; and all this for any k, t∈IIN.

If t = 1 then the multiplication operation of a field is

not needed and the single asymmetric error correcting group-

theoretic code [6], [7], [18] based design can be used. In this

case, for all w ∈ IIN, F̂w,1 can be any Abelian group with

w + 1 distinct elemants, ∂Sw,1 = F̂w,1 − {0} and we obtain,

�

2n+1 − 1

n + 1

�

≤
n
X

w=0

��

n

w

��

(w + 1)

�

≤ D(n, 1); (61)

which is the lower bound given in [11]. So, let Fw be the

smallest field, F, whose cardinality is |F| > w, when t > 1;

and Fw be any Abelian group of cardinality no less than w+1
(such as the cyclic group (ZZw+1, + mod (w + 1))) when

t = 1. Note that |F̂w| ≤ |Fw|. In Subsection III-A, for a given

t∈IIN, we let

(Fw,t, ∂Sw,t, gw,t) = (Fw, Fw − {0}, zt+1), for all w∈IIN.

With this simplifying choice of triplet sequence, the lower

bound in (52) becomes,

2 + t +

�

n

t + 1

�

+
n−t−1
X

w=2

��

n

w

��

|Fw|t
�

≤ D(n, t); (62)

which is worse than the lower bounds in (52) and (55), but

still improves the non-asymptotic lower bounds found in the

literature.

From (28) a new non-asymptotic lower bound can be

derived which relates D(n, t) with the prime power gap

sequence.

Theorem 4.4: Let PP the prime power sequence as in (29),

q0
def
= 1 and,

Γw
def
= max

qi∈PP∩[0,|Fw|]
(qi − qi−1), for all w∈IIN − {0}.

If n∈IIN and t
def
= t(n)∈IIN is any then

D(n, t) ≥
n
X

w=0

��

n

w

��

|Fw|t
�

≥ (63)

1

2

(

1 +
2Γdn/2e + (n mod 2)

n

)t · 2n+t

nt
≥

2n+t

2

�

1 +
2Γdn/2e + 1

n

�t

nt

.

Considering primes only, Cramér’s conjecture asymptotically

quantifies the gap value between two consecutive primes to

be as small as O
(

log2 p
)

; p being the smallest between the

two prime values [9]. If this conjecture is true then Γn =
O
(

log2 n
)

as n gets large. In any case, Bertrand’s postulate [3]

states that for any integer c > 1 there is always at least one

prime p such that c < p < 2c. This implies, Γn ≤ n.

Proof: For all v∈IIN, let

δv
def
= |Fv| − (v + 1) ≥ 0 (64)

and i(v) ∈ IIN be the index such that |Fv| = qi(v) ∈ PP.

From the minimality of |Fv| in the definition of Fv, we have

v + 1 > qi(v)−1∈PP, and so,

0 ≤ δv = |Fv| − (v + 1) =

qi(v) − (v + 1) < qi(v) − qi(v)−1.

So, for all w∈IIN and for all integer u∈ [0, w],

0 ≤ δu ≤ max
v∈[0,w]

δv < max
v∈[0,w]

(qi(v) − qi(v)−1) =

max
qi∈PP∩[0,|Fw|]

(qi − qi−1) = Γw ⇒

0 ≤ δu ≤ Γw − 1, for all integer u∈ [0, w]. (65)

Now, from the definition of D(n, t), (28), (64), (65) and
Pdn/2e

w=0

(

n
w

)

≥ 2n−1, it follows,

D(n, t) ≥
n
X

w=0

��

n

w

��

|Fw|t
�

≥
n
X

w=0

�

n

w

��

|Fw|t =

n
X

w=0

�

n

w

��

(w + 1 + δw)t ≥
n
X

w=0

�

n

w

��

(w + Γw)t ≥
dn/2e
X

w=0

�

n

w

��

(w + Γw)t ≥
dn/2e
X

w=0

�

n

w

��

(

dn/2e+ Γdn/2e

)t ≥

2n−1

(

dn/2e+ Γdn/2e

)t =

2n−1

(n/2)t
(

1 + (n mod 2)/n + 2Γdn/2e/n
)t =

2n+t

nt
· 1

2
�

1 +
+

2Γdn/2e + (n mod 2)
,

/n
�t .

