
Efficient Systematic Deletions/Insertions of 0’s
Error Control Codes∗

Luca G. Tallini†, Nawaf Alqwaifly‡,§ and Bella Bose‡

†Facoltà di Scienze della Comunicazione, Università degli Studi di Teramo, Teramo, Italy. E-mail: ltallini@unite.it
‡School of EECS, Oregon State University, Corvallis, OR, USA. E-mail: alqwaifn@oregonstate.edu, bose@eecs.orst.edu

§College of Engineering, Qassim University, Saudi Arabia.

Abstract—This paper gives some theory and efficient design
of binary block codes capable of controlling the deletions of the
symbol “0” (referred to as 0-deletions) and/or the insertions of
the symbol “0” (referred to as 0-insertions). This problem of con-
trolling 0-deletions and/or 0-insertions (referred to as 0-errors)
is shown to be equivalent to the efficient design of L1 metric
asymmetric error control codes over the natural alphabet, IIN.
Optimal systematic code designs are given. In particular, for all
t, k∈IIN, a recursive method is presented to encode k information
bits into efficient systematic t Symmetric 0-Error Correcting,
(t + 1) Symmetric 0-Error Detecting and All Unidirectional 0-
Error Detecting (t-Sy0EC/(t+1)-Sy0ED/AU0ED) codes of length

n ≤ k + t log2 k + o(t log n)

as n ∈ IIN increases. Decoding can be efficiently performed by
algebraic means using the Extended Euclidean Algorithm (EEA).

Index Terms—deletion/insertion of zero errors, repetition/sti-
cky errors, L1 distance, asymmetric distance, elementary sym-
metric functions, constant weight codes.

I. INTRODUCTION

In communication and magnetic recording systems, the

channel may cause two types of synchronization errors. The

first one is not receiving a transmitted symbol (a deletion

error), and the second one is receiving a spurious symbol

(an insertion error). The propagation of these errors will

significantly reduce the performance of the systems.
The general problem of designing efficient codes capable of

correcting t insertion and deletion of symbols is still an open

research problem even though some results have been reported

in these research papers [1], [5]–[10], [14]–[16], [18], [20]–

[24] (also please see the references in these papers). However,

some efficient code designs for correcting insertion/deletion of

some fixed symbol, say 0, are given in [4], [11]–[13], [15],

[17], [27], [32]. In the present paper, some systematic codes

capable of correcting t insertion and deletion of the symbol 0
are given which are superior to the codes given in [17] and

[27] in terms of redundancy and reliability.
Let ZZ∗

2 be the set of all finite length binary sequences where

ZZ2
def
= {0, 1}. In this paper, we are interested in the efficient

design of binary block codes capable of correcting t∈ IIN or

less deletions and/or insertions of a fixed binary symbol, say,

0∈ZZ2. In this error model, if

X = 0100101000101110∈ZZ
16
2 (1)

is a transmitted binary sequence of length n = 16, then

Y = 0010λ1λ100001λ1100100 (2)

= 001011000011100100 ∈ZZ
18
2

∗This work is supported by the NSF grants CCF-2006571.

is the received word obtained from X due to 3 deletions (λ
represents the empty symbol) and 5 insertions of the symbol

0. The problem of designing efficient codes to control these

types of 0 deletion and/or insertion errors (briefly, 0-errors)

is an open research problem introduced by Levenshtein in

[15] which is important for at least two reasons. From the

application perspective, through the Gray mapping, correcting

t deletions or insertions of 0’s is equivalent to correcting t
repetition (or, sticky) errors which occur in high speed com-

munication and data storage systems due to synchronization

loss [4], [17], [27]. From the theoretical perspective, the design

problem of t deletion and/or insertion of 0’s Error Correcting

(i. e., t-Symmetric 0-Error Correcting (t-Sy0EC)) codes is

important because it is a particular instance of the general

problem also introduced by Levenshtein in [16].

With regard to the 0-error problem, for all X,Y ∈ZZ
∗
2, let

d0-D/I(X,Y)
def
= the minimum number of deletions

and/or insertions of 0’s needed to

transform the binary word X to Y .

(3)

For example, if X and Y are the words given in (1) and (2)

respectively, then d0-D/I(X,Y) = 8. The above function intro-

duced in [15] is a distance (called here the deletion/insertion of

0’s distance). In fact, it is a graph distance defined in the graph

(N,E) where the set of nodes N
def
= ZZ

∗
2 and the set of edges

E
def
=

{

(X,Y)∈N2 : d0-D/I(X,Y) = 1
}

. Synchronization

errors due to 0-errors can be controlled by inserting a marker

or synchronization sequence between consecutive codewords

in the sequences that are sent [5], [15], [19]. Thus, we

assume no synchronization errors due to erroneous receptions

of sequences of codewords (i. e., we assume that the receiver

knows the length of the received word). In this case, since

1-errors are forbidden in our error model,

wH(X) ̸= wH(Y) ⇐⇒ d0-D/I(X,Y) = ∞; (4)

where wH(Z) denotes the Hamming weight of Z ∈ ZZ
∗
2.

