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Abstract—This paper gives some theory and efficient design
of binary block codes capable of controlling the deletions of the
symbol “0” (referred to as O-deletions) and/or the insertions of
the symbol 0 (referred to as O-insertions). This problem of con-
trolling O-deletions and/or O-insertions (referred to as 0O-errors)
is shown to be equivalent to the efficient design of L, metric
asymmetric error control codes over the natural alphabet, IN.
Optimal systematic code designs are given. In particular, for all
t, k € IN, a recursive method is presented to encode k information
bits into efficient systematic ¢ Symmetric O-Error Correcting,
(t + 1) Symmetric 0-Error Detecting and All Unidirectional 0-
Error Detecting (¢t-SyOEC/(¢t+ 1)-SyOED/AUOED) codes of length

n < k+tlog, k + o(tlogn)

as n € IN increases. Decoding can be efficiently performed by
algebraic means using the Extended Euclidean Algorithm (EEA).

Index Terms—deletion/insertion of zero errors, repetition/sti-
cky errors, L; distance, asymmetric distance, elementary sym-
metric functions, constant weight codes.

I. INTRODUCTION

In communication and magnetic recording systems, the
channel may cause two types of synchronization errors. The
first one is not receiving a transmitted symbol (a deletion
error), and the second one is receiving a spurious symbol
(an insertion error). The propagation of these errors will
significantly reduce the performance of the systems.

The general problem of designing efficient codes capable of
correcting ¢ insertion and deletion of symbols is still an open
research problem even though some results have been reported
in these research papers [1], [5]-[10], [14]-[16], [18], [20]-
[24] (also please see the references in these papers). However,
some efficient code designs for correcting insertion/deletion of
some fixed symbol, say 0, are given in [4], [11]-[13], [15],
[17], [27], [32]. In the present paper, some systematic codes
capable of correcting ¢ insertion and deletion of the symbol 0
are given which are superior to the codes given in [17] and
[27] in terms of redundancy and reliability.

Let ZZ be the set of all finite length binary sequences where

Z, {0,1}. In this paper, we are interested in the efficient

design of binary block codes capable of correcting ¢t € IN or
less deletions and/or insertions of a fixed binary symbol, say,
0&€Z5. In this error model, if

X =0100101000101110 € ZZ3° (1)
is a transmitted binary sequence of length n = 16, then
Y = 0010A1A100001A1100100 ()
= 001011000011100100 /A

*This work is supported by the NSF grants CCF-2006571.

is the received word obtained from X due to 3 deletions (A
represents the empty symbol) and 5 insertions of the symbol
0. The problem of designing efficient codes to control these
types of O deletion and/or insertion errors (briefly, O-errors)
is an open research problem introduced by Levenshtein in
[15] which is important for at least two reasons. From the
application perspective, through the Gray mapping, correcting
t deletions or insertions of 0’s is equivalent to correcting ¢
repetition (or, sticky) errors which occur in high speed com-
munication and data storage systems due to synchronization
loss [4], [17], [27]. From the theoretical perspective, the design
problem of ¢ deletion and/or insertion of 0’s Error Correcting
(i. e., t-Symmetric O-Error Correcting (t-SyOEC)) codes is
important because it is a particular instance of the general
problem also introduced by Levenshtein in [16].

With regard to the O-error problem, for all X,Y € ZZ3, let

dopyr(X,Y) 21 the minimum number of deletions 3)
and/or insertions of 0’s needed to
transform the binary word X to Y.

For example, if X and Y are the words given in (1) and (2)
respectively, then dy_p/(X,Y’) = 8. The above function intro-
duced in [15] is a distance (called here the deletion/insertion of
0’s distance). In fact, it is a graph distance defined in the graph
(N, E) where the set of nodes N ef ZZ% and the set of edges
ol {(X,Y)eN?: do.p;(X,Y) =1}. Synchronization
errors due to 0-errors can be controlled by inserting a marker
or synchronization sequence between consecutive codewords
in the sequences that are sent [5], [15], [19]. Thus, we
assume no synchronization errors due to erroneous receptions
of sequences of codewords (i. e., we assume that the receiver
knows the length of the received word). In this case, since
1-errors are forbidden in our error model,

wH(X) 7é U}H(Y) — dO-D/I(Xv Y) = 0Q; (@)

where wy(Z) denotes the Hamming weight of Z € ZZ3.
In this way, the metric space (ZE,dO.D/[) or its associated
graph (N, E)) remains partitioned into many distinct connected
components, one for each possible Hamming weight, w =
wg (X) €IN, of words X € ZZ3.