This implies (63); hence, the Theorem.
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TABLE V

CODE EXAMPLE WITH n = 5 AND t = 1. EXAMPLE OF A 1-SY0EC/2-SY0ED/AU0ED CODE C OF LENGTH 5 WITH |C| = 14 CODEWORDS. FOR

n = 5 AND t = 1 THE NON-ASYMPTOTIC LOWER BOUND IN (61) GIVES 13, THE NON-ASYMPTOTIC UPPER BOUND IN (68) GIVES 16; HOWEVER,
THE ASYMPTOTIC Upper BOUND IN [11], [16], [21] GIVES (INCORRECTLY) b64/5c = 12. WE BELIEVE C TO BE OPTIMAL

From Theorem 4.4, the relation Γdn/2e ≤ n/2 − 2 (which

is valid for n ≥ 6), if n∈IIN, with n ≥ 6, and t = t(n)∈IIN

is any then

n− log2 |D(n, t)| ≤

t log2 n − t + t log2

�

1 +
2Γdn/2e + 1

n

�

+ 1 ≤

t log2 n + 1 = t log2 n + o(t log n);

which proves the upper bound side of (44).

Relation (63) is non-asymptotic. However, if t = t(n) is

small with respect to n and, in particular, t = t(n) = o(n/Γn)
then (63) gives the following asymptotic lower bound,

D(n, t) �
1

2
· 2n+t

nt
; (66)

which is only half the asymptotic lower bound proved in

[11] and [16] for fixed t. But something more can be done.

In particular, if λ∈(0, 1/2) is a real constant,

v
def
= v(n)

def
= λn + o(n)

and

t = t(n) = o(min{n/ logn, n/Γn})

then, as n grows,

D(n, t) ≥
n
X

w=0

��

n

w

��

|Fw|t
�

≥
n
X

w=v

��

n

w

��

|Fw|t
�

�

n
X

w=0

�

n

w

��

(w + 1)t def
= C(n, t).

In this case, by integrating t times (1 + x)n =
Pn

w=0 xw,

letting x = 0 to find the t integration constants and then letting

x = 1, it follows

C(n, t) �
2n+t

(n + 1)(n + 2) · . . . · (n + t)
=

2n+t

t!

�

n + t

t

�

if s = n + t grows large. Furthermore, if t = o(n) then

2n+t/t!
(

n+t
t

)

� 2n+t/nt. All these imply the following

theorem which generalizes the asymptotic lower bound result

in [11] and [16].

Theorem 4.5: If t = t(n) = o(min{n/ logn, n/Γn}) then

D(n, t) � 2n+t/nt.

We mention that the bound in (63) and C(n, t) are bigger

than the hypergraph based non constructive non asymptotic

lower bound given in [19].

B. Upper Bounds

With regard to the non-asymptotic upper bound, using a

sphere packing argument applied to constrained weight n − w
codes of length w over the alphabet IIN with minimum

asymmetric L1 distance greater than t, we will prove here

that for t ≤ n,

LW (w, n − w, t) ≤
��

n + 2t

w + t

���

n + 2t

t

��

.

So, from the equality (47), the following simple explicit non-

asymptotic upper bound holds for D(n, t).

D(n, t) ≤
n−t−1
X

w=0

��

n + 2t

w + t

���

n + 2t

t

��

+ t + 1. (67)

Note that the above bound can be used to prove (48) and,

most importantly, to get the interesting big picture information

represented in Figure 1. We are not aware of any explicit non-

asymptotic upper bound for D(n, t). When t = 1, from (67),

we obtain the following new non-asymptotic upper bound for

D(n, 1),

D(n, 1) ≤
n−2
X

w=0

��

n + 2

w + 1

��

(n + 2)

�

+ 2 ≤ (68)

�

2n+2 − (n + 2)(n − 1)/2 − 2

n + 2

�

.

Note that, if n = 5 then the asymptotic upper bound

in [11], [16], and [21] for t = 1 gives D(n, 1) � 2n+1/n ≤
64/5 = 12.8, however the code example in Table V contains
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14 codewords (may be, it is optimal). On the other hand, the

above upper bound (correctly) gives D(5, 1) ≤ 16.

Recall the general definitions of the values CW (A, n, w, t)
and LW (A, n, w, t) given at the beginning of this Section IV.

The following theorems give a simple upper bound on the

cardinality of t-asymmetric/unidirectional EC codes over ZZm,

m∈IIN ∪ {∞}.

Theorem 4.6: For all m ∈ IIN ∪ {∞} and n, w, t ∈ IIN the

following relation holds.