In this way, the metric space (ZZ∗
2, d0-D/I) or its associated

graph (N,E) remains partitioned into many distinct connected

components, one for each possible Hamming weight, w =
wH(X)∈IIN, of words X∈ZZ

∗
2.

The rest of the paper is organized as follows. In Section II, it

is shown that the 0-insertion/deletion error control problem is

equivalent to some L1 error control problem [32]. In addition,

the non-systematic codes given by us in [32], which is the basis

for the proposed systematic code design, is briefly described.

In Section III, for fixed t ∈ IIN, new efficient recursive

code designs are presented to encode k ∈ IIN information

bits into systematic t Symmetric 0-Error Correcting, (t + 1)

2022 IEEE Information Theory Workshop (ITW)

978-1-6654-8341-4/22/$31.00 ©2022 IEEE 570

2
0
2
2
 I

E
E

E
 I

n
fo

rm
at

io
n
 T

h
eo

ry
 W

o
rk

sh
o
p
 (

IT
W

)
| 9

7
8
-1

-6
6
5
4
-8

3
4
1
-4

/2
2
/$

3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

T
W

5
4
5
8
8
.2

0
2
2
.9

9
6
5
8
9
2

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 27,2024 at 18:18:20 UTC from IEEE Xplore. Restrictions apply.

Symmetric 0-Error Detecting and All Unidirectional 0-Error

Detecting (t-Sy0EC/(t + 1)-Sy0ED/AU0ED) codes of length

n = k + t log2 k + O(log log k) and these codes improve the

codes in [17] and [27] in terms of redundancy and reliability.

II. 0-DELETION/INSERTION ERRORS AND THE L1 METRIC

In this section, it is shown that the design problem of t-
Sy0EC codes is equivalent to the design problem of some

L1 metric asymmetric error control codes over the natural

alphabet, IIN. Before describing this result, some background

materials are given first.

Let x, y∈ZZm ⊆ IIN
def
= ZZ∞, where m∈IIN. Define x .− y

= max {0, x − y}. For example, if x = 2 and y = 0 then

x .− y = 2 and y .− x = 0. Given any two words X,Y ∈ZZ
n
m,

the operations X ∩ Y ∈ ZZ
n
m, X ∪ Y ∈ ZZ

n
m, X + Y ∈ IIN

n,

and X .− Y ∈ ZZ
n
m are defined as the digit by digit min,

max, integer addition and
.− operation between X and Y ,

respectively. For example, if m = 3, n = 9, X = (012012012)
and Y = (000111222) then X ∩Y = (000011012), X ∪Y =
(012112222), X+Y = (012123234), X .− Y = (012001000)
and Y .− X = (000100210). In addition, the support of a

word X = x1x2 . . . xn ∈ ZZ
n
m is ∂X = s1s2 . . . sn ∈ ZZ

n
2

where si = 1 if xi ̸= 0 and si = 0 otherwise. For example

∂(42101) = (11101).
To better describe the error control properties of codes for

the L1 metric, the following distances between m-ary words

X,Y ∈ZZ
n
m are considered in [28], [30] (the “+” sign below

indicates an integer sum).

symmetric L1: dsyL1
(X,Y)

def
= |Y .−X|+|X .−Y |,

asymmetric L1: dasL1
(X,Y)

def
= max{|Y .−X|, |X .−Y |}, (5)

Hamming: dH(X,Y)
def
= |∂(Y .−X)|+|∂(X .−Y)|.

For example, if m = 5, n = 5, X = (01423), Y = (43213)
then |X .− Y | = 3, |Y .− X| = 6, |∂(X .− Y)| = 2,

|∂(Y .− X)| = 2 and dsyL1
(X,Y) = 3 + 6 = 9, dasL1

(X,Y) =
max{6, 3} = 6 and dH(X,Y) = 2 + 2 = 4. From the error

control perspective, if X is the transmitted word and Y is the

received word then Y .− X and X .− Y give the increasing

and decreasing error vectors, respectively. Thus,

X = Y − (Y .− X) + (X .− Y).

Note that,

for all X,Y ∈ZZ
n
m, dH(X,Y) ≤ dsyL1

(X,Y) (6)

because |∂X| ≤ |X|, for all X∈ZZ
n
m.

Constant weight codes play an important role in what

follows. Thus, given n,w∈ IIN and any numeric set A ⊆ IIN

as alphabet, let

S(A, n,w)
def
= {X∈An : wL1

(X) = |X| = w} (7)

be the set of all word over A of length n and constant weight

w. We readily note, from (7), that

S(A, n,w) =
⋃

x∈A

S(A, n− 1, w − x)x; (8)

where the above union is a disjoint union of sets. Hence, the

general recurring formula,

|S(A, n,w)| =
∑

x∈A

|S(A, n− 1, w − x)|, (9)

holds for, say, the “A-nominal coefficient n choose w”,

|S(A, n,w)|. If A = ZZm then the cardinality of the above

set is the m-nominal coefficient n choose w

|S(ZZm, n, w)| =

(

n

w

)

m

=
m−1
∑

v=0

(

n− 1

w − v

)

m

, (10)

for all integers m∈IIN.