The rest of the paper is organized as follows. In Section II, it
is shown that the O-insertion/deletion error control problem is
equivalent to some L error control problem [32]. In addition,
the non-systematic codes given by us in [32], which is the basis
for the proposed systematic code design, is briefly described.
In Section III, for fixed ¢ € IN, new efficient recursive
code designs are presented to encode k € IN information
bits into systematic ¢ Symmetric 0-Error Correcting, (¢ + 1)
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Symmetric 0-Error Detecting and All Unidirectional 0-Error
Detecting (¢-SyOEC/(t + 1)-SyOED/AUOED) codes of length
n =k + tlogy k + O(loglog k) and these codes improve the
codes in [17] and [27] in terms of redundancy and reliability.

II. O-DELETION/INSERTION ERRORS AND THE L1 METRIC

In this section, it is shown that the design problem of ¢-
SyOEC codes is equivalent to the design problem of some
L1 metric asymmetric error control codes over the natural
alphabet, IN. Before describing this result, some background

materials are given first.

Let x,yeZ,, CIN def Z ., where m €IN. Define z ~ y

= max {0, z — y}. For example, if z = 2 and y = 0 then
r—y=2and y — z = 0. Given any two words X,Y € ZZ?,,
the operations X NY € Z},, X UY € Z, X +Y € IN",
and X = Y € Z7, are defined as the digit by digit min,
max, integer addition and — operation between X and Y,
respectively. For example, if m = 3, n = 9, X = (012012012)
and Y = (000111222) then X NY = (000011012), X UY =
(012112222), X 4+Y = (012123234), X = Y = (012001000)
and Y = X = (000100210). In addition, the support of a
word X = zi29...2, € Z}, is 0X = $152...5y € Y
where s; = 1 if z; # 0 and s; = 0 otherwise. For example
0(42101) = (11101).

To better describe the error control properties of codes for
the L; metric, the following distances between m-ary words
X, Y €ZZ?, are considered in [28], [30] (the “+” sign below
indicates an integer sum).

symmetric Ly: 3 (X,Y) < |Y = X|+[X = Y],
asymmetric Ly: d3° (X,Y) < max{|Y = X|,|X =Y|}, (5)

Hamming: dy(X,Y) déf|8(Y4X)|+|8(X4Y)|.

For example, if m =5, n =5, X = (01423), Y = (43213)
then | X = Y| =3, Y - X| =6, [0X = Y) =2
|0(Y = X)| =2 and dsLyl(X,Y) =3+6=9,dp(X,)Y) =
max{6,3} = 6 and dy(X,Y) = 2+ 2 = 4. From the error
control perspective, if X is the transmitted word and Y is the
received word then Y — X and X = Y give the increasing
and decreasing error vectors, respectively. Thus,

X=Y-(Y=-2X)+(X=Y).
Note that,

for all X,Y €Z,, dp(X,Y)<d¥(X,Y)  (6)

because |0X| < |X]|, for all X € ZZ7,.
Constant weight codes play an important role in what
follows. Thus, given n,w € IN and any numeric set A C IN

as alphabet, let
S(Anw) ¥ {Xed": w, (X)=|X|=w} (7

be the set of all word over A of length n and constant weight
w. We readily note, from (7), that

S(A,n,w) = U S(An—1,w—z)x; (8)

z€A

where the above union is a disjoint union of sets. Hence, the
general recurring formula,

|S(A,n,w)| = Z|S(A,n71,w71:)|, (9)
z€A

holds for, say, the “A-nominal coefficient n choose w”,
|S(A,n,w)|. If A = ZZ,, then the cardinality of the above
set is the m-nominal coefficient n choose w

