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Abstract—Let Zm

def
= {0, 1, . . . , (m� 1)} be the m-ary alpha-

bet, m2N. This paper gives some new theory and designs of Zm

linear error control codes based on the elementary symmetric
functions of m-ary words. Here, a Zm linear code is a sub-
module of the module (Zn

m,+ mod m,Zm, · mod m), n2N, and
the errors are measured in the L1 or Lee metric. Potentially,
the alphabet size, m, can be any natural, however, the described
code designs and decoding methods are solely based on fields and
field operations. In particular, starting from a very general class
of Goppa-like Zm linear codes, given a field, K, of characteristic
p = char(K) 2 N, we consider a generalization of the BCH

codes to the m-ary alphabet for m = pl, l2N. For these BCH-
like codes we are able to prove a BCH-like bound with respect to
both the L1 and Lee distances. This enabled us to design a wide
family of remarkable efficient codes. For example, an efficient
design is given for Zm linear codes with m = 2l, l 2 N, length
n = m, minimum Lee distance dLee = m = n and the number
of information m-ary digits k = m/2 = n/2.

Index Terms—m-ary error control codes, elementary symmet-
ric functions, σ-codes, asymmetric distance, L1 and Lee distances,
limited magnitude error channels, multi-level flash memories, m-
PSK communication systems, sticky channels.

I. INTRODUCTION

Error control codes for L1 or Lee metrics are fundamental

when the transmission channel follows the Varshamov error

model where the error probability grows exponentially with

the real distance between the sent and received erroneous

symbol [16], [10]. Examples of Varshamov’s channels are

sticky channels (where Zm = N) [15], [23], multi-level flash

memories and/or limited magnitude error channels [7], [20],

[5], m-PSK communication systems [14], [5], and so on.

The theories given in [8], [3], [4], [24], [22], [20], [21],

[18], [17], [16], [15], show that some more information on

the combinatorial properties of algebraic based codes may

be obtained if one considers, as spectrum polynomial [2, p.

61] of a word, the sigma polynomial (defined below) whose

coefficients are the elementary symmetric functions (instead

of the power sums) of the elements in the word regarded

as the multiset over an index set contained in a field. Here

also, we base our investigation using this perspective. In

particular, following the authors in [16], for m = 2, 3 . . .,

let Zm
def
= {0, 1, . . . , (m � 1)} ✓ N = {0, 1, 2, . . .}

def
= Z0

be the m-ary alphabet order as 0  1  2  . . .. For

m,n 2 N, X = x0x1 . . . xn�1 2 Z
n
m and an index set

@S
def
= {a0, a1, . . . , an�1}, let xai

def
= xi 2 Zm indicate

the i-th component of X or, equivalently, the multiplicity of

ai 2X , where X is also regarded as a multiset on the index

set @S [16]. We identify words X 2 Z
n
m with multisets on

the index set @S which usually is a subset of a field. For

∗This work is supported by the NSF grants CCF-2006571.

example, if m = 8, n = 4 and @S
def
= {a0, a1, a2, a3} then

X = 3102 ⌘ {a0, a0, a0, a1, a3, a3}. Let the set

@X
def
= {i2@S : xai

6= 0} ✓ @S

be the set of indices where the word/multiset X is non-zero.

Identifying the proper set @X with its incidence vector, we

can regard @X as a binary vector in Z
n
2 . For example, if

X = 0401 then @X = 0101 = {a1, a3}. So, the L1 weight of

X is its cardinality, wL1
(X)

def
= |X| =

P

i2@S xi (real sum),

and the Hamming weight of X is wH(X)
def
= |@X|. Also,

for all x 2 Zm, let the Lee absolute value of x be �(x)
def
=

�[m](x)
def
= min{x,m � x} 2 Zbm/2c+1, and note that

it is a non decreasing function of m, for all x 2 Zm+1.

Let, �(X)
def
= �[m](X) 2 Z

n
bm/2c+1, be the word obtained

from X 2 Z
n
m by applying � to each xi and the (m-ary)

Lee weight of X is the cardinality of the multiset �(X),

w
[m]
Lee(X)

def
= |�[m](X)| =

P

i2@S min{xi,m�xi}. For exam-

ple, �[5](10234) = 10221 and so w
[5]
Lee(10234) = |10221| = 6.

Let the natural subtraction be x .� y = max{x � y, 0},

for all x, y 2 Zm, and the word X .� Y 2 Z
n
m be the

componentwise natural subtraction of X,Y 2Z
n
m. As in [20],

[16], the following distances between m-ary words X,Y 2Z
n
m

are considered to describe the combinatorial properties of the

codes.

asymmetric L1: dasL1
(X,Y )

def
= max{|Y .�X|, |X .�Y |},

symmetric L1: dsyL1
(X,Y )

def
= |Y .�X|+|X .�Y |,

Lee: dLee(X,Y )
def
= |�(X .�Y )|+|�(Y .�X)|,

Hamming: dH(X,Y )
def
= |@(X .�Y )|+|@(Y .�X)|.