CW (ZZm, n + 1, w, t) = LW (ZZm, n, w, t) ≤ (69)






⎣

w+t
X

v=w−(m−1)

�

n

v

�

m+µ

/

t
X

τ=0

�

n

τ

�

m







⎦ ;

where

µ
def
= µ(m, t)

def
= min{m− 1, t}.

In particular, if m = ∞ then

LW (IIN, n, w, t) ≤
��

n + w + t

n

���

n + t

n

��

, (70)

Proof: See the Appendix.

From Theorem 4.2 and Theorem 4.6, the non-asymptotic

upper bound on t-Sy0EC codes can be derived easily in the

following theorem.

Theorem 4.7 (Explicit Upper bound on t-Sy0EC): If C ⊆
ZZ

n
2 is any t-Sy0EC binary code of length n then

|C| ≤ D(n, t) =
n−t−1
X

w=0

LW (IIN, w, n − w, t) + t + 1 ≤

n−t−1
X

w=0

��

n + 2t

w + t

���

n + 2t

t

��

+ t + 1 ≤ (71)

2n+2t −
2t
X

τ=0

�

n + 2t

τ

�

−
t−1
X

τ=0

�

n + 2t

τ

�

�

n + 2t

t

� + t + 1 ≤

2n+2t −
2t
X

τ=0

�

n + 2t

τ

�

�

n + 2t

t

� + t + 1 ≤ 2n+2t

��

n + 2t

t

�

.

where the above inequalities hold for any n, t∈IIN.

Proof: The leftmost relations in the first line of (71) come

from Theorem 4.2 and Theorem 4.3. The remaining relations

follow from (70) and

LW (IIN, w, n − w, t) ≤
��

w + (n − w) + t

w

���

w + t

w

��

=

��

n + t

w

���

w + t

w

��

=

�

(n + t)!

w!(n + t − w)!
· w!t!

(w + t)!

�

=

�

(n + 2t)!

(n + t − w)!(w + t)!
· (n + t)!t!

(n + 2t)!

�

=

��

n + 2t

w + t

���

n + 2t

t

��

≤
�

n + 2t

w + t

���

n + 2t

t

�

.

So, the theorem is proved.

In Lemma 2 of [21], Levenshtein proved that if t is fixed

and n → ∞ then D(n, t) � t!2n+t/nt. This asymptotic upper

bound was generalized and improved in [16] by a factor of
(

t
t/3

)

/2t/3 = 2[h(1/3)−1/3]t = 20.585·t. Note that even though

the upper bound in Theorem 4.7 is roughly only 2θ(t) times

bigger than these asymptotic upper bounds, the bounds in (71)

hold true for any value of t, n ∈ IIN (and not only for fixed

constant t). In particular, we note that Levenshtein’s argument

in proving his upper bound can be carried out only if t is

roughly less than n/4, in which case, however, if

µ
def
=

j 

n −
p

2tn loge n
!

/4
k

and t = o(n/ log n) then,

D(n, t) =D0
µ(n, t) + D00

µ(n, t) <

2n−t

��

µ

t

�

+ 2

2µ
X

v=0

�

n

v

�

�

2n−t

��

µ

t

�

+
2n+1

n2t
.

In fact, let h(x) be the binary entropy function,

h(x)
def
= −[x log2 x + (1 − x) log2(1 − x)], with x∈ [0, 1].

Using the well known bound

w
X

v=0

�

n

w

�

≤ 2h(w/n)·n, for n, w∈IIN and w∈ [0, n/2],

(72)

by letting

w
def
= 2µ ' n

2
−
p

2tn loge n

2

def
=

n

2
− ∆,

we have that if

∆

n
=

p

2tn loge n

2n
=

r

t loge n

2n
→ 0

then

− h
 w

n

!

· n = w log2

w

n
+ (n − w) log2

n − w

n
=

 n

2
− ∆

!

log2

�

1

2
− ∆

n

�

+
 n

2
+ ∆

!

log2

�

1

2
+

∆

n

�

=

− n +
 n

2
− ∆

!

log2

�

1 − 2∆

n

�

+

 n

2
+ ∆

!

log2

�

1 +
2∆

n

�

'

− n +

(

 n

2
− ∆

!

�

−2∆

n

�

+
 n

2
+ ∆

!

�

2∆

n

�)

· log2 e =

− n +
4∆2

n
· log2 e = −n + 2t log2 n;
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and so,

2µ
X

v=0

�

n

v

�

≤ 2h(2µ/n)·n ' 2n−2t log2 n =
2n

(nt)
2 =

2n

n2t
.