Now, if X ∈ZZ
∗
2 then X can be uniquely written as [15],

[32],

X = 0v110v210 . . . 010vw10vw+1 (11)

where l = l(X) ∈ IIN is the length of X , w = wH(X) ∈
[0, l(X)] is the Hamming weight of X and, for all integers

i ∈ [1, w + 1],vi
def
= vi(X) ∈ ZZl−w+1 ⊆ IIN is the i-th run

length of 0’s in the word X . Note that

vw+1 = (l(X)− w(X))−

w
∑

i=1

vi. (12)

Given the above representation, consider the following

bijective function (which we call the bucket of 0’s mapping)

V : ZZ∗
2 → ZZ

∗
∞ = IIN

∗ (13)

which associates any X ∈ ZZ
∗
2 represented as in (11) with

V (X)
def
= (v1, v2, . . . , vw, vw+1) ∈ IIN

∗. For example, if

X = 01 001 01 0001 01 1 1 0000000 ∈ ZZ
∗
2 then V (X) =

(1, 2, 1, 3, 1, 0, 0, 7) ∈ IIN
∗. The mapping V in (13), already

considered by Levensthein in [15], defines a bijection from the

set of all binary words of any finite length n∈ IIN and Ham-

ming weight w (= number of 1’s of the binary words) into the

words over IIN of length w+1 (= number of buckets defined

by the w 1’s of the binary words) and L1 weight n−w (= num-

ber of 0’s of the binary words). Except for the rightmost “1”

which is dropped, the function V −1 : ZZ∗
∞ = IIN

∗ → ZZ
∗
2 is

nothing but the prefix free unary representation of a sequence

of integer numbers. Hence, both V and V −1 are one-to-one

mappings such that V (S(ZZ2, n, w)) = S(IIN, w + 1, n− w),
and S(ZZ2, n, w) = V −1(S(IIN, w+1, n−w)). For example,

for n = 4, the mapping V acts on ZZ
4
2 is as reported in Table

I. Let

V̂ : ZZ∗
2 → IIN

∗ (14)

be the function obtained from V by dropping the last com-

ponent; V̂ associates any X ∈ ZZ
∗
2 represented as in (11)

with V̂ (X)
def
= (v1, v2, . . . , vw) ∈ IIN

∗. Obviously, since

V is a one-to-one function, it is possible to reconstruct X
from V (X); likewise, even though V̂ is not one-to-one (for

example, V̂ (0110) = V̂ (011000) = (1, 0)), it is possible to

reconstruct X from V̂ (X) and n = l(X) because of (12).

In this case, vw+1 can be considered as a parity digit which

makes the L1 weight wL1
(V (X)) = n−w. Both functions V

2022 IEEE Information Theory Workshop (ITW)

571Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 27,2024 at 18:18:20 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE MAPPING V ACTING ON ZZ

4
2 .

In the table, vw(X)+1 is in boldface and l(X) is the length of any X∈A∗.

l(X) = n w(X) X V (X) = V̂ (X)vw+1 l(V (X)) w(V (X))

4 0 0000 4 1 4

0001 30
4 1 0010 21 2 3

0100 12
1000 03

0011 200
0101 110

4 2 0110 101 3 2
1001 020
1010 011
1100 002

0111 1000
4 3 1011 0100 4 1

1101 0010
1110 0001

4 4 1111 00000 5 0

and V̂ play important roles in our code designs and analysis.

Consider the following example words

X = 01 001 01 0001 01 1 1 0 ∈ZZ
16
2 ,

Y = 001 001 1 00001 1 1 001 00 ∈ZZ
19
2 ,

Y ′ = 001 001 01 0001 01 00 ∈ZZ
16
2 ;

and their associated V values are

V (X) = (1, 2, 1, 3, 1, 0, 0,1)∈IIN
8,

V (Y) = (2, 2, 0, 4, 0, 0, 2,2)∈IIN
8,

V (Y ′) = (2, 2, 1, 3, 1,2) ∈IIN
6.

Note that if X is sent, Y ′ can never be received because

7 = w(X) ̸= w(Y ′) = 5 and 1-errors are forbidden in

our channel model; whereas, Y can erroneously be received

and the number of 0-deletions (= 2) plus the number of 0-

insertions (= 5) from X to Y is equal to the L1 distance

between V (X) and V (Y), dsyL1
(V (X), V (Y)) = 2 + 5 = 7.

In fact, in general, a sequence Y ∈ ZZ
∗
2 is obtained from

the sequence X ∈ ZZ
∗
2 due to t− deletions and t+ inser-

tions of the symbol 0 if, and only if, w(Y) = w(X) and

dsyL1
(V (Y), V (X)) = t− + t+; that is, V (Y) is obtained from

V (X) due to a negative error pattern of magnitude t− and a

positive error pattern of magnitude t+. Hence, the bucket of

0’s mapping X → V (X) reduces the t− 0-deletion and t+
0-insertion error correction problem into the t− negative and

t+ positive error correction problem for the L1 distance over

IIN.