\S(Zor, 11, w)| = (Z)m = ”’z‘:l (Z:Dm

v=0

(10)

for all integers m € IN.
Now, if X € ZZ5 then X can be uniquely written as [15],
[32],

X =0"110"210...010%»10%»+1 an

where | = [(X) € IN is the length of X, w = wy(X) €

[0,1(X)] is the Hamming weight of X and, for all integers

iel,w+ 1 def vi(X) € Zy_p+1 C IN is the i-th run

length of 0’s in the word X. Note that

w

Va1 = (U(X) — w(X)) = o

i=1

12)

Given the above representation, consider the following
bijective function (which we call the bucket of 0’s mapping)

V5 — I, =IN* (13)

which associates any X € ZZ3 represented as in (11) with
V(X) o (v1,v2,...,Vy,Vpt1) € IN*. For example, if
X = 0100101000101110000000 € ZZ3 then V(X) =
(1,2,1,3,1,0,0,7) € IN*. The mapping V in (13), already
considered by Levensthein in [15], defines a bijection from the
set of all binary words of any finite length n» € IIN and Ham-
ming weight w (= number of 1’s of the binary words) into the
words over IN of length w 4 1 (= number of buckets defined
by the w 1’s of the binary words) and L; weight n—w (= num-
ber of 0’s of the binary words). Except for the rightmost “1”
which is dropped, the function V=! : ZZ7 = IN* — ZZ3 is
nothing but the prefix free unary representation of a sequence
of integer numbers. Hence, both V' and V! are one-to-one
mappings such that V(S(Zz,n,w)) = S(IN,w + 1,n — w),
and S(Zo,n,w) = V1 (S(IN,w+1,n—w)). For example,
for n = 4, the mapping V acts on Zj3 is as reported in Table
I. Let

V. Z; — IN* (14)
be the function obtained from V' by dropping the last com-
ponent; V associates any X € ZZ5 represented as in (11)
with V(X) % (v1,00,...,v,) € IN*. Obviously, since
V is a one-to-one function, it is possible to reconstruct X
from V(X); likewise, even though V is not one-to-one (for
example, V(0110) = V(011000) = (1,0)), it is possible to
reconstruct X from V(X) and n = I(X) because of (12).
In this case, v,,+1 can be considered as a parity digit which
makes the L; weight wr, (V (X)) = n—w. Both functions V'
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TABLE 1
THE MAPPING V' ACTING ON ZZ3.
In the table, v,,(x)41 is in boldface and I(X) is the length of any X € A*.

L) =nfw)] X [[VX) = VX)vwn [V EO) [w(V(X) |
4 0 0000 | 4 1 4

0001 || 30
0010 || 21 2 3
0100 || 12
1000 || 03

0011 || 200
0101|110
0110 || 101 3 2
1001 || 020

1010 || 011

1100 || 002

0111 || 1000
1011 || 0100 4 1
1101 || 0010
1110 || 0001

1111 || 00000 5 0

4 1

4 4

and V play important roles in our code designs and analysis.
Consider the following example words

X =0100101000101110  €ZZ3S,
Y = 001001 1000011100100 € ZZ3°,
Y’ =0010010100010100  €ZZ3°;

and their associated V' values are

V(X)=(1,2,1,3,1,0,0,1) e IN®,
V(Y) =(2,2,0,4,0,0,2,2)cIN5,
V(Y')=(2,2,1,3,1,2) €IN°

Note that if X is sent, Y’ can never be received because
7 = w(X) # wl’) = 5 and l-errors are forbidden in
our channel model; whereas, Y can erroneously be received
and the number of 0-deletions (= 2) plus the number of 0-
insertions (= 5) from X to Y is equal to the L distance
between V(X) and V(Y), di’ (V(X),V(Y)) =245 =T.
In fact, in general, a sequence Y € ZZ5 is obtained from
the sequence X € ZZ3 due to t_ deletions and ¢, inser-
tions of the symbol 0 if, and only if, w(Y) = w(X) and
d’ (V(Y),V(X)) =t_ +ty; thatis, V(Y) is obtained from
V(X) due to a negative error pattern of magnitude ¢_ and a
positive error pattern of magnitude t,. Hence, the bucket of
0’s mapping X — V(X)) reduces the ¢_ O-deletion and ¢
0O-insertion error correction problem into the ¢_ negative and
t4+ positive error correction problem for the L; distance over
IN.

