
Object as a Service (OaaS) Serverless Cloud
Computing Paradigm

Pawissanutt Lertpongrujikorn , Mohsen Amini Salehi
High Performance Cloud Computing (HPCC) Lab, University of North Texas

pawissanuttlert pongru jikorn@my.unt.edu,mohsen.aminisalehi@unt.edu

I. INTRODUCTION

The emergence of cloud technology has drastically trans-
formed the application development process. With cloud in-
frastructure, provisioning can now be done in a few minutes,
as opposed to the weeks or months it used to take. Over the
past decade, cloud services have replaced mundane tasks with
software automation. The current state-of-the-art, serverless
platform utilizes the function-as-a-service (FaaS) paradigm to
enable developers to build applications by simply writing code
in the form of a function and uploading it to the platform. The
system then automates the process of building, deploying, and
auto-scaling the application, making the overall development
process more effortless and mitigating the burden for pro-
grammers and cloud solution architects. Major public cloud
providers offer FaaS services (e.g., AWS Lambda, Google
Cloud Function, Azure Function), and several open-source
platforms for on-premise FaaS deployments are emerging
(e.g., OpenFaaS, Knative). In the backend, the serverless
platform hides the complexity of resource management and
deploys the function seamlessly in a scalable manner. FaaS
is proven to reduce development and operation costs via
implementing scale-to-zero and charging the user in a truly
pay-as-you-go manner. Thus, it aligns with modern software
development paradigms, such as CI/CD and DevOps [4].

As the FaaS paradigm is primarily centered around the
notion of stateless functions, it naturally does not deal with the
data. However, in practice, most use cases need to maintain
some form of (structured or unstructured) state and keep them
in the external data store. Thus, often the developers have to
intervene and undergo the burden of managing the application
data using separate cloud services (e.g., AWS S3 [2]). Even
though stateless functions make the system scalable and man-
ageable, the state still exists in the external data store, and
the developer must intervene to connect the function to the
data store. For instance, in a video streaming application [6],
developers must maintain video files, metadata, and access
control, in addition to developing functions.

Apart from the lack of data management, current FaaS
abstractions do not natively support function workflows. To
form a workflow, the developer has to generate an event
that triggers another function in each function. However, for
large workflows, configuring and managing the chain of events
become cumbersome. Although function orchestrator services
(e.g., AWS Step Function [1] and Azure Durable Function [5])
can be employed to mitigate this burden, the lack of built-

in workflow semantics (see Figure 1) in FaaS forces the
developer to intervene and employ other cloud services to
manually navigate the data throughout the workflow. In sum,
although FaaS makes the resource management details (e.g.,
auto-scaling) transparent from the developer’s perspective, it
does not do so for the data, access control, and workflow.

Last but not least, FaaS has limited performance control sup-
port. Because the cloud provides separate service abstractions
for computing, databases, and other related components (e.g.,
workflow, messaging, etc.), it prevents the opportunity for the
whole application optimization (e.g., data locality, caching,
etc.). Moreover, the cloud lacks coordination between the
cloud and developers. As a result, cloud service is operated
with little knowledge of the application, and developers are
less capable of controlling or “hinting” the system to satisfy
the QoS requirements.

To overcome these inherent problems of FaaS, we develop a
new paradigm on top of the function abstraction that mitigates
the burden of resource, data, and workflow management from
the developer’s perspective. We borrow the notion of “object”
from object-oriented programming (OOP) and develop a new
abstraction level within the serverless cloud, called Object as
a Service (OaaS) paradigm. Incorporating the application data
and workflow into the object abstraction unlocks opportunities
for built-in optimization features, such as data locality, data
reliability, caching, software reusability [7], and data access
control. Moreover, objects in OaaS offer developers encapsu-
lation and abstraction benefits and the ability to transparently
define workflows of cloud functions (a.k.a. dataflow program-
ming [12]).