For example, if m = 5, n = 5, X = 10234, Y = 24212 then

|X .� Y | = 4, |Y .� X| = 5, |�(X .� Y )| = 4, |�(Y .� X)| =
2, |@(X .� Y )| = 2, |@(Y .� X)| = 2 and dasL1

(X,Y ) =
max{4, 5} = 5, dsyL1

(X,Y ) = 4 + 5 = 9, dLee(X,Y ) =
4 + 2 = 6 and dH(X,Y ) = 2 + 2 = 4.

If X is a sent word and Y is received then Y .� X is

the positive error vector, X .� Y is the negative error vector

so that, X = Y � (Y .� X) + (X .� Y ). The following

combinatorial characterizations are well known [1], [25], [16].

Theorem 1: A code C ✓ Z
n
m can correct t+ 2 N or less

positive errors and simultaneously t� 2 N or less negative

errors (i. e., C is a (t+, t�)-EC code) measured in the L1

metric if, and only if, the minimum asymmetric L1 distance

of C is dasL1
(C) > t+ + t�. In addition (similar to the Lee

and Hamming distances codes), C can correct t 2 N or less

symmetric errors (i. e., C is a t-SyEC code) in the L1 metric

if, and only if, dsyL1
(C) > 2t.
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Now, the sigma polynomial of a word is defined as follows.

Given m,n2N, a field K and @S ✓ K, with |@S| = n, the

�-polynomial associated with X = x0x1, . . . , xn�1 2 Z
n
m is

defined as [20],

�X(z)
def
= zx0

Y

a2@S .�{0}

(1� az)xa =

�0(X) + �1(X)z + �2(X)z2 + . . .2K[z].

(1)

For example, if n = 4, a0
def
= 0 2 @S and X = 2102 =

{a0, a0, a1, a3, a3} then

�X(z) = z2(1� a1z)
1(1� a3z)

2 =

z2 � (a1 + 2a3)z
3 + (2a1a3 + a23)z

4 � (a1a
2
3)z

5.

Note that �X(z) is a polynomial of degree deg(�X) =
wL1

(X) = |X| having wH(X) = |@X| distinct roots in

K, each with multiplicity xa, for a 2 @S. In particular, X
coincides with the multiset of all the roots of the “equivalent”

�-polynomial

%X(z)
def
= z|X|�x0�X(1/z) =

Y

a2@S

(z � a)xa ,

and so the coefficients �0(X), �1(X), �2(X), . . . 2 K of

�X(z) are the elementary symmetric functions of the elements

in the multiset X , ordered in increasing order of their degree.

Given Theorem 1, (t+, t�)-EC can be designed based on

the following general key equation [16].

�X(z)�Y .�X(z) = �Y (z)�X .�Y (z), for all X,Y 2Z
n
m. (2)

For any fixed g(z) 2 K[z] such that the gcd(�@S , g) =
1, the following �-codes were considered in [16] and these

codes have the minimum asymmetric L1 distance d = deg(g)
capable of controlling t = d � 1 asymmetric L1 errors (see

Theorem 1).

Cg,�
def
=

⇢

X2Z
n
m

�

�

�

�

�X(z) = cX ·�(z) mod g(z),
for some cX 2K � {0}

�

, (3)

where �(z) 2 K[z]. When d  m = char(K) = p 2 N

and g(z) = zd, the codes Czd,1 are linear m-ary BCH codes

(eventually shortened); hence, easy to encode and decode. The

authors in [16] extended these linear m-ary BCH �-codes to

efficient Zm linear BCH �-codes with minimum asymmetric

(designated) L1 distance d  m/v = pl, l, v2N. In particular,

they get a new class of t = (d�1) asymmetric error correcting

Zm linear codes of length n  |K|� 1 whose redundancy is

only t logm |K|. These codes have very efficient field based

algebraic decoding algorithms to control t errors actually in

the Lee distance. Here, we extend their results and get other

remarkable families of efficient Zm linear codes with good

minimum symmetric Lee distance. In particular, in Section II,

starting from a formal generalization of the codes in (3) (we

let cX = [⌧X(z)]m2K[z]� {0}) we are able to define a very

general class of Goppa-like Zm, m 2 N, linear codes. Then,

given a field, K, of characteristic p = char(K)2N, in Section

III we consider a natural generalization of the (eventually

shortened) BCH codes to the m-ary alphabet for m = pl,
l2N. For these BCH-like codes we are able to prove a BCH-

like bound with respect to both the L1 and Lee distances.