Theorem | (isometry between (23, dy.pyr) and (IN*,d}?)):
For all XY €ZZ3,

dp, (V(X), V(Y)) if w(X)=w(Y),
00 if w(X)#w(Y).
Note that (15) implies that dop;(X,Y) < oo if, and only
if, w(X) = w(Y). So, if we extend the domain of d;’ from
IN' x IN, [ €N, to IN* x IN* by letting d* (U, V) = oo
whenever [(U) # (V) then,

for all X,Y €23, do-pyr(X,Y) = d} (V(X), V(Y)).

dopyr(X,Y) :{ (15)

This implies that the mapping V' in (13) is an isometry between
the metric spaces (Z3, dy.p/) and (IN*, d7 ).

Because of Theorem 1, the proposed code is the union of
block (i. e., constant) length n € IN constant weight w € [0, n]
codes, where the union is over w. Under the “bucket of zeros”
mapping, for all we[0,n], a word X € S(Za,n,w) C ZZY is
transferred to a word V(X)) = (v1,v2, ..., Vpi1) EZ:‘I’;@H.
Note that, knowing V(X) = (v1,v,...,v,) EZY_, . it is
possible to calculate v,,41. So, in our code design method,
we design L; asymmetric distance ¢t + 1 codes using only
the first w = wgy(X) components of V(X). Note that,
if UV € Z"") 41 are two constant weight codewords of
asymmetric L, distance ¢+ 1 then the symmetric L; distance
between them is 2(¢t 4+ 1) because |U ~ V| = |V = U| =
t + 1. So, for any C, C S(Zsa,n,w), if the minimum
code distance d‘ﬁ(f/(Cw)) > t then df’ (V(Cy)) > t, and
so, di’(V(Cw)) > 2t 4 1. Thus, V(C,) can correct t-
symmetric errors, detect ¢ + 1 symmetric errors and detect
all unidirectional errors under the [ distance metric [34].
This implies that C,, can correct {-symmetric 0-errors, detect
t + 1 symmetric 0-errors and detect all unidirectional O-errors
under the dg_py; distance metric. Moreover, any union over
w of Cy’s is t-SyOEC/(t + 1)-SyOED/AUOED because of (4).
Thus, in general, any L; distance error control property of
codes over IN reflects into the analogous dy.p,; distance error
control property of codes over Zs because of Theorem 1. So,
from the L, metric asymmetric/unidirectional coding theory
[2], [3], [28]-[32], [34] and Theorem 1, the following theorem
holds.

Theorem 2 (Decomposition Theorem): Let t,t_,t,, 7€IN
be given such that ¢t_ + ¢4 =t and 7€[0,¢]. If

c= J cwczy
wel[0,n]

is a binary code of length n € IN and C,, def CNS(Zsy,n,w),

for all integer w € [0,n], then the following statements are
equivalent:

1) C is a t-SyOEC code;

2) dO-D/I(C) > 2t;

3) dopi(C) > 2t +2;

4) Cis a (t—,t4)-0EC code;

5) C is a t-SyOEC/(t + 1)-SyOED/AUQED code;

6) C is a 7-SyOEC/(2t — 7 + 1)-SyOED/AUQED code;

7) for all we[0,n], d3* (V(Cw)) >t + 1;

8) for all we0,n], di¥ (V(Cw)) > 2(t + 1);

9) for all we[0,n], Cy is a t-SyOEC code.

A. Non Systematic Code Design

The L; metric {-SyEC codes over ZZ,,, are designed based
on the o-codes defined in [25]-[32]. The o-code theory is
based on the sigma polynomials of a word defined below. Let
meINU{oo}, FF be any field and S C F be a set of n€IN
distinct elements in F. The o-polynomial associated with a

word X ' (2,)acos €ZT, is defined as [28],

H (1—az)® =

acdS—{0}
27 (1+ 01(X)z + 02(X)2? +...) €Fz].

ox(z) € 27 (16)
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For example, if n = 7, S = {ag, a1, az2,as3,a4,as5,a6} C
F— {0} and X = (3021000) = {ao,ao,ao,ag,ag,ag,} then

ox(2) =(1 —ap2)?(1 — az2)*(1 — azz) = 1—
(3ag + 2as + a3)z + (3a2+ 6agas+
3agaz +a3 + 2aza3)2® + ... — (adadas)z".