As shown in Figure 1, unlike FaaS, OaaS segregates the
state management from the developer’s source code and in-
corporates it into the serverless platform to make it transpar-
ent from the developer’s perspective. OaaS also incorporates
workflow orchestration as the dataflow abstraction with built-
in data navigation between functions. Furthermore, developers
can provide the QoS requirements to the platform to auto-
mate the performance optimization smartly behind the scenes.
Such that the application’s performance can be guaranteed or
promptly rejected if not feasible.

II. OPARACA: OAAS-BASED SERVERLESS PLATFORM

To offer the OaaS paradigm, we develop Oparaca (Object
Paradigm on Serverless Cloud Abstraction) platform. In
this section, we will discuss the noteworthy key features of
Oparaca.

1

https://orcid.org/0009-0003-4106-2347
https://orcid.org/0000-0002-7020-3810
https://hpcclab.org


Application
Logic

FaaS Platform

Function Data
Storage

State
Management

Developer

Source Code Serverless Cloud

Workflow
Orchestrator

Workflow 
Definitions

(a) Function as a Service (FaaS)

Application
Logic

OaaS Platform

Data
Storage

Developer

Source Code

Serverless Cloud

Application
Logic

Application
Logic

Dataflow ManagementDataflow
Definitions

State Management

Function

QoS
Requirements &

Constrants
Automate Optimization

(b) Object as a Service (OaaS)

Fig. 1: A bird-eye view of FaaS vs. OaaS.

A. Modular and platform agnostic designs

First, Oparaca is designed to be modular and platform-
agnostic. Oparaca doesn’t tightly rely on any FaaS system
or underlying platform but instead uses the standardized
API/protocol as the abstraction layer. The most important
aspect is that it abstracts developers’ code from the cloud
storage. Because of Oparaca utilizing the schematic of pure
function that package the object state and input request into
the standalone invocation task. This task is offloaded to
the code execution runtime and is expected to return with
the modified state. Therefore, the code execution runtime is
entirely decoupled from the state management. By using an
RPC request for offloading a task, any FaaS engine can accept
this task to process and return the output and modified state in
the response body. Although Oparaca currently only provides
comprehensive integration with Knative [8], connecting the
other FaaS engine can be done by configuring the URL.

B. Unstructured data support

Other than the structured data (e.g., JSON) supported by the
previously-mentioned pure function schematic, Oparaca allows
developers to combine the unstructured data (e.g., multimedia
file) as a part of an object state. To meet the platform-agnostic
objective, Oparaca uses the S3 protocol [2], a standardizing
protocol for object storage, for implementing the data access.
This approach is not limited to AWS and can be implemented
using open-source solutions like MinIO [10] and Ceph [15],
which support S3 API. Oparaca employs the presigned URL
technique to allow the developer’s code access to the file in
object storage directly without the need to share the secret key
and avoid the leak of sensitive information.

C. Consistency

Oparaca has a mechanism to maintain the data consistency
that protects from failure and race conditions. Since Oparaca
supports structured and unstructured data, it needs to manage

two data stores. Both data stores have to update at the same
time successfully. Otherwise, the data becomes inconsistent. If
the failure happens, one data store can successfully update the
state while the other might not. Oparaca prevents this scenario
by employing the fail-safe state transition. In another case,
when users send multiple requests to modify the same object, it
can cause the race condition. Oparaca also avoids this scenario
by using a built-in locking mechanism.

D. Performance

To improve the performance, caching is a popular technique
used to reduce data movement, and improve the end-to-end re-
sponse time. Oparaca provides in-memory caching capabilities
via implementing distributed hash table (DHT) [9] through
integration with the in-memory data grid (IMDG), allowing
cache object states at scale. Using consistent hashing [13],
Oparaca can quickly determine the location of cached data
and send requests there in a single hop of the network. As a
result, the end-to-end response time is improved without the
burden of manually setting up the cache system.