However, if t = o(
√

n) = o(n/ log n) then

D(n, t) � 2n−t

��

µ

t

�

+
2n+1

n2t
� 2tt!

2n

nt
+

2n+1

n2t
� 2tt!

2n

nt
;

as n → ∞. In this way, Levenshtein’s asymptotic upper bound

can be generalized as follows.

Theorem 4.8: If t = t(n) = o(
√

n) then D(n, t) � 2tt!2
n

nt .

The above theorem is more than enough to prove the lower

bound side of (44).

Since t = t(n) ∈ IIN can be any in (71), some interesting

big picture considerations can be derived from (71). In fact,

the following theorem holds.

Theorem 4.9: For any n, t∈IIN and s
def
= n + 2t∈IIN,

D(n, t) ≤







































2[1−h(t/s)]s+(log2 t)/2+3/2

if t∈(0, (n − 2)/2),

2[h((2t+1)/s)−h(t/s)]s+(log2 t)/2+3/2 + t + 1
if t∈ [(n − 2)/2, n− 1),

n + 1 if t∈ [n − 1, +∞);

where, note

t∈
�

0,
n − 2

2

�

⇐⇒

t

s
=

t

n + 2t
∈
�

0,
1

4
· 1 − 2/n

1 − 1/n

�

'
�

0,
1

4

�

and

t∈
(

n − 2

2
, n − 1

�

⇐⇒

t

s
∈
(

1

4
· 1 − 2/n

1 − 1/n
,
1

3
· 1 − 1/n

1 − 2/(3n)

�

'
(

1

4
,
1

3

�

⇐⇒

2t + 1

s
=

2t + 1

n + 2t
∈
(

1

2
,
2

3
· 1 − 1/(2n)

1 − 2/(3n)

�

'
(

1

2
,
2

3

�

.

Proof: From the following well known approximation
√

2πnnne−ne1/(12n+1) < n! <
√

2πnnne−ne1/(12n);

the following lower bound holds
�

n

w

�

≥ 2h(w/n)·n

p

8n(w/n)(1 − w/n)
= (73)

2h(w/n)·n−(1/2)[log2 w+3+log2(1−w/n)]

for n, w∈IIN and w∈ [1, n − 1].

So, the theorem follows from (72), (73), h(1 − x) = h(x)
and, depending on the cases t∈ (0, (n − 2)/2) and t∈ [(n −
2)/2, n−1)], from the two upper bounds in the last line of (71).

Note that D(n, t) = n + 1 if t ∈ [n − 1, +∞) because of

Theorem 4.3.

A direct consequence of Theorem 4.9 is the following

theorem.

Theorem 4.10 (Upper Bound on the Asymptotic Information

Rate of t-Sy0EC Codes): For any n, t∈IIN let τ
def
= t/n∈IR

and

IUB∞(τ)
def
=























































(

1 − h

�

τ

1 + 2τ

�)

(1 + 2τ)

if τ ∈(0, 1/2),

(

h

�

2τ

1 + 2τ

�

− h

�

τ

1 + 2τ

�)

(1 + 2τ)

if τ ∈ [1/2, 1),

0 if τ ∈ [1, +∞).

The asymptotic information rate of any infinite family of

t-Sy0EC codes of length n with k ∈ IR information bits,

n, t∈IIN, satisfies the following relations,

lim
n→∞

k

n
≤ lim

n→∞

log2 D(n, t)

n
≤ IUB∞(τ).

Proof: First note that k ≤ log2 D(n, t), for all n, t∈IIN;

and so, limn→∞ k/n ≤ limn→∞ log2 D(n, t)/n. Now, since

t∈(0, n − 1) ⇒ lim
n→∞

(log2 t)/2 + 3/2

n
= 0,

it follows,

s = n + 2t and t∈
(

n − 2

2
, n − 1

�

⇒

h

�

2t + 1

s

�

− h

�

t

s

�

≥ 0 ⇒
(

h

�

2t + 1

s

�

− h

�

t

s

�)

s +
log2 t

2
+

3

2
≥ 0 ⇒

lim
n→∞

1

n
log2

�

1 +
t + 1

2[h((2t+1)/s)−h(t/s)]s+(log2 t)/2+3/2

�

= 0,

and

t

s
=

t

n + 2t
=

(t/n)

1 + 2(t/n)
⇐⇒ t

n
=

(t/s)

1 − 2(t/s)
.