Note that ox(z) is a polynomial of degree deg(ox) =
wr,, (X) = |X| having wy(X) = |0X]| distinct roots in T,
each with multiplicity z,, for a € 35S C F. In particular, X
coincides with the multiset of all the inverses of the roots of
ox(z), where we let 1/0 40, Hence, its coefficient sequence
is given by the elementary symmetric functions, 1, oq(X),
02(X), ... € F, of the elements in the multiset X — {0}
ordered in increasing order of their degrees, and eventually
right shifted by z¢g € Z,,, C IN if 0 € 9S C F. At this
point the general definition of o-code is the following. For all
polynomials g(z),o(z) € F[z], the m-ary o-code of length n

associated with ¢ and o is defined as Cy (ZZ,,, 1) def
n | 0x(2) = exo(z) mod g(z),
{XGZ’" with cx €F — {0} ’ an

For simplicity, we can choose g(z) = 2.

To define a ¢-SyOEC code C C ZZ%, the o-codes are used
in the function V' codomain; where Vs given in (14). So,
X € C if, and only if oy y)(2) = o(2) mod 2!, where
o(z) is a monic polynomial of degree t. Note that under
the mapping X — oy (y)(2) mod 2!*1 the set of constant
weight w vectors of length n over Z, (and in fact, the
set S(IN,w + 1,n — w)) is partitioned into |F|* classes,
D1,Ds, ..., Dy, where, X and Y are in D, if, and only if,
O'V(X)(ZA) = 0y (y)(2) mod 2**'. Now, we prove that each

of the V(D;)’s is an asymmetric Ly distance ¢ + 1 code.

Suppose X,Y € D;, let V. < V(X) and U ¥ V().

Then, o (2) = 0;(2) mod 2" and this implies oy, . 5 (2) =
oy (2) mod 2+t because

for all A, BEIN", 04(2)op-a(z) =0p(2)oa-p(z). (18)
Now, if the asymmetric L, distance between V and U is
s < t+ 1 then the degrees of oy .;(2) and oy (2) are
s < t+1 and so, oy.;(2) = 0p.y(2). This means,
oy - p(2) has 2s roots (i. e., the s roots of oy, . ;(2) and the
s roots of UU;V(Z)), which gives a contradiction. Therefore,
the minimum asymmetric L; distance of the code is at least
t + 1. So, under the X — UV(X)(z) mod z'T! mapping the
set S(Zz,n, w) is partitioned into the |F|* classes D;’s. Thus,
by pigeon-hole principle, one of the classes, say @(]F; n,w)
should have at least () /|F|* codewords. From equivalence 7)
of Theorem 2, the ¢-SyOEC code, C, can be simply defined by

letting for all w € [0, w], Cy of D(F;n,w) C S(Zgy,n,w);

where, to maximize |C|, the algebraic structure F is chosen to
be the smallest possible field if ¢ > 1 or the smallest group if
t = 1. In this way, the number of codewords is

= 5[()/rr]

19)

-Sy0EC/(t+1)-SyOED/ AUOED Code:

k

,®,
(t+2)-bit long] 7t 72

(t—1)-5y0EC/t-Sy0ED/ AUOED Code:

,,,,,,,,,,,,,

(t—2)-Sy0EC/(t - 1)-SyOED/ AUOED Code:

2D, . gy SR S [T
e (T i t+1)-bitlon

£,-SyOEC/(t, + 1)-Sy0ED/ AUOED Code:

Base Code

Fig. 1. Proposed recursive code construction.

where Iy, is the smallest field, F, whose cardinality is [F| > w,
when t > 1 and F,, = (Zy+1,+ mod (w+ 1)) when ¢t = 1.
Note that if ¢ = 1, then |F,,| = w + 1.