E. Dataflow support

Instead of offering a standard workflow, Oparaca provides
the dataflow abstraction that allows the developer to define
the invocation steps in the dataflow as a form of directed
acyclic graph (DAG). In each step, the developer can declare
the output of each invocation as a temporary variable within
the workflow. Then, the next invocation can use the previous
temporary variable as an input or a target for calling a function,
and the system recognizes this step relation as an edge in
DAG. Upon dataflow invocation, the system can automatically
resolve the order of dataflow steps by topological ordering
of DAG. Therefore, developers are relieved from the hurdle
of manually navigating the data between multiple functions
within the workflow.

F. QoS-driven optimization

Oparaca provides developers with the interface to control
the performance of their applications in high-level abstraction.
This is achieved by allowing developers to define their Quality
of Service (QoS) requirements and constraints. Once the
information is received, the system checks for any conflicts
or infeasibilities with the current resources available. If any
issues are detected, the user’s request is promptly rejected. To
meet the requirements, Oparaca connects to the monitoring
system and reacts to changes in workload or performance by
adjusting the allocated resources or system configuration.

G. Dynamic Class Runtime

To fulfill the variety of QoS requirements on different ap-
plications or classes, having the class runtime (i.e., underlying
services for enabling class) shared among them is difficult to
manage because of possible conflict in QoS requirements. To
address this issue, Oparaca dynamically creates a dedicated
class runtime for each class. Using this approach, Oparaca
can make the class runtime have specific characteristics based

2



on the requirement. For instance, Oparaca can disable unim-
portant components (e.g., in-memory cache store) to reduce
the cost for low-budget requirements.

III. TABLE OF CONTENTS

The table of contents of the tutorial will be as follows:

1) Introduction:
a) Serverless system and our vision of the next-generation

cloud computing.
b) The current state of the practice, FaaS paradigm

2) Motivations:
a) The shortages of FaaS
b) The problems of guaranteeing application performance

in FaaS development.
3) Our solutions: Object as a Service (OaaS) Paradigm

a) Unified OaaS Abstraction (Data, function, non-
functional requirement encapsulation into the notion
of object)

b) High-level non-functional requirement interface to
drive the cloud-developer coordination

4) Oparaca Concepts and Designs:
a) Our design goals for designing Oparaca
b) System Architecture
c) Dynamic Class Runtime
d) QoS-driven optimization
e) State Management
f) Maintaining Consistency with fail-safe state transition
g) Performance improvement with caching and consistent

hashing via distributed hash table (DHT)
5) Demonstration of developing services with Oparaca

(hands-on)
a) Installing Oparaca platform inside local Kubernetes
b) Creating a new function with Python code
c) Defining a new class in YAML
d) Using Oparaca CLI to manage the class deployment
e) Creating a new object and invoking its function
f) Optimizing by defining the non-functional requirement

(QoS and constraints)

IV. POTENTIAL AUDIENCE OF THE TUTORIAL

Embracing the OaaS paradigm can benefit developers of
small companies or startups trying to develop and deploy new
services without bearing the burden of low-level details. By
leveraging this paradigm, developers can focus on high-level
application logic while offloading the operational aspects of
the service to software automation. This results in a more agile
and effective development process, which can help startups
quickly deliver new services to the market. The company
also benefits from a serverless auto-scaling feature, which
reduces resource waste during low workloads and maintains
user experience during high traffic by dynamically adjusting
allocated resources.

V. REQUIREMENTS FOR THE TUTORIAL

For this tutorial, we need a projector and internet access for
the presenter and audience. Audiences who want to follow
the tutorial should have some basic knowledge of cloud
and Kubernetes and have a laptop that can install container
runtime.

To make the hands-on tutorial flow smoothly, the audience
should have a laptop that already installs the basic soft-
ware requirements: Docker [11], Java [3] (version 21), and
Python [14] (version >= 3.11) runtime. Moreover, the laptop
should have at least 16 GB of memory to run all of the
software without the out-of-memory error.