Theorem 1 (isometry between (ZZ∗
2, d0-D/I) and (IIN∗, dsyL1

)):
For all X,Y ∈ZZ

∗
2,

d0-D/I(X,Y) =

{

dsyL1
(V (X), V (Y)) if w(X)=w(Y),

∞ if w(X) ̸=w(Y).
(15)

Note that (15) implies that d0-D/I(X,Y) < ∞ if, and only

if, w(X) = w(Y). So, if we extend the domain of dsyL1
from

IIN
l × IIN

l, l∈ IIN, to IIN
∗ × IIN

∗ by letting dsyL1
(U, V) = ∞

whenever l(U) ̸= l(V) then,

for all X,Y ∈ZZ
∗
2, d0-D/I(X,Y) = dsyL1

(V (X), V (Y)).

This implies that the mapping V in (13) is an isometry between

the metric spaces (ZZ∗
2, d0-D/I) and (IIN∗, dsyL1

).

Because of Theorem 1, the proposed code is the union of

block (i. e., constant) length n∈IIN constant weight w∈ [0, n]
codes, where the union is over w. Under the “bucket of zeros”

mapping, for all w∈ [0, n], a word X∈S(ZZ2, n, w) ⊆ ZZ
n
2 is

transferred to a word V (X) = (v1, v2, . . . , vw+1)∈ZZ
w+1
n−w+1.

Note that, knowing V̂ (X) = (v1, v2, . . . , vw)∈ZZ
w
n−w+1 it is

possible to calculate vw+1. So, in our code design method,

we design L1 asymmetric distance t + 1 codes using only

the first w = wH(X) components of V (X). Note that,

if U, V ∈ ZZ
w+1
n−w+1 are two constant weight codewords of

asymmetric L1 distance t+1 then the symmetric L1 distance

between them is 2(t + 1) because |U .− V | = |V .− U | =
t + 1. So, for any Cw ⊆ S(ZZ2, n, w), if the minimum

code distance dasL1
(V̂ (Cw)) > t then dasL1

(V (Cw)) > t, and

so, dsyL1
(V (Cw)) > 2t + 1. Thus, V (Cw) can correct t-

symmetric errors, detect t + 1 symmetric errors and detect

all unidirectional errors under the L1 distance metric [34].

This implies that Cw can correct t-symmetric 0-errors, detect

t+1 symmetric 0-errors and detect all unidirectional 0-errors

under the d0-D/I distance metric. Moreover, any union over

w of Cw’s is t-Sy0EC/(t+ 1)-Sy0ED/AU0ED because of (4).

Thus, in general, any L1 distance error control property of

codes over IIN reflects into the analogous d0-D/I distance error

control property of codes over ZZ2 because of Theorem 1. So,

from the L1 metric asymmetric/unidirectional coding theory

[2], [3], [28]–[32], [34] and Theorem 1, the following theorem

holds.

Theorem 2 (Decomposition Theorem): Let t, t−, t+, τ ∈IIN

be given such that t− + t+ = t and τ ∈ [0, t]. If

C =
⋃

w∈[0,n]

Cw ⊆ ZZ
n
2

is a binary code of length n∈IIN and Cw
def
= C ∩S(ZZ2, n, w),

for all integer w ∈ [0, n], then the following statements are

equivalent:

1) C is a t-Sy0EC code;

2) d0-D/I(C) > 2t;
3) d0-D/I(C) ≥ 2t+ 2;

4) C is a (t−, t+)-0EC code;

5) C is a t-Sy0EC/(t+ 1)-Sy0ED/AU0ED code;

6) C is a τ -Sy0EC/(2t− τ + 1)-Sy0ED/AU0ED code;

7) for all w∈ [0, n], dasL1
(V̂ (Cw)) ≥ t+ 1;

8) for all w∈ [0, n], dsyL1
(V (Cw)) ≥ 2(t+ 1);

9) for all w∈ [0, n], Cw is a t-Sy0EC code.

A. Non Systematic Code Design

The L1 metric t-SyEC codes over ZZm are designed based

on the σ-codes defined in [25]–[32]. The σ-code theory is

based on the sigma polynomials of a word defined below. Let

m∈IIN∪{∞}, F be any field and ∂S ⊆ F be a set of n∈IIN

distinct elements in F. The σ-polynomial associated with a

word X
def
= (xa)a∈∂S ∈ZZ

n
m is defined as [28],

σX(z)
def
= zx0

∏

a∈∂S−{0}

(1− az)xa = (16)

zx0
(

1 + σ1(X)z + σ2(X)z2 + . . .
)

∈F[z].

2022 IEEE Information Theory Workshop (ITW)

572Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 27,2024 at 18:18:20 UTC from IEEE Xplore. Restrictions apply.

For example, if n = 7, ∂S = {a0, a1, a2, a3, a4, a5, a6} ⊆
F− {0} and X = (3021000) = {a0, a0, a0, a2, a2, a3} then

σX(z) = (1− a0z)
3(1− a2z)

2(1− a3z) = 1−

(3a0 + 2a2 + a3)z + (3a20+ 6a0a2+

3a0a3 +a22 + 2a2a3)z
2 + . . .− (a30a

2
2a3)z

7.

