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Abstract—Let Z,, < {07 1,...,(m —1)} be the m-ary alpha-
bet, m € N. This paper gives some new theory and designs of Z,,
linear error control codes based on the elementary symmetric
functions of m-ary words. Here, a Z,, linear code is a sub-
module of the module (Z7,, + mod m, Z,, - mod m), n€N, and
the errors are measured in the L; or Lee metric. Potentially,
the alphabet size, m, can be any natural, however, the described
code designs and decoding methods are solely based on fields and
field operations. In particular, starting from a very general class
of Goppa-like Z,, linear codes, given a field, K, of characteristic
p = char(K) € N, we consider a generalization of the BCH
codes to the m-ary alphabet for m = p', [ € N. For these BCH-
like codes we are able to prove a BCH-like bound with respect to
both the ,; and Lee distances. This enabled us to design a wide
family of remarkable efficient codes. For example, an efficient
design is given for Z,, linear codes with m = 2,/ € N, length
n = m, minimum Lee distance d;.. = m = n and the number
of information m-ary digits k = m/2 =n/2.

Index Terms—m-ary error control codes, elementary symmet-
ric functions, o-codes, asymmetric distance, L; and Lee distances,
limited magnitude error channels, multi-level flash memories, m-
PSK communication systems, sticky channels.

I. INTRODUCTION

Error control codes for L or Lee metrics are fundamental
when the transmission channel follows the Varshamov error
model where the error probability grows exponentially with
the real distance between the sent and received erroneous
symbol [16], [10]. Examples of Varshamov’s channels are
sticky channels (where Z,, = N) [15], [23], multi-level flash
memories and/or limited magnitude error channels [7], [20],
[5], m-PSK communication systems [14], [5], and so on.

The theories given in [8], [3], [4], [24], [22], [20], [21],
[18], [17], [16], [15], show that some more information on
the combinatorial properties of algebraic based codes may
be obtained if one considers, as spectrum polynomial [2, p.
61] of a word, the sigma polynomial (defined below) whose
coefficients are the elementary symmetric functions (instead
of the power sums) of the elements in the word regarded
as the multiset over an index set contained in a field. Here
also, we base our investigation using this perspective. In
particular, following the authors in [16], for m = 2,3.
let Zp % {0,1,....(m — 1)} C N = {0,1,2,...} def 7
be the m-ary alphabet order as 0 < 1 < 2 < .... For
m,n € N, X = xoz1...2p—1 € Z;, and an index set
a5 {ag,a1,...,an-1}, let x,, def r; € Z,, indicate
the i-th component of X or, equivalently, the multiplicity of
a; € X, where X is also regarded as a multiset on the index
set 05 [16]. We identify words X € Z} with multisets on
the index set 0S which usually is a subset of a field. For
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example, if m = 8, n = 4 and 95 def {ao,a1,a2,a3} then
X =3102 = {CLU, ap, ap,a1,0a3, a3}. Let the set
0X Y ticas: z,, £0} COS

be the set of indices where the word/multiset X is non-zero.
Identifying the proper set X with its incidence vector, we
can regard 0X as a binary vector in Z%. For example, if
X = 0401 then 0X = 0101 = {aq,as}. So, the Ly weight of
X is its cardinality, wy, (X) = & |X| =D ",cos xi (real sum),
and the Hamming weight of X is wy(X) = o |0X]|. Also,
for all x € Z,,, let the Lee absolute value of = be A\(z) = e
A () def min{z,m — x} € Z|y/2/+1, and note that
it is a non decreasing function of m, for all z € Z,,11.
Let, A(X) = e AM(X) e L7, /2)+1» be the word obtained
from X € Z7, by applying A to each x; and the (m-ary)
Lee weight of X is the cardinality of the multiset \(X),
wi™ (x) €Am(X)| = 3, g min{z;, m—a;}. For exam-
ple, Al (10234) = 10221 and so w!)_(10234) = [10221] = 6.
Let the natural subtraction be z — y = max{z — y,0},
for all z,y € Zy,, and the word X = Y € Z7} be the
componentwise natural subtraction of X,Y €Z7 . As in [20],
[16], the following distances between m-ary words X,Y € Z},
are considered to describe the combinatorial properties of the
codes.

asymmetric Li: df’ (X,Y) = &f max{|Y - X|,|X ~Y]|},
symmetric Li: T(XY) dCf|Y X|+|X Y],

Lee: dLFF(X,Y) LENX V) [+ A(Y = X)),
Hamming: du(X,Y) 10X = Y)|+]o(Y = X)|.

For example, if m =5, n =5, X = 10234, Y = 24212 then
X ~Y|=4,Y ~ X|=5AMX-Y)| =4 |\Y - X)|=
2, [0(X = Y)| =2, 0Y - X)| = 2 and d‘isl(X,Y) =
max{4,5} = 5, dY (X,Y) = 445 = 9, dre.(X,Y) =
4+4+2=06 and dH(X Y)=2+2=4.