We note that no BCH bound for Lee-distance codes over Zm

seems to be known [2, p. 120]. In Section IV, we focus on

the cyclic version of the BCH-like codes and relate these to

the Galois ring based coding theory given in [2], [6], [11] and

analyze some remarkable examples of a Zm linear codes with

simple field based decoding algorithm.

II. THE Zm LINEAR GOPPA-LIKE CODES

Let us recall the following as done in [16]. Let m,n, k, h2N

and X,Y 2N
n. If C = C(X,Y ) = b(k ·X + h · Y )/mc then

k ·X + h · Y = m · C + (k ·X + h · Y ) mod m; (4)

where “·”, “/”, “mod m”, . . . operations are applied compo-

nentwise. For example, if m = 4, n = 4, k = 2, h = 3,

X = 0123 and Y = 1201 then k · X + h · Y = 3849, C =
b(k ·X + h · Y )/4c = 0212, (k · X + h · Y ) mod 4 = 3001
and 3849 = 4(0212) + 3001. Hence, for any m2N, field K
and index set @S ✓ K,

for all k, h2Zm and X,Y 2Z
n
m,

[�X(z)]k[�Y (z)]
h = �k·X+h·Y (z) =

[�C(z)]
m�(k·X+h·Y ) mod m(z),

where C = C(X,Y ) = b(k ·X + h · Y )/mc2N
n.

(5)

The relations in (5) follow from (4) and the �-polynomial

definition (1). At this point, the Zm linear Goppa-like codes

are given in (6) below.

Theorem 2: Let u, v,m
def
= uv, n2N. Let K be any field,

@S = {a0, a1, . . . , an�1} ✓ K, with n  |K|, and g(z) 2
K[z] be a polynomial such that gcd(�@S , g) = 1. The code

Cg
def
=

⇢

X2Z
n
m

�

�

�

�

�X(z) = [⌧X(z)]v mod g(z),
for some ⌧X(z)2K[z]� {0}

�

(6)

is Zm linear. In particular, if G
def
= {G0, G1, . . . , Gb} ✓ Cg ✓

Z
n
m then (G) ✓ Cg , where

(G)
def
=

⇢

X2Z
n
m

�

�

�

�

X =
Pb

i=0 ki ·Gi mod m, for

some k0, k1, . . . , kb2Zm

�

indicates the Zm linear code generated by G0, G1, . . . , Gb.
Proof: Let X,Y 2 Cg ✓ Z

n
m so that �X(z) =

[⌧X(z)]v mod g(z) and �Y (z) = [⌧Y (z)]
v mod g(z), for

some ⌧X(z), ⌧Y (z)2K[z]�{0}. Hence, from (5), there exists

C2N
n such that @C ✓ @S and

[�C(z)]
m�(X+Y ) mod m(z) = �X(z)�Y (z) =

[⌧X(z)⌧Y (z)]
v mod g(z).

(7)

Since gcd(�@S , g) = 1 and @C ✓ @S, we get gcd(�C , g) = 1.

This implies that there exists the inverse polynomial �̃C(z)
def
=

1/[�C(z)] mod g(z)2K[z]� {0}. Hence, from (7) and m =
uv, it follows,

�(X+Y ) mod m(z) = [�̃C(z)]
m[⌧X(z)⌧Y (z)]

v =

[�̃C(z)
u⌧X(z)⌧Y (z)]

v = [⌧(X+Y ) mod m(z)]v mod g(z);

where ⌧(X+Y ) mod m(z)
def
= �̃C(z)

u⌧X(z)⌧Y (z)2K[z]� {0}.

This implies (X + Y ) mod m2Cg .
We note that the cosets of the Zm linear code Cg in (6) are

the (possibly empty) codes

Cg,�
def
=

⇢

X2Z
n
m

�

�

�

�

�X(z) = [⌧X(z)]v�(z) mod g(z),
for some ⌧X(z)2K[z]� {0}

�

,

with �(z)2K[z]� {0}, where Cg = Cg,1.
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III. THE Zm LINEAR BCH-LIKE CODES AND THE

BCH-LIKE BOUND

The class of codes in (6) is so general that, for example, it

contains the class of (eventually shortened) BCH codes when

g(z) = zd, d 2 N, and m = v = p = char(K) (this can

be easily shown, for example, with the aid of the Newton’s

Identity applied to �X(z)). Indeed, even if m = v = pl, l2N,

then some bounds can be given on the minimum L1 and Lee

distances of the codes given in (6) as stated in the following

theorem whose proof is given in the Appendix.