Note that σX(z) is a polynomial of degree deg(σX) =
wL1

(X) = |X| having wH(X) = |∂X| distinct roots in F,

each with multiplicity xa, for a ∈ ∂S ⊆ F. In particular, X
coincides with the multiset of all the inverses of the roots of

σX(z), where we let 1/0
def
= 0. Hence, its coefficient sequence

is given by the elementary symmetric functions, 1, σ1(X),
σ2(X), . . . ∈ F, of the elements in the multiset X − {0}
ordered in increasing order of their degrees, and eventually

right shifted by x0 ∈ ZZm ⊆ IIN if 0 ∈ ∂S ⊆ F. At this

point the general definition of σ-code is the following. For all

polynomials g(z), σ(z)∈F[z], the m-ary σ-code of length n

associated with g and σ is defined as Cg,σ(ZZm, n)
def
=

{

X∈ZZ
n
m

∣

∣

∣

∣

σX(z) = cXσ(z) mod g(z),
with cX ∈F− {0}

}

. (17)

For simplicity, we can choose g(z) = zt+1.

To define a t-Sy0EC code C ⊆ ZZ
n
2 , the σ-codes are used

in the function V̂ codomain; where V̂ is given in (14). So,

X ∈ C if, and only if σV̂ (X)(z) = σ(z) mod zt+1, where

σ(z) is a monic polynomial of degree t. Note that under

the mapping X → σV̂ (X)(z) mod zt+1, the set of constant

weight w vectors of length n over ZZ2 (and in fact, the

set S(IIN, w + 1, n − w)) is partitioned into |F|t classes,

D1,D2, . . . ,DFt , where, X and Y are in Di if, and only if,

σV̂ (X)(z) = σV̂ (Y)(z) mod zt+1. Now, we prove that each

of the V̂ (Di)’s is an asymmetric L1 distance t + 1 code.

Suppose X,Y ∈ Di, let V̂
def
= V̂ (X) and Û

def
= V̂ (Y).

Then, σV̂ (z) = σÛ (z) mod zt+1 and this implies σV̂ .−Û (z) =
σÛ .−V̂ (z) mod zt+1 because

for all A,B∈IIN
n, σA(z)σB .−A(z) = σB(z)σA .−B(z). (18)

Now, if the asymmetric L1 distance between V̂ and Û is

s < t + 1 then the degrees of σV̂ .−Û (z) and σÛ .−V̂ (z) are

s < t + 1 and so, σV̂ .−Û (z) = σÛ .−V̂ (z). This means,

σV̂ .−Û (z) has 2s roots (i. e., the s roots of σV̂ .−Û (z) and the

s roots of σÛ .−V̂ (z)), which gives a contradiction. Therefore,

the minimum asymmetric L1 distance of the code is at least

t + 1. So, under the X → σV̂ (X)(z) mod zt+1 mapping the

set S(ZZ2, n, w) is partitioned into the |F|t classes Di’s. Thus,

by pigeon-hole principle, one of the classes, say D̃(F;n,w)
should have at least

(

n
w

)

/|F|t codewords. From equivalence 7)

of Theorem 2, the t-Sy0EC code, C, can be simply defined by

letting for all w ∈ [0, w], Cw
def
= D̃(F;n,w) ⊆ S(ZZ2, n, w);

where, to maximize |C|, the algebraic structure F is chosen to

be the smallest possible field if t > 1 or the smallest group if

t = 1. In this way, the number of codewords is

|C| ≥
n
∑

w=0

⌈(

n

w

)/

|Fw|
t

⌉

. (19)

Fig. 1. Proposed recursive code construction.

where Fw is the smallest field, F, whose cardinality is |F| > w,

when t > 1 and Fw = (ZZw+1,+ mod (w + 1)) when t = 1.

Note that if t = 1, then |Fw| = w + 1.

III. SYSTEMATIC RECURSIVE CODE DESIGN

In the proposed non-systematic t-Sy0EC code design in

Section II, any given word X∈ZZ
k
2 is mapped to

σV̂ (X)0∗(z) = 1 + σ1

(

V̂X

)

z + . . .+ σt

(

V̂X

)

zt mod zt+1;

where

V̂X
def
= (v1, v2, . . . , vw, 0, 0, . . . , 0)∈ZZ

k
k ≡ F

k. (20)

Now, all input words mapping into the same σ1, σ2, . . . , σt∈
Fw(X) form a t-Sy0EC. To design the code, if, for simplicity,

we use the same field F
def
= Fk, for all possible weights

w = w(X)∈ [0, k], then the set of input vectors is partitioned

into |F|t classes C1, C2, . . . , CFt , and each of these classes is a

t-Sy0EC (or, equivalently, a t-Sy0EC/(t+1)-Sy0ED/AU0ED)

code. In the proposed systematic t-Sy0EC recursive code

design given in this section, for the given information word

X ∈ ZZ
k
2 , we first find the values of its σi

def
= σi

(

V̂X

)

’s,

i = 1, 2, . . . , t, and append them as check. Then, assuming

these σi’s as an information word, we encode them with a

(t − 1)-Sy0EC (or, (t − 1)-Sy0EC/t-Sy0ED/AU0ED) code.

This process continues until a base code is used.