So, by letting τ
def
= t/n, from Theorem 4.9, it follows,

lim
n→∞

log2 D(n, t)

n
≤











(1 − h(t/s))(s/n) if t/s∈(0, 1/4),

(h(2t/s) − h(t/s))(s/n) if t/s∈ [1/4, 1/3),

0 if t/s∈ [1/3, +∞);

=

IUB∞(τ);

and the theorem is proved.

Figure 1 gives the plot of IUB∞(τ). Note that the quantity

IUB∞(τ) is an upper bound for the general (deletion) case

channel model because of Lemma 1 in [22]. Comparing this

plot with the analogous plot in [20] for the general case it can

be noticed that IUB∞(τ) improves on the general case upper

bound in [20] for the values of τ = t/n which roughly belong

to the real set [0.28, 0.35]∪ [0.43, 1).
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V. CONCLUDING REMARKS

Some theory and efficient design of binary block codes

capable of controlling the deletions and/or insertions of the

symbol “0” (i. e., the 0-errors) are given. It is shown that

the design of codes for insertion and/or deletion of zeros is

equivalent to the design of the L1 metric error control codes.

Some close to optimal non-systematic codes for correcting

these errors are described and their encoding and decoding

methods are also explained. Based on the theory given here,

some efficient t-Sy0EC systematic codes are given in [42].

Please note that based on the theory developed in this paper

and [6], [8], [35], [36], [37], [38], [39], [40], [41], [43],

whenever it is possible to define an isometry from the metric

space which characterizes a given coding problem to the L1

metric (as the mapping V in (15)), any information on codes

for the L1 metric reflects in the analogous information for that

coding problem. In particular, as we mentioned in Section II,

the sticky channel error control problem [11], [25], [37] can

be reduced to the L1 metric error control problem through

the isometry given by the composition of the Gray mapping

and the V mapping. Also, using Theorem 4.6 and L1 error

control codes over ZZm, with m∈ IIN ∪ {∞}, lower bounds,

upper bounds, code designs and decoding algorithms can be

given for the t-Sy0EC codes which satisfy the RLL(d, k)
constraint [23], [26]. This is because the set of all RLL(d, k)
binary words of length n and weight w with the d0-D/I

metric can be put in bijection with
(

ZZ
w+1
k−d+1, d

sy
L1

)

through

the following isometry

0v110v21 . . . 0vw10vw+1 ↔ (v1 − d, v2 − d, . . . , vw − d).

Likewise, the bit-shift coding problem described in [17]

and [23] can be solved with the following isometry from

the appropriate metric space (S(ZZ2, n, w), dbit−shift) into the

metric space
(

ZZ
w
n, dsy

L1

)

,

0v110v21 . . . 0vw10vw+1 ↔
(v1, v1 + v2 + 1, . . . , v1 + v2 + . . . + vw + w − 1)

which associates any binary word with its support. Also, the

generalization to the q-ary case, q∈IIN, of this 0-error problem

is possible. In this case, assuming for notational convenience

that x-errors are possible if, and only if x ∈ ZZq − {0} def
=

{1, 2, . . . , (q−1)}, then this, say “0-reliable symbol problem”,

can be solved with the isometry

1v12v2 . . . (q − 1)v(q−1)0

1vq2vq+1 . . . (q − 1)v2(q−1)0

...

1vw(q−1)+12vw(q−1)+2 . . . (q − 1)v(w+1)(q−1) ↔
(v1, v2, . . . , v(w+1)(q−1));

where w indicates the number of 0 in any q-ary word.

Instead, note that the q-ary repetition error problem can be

solved with the simpler isometry mentioned in [37]. Also the

above mentioned binary problems and many others could be

generalized to the q-ary case and addressed analogously.

APPENDIX

Theorem 5.1 (Sphere Packing Upper Bound on the Cardi-

nality of Asymmetric Error Control Codes Over ZZm):

For all m∈IIN∪{∞} and n, w, t∈IIN the following relation

holds.

CW (ZZm, n + 1, w, t) = LW (ZZm, n, w, t) ≤






⎣

w+t
X

v=w−(m−1)

�

n

v

�

m+µ

/

t
X

τ=0

�

n

τ

�

m







⎦ ;

where

µ
def
= µ(m, t)

def
= min{m − 1, t}.