Theorem 3: Let p, l,m = pl, n 2 N, K be any field of

characteristic p = char(K) � 0, @S = {a1, a2, . . . , an} ✓
K � {0}, with n  |K|� 1. If g(z) = zd2K[z] then the Zm

linear code in (6) becomes C = Czd,1 =

C(m,n, d)
def
=

⇢

X2Z
n
m

�

�

�

�

�X(z) = [⌧X(z)]m mod zd,

with ⌧X(z)21 + zK[z]

�

(8)

and the following BCH-like bound holds for the minimum

symmetric L1 and Lee distances:

dsyL1
(C(m,n, d)) � dLee(C(m,n, d)) � deg

�

zd
�

= d. (9)

Also, for the minimum asymmetric L1 distance:

dasL1
(C(m,n, d)) �

⇢

min{d,m} if m > 0,
d if m = 0.

(10)

Note that, even though the codes in (8) have a minimum

Lee distance d 2 N, their minimum Hamming distance may

be less. For example, if p = 2, l = 2, m = 22 = 4, K =
GF (4), @S = K � {0} and d = 2 then the code in (8) is

C = C(4, 3, 2) = {000, G1 = 020, G2 = 002, G0 = 133, . . .}
(the Gi’s are the generators), dLee(C) = d = 2 > 1 = dH(C).
However, the code C can correct t = 1 asymmetric L1 error

because dasL1
(C) = d = t + 1 = 2. Indeed, by using the key

equation (14) in [16], C can even correct 1 asymmetric error

in the Lee metric (and is perfect in doing so).

IV. THE Zm LINEAR CYCLIC CODES

Particularly interesting is the case g(z) = zd where the

index set @S is composed by the n-th roots of unity. In this

case, the codes in (6) become cyclic as shown in the following

theorem.

Theorem 4: Let m, v, n, d2N, K be any field and @S =
{↵0,↵1, . . . ,↵n�1} ✓ K � {0}; ↵ being a (primitive) n-th

root of unity, with n  |K|� 1. If g(z) = zd2K[z] then the

code in (6), C(m,n, d, v)
def
=

C
def
=

⇢

X2Z
n
m

�

�

�

�

�X(z) = [⌧X(z)]v mod zd,

with ⌧X(z)21 + zK[z]

�

(11)

is an m-ary cyclic code of length n. Furthermore, if m = uv
with u 2 N then the code in (11) is also Zm linear and, in

general, dLee(C) � min{d, v}.

Proof: Given X = x0x1 . . . xn�2xn�1 2 Z
n
m let X

→

=
xn�1x0x1 . . . xn�2 2Z

n
m indicate the word obtained from X

due to a right cyclic shift. From �X(z) =
Qn�1

i=0

�

1� ↵iz
�xi

and ↵n = ↵0 = 1, it follows �X(↵z) = �X
→ (z). Now, if

X2C then, for some k(z)2K[z] and ⌧X(z)21 + zK[z],

�X(z) = [⌧X(z)]v mod zd =)

�X(z) = [⌧X(z)]v + k(z)zd =)
�X(↵z) = [⌧X(↵z)]v + k(↵z)↵dzd =)
�X

→ (z) = �X(↵z) = [⌧X→ (z)]v mod zd,

with ⌧X
→(z)

def
= ⌧X(↵z) 2 1 + zK[z]. So X

→

2 C. The Zm

linearity of C comes from Theorem 2. With regards to the

minimum Lee distance of C, note that if X2C�{0} then either

a) X = v ·@X with @X 6= 0, or b) 0 6= X 6= v ·@X . If a) holds

then, simply, w
[m]
Lee(X) = |�[m](X)| � v|@(X)| � v. If b)

holds then, from Theorem 3 applied to the v-ary code (C mod
v), the word (X mod v)2(C mod v)�{0} and |�[v](X)| � d.

Since �[m] is non increasing, |�[m](X)| � |�[v](X)| � d.

Let us focus on the case m = uv = pl, p = char(K) =
2, 3, 5, 7, . . . prime, @S = {↵0,↵1, . . . ,↵n�1} ✓ K � {0}; ↵
being a (primitive) n-th root of unity, with n2N, n  |K|�1.