III. SYSTEMATIC RECURSIVE CODE DESIGN

In the proposed non-systematic ¢-SyOEC code design in
Section II, any given word X € ZZ% is mapped to

oy (x)0-(2) =1+ 01 (Vx) Z+...+oy (VX) 2 mod 241
where

Vi & (01,09, .. .,00,0,0,...,0)€ZF =F*. (20

Now, all input words mapping into the same o1,09,...,0€
F(x) form a t-SyOEC. To design the code, if, for simplicity,

we use the same field F 4 Fy, for all possible weights
w = w(X) €0, k], then the set of input vectors is partitioned
into |F|* classes C1,Ca, . .., Crt, and each of these classes is a
t-SyOEC (or, equivalently, a ¢t-SyOEC/(t 4 1)-SyOED/AUQED)
code. In the proposed systematic ¢-SyOEC recursive code
design given in this section, for the given information word
X € 7k, we first find the values of its o; = o; VX)’S,
i =1,2,...,t, and append them as check. Then, assuming
these o;’s as an information word, we encode them with a
(t — 1)-SyOEC (or, (t — 1)-SyOEC/t-SyOED/AUOED) code.
This process continues until a base code is used.

We now explain why this code gives distance dy_p;(C) >
2t + 2. If two information words X and Y map to the same
value then the dy.p;(X,Y) > 2t 4- 2. On the other hand if
they map to different values, by our construction, the checks
will have dy.p; > 2t. Since X and Y are constant weight
words, do.pr(X,Y) > 2 and so the distance between these
two codewords is at least 2t + 2. However, for the reasons
given below, we need to insert a marker between the successive
words generated in these recursive iterations. This code design
is shown in Figure 1. For ¢-SyOEC/(t + 1)-SyOED/AUOED
error control decoding, note that if the receiver knows the
sent information word weight and the check symbols (i. e.,
the o;’s) then the sent information word can be recovered by
first applying the V' mapping to the information part and then
applying any L, metric ¢-SyEC/(t+1)-SyED/AUED decoding
algorithm for constant weight codes to this information part.
Based on (18), efficient Ly metric t-SyEC/(t+1)-SyED/AUED
error control algorithm can be defined for constant weight
o-codes which are based on the EEA (Extended Euclidean
Algorithm). Thus, in the entire decoding process, once the
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correct parsing of the received information word is done, we
sequentially decode the remaining received check part starting
from the base code, all the way up to the first iteration.

Since the proposed efficient code designs rely on the
concatenation of some codewords, we need to be aware of
the following unexpected behavior of the dy.p; distance.
Unlike usual metrics, the metric function dy.pr is not additive
with respect to concatenation. For example, if X; = 010,
X5 =010, Y7 = 0001, Y5 = 001 then

do-pjr(X1 X2, Y1Ya) = do.pr(010010,0001 001) = 3 #
do-pyr(010,0001) + do-pyr (010, 001) =
dO—D/I(XhYl) + dO—D/I(XQ’ }/2) =3+2=5.

In general, the dy_p;; metric is not additive with respect to the
concatenation. In order to avoid this problem, similar to the
ideas proposed in [5], [15], [19], we insert *markers’ as shown
in the figure.

Next, how the base codes are designed is described. De-
pending on the value of ¢/k, different base code designs can
be defined, each of which gives better information rate than
the others. Because of the space limitation, here we only give
a code design especially suited when ¢/k is big.

A. Base Code Design for t/k Big

Given t, k € IN, the basic idea of this code construction is
a generalization of the following. Divide k information bits
into [k/b] bytes of b bits. Each of these b-bit bytes can be
considered as an element in a field F, where max{2°, [k/b] +
t} < |F|. Design a distance ¢t + 1 Reed-Solomon code
with these bytes as the information digits. Note that this RS
code generates ¢t check digits. The next step is to map each
codeword digit of the generated RS code to a balanced code.
In general, we use a (7 — 1)-SyOEC constant weight codes.
Finally, to separate the bytes, insert a 1 after each byte for
synchronization. The following example explains this base
code design.