In particular, if m = ∞ then

LW (IIN, n, w, t) ≤
��

n + w + t

n

���

n + t

n

��

,

Proof: The above upper bound for LW (ZZm, n, w, t) can

be derived by using a sphere packing argument as follows. For

any X ∈ZZ
n
m consider the “(positive) m-ary asymmetric ball

centered at X with radius t” defined (in Frobenius notation) as

B(X, t)
def
= Bas

L1
(n,ZZm, X, t) = X + B(∅, t) = (74)

{Z∈IIN
n : Z = X + E, E∈ZZ

n
m and |E| ≤ t};

where, from (7),

B(∅, t) = {E∈ZZ
n
m : |E| ≤ t} =

t
[

τ=0

{E∈ZZ
n
m : |E| = τ} =

t
[

τ=0

S(ZZm, n, τ).

Since the above union is a disjoint union of spheres, from (74)

it follows

|B(X, t)|= |B(∅, t)|=
t
X

τ=0

|S(ZZm, n, τ)|=
t
X

τ=0

�

n

τ

�

m

. (75)

In particular, if m = ∞ then

|B(X, t)| = |B(∅, t)| =

t
X

τ=0

|S(IIN, n, τ)| = (76)

t
X

τ=0

�

n + τ − 1

n − 1

�

=

�

n + t

n

�

because of (12). Now, let Â ⊆ ZZ
n
m be any m-ary code of

length n and

B(Â, t)
def
=

[

X∈Â

B(X, t). (77)

If the minimum asymmetric L1 distance of Â is das
L1

(Â) > t

then the code Â is a (0, t)-EC code, and so,

for all X, Y ∈Â, X 6= Y ⇒ B(X, t) ∩ B(Y, t) = ∅. (78)

In fact, if Z ∈B(X, t) ∩ B(Y, t) 6= ∅ then |X .− Y | ≤ |X .−
Z| + |Z .− Y | ≤ 0 + t = t and |Y .− X | ≤ |Y .− Z| + |Z .−
X | ≤ 0 + t = t; and so, das

L1
(X, Y ) = min{|X .− Y |, |Y .−

X |} ≤ t. That is, das
L1

(Â) ≤ t. From (78), the union in (77)

is a disjoint union of m-ary asymmetric balls. From (75),
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these m-ary asymmetric balls have the same cardinality.

So, if das
L1

(Â) > t then

|B(Â, t)|=

�

�

�

�

�

�

[

X∈Â

B(X, t)

�

�

�

�

�

�

=
X

X∈Â

|B(X, t)|= |B(∅, t)| · |Â|;

that is,

|Â| =
|B(Â, t)|
|B(∅, t)| . (79)

Note that, if A = ZZm then maxa∈A a = (m− 1). So, if Â is

a constrained weight

w∈
(

w − max
a∈A

a, w

)

= [w − (m − 1), w]

code then, from (77),

B(Â, t)
def
=

[

X∈Â

B(X, t) ⊆
w+t
[

v=w−(m−1)

S(ZZn
m+µ, n, v);

where µ
def
= µ(m, t)

def
= min{m − 1, t}. Since, the rightmost

union above is a disjoint union, it follows

|B(Â, t)| ≤

�

�

�

�

�

�

w+t
[

v=w−(m−1)

S(ZZm+µ, n, v)

�

�

�

�

�

�

=

w+t
X

v=w−(m−1)

|S(ZZm+µ, n, v)| = (80)

w+t
X

v=w−(m−1)

�

n

v

�

m+µ

.

In particular, if m = ∞ then

|B(Â, t)| ≤
�

�

�

�

�

w+t
[

v=0

S(IIN, n, v)

�

�

�

�

�

=

w+t
X

v=0

|S(IIN, n, v)| = (81)

w+t
X

v=0

�

n + v − 1

n − 1

�

=

�

n + w + t

n

�

.

because of (12). So, if Â is a constrained weight w∈ [w−(m−
1), w] code and das

L1
(Â) > t then, from (79), (75) and (80),

|Â| =
|B(Â, t)|
|B(∅, t)| ≤

w+t
X

v=w−(m−1)

�

n

v

�

m+µ

/

t
X

τ=0

�

n

τ

�

m

.

In particular, if m = ∞ then

|Â| =
|B(Â, t)|
|B(∅, t)| ≤

�

n + w + t

n

���

n + t

n

�

=

|S(IIN, n + 1, w + t)|
|S(IIN, n + 1, t)| .

because of (79), (76) and (81). At this point, the upper bounds

on LW (ZZm, n, w, t), for all m∈ IIN ∪ {∞}, follow because

the last two inequalities are valid for any constrained weight

w∈ [w − (m − 1), w] code, Â, such that das
L1

(Â) > t.
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