We now explain why this code gives distance d0-D/I(C) ≥
2t + 2. If two information words X and Y map to the same

value then the d0-D/I(X,Y) ≥ 2t + 2. On the other hand if

they map to different values, by our construction, the checks

will have d0-D/I ≥ 2t. Since X and Y are constant weight

words, d0-D/I(X,Y) ≥ 2 and so the distance between these

two codewords is at least 2t + 2. However, for the reasons

given below, we need to insert a marker between the successive

words generated in these recursive iterations. This code design

is shown in Figure 1. For t-Sy0EC/(t + 1)-Sy0ED/AU0ED

error control decoding, note that if the receiver knows the

sent information word weight and the check symbols (i. e.,

the σi’s) then the sent information word can be recovered by

first applying the V mapping to the information part and then

applying any L1 metric t-SyEC/(t+1)-SyED/AUED decoding

algorithm for constant weight codes to this information part.

Based on (18), efficient L1 metric t-SyEC/(t+1)-SyED/AUED

error control algorithm can be defined for constant weight

σ-codes which are based on the EEA (Extended Euclidean

Algorithm). Thus, in the entire decoding process, once the

2022 IEEE Information Theory Workshop (ITW)

573Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 27,2024 at 18:18:20 UTC from IEEE Xplore. Restrictions apply.

correct parsing of the received information word is done, we

sequentially decode the remaining received check part starting

from the base code, all the way up to the first iteration.

Since the proposed efficient code designs rely on the

concatenation of some codewords, we need to be aware of

the following unexpected behavior of the d0-D/I distance.

Unlike usual metrics, the metric function d0-D/I is not additive

with respect to concatenation. For example, if X1 = 010,

X2 = 010, Y1 = 0001, Y2 = 001 then

d0-D/I(X1X2, Y1Y2) = d0-D/I(010 010, 0001 001) = 3 ̸=

d0-D/I(010, 0001) + d0-D/I(010, 001) =

d0-D/I(X1, Y1) + d0-D/I(X2, Y2) = 3 + 2 = 5.

In general, the d0-D/I metric is not additive with respect to the

concatenation. In order to avoid this problem, similar to the

ideas proposed in [5], [15], [19], we insert ’markers’ as shown

in the figure.

Next, how the base codes are designed is described. De-

pending on the value of t/k, different base code designs can

be defined, each of which gives better information rate than

the others. Because of the space limitation, here we only give

a code design especially suited when t/k is big.

A. Base Code Design for t/k Big

Given t, k∈ IIN, the basic idea of this code construction is

a generalization of the following. Divide k information bits

into ⌈k/b⌉ bytes of b bits. Each of these b-bit bytes can be

considered as an element in a field F, where max{2b, ⌈k/b⌉+
t} ≤ |F|. Design a distance t + 1 Reed-Solomon code

with these bytes as the information digits. Note that this RS

code generates t check digits. The next step is to map each

codeword digit of the generated RS code to a balanced code.

In general, we use a (τ − 1)-Sy0EC constant weight codes.

Finally, to separate the bytes, insert a 1 after each byte for

synchronization. The following example explains this base

code design.

Example 1: Suppose we are given k = 9 information bits

and we want to design a 4-Sy0EC code. Choose b = 3 and so

the field F = GF (23) can be used for the code design because

max{2b, ⌈k/b⌉+ t} = max{23, 9/3+4} = 23 ≤ |F|. Assume

the given information word is

x1x2x3 x4x5x6 x7x8x9
def
≡ X1 X2 X3∈

(

ZZ
3
2

)3
≡ ZZ

9
2.

Each of the byte, Xi∈ZZ
3
2, i = 1, 2, 3, can be considered as an

element in the field F = GF (23). The (F; 7, 3, 5) RS code of

length 7 and minimum distance t+1 = 5 can be designed by

taking the generator polynomial g(z) = (z−α0)(z−α1)(z−
α2)(z − α3) where α is a root of the primitive polynomial

z3 + z + 1. Thus, α0 ≡ 001, α1 ≡ 010, α2 ≡ 100, α3 ≡ 011,

α4 ≡ 110, α5 ≡ 111, α6 ≡ 101 and 0 ≡ 000. For simplicity,

assume the given information word is 000 000 000 ≡ 000 so

that its associated RS codeword is

(0,0,0,0,0,0,0)∈F
7. (21)

Now we need to design a one-to-one mapping of the symbols

in F = GF (23) to the codewords of a (τ−1)-Sy0EC constant

weight code. For this example, assume τ = 1 and so we can

use 2-out-of-5 words for this mapping since
(

5
2

)

= 10 ≥ 8 =
|F|. One of these mappings is 0 ≡ 000 → 00011, α0 ≡
001 → 00101, α1 ≡ 010 → 00110, α2 ≡ 100 → 01001,

α3 ≡ 011 → 01010, α4 ≡ 110 → 01100, α5 ≡ 111 → 10001,

α6 ≡ 101 → 10010. Thus, for the all 0 RS codeword, after

this mapping and also adding an additional 1 at the end of

each byte, the codeword is

000111 000111 000111 000111 000111 000111 000111.

Suppose A and B are two codewords. Since the Hamming dis-

tance between them is at least five and each symbol is mapped

into a balanced 2-out-5 codeword, the D0−D/I ≥ 2 · 5 = 10.

Thus the code can correct 4-Sy0EC/5-Sy0ED/AU0ED code.