VI. BIOGRAPHY OF THE INSTRUCTOR(S)

Dr. Mohsen Amini Salehi is an Associate Professor at
the Computer Science and Engineering (CSE) department,
University of North Texas (UNT), USA. He is the director of
High Performance and Cloud Computing (HPCC) Laboratory
where several graduate and undergraduate students research
on various aspects of Distributed and Cloud computing. Dr.
Amini is an NSF CAREER Awardee and, so far, he has had
11 research projects funded by National Science Foundation
(NSF) and Board of Regents of Louisiana. He has also
received 10 awards and certificates from in recognition of his
innovative research, including the “Best Service Award” from
IEEE/ACM CCGrid ’23 Conference. His research interests
are in democratizing cloud-native application development,
building smart and trustworthy systems across edge-to-cloud
continuum, and heterogeneous computing.

Pawissanutt Lertpongrujikorn is currently a Ph.D. Student
in computer science and engineering at the University of
North Texas. Pawissanutt works as a research assistant at
the High-Performance Cloud Computing (HPCC) Lab in the
computer science and engineering department. His research
interest includes developing a new paradigm for cloud-native
programming and serverless systems. He earned a B.Eng. in
computer engineering from Kasetsart University in Thailand.

REFERENCES

[1] Amazon. AWS Step Functions | Serverless Microservice Orchestration.
https://aws.amazon.com/step-functions. Accessed on 23 Jul. 2022.

[2] Amazon. Cloud Object Storage | Amazon S3 – Amazon Web Services.
https://aws.amazon.com/s3/. Online; Accessed on 12 Nov. 2023.

[3] Ken Arnold, James Gosling, and David Holmes. The Java Programming
Language. Addison Wesley Professional, 2005.

[4] S. Bangera. DevOps for Serverless Applications: Design, deploy, and
monitor your serverless applications using DevOps practices. Packt
Publishing, 2018.

[5] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David
Justo, Konstantinos Kallas, Connor McMahon, Christopher S Meikle-
john, and Xiangfeng Zhu. Netherite: Efficient execution of serverless
workflows. Proceedings of the VLDB Endowment, 15(8):1591–1604,
2022.

[6] Chavit Denninnart and Mohsen Amini Salehi. SMSE: A Serverless
Platform for Multimedia Cloud Systems. arXiv preprint:220.0194, 2022.

[7] Chavit Denninnart and Mohsen Amini Salehi. Harnessing the potential
of function-reuse in multimedia cloud systems. IEEE Transactions on
Parallel and Distributed Systems, 33(3):617–629, 2021.

[8] Cloud Native Foundation. Knative. https://knative.dev/. Online;
Accessed on 12 Nov. 2023.

3

https://aws.amazon.com/step-functions
https://aws.amazon.com/s3/
https://knative.dev/


[9] Yahya Hassanzadeh-Nazarabadi, Sanaz Taheri-Boshrooyeh, Safa Otoum,
Seyhan Ucar, and Öznur Özkasap. Dht-based communications survey:
architectures and use cases. arXiv preprint arXiv:2109.10787, 2021.

[10] MinIO Inc. MinIO | High Performance, Kubernetes Native Object
Storage. https://min.io/. Online; Accessed on 12 Nov. 2023.

[11] Dirk Merkel. Docker: lightweight linux containers for consistent
development and deployment. Linux journal, 2014(239):2, 2014.

[12] Tiago Boldt Sousa. Dataflow programming concept, languages and
applications. In Doctoral Symposium on Informatics Engineering,
volume 130, 2012.

[13] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger,
M Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scal-
able peer-to-peer lookup protocol for internet applications. IEEE/ACM
Transactions on networking, 11(1):17–32, 2003.

[14] Guido Van Rossum and Fred L Drake Jr. Python reference manual.
Centrum voor Wiskunde en Informatica Amsterdam, 1995.

[15] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and
Carlos Maltzahn. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th symposium on Operating systems
design and implementation, pages 307–320, 2006.

4

https://min.io/

	Introduction
	Oparaca: OaaS-Based Serverless Platform
	Modular and platform agnostic designs
	Unstructured data support
	Consistency
	Performance
	Dataflow support
	QoS-driven optimization
	Dynamic Class Runtime

	Table of Contents
	Potential Audience of the Tutorial
	Requirements for the Tutorial
	Biography of the instructor(s)
	References