In this case the codes in (11),

C
def
= C(m,n, d, v)

def
= (12)

⇢

X2Z
n
m

�

�

�

�

�X(z) = [⌧X(z)]v mod zd,
with ⌧X(z)21 + zK[z]

�

=
⇢

X2Z
n
m

�

�

�

�

�0(X) = 1 and �i(X) = 0 for any
integer i2 [1, d�1] such that i 6= 0 mod v

�

are Zm linear cyclic codes of length n. Note that, when m =
pl, p prime, then all the theories on the m-ary cyclic codes

given in [11], [6] and [2] hold. In particular, if any codeword

X2Z
n
m is represented by the codeword polynomial [2, p. 61]

in the variable t,

X(t)
def
= x0 + x1t+ x2t

2 + . . .+ xn�1t
n�12Zm[t], (13)

then the codes in (12) are ideals of the principal ideal ring

R
def
= Zm[t]/(tn � 1) and, for them, the minimum distance

properties in Theorem 3 hold. In particular, if (F1, F2, . . .)
indicates the ideal generated by F1, F2, . . .2R then Theorem

6 and its Corollary in [6] say that any ideal in R has the

forms (G) = (F0, pF1, p
2F2, . . . , p

l�1Fl�1) ✓ Zm[t] where

the Fi(z)’s are divisors of tn � 12Zm[t] satisfying

Fl�1|Fl�2| · · · |F1|F0 and (14)

G(t)
def
= g0 + g1t+ . . .+ gn�1t

n�1 =
F0(t) + pF1(t) + p2F2(t) + . . .+ pl�1Fl�1(t)2Zm[t].

Starting from the factorization of tn � 12Zp[t] it is possible

to find the Hensel lift factorization of tn � 12Zm=pl [t] into

basic irreducible polynomials. Now, say, as done in Example

5 of [6], from this factorization it is possible to classify all

cyclic codes each of which is identified by a generator of the

form in (14). Now, if G(t) is any one of these generators and

G = g0g1 . . . gn�1 2 C ✓ Z
n
m then the minimum distances

of the code (G) = C can be lower-bounded with Theorem

3. In other words, the �-polynomial of the generators of a

cyclic code give some information on the minimum L1 and

Lee distances of the code.

Example 1: Let p = 2, l = 3, m = 8, h = 4,

K = GF (2h) = Z2[z]/(z
4 + z + 1), @S be the ordered

set @S = (↵0,↵1, . . . ,↵14) = K � {0} and n = |@S| =
15. Considering K as a vector space over Z2, define the

words F0 = 11111 11111 11111 = L(↵0,↵1,↵2,↵3) � {0},

2F1 = 22202 20020 20000 = 2(L(↵0,↵1,↵2) � {0}), 4F2 =
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44004 00000 00000 = 4(L(↵0,↵1)�{0}) and G = F0+2F1+
4F2; where L(p1, p2, . . . , p�)  K is the linear closures of the

multiset {p1, p2, . . . , p�}. From equation (7) in [21] and (5),

we have that �2iFi
(z) = 1 + ciz

8 mod z12, with ci 2 K,

i = 0, 1, 2. From Theorem 3 with d = m + m/2 = 12,

C
def
= (G)  C(m = 8, n = 15, d = 12) has dLee(C) � 12

and dasL1
(C) � 8 (but, note that 4F2 2 C and so 3 � dH(C)).

Indeed, C is of type 112446 (with the notation in [6]) and so it

is a Z8 linear code with k = log8(8
14426) = 17/3 = 5.6̄

information digits and length n = 15. With an abuse of

notation, a generator matrix is,

G
def
=

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 2 2 2 0 2 2 0 0 2 0 2 0 0 0
0 0 2 2 2 0 2 2 0 0 2 0 2 0 0
0 0 0 2 2 2 0 2 2 0 0 2 0 2 0
0 0 0 0 2 2 2 0 2 2 0 0 2 0 2
0 0 0 0 0 4 4 0 0 4 0 0 0 0 0
0 0 0 0 0 0 4 4 0 0 4 0 0 0 0
0 0 0 0 0 0 0 4 4 0 0 4 0 0 0
0 0 0 0 0 0 0 0 4 4 0 0 4 0 0
0 0 0 0 0 0 0 0 0 4 4 0 0 4 0
0 0 0 0 0 0 0 0 0 0 4 4 0 0 4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

.

Now, let RM(⇢, h) be the binary ⇢-th order Reed-Muller code

of length n + 1 = 2h, dimension k = 1 +
�

h
1

�

+
�

h
2

�

+

. . . +
�

h
⇢

�

and minimum Hamming distance dH = 2h�⇢ (see

[12, pages 370–385]). By adding the parity check symbol

x1 = �|X| mod 8 for X 2 C a code C+ = C+(m =
8, n = 16, k = 5.6̄, dLee � 16) can be obtained. The

minimum distance is dLee(C
+) � 16 because of the fol-

lowing. For any n, h,m = 2h 2 N and X 2 Z
n
m, let

B⇢(X)
def
= [bX/2⇢c mod 2] 2 Z

n
2 , for all ⇢ = 0, 1, 2, note

that |X| = |B0(X)| + 2|B1(X)| + 4|B2(X)| � |B0(X)|
and B⇢(x1) = |B⇢(X)| mod 2 = |B0(X/2⇢)| mod 2 when