Now we explain how the t = 4 0-error correction is

done. This is based on, as explained later, e ∈ [0, t] erasures

error correction, θ
def
= ⌊(t− e)/2⌋ error correction and δ

def
=

⌈(t− e)/2⌉ error detection (e-EEC/θ-EC/δ-ED) for this code.

In particular, the e-EEC/θ-EC/δ-ED error control algorithm

for Reed-Solomon code is used to simulate the (e + 2θ)-
Sy0EC/(e+ 2θ + 1)-Sy0ED part of the control algorithm for

this code. Since a 1 is inserted at the end of each byte, by

reading from left to right of the received word, the bytes can

be parsed correctly even with some 0-errors. In general, if the

number of 0 insertion errors is not equal to the number of 0
deletion errors in a byte, then this byte can be identified as

erroneous and, hence, set equal to an erasure byte. On the other

hand, if the number of 0 insertion errors is equal to the number

of 0 deletion errors in a byte, then that byte is an erroneous

byte which, a priori, can not be identified as erroneous. For

example, suppose the received word is

001011 0001011 0000111 000111 000111 000111 000111.

By counting the number of 1’s from left to right, it can be

noticed that the balanced encoding of the second and third

bytes are 6 bit long (excluding the synchronizing bit 1) and

so these can be set as erasure bytes by the receiver. After

inverse mapping from 2-out-of-5 codewords to GF (23) the

received word is

(α0 ≡ 001, ∗, ∗,0,0,0,0)∈{F ∪ {∗}}
7
;

where “∗” stands for an erasure symbol. Using 2-EEC/1-EC

decoding algorithm, the receiver can correct and obtain the

sent codeword in (21). ▲

IV. CONCLUDING REMARKS

Some theory and efficient design of binary block codes

capable of controlling the deletions and/or insertions of the

symbol “0” (i. e., the 0-errors) are given. It is shown that

the design of codes for insertion and/or deletion of zeros is

equivalent to the design of the L1 metric error control codes.

Some asymptotically optimal non-systematic and systematic

codes for correcting these errors are described and their

encoding method is also explained. Because of the space

limitation, the decoding methods are not given here. However,

the decoding can be done efficiently using the Extended

Euclidean Algorithm (EEA).

2022 IEEE Information Theory Workshop (ITW)

574Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 27,2024 at 18:18:20 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] K. A. S. Abdel-Ghaffar, F. Paluncic, H. C. Ferreira and W. A. Clarke,
“On Helberg’s Generalization of the Levenshtein Code for Multiple
Deletion/Insertion Error Correction", IEEE Transactions on Information

Theory, vol. 58, no. 3, pp. 1804-1808, March 2012.
[2] M. Blaum, Codes for Detecting and Correcting Unidirectional Errors.

IEEE Computer Society Press, Washington, DC, USA, 1993.
[3] B. Bose and T. R. N. Rao, “Theory of undirectional error correct-

ing/detecting codes”, IEEE Trans. on Comput., vol. 31, pp. 521–530,
June 1982.

[4] L. Dolecek and V. Anantharam, “Repetition error correcting sets: Ex-
plicit constructions and prefixing methods”, SIAM Journal on Discrete

Mathematics, vol. 23, no. 4, pp. 2120–2146, 2010.
[5] H. C. Ferreira, W. A. Clarke, A. S. J. Helberg, K. A. S. Abdel-Ghaffar,

and A. J. Han Vinck, “Insertion/Deletion Correction with Spectral
Nulls”, IEEE Trans. on Inform. Theory, vol. 43, no. 2, pp. 722–732,
Mar 1997.

[6] V. Guruswami and J. Håstad. “Explicit two-deletion codes with redun-
dancy matching the existential bound”, Proceedings of the 32nd Annual

ACM-SIAM Symposium on Discrete Algorithms, pp. 21–32, Jan. 2021.
[7] A. S. J. Helberg and H. C. Ferreira, “On Multiple Insertion/Deletion

Correcting Codes”, IEEE Trans. on Inform. Theory, vol. 48, no. 1, pp.
305–308, Jan. 2002.

[8] A. S. J. Helberg and H. C. Ferreira, “On multiple insertion/deletion
correcting codes”, IEEE Transactions on Information Theory, vol. 48,
no. 1, pp. 305–308, Jan. 2002.

[9] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-Correcting
Codes for Data Storage in the DNA of Living Organisms”, IEEE

Transactions on Information Theory, vol. 63, no. 8, pp. 4996–5010,
Aug. 2017.

[10] W. Kautz, "Fibonacci codes for synchronization control”, IEEE Trans-

actions on Information Theory, vol. 11, no.2, pp. 284–292, April 1965.
[11] M. Kovac̆ević and V. Y. F. Tan, “Asymptotically Optimal Codes Correct-

ing Fixed-Length Duplication Errors in DNA Storage Systems”, IEEE

Communications Letters, vol. 22, pp. 2194-2197, Nov. 2018.
[12] M. Kovac̆ević, “Runlength-Limited Sequences and Shift-Correcting

Codes: Asymptotic Analysis”, IEEE Trans. on Inform. Theory, Vol. 65,
pp. 4804–4814, August 2019.