If X is a sent word and Y is received then ¥ — X is
the positive error vector, X — Y is the negative error vector
sothat, X =Y — (Y - X)+ (X = Y). The following
combinatorial characterizations are well known [1], [25], [16].

Theorem 1: A code C C Z}, can correct ty € N or less
positive errors and simultaneously ¢ € N or less negative
errors (i. e., C is a (t4,¢_)-EC code) measured in the L,
metric if, and only if, the minimum asymmetric L; distance
of C is d°(C) > ty +t_. In addition (similar to the Lee
and Hamming distances codes), C can correct ¢ € N or less
symmetric errors (i. e., C is a t-SyEC code) in the L; metric
if, and only if, 7’ (C) > 2t.
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Now, the sigma polynomial of a word is defined as follows.
Given m,n €N, a field K and 9S C K, with |0S| = n, the
o-polynomial associated with X = zoz1,...,2,-1 € Z], is
defined as [20],

def gz,

ox(z) = z H (1—az)® =
0€5= {0} 1)
ao(X) + 01(X)z+ 02(X)22 + ... € K[z].

For example, if n = 4, ag def 0€dS and X = 2102

{ao»ao7a1,a3,a3} then
UX(Z) = 22(1 — alz)l(l — a3z)2 =

22 — (a1 + 2a3)2% + (2a1a3 + a3)z* — (a1a)2°.

Note that ox(z) is a polynomial of degree deg(ox)
wr, (X) = |X| having wy(X) = |0X]| distinct roots in
K, each with multiplicity x,, for a € 0S. In particular, X
coincides with the multiset of all the roots of the “equivalent”
o-polynomial

E Xy (1/2) = [ (2 - a)™,
a€ds
and so the coefficients oo(X), 01(X), 02(X), ... € K of
ox(z) are the elementary symmetric functions of the elements
in the multiset X, ordered in increasing order of their degree.
Given Theorem 1, (¢4,¢_)-EC can be designed based on
the following general key equation [16].

ox(2)

2

For any fixed g(z) € K|z] such that the ged(oss,g) =
1, the following o-codes were considered in [16] and these
codes have the minimum asymmetric L; distance d = deg(g)
capable of controlling ¢ = d — 1 asymmetric L; errors (see
Theorem 1).

}7 3)

{XGZZ;

where o(z) € K[z]. When d < m = char(K) = p€e N
and g(z) = 2%, the codes C.a ; are linear m-ary BCH codes
(eventually shortened); hence, easy to encode and decode. The
authors in [16] extended these linear m-ary BCH o-codes to
efficient Z,, linear BCH o-codes with minimum asymmetric
(designated) L, distance d < m/v = p!, L,veN. In particular,
they get a new class of ¢ = (d—1) asymmetric error correcting
Zyy, linear codes of length n < |K| — 1 whose redundancy is
only tlog,, |K|. These codes have very efficient field based
algebraic decoding algorithms to control ¢ errors actually in
the Lee distance. Here, we extend their results and get other
remarkable families of efficient Z,, linear codes with good
minimum symmetric Lee distance. In particular, in Section II,
starting from a formal generalization of the codes in (3) (we
let cx =[x (2)]™ € K[z] — {0}) we are able to define a very
general class of Goppa-like Z,,, m € N, linear codes. Then,
given a field, K, of characteristic p = char(K) €N, in Section
III we consider a natural generalization of the (eventually
shortened) BCH codes to the m-ary alphabet for m = pf,
leN. For these BCH-like codes we are able to prove a BCH-
like bound with respect to both the L; and Lee distances.
We note that no BCH bound for Lee-distance codes over Z,,

ox(z)oy-x(2) =oy(2)ox-y(z), for all X,Y eZI.

def

C,o ox(z) = ex-0(z) mod g(z),

for some cx € K — {0}
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seems to be known [2, p. 120]. In Section IV, we focus on
the cyclic version of the BCH-like codes and relate these to
the Galois ring based coding theory given in [2], [6], [11] and
analyze some remarkable examples of a Z,, linear codes with
simple field based decoding algorithm.