X 2 (2⇢) · Zn. So, if X 2 [(2⇢) · Zn] \ C+ then B0(X/2⇢)2
RM(⇢, h). Also, note that B0(X) � B0(�

[m](X)) = X �
�[m](X) = 0 mod 2 and �[m](2X) = 2�[m/2](X). Now,

assume X 2 C+ � {0}. If B0(X) 2 (C+ mod 2) � {0}
then, from above, B0(X) 2 RM(⇢, h), B0(�

[m](X)) =
B0(X) and so, |�[m](X)| � |B0(�

[m](X))| = |B0(X)| �
2h�⇢ = 24�0 = 16. Otherwise, if B0(X) = 0 and

B1(X) 2 [(C+/2) mod 2] � {0} then, from above, X 2
2Zn

m/2, B0(X/2)2RM(1, h), B0(�
[m/2](X/2)) = B0(X/2)

and so, |�[m](X)| = |�[m](2(X/2))| = 2|�[m/2](X/2)| �
2|B0(�

[m/2](X/2))| = 2|B0(X/2)| � 2 · 2h�⇢ = 2 ·
24�1 = 16. Finally, if B0(X) = B1(X) = 0 then,

from above, B2(X) 2 [(C+/4) mod 2] � {0}, X 2 4Zn
m/4,

B0(X/4) 2 RM(2, h), B0(�
[m/4](X/4)) = B0(X/4) and

so, |�[m](X)| = |�[m](4(X/4))| = 4|�[m/4](X/4)| �
4|B0(�

[m/4](X/4))| = 4|B0(X/4)| � 4 · 2h�⇢ = 16. Now,

not many error correcting Zm linear codes are known in

the literature, however it is known that the Gray mapping

sets a contraction between the metric space (Z2l , dLee) and

(Zl
2, dH) (which is an isometry for l = 2 [11]) [14, p. 321].

This implies that the minimum Hamming distance, d, of the

binary codes of length ln gives the minimum Lee distance of

at least d with length n over Z2l . Given this, the extended

code C+ = (G)+ may be considered equivalent to a linear

(m = 2, n = 3 · 16 = 48, k = 3 · 5.6̄ = 17, dH � 16) code

which has not been discovered yet and the closer code to this

is a linear (m = 2, n = 51, k = 3 · 5.6̄ = 17, dH � 16) code

[9], [13]. So, this example code is rather remarkable. It can

be considered a Z8 �RM(2, 4) code and can be generalized

to any m = 2l, l, h 2 N to get Zm � RM(⇢ = h � 2, h)
codes of length n = 2h = |K|, Lee distance dLee � 2m with

k = logm |C+| =
Pl�1

i=0

�

h
i

�

� (1/l)
Pl�1

i=h�l i
�

h
i

�

data digits.
Example 2: Here the parameters are as in Example 1 but

m = 16 (i. e., m is doubled). In this case, it is possible to

add the word 8F3 = 80000 00000 00000 = 8(L(↵0) � {0})
as a generator because �8F3

(z) = 1 + 1 · z8 mod z12. From

Theorem 4 with v = m/2 = 8 and d = m/2 + m/4 = 12,

C
def
= (G)  C(m = 16, n = 15, d = 8) has dLee(C) � v = 8

and dasL1
(C) � 8 (so, it can correct 7 asymmetric errors). The

code C is a Z16 linear code with k = log16(16
1844624) =

32/4 = 8 information digits and length n = 15 which, as

in Example 1, can be extended by adding the parity check

symbol x1 = �|X| mod 16 for X 2 C. In this way, a code

C+ = C+(m = 16, n = 16, k = 8, dLee � 16) can be ob-

tained. It can be considered a Z16�RM(3, 4) code and can be

generalized to any m = 2l, l2N to get Zm�RM(⇢ = l�1, l)
codes of length n = 2l = |K| = m, Lee distance dLee � m

and k=logm |C+|=logm
Qh

i=0(m/2i)(
h

i)=m/2 data digits.
Note that the generator matrices of permutation equivalent

codes to all these codes can be constructed as done for m = 4
in Subsection II.G of [11].

With regard to decoding, the general T -SyEC/D-SyED

Algorithm 2 in [16] is an efficient GF (2h) field based alge-

braic decoding algorithm. It relies on solving the general key

equation (14) in [16], which is the Lee distance analogous to

equation (2) for the L1 distance [19]. In particular, the above

specific examples for m = 8, 16 can be used to correct 7 and

detect (at least) 8 symmetric Lee errors.
We note that equation (7) in [21] and the Theorems given

here are so general that efficient generalizations for any values

of the prime p may be possible.