[13] A. A. Kulkarni, “Insertion and deletion errors with a forbidden symbol”,
2014 IEEE Information Theory Workshop (ITW 2014), pp. 596–600,
November 2014.

[14] A. A. Kulkarni and N. Kiyavash, “Non-asymptotic Upper Bounds for
Deletion Correcting Codes", IEEE Trans. on Inform. Theory, Vol 59,
No 8, pp 5115–5130 (Aug. 2013).

[15] V. I. Levenshtein, “Binary codes with correction for deletions and
insertions of the symbol 1”, Probl. Peredachi Inf., vol. 1, n. 1, pp. 12–
25, 1965 (in Russian). An english translation can be found in, “Binary
codes capable of correcting spurious insertions and deletions of ones”,
Problems of Information Transmission, vol. 1, pp. 8–17, 1965.

[16] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals”, Sov. Phys. Dokl., vol. 10, no. 8, pp. 707–710, 1966.

[17] H. Mahdavifar and A. Vardy, “Asymptotically optimal sticky-insertion-
correcting codes with efficient encoding and decoding”, 2017 IEEE ISIT,
pp. 2683–2687, June 2017.

[18] F. Palunc̆ić, K. A. S. Abdel-Ghaffar, H. C. Ferreira, and W. A. Clarke,
“A Multiple Insertion/Deletion Correcting Code for Run-Length Limited
Sequences”, IEEE Trans. on Inform. Theory, Vol. 58, pp. 1809–1824,
March 2012.

[19] F. Sellers, “Bit loss and gain correction code”, in IRE Transactions on

Information Theory, vol. 8, no. 1, pp. 35-38, Jan. 1962.
[20] J. Sima and J. Bruck, “Optimal k-Deletion Correcting Codes", 2019

IEEE ISIT, pp. 847-851, July 2019.
[21] J. Sima, N. Raviv and J. Bruck, “Two Deletion Correcting Codes From

Indicator Vectors”, IEEE Transactions on Information Theory, vol. 66,
no. 4, pp. 2375–2391, April 2020.

[22] J. Sima, R. Gabrys and J. Bruck, “Optimal Systematic t-Deletion
Correcting Codes”, Proceedings 2020 IEEE International Symposium

on Information Theory, Los Angeles, CA, USA, 2020, pp. 769–774.
[23] J. Sima, R. Gabrys and J. Bruck, “Optimal Codes for the q-ary

Deletion Channel”, Proceedings 2020 IEEE International Symposium

on Information Theory, Los Angeles, CA, USA, 2020, pp. 740-745.
[24] N. J. A. Sloane, “On single-deletion-correcting codes", in Codes and

Designs, Ohio State University (Ray-Chaudhuri Festschrift), pp. 273–
291, 2000. Online: https://arxiv.org/abs/math/0207197.

[25] L. G. Tallini and B. Bose, “On a new class of error control codes and
symmetric functions", 2008 IEEE ISIT, pp. 980-984, July 2008.

[26] L. G. Tallini and B. Bose, “On decoding some error control codes using
the elementary symmetric functions". In Trends in Incidence and Galois

Geometries: a Tribute to Giuseppe Tallini - Quaderni di Matematica, F.
Mazzocca, N. Melone and D. Olanda Ed.. vol. 19, p. 265-297, Caserta,
Dipartimento di Matematica, Seconda Università di Napoli, 2010.

[27] L. G. Tallini, N. Elarief and B. Bose, “On efficient repetition error
correcting codes”, 2010 IEEE ISIT, pp. 1012–1016, June 2010.

[28] L. G. Tallini and B. Bose, “On L1-distance error control codes”, 2011

IEEE ISIT, pp. 1026–1030, July/Aug. 2011.
[29] L. G. Tallini, B. Bose, “On symmetric L1 distance error control codes

and elementary symmetric functions”, 2012 IEEE ISIT, pp. 741–745,
July 2012.

[30] L. G. Tallini and B. Bose, “On L1 metric asymmetric/unidirectional
error control codes, constrained weight codes and σ-codes”, 2013 IEEE

ISIT, pp. 694–698, July 2013.
[31] L. G. Tallini and B. Bose, “On Some New ZZm Linear Codes Based

on Elementary Symmetric Functions”, 2018 IEEE ISIT, pp. 1665–1669,
June 2018.

[32] L. G. Tallini, N. Alqwaifly and B. Bose, “On Deletions and Insertions of
the Symbol “0” and Asymmetric/Unidirectional Error Control Codes”,
2019 IEEE ISIT, pp. 2384–2388, July 2019.

[33] R. R. Varshamov and G. M. Tenengolts, “Correcting code for single
asymmetric errors”, Avtomatika i Telemekhanika (in Russian), vol. 26,
no. 2, pp. 228–292, 1965.

[34] J. H. Weber, C. de Vroedt, D. E. Boekee, “Necessary and sufficient
conditions on block codes correcting/detecting errors of various types”,
IEEE Trans. on Comput., vol. 41, pp. 1189–1193, Sept. 1992.

2022 IEEE Information Theory Workshop (ITW)

575Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 27,2024 at 18:18:20 UTC from IEEE Xplore. Restrictions apply.