Example 1: Suppose we are given k£ = 9 information bits
and we want to design a 4-SyOEC code. Choose b = 3 and so
the field F = GF(23) can be used for the code design because
max{2°, [k/b] +t} = max{2% 9/3+4} = 23 < |F|. Assume
the given information word is

def 3
3\3 _ 9
T1X2T3 Ly4T5Xg T7XgLyg = X1 Xo X3 € (ZQ) =7;.

Each of the byte, X, € Z3.i=1,2,3, can be considered as an
element in the field F = GF(23). The (F;7,3,5) RS code of
length 7 and minimum distance £ + 1 = 5 can be designed by
taking the generator polynomial g(z) = (z —a®)(z —at)(z —
a?)(z — a®) where « is a root of the primitive polynomial
23 4+ z+ 1. Thus, a® = 001, ! = 010, a2 = 100, o3 = 011,
a* =110, o® = 111, o® = 101 and 0 = 000. For simplicity,
assume the given information word is 000 000000 = 000 so

that its associated RS codeword is
(0,0,0,0,0,0,0)cF". (21)

Now we need to design a one-to-one mapping of the symbols
in F = GF(23) to the codewords of a (7 —1)-SyOEC constant

weight code. For this example, assume 7 = 1 and so we can
use 2-out-of-5 words for this mapping since (5) = 10 > 8 =
|F|. One of these mappings is 0 = 000 — 00011, o =
001 — 00101, o! = 010 — 00110, a®> = 100 — 01001,
a® =011 — 01010, o* = 110 — 01100, o® = 111 — 10001,
a® = 101 — 10010. Thus, for the all 0 RS codeword, after
this mapping and also adding an additional 1 at the end of

each byte, the codeword is
000111000111 000111000111 000111000111 000111.

Suppose A and B are two codewords. Since the Hamming dis-
tance between them is at least five and each symbol is mapped
into a balanced 2-out-5 codeword, the Dy_p,r > 2-5 = 10.
Thus the code can correct 4-SyOEC/5-SyOED/AUOED code.
Now we explain how the ¢ = 4 O-error correction is

done. This is based on, as explained later, e € [0, t] erasures

error correction, 6 |(t —e)/2] error correction and & o

[(t — e)/2] error detection (e-EEC/A-EC/$-ED) for this code.
In particular, the e-EEC/6-EC/6-ED error control algorithm
for Reed-Solomon code is used to simulate the (e + 26)-
SyOEC/(e + 26 + 1)-SyOED part of the control algorithm for
this code. Since a 1 is inserted at the end of each byte, by
reading from left to right of the received word, the bytes can
be parsed correctly even with some O-errors. In general, if the
number of 0 insertion errors is not equal to the number of 0
deletion errors in a byte, then this byte can be identified as
erroneous and, hence, set equal to an erasure byte. On the other
hand, if the number of 0 insertion errors is equal to the number
of 0 deletion errors in a byte, then that byte is an erroneous
byte which, a priori, can not be identified as erroneous. For
example, suppose the received word is

0010110001011 0000111 000111000111 000111 000111.

By counting the number of 1’s from left to right, it can be
noticed that the balanced encoding of the second and third
bytes are 6 bit long (excluding the synchronizing bit 1) and
so these can be set as erasure bytes by the receiver. After
inverse mapping from 2-out-of-5 codewords to GF(23) the
received word is

(CYO = 001; *, %, 07 0; 07 0) G{F U {*}}7’

where “x” stands for an erasure symbol. Using 2-EEC/1-EC
decoding algorithm, the receiver can correct and obtain the
sent codeword in (21). A

IV. CONCLUDING REMARKS

Some theory and efficient design of binary block codes
capable of controlling the deletions and/or insertions of the
symbol “0” (i. e., the O-errors) are given. It is shown that
the design of codes for insertion and/or deletion of zeros is
equivalent to the design of the L, metric error control codes.
Some asymptotically optimal non-systematic and systematic
codes for correcting these errors are described and their
encoding method is also explained. Because of the space
limitation, the decoding methods are not given here. However,
the decoding can be done efficiently using the Extended
Euclidean Algorithm (EEA).
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