APPENDIX

For m,n 2 N, X = x0x1 . . . xn�1 2 Z
n
m and an index set

@S
def
= {a0, a1, . . . , an�1} let µX(ai)

def
= xai

def
= xi 2Zm be

the i-th component of X or, equivalently, the multiplicity of

ai2X .
Proof of Theorem 3: Let us prove (9) first. The leftmost

relation comes from dsyL1
(X,Y ) � dLee(X,Y ), for all X,Y 2

Z
n
m. So, let us prove dLee(C(m,n, d)) � d. For any vector

X2Z
n
m, let us write X = B0+B1p+B2p

2+. . .+Bl�1p
l�12

Z
n
pl = Z

n
m, whereBj 2Z

n
p , for all integer j2 [0, l� 1]. In this

way, any component xi2Zpl of X can be written in the base

p number system as xi = µX(ai) = µB0
(ai) + µB1

(ai)p +
. . . + µBl−1

(ai)p
l�1 where each component µBj

(ai) of the

word/multiset Bj 2Z
n
p is such that µBj

(ai)2Zp, for all integer

i2 [1, n] and j2 [0, l � 1]. Note that, from (5) and (8),

X2C () �X(z) = �B0
(z) [�B1

(z)]
p
[�B2

(z)]
p2

. . .

. . .
⇥

�Bl−1
(z)

⇤pl−1

= [⌧X(z)]
pl

mod zd.

Assume X2C � {0}. Then, let s2 [0, l � 1] be such that

B0 = B1 = . . . = Bs�1 = 02Z
n
p and Bs 6= 0. (15)
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Note that such s exists. For such X2C � {0} we have

�X(z) = [�Bs
(z)]

ps ⇥

�Bs+1
(z)

⇤ps+1

. . .

. . .
⇥

�Bl−1
(z)

⇤pl−1

= [⌧X(z)]
pl

mod zd.
(16)

Now, for all j 2 [0, l � 1], gcd(�@S , z
d) = 1 and @Bj ✓ @S

imply gcd(�Bj
, zd) = 1; so, there exists

⇥

�Bj
(z)

⇤�1
mod zd.

Hence, from (16) and s + 1  l, there exists ⌧Bs
(z) 2K[z]

such that [�Bs
(z)]

ps

= [⌧Bs
(z)]

ps+1

= {[⌧Bs
(z)]

p
}
ps

mod zd.
Since char(K) = p, the application x ! xps

is a (Frobenius)

automorphism of K, for all s 2 N. So the above relation is

equivalent to the polynomial equation

k(z)zd = [�Bs
(z)� [⌧Bs

(z)]
p
]
ps

=

[�Bs
(z)]

ps

� {[⌧Bs
(z)]

p
}
ps (17)

being true for some k(z) 2 K[z] such that k(z)zd 2 K[z]
is the ps-th power of a polynomial. Now, given q(z) 2K[z]
let q[r](z)2K[z] indicate the polynomial containing only the

monomials, say qiz
i, of q(z) such that i = r mod ps. From

(17), we have

k(z)zd = k[(p
s�d) mod ps](z)zd =

�

k[(p
s�d) mod ps](z)/z(p

s�d) mod ps�

z(p
s�d) mod ps

zd =

[h(z)]
ps ⇥

zdd/p
se
⇤ps

=
⇥

h(z)zdd/p
se
⇤ps

where k[(p
s�d) mod ps](z)/z(p

s�d) mod ps

= [h(z)]
ps

2 K[z]
for some h(z)2K[z]. So, the above relation and (17) give

[�Bs
(z)� [⌧Bs

(z)]
p
]
ps

=
h

h(z)zdd/p
se
ips

which, by taking the inverse of the Frobenius automorphism,

gives �Bs
(z)� [⌧Bs

(z)]
p
= h(z)zdd/p

se, and hence,

�Bs
(z) = [⌧Bs

(z)]
p
mod zdd/p

se, with Bs2Z
n
p � {0}.

At this point we take the derivative and, since char(K) = p,

obtain

�0
Bs

(z) = 0 mod zdd/p
se�1, with Bs2Z

n
p �{0}. (18)

Let ✏Bs
(z)2K[z] be the evaluator polynomial associated with

Bs. From Lemma 1–b) given below with Y = Bs, we have

�0
Bs

(z) = ✏Bs
(z)�Bs

.�@Bs
(z). Substituting this in (18), we get

�0
Bs

(z) = ✏Bs
(z)�Bs

.�@Bs
(z) = 0 mod zdd/p

se�1. So, from

gcd
�

�@S , z
dd/pse�1

�

= 1 and @(Bs
.� @Bs) ✓ @Bs ✓ @S, it

follows gcd
�

�Bs
.�@Bs

, zdd/p
se�1

�

= 1; and so,

✏Bs
(z) = 0 mod zdd/p

se�1 with Bs2Z
n
p � {0}. (19)

Since Bs 2 Z
n
p � {0}, ✏Bs

(z) = k(z)zdd/p
se�1 for some

k(z) 2 K[z] � {0}. This, char(K) = p and Lemma

1–c) with Y = Bs, imply, |@Bs| � 1 � deg(✏Bs
) �

deg
�

zdd/p
se�1

�

= dd/pse � 1. So, from @X ◆ @Bs, it

follows |@X| � |@Bs| � dd/pse. However, from Lemma

2 given below, (15) implies wLee(X) � ps|@X|, and so

wLee(X) � ps|@X| � ps dd/pse � d. In conclusion, we have

shown that either X = 0 2 C or wLee(X) � d. This means

that dLee(C(m,n, d)) � d and (9) is proved.

Let us prove (10) when m > 0. Note that if X 2 C then

�X(z) = [⌧X(z)]m mod zd, with ⌧X(z)
def
= 1 + ⌧1z + ⌧2z

2 +

. . . 2 K[z] � {0}. Since char(K) = p and m = pl, the

application x ! xm is a Frobenius automorphism of K.

Hence,

�X(z) =
Y

a2@S

(1�az)µX(a) = 1+�1(X)z+�2(X)z2+ . . . =

[⌧X(z)]m = 1 + ⌧m1 zm + ⌧m2 z2m + . . . mod zd

implies that �i(X) = 0 for any integer i2 [1, d� 1] such that

i 6= 0 mod m and vice-versa. That is,

X2C () �i(X) = 0 for any integer i2 [1, d � 1]
such that i 6= 0 mod m.

Let �
def
= min{d,m}. In any case, if X 2 C then �i(X) = 0

for any integer i2 [1, ��1], and so C is a subset of the �-code

Cz�,1 =
�

X2Z
n
m : �X(z) = 1 mod z�

 

,

whose minimum asymmetric L1 distance is � [20]. Finally, if

m = 0 then the code C in (8) itself becomes a �-code,

C = Czd,1 =
�

X2N
n : �X(z) = 1 mod zd

 

and, again, the minimum asymmetric L1 distance is d.
Lemma 1 (see [22]): Let m,n 2 N, K be any field and

@S ✓ K � {0}. For any Y 2Z
n
m let

�Y (z) = �@Y (z) =
Y

a2@S

(1� az)µ@Y (a)2K[z]

be the locator polynomial of Y and

✏Y (z) = �
X

a2@S

µY (a)a
Y

b2@S .�{a}

(1� bz)µ@Y (b)2K[z]

be the evaluator polynomial of Y . For all Y 2 Z
n
m, the

following relations hold.

a) �Y (z) = �Y (z)�Y .�@Y (z),
b) �0

Y (z) = ✏Y (z)�Y .�@Y (z) and

c) if m = char(K) then Hamming weight of Y satisfies

wH(Y ) = |@Y | = deg(�Y ) � deg(✏Y ) + 1.

Lemma 2: Let n, p, h,m = pl2N, and

X
def
= B0 +B1p+B2p

2 + . . .+Bl�1p
l�12Z

n
m;

where Bj 2Z
n
p , for all integer j 2 [0, l � 1]. If s2 [0, l] is an

integer such that B0 = B1 = . . . = Bs�1 = 0 then the m-ary

Lee weight of X is such that w
[m]
Lee(X) � ps|@X|.

Proof: If m = 0 then the Lee weight is equal to the L1

weight and the theorem is true because ps = 00 = 1. Assume

m > 0. For all i2@S
def
= [1, n], let xi = µX(i)

def
= psyi2Zpl

with yi = xi/p
s 2 Zm/ps = {0, 1, . . . , pl�s � 1}. This is

possible because Bj = 0, for all j 2 [0, s � 1]. So, Y
def
=

y1y2 . . . yn2Z
n
m/ps and

w
[m]
Lee(X) =

X

i2@S

�[m](xi) =
X

i2@S

min{xi,m� xi} =

X

i2@S

min{psyi,m� psyi} =
X

i2@S

ps min{yi, (m/ps)� yi} =

ps
X

i2@S

min{yi, (m/ps)� yi} = psw
[(m/ps)]
Lee (Y ) � ps|@Y |.

Since |@Y | = |@X| the statement follows.
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