II. THE Z,, LINEAR GOPPA-LIKE CODES
Let us recall the following as done in [16]. Let m,n, k, he N
and X, YeN" IfC=C(X,Y)=|(k- X +h-Y)/m] then
E-X+h-Y=m-C+(k-X+h-Y)modm; (4)
where “”, “/”, “mod m”, ... operations are applied compo-
nentwise. For example, if m = 4, n = 4, k = 2, h = 3,
X =0123and Y = 1201 then k- X +h-Y = 3849, C =
(k- X+h-Y)/4] =0212, (k- X + h-Y) mod 4 = 3001
and 3849 = 4(0212) + 3001. Hence, for any m €N, field K
and index set 0S5 C K,

for all k,h€Z,, and X,Y €Z7,,

lox(2)]Floy (2)]" = ok x4nyv(2) =

[UC(Z)}mU(k~X+h-Y) mod m(z)s

where C = C(X,Y)=[(k- X +h-Y)/m|eN".
The relations in (5) follow from (4) and the o-polynomial
definition (1). At this point, the Z,, linear Goppa-like codes

are given in (6) below.

Theorem 2: Let u,v,m def uv,n € N. Let K be any field,
9S = {ag,a1,...,an—1} C K, with n < |K]|, and g(z) €

K|z] be a polynomial such that gcd(oss, g) = 1. The code

} (6)

i8S Z,, linear. In particular, if G def {Go,G1,...,Gp} CCy C
Z7, then (G) C C,4, where

{XGZ X:Z?ZOki-Gi mod m, for
., Gy

some ko, k1,...,kp €EZLm
indicates the Z,, linear code generated by Gg, G1, ..
Proof: Let X,Y € C; C 77 so that ox(z)
[Tx(2)]" mod g(2) and oy(2) = [ry(2)]” mod g(z), for
some Tx (z), Ty (z) € K[z] — {0}. Hence, from (5), there exists
C' eN" such that 9C' C 95 and
[0c(2)]"0(x +v) mod m(2) = 0x(2)oy (2) = %
[7x (2)7y (2)]” mod g(=).
Since ged(oss,g) = 1 and OC C 95, we get ged(oc, g) = 1.

Lo . . L def
This implies that there exists the inverse polynomial 5¢(z) =

1/[oc(z)] mod g(z) € K[z] — {0}. Hence, from (7) and m =
uw, it follows,

U(X+Y) mod m(z) = [&C(z)]m[TX (Z)TY(Z)]U
[oc(2)"7x (2)7y (2)]” = [T(x+Y) mod m(2)]" mod g(z);
where 7(x 4y moa m(2) & 50(2)"7x (2)7y (2) € K[2] — {0}.
This implies (X +Y) mod meC,. |
We note that the cosets of the Z,, linear code C, in (6) are

the (possibly empty) codes
ox(2) = [7x(2)]"o(2) mod g(2),
{XGZ fof some TXX(z) e K[z] — {0} } ’

with o(z) € K[z] — {0}, where C; = C 1.

®)

c, ox(z) = [x(2)]" mod g(2),

{XGZ::" for some 7x(z) € K[z] — {0}

def

9) =

n
m

def

n
m

Cy.o
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III. THE Z,, LINEAR BCH-LIKE CODES AND THE
BCH-LIKE BOUND

The class of codes in (6) is so general that, for example, it
contains the class of (eventually shortened) BCH codes when
g(2) = 2%, de€N, and m = v = p = char(K) (this can
be easily shown, for example, with the aid of the Newton’s
Identity applied to ox(z)). Indeed, even if m = v = p!, €N,
then some bounds can be given on the minimum L; and Lee
distances of the codes given in (6) as stated in the following
theorem whose proof is given in the Appendix.

Theorem 3: Let p,l,m = p'.,n € N, K be any field of
characteristic p = char(K) > 0, 9S = {a1,aq9,...,a,} C
K — {0}, with n < |K|— 1. If g(z) = 2% € K[2] then the Z,,
linear code in (6) becomes C = C,a 1 =

} 3)

ox(2) = [tx(2)]™ mod 2,
with 7x (2) €1 + zK 2]

and the following BCH-like bound holds for the minimum

symmetric L; and Lee distances:

c(m,n,d) < {XGZ”

dy’ (C(m,n,d)) > dpee(C(m,n,d)) > deg (zd) =d. (9)
Also, for the minimum asymmetric L, distance:
as min{d,m} if m >0,

Note that, even though the codes in (8) have a minimum
Lee distance d € N, their minimum Hamming distance may
be less. For example, if p = 2,1 =2, m =22 =4, K =

F(4), 9S = K — {0} and d = 2 then the code in (8) is
C =C(4,3,2) ={000,Gy = 020,G5 = 002,Gy = 133,...}
(the G;’s are the generators), dr..(C) =d=2>1=dg(C).
However, the code C can correct ¢ = 1 asymmetric L error
because d7°(C) = d =t + 1 = 2. Indeed, by using the key
equation (14) in [16], C can even correct 1 asymmetric error
in the Lee metric (and is perfect in doing so).

IV. THE Z,, LINEAR CYCLIC CODES

Particularly interesting is the case g(z) = z? where the
index set 0S is composed by the n-th roots of unity. In this
case, the codes in (6) become cyclic as shown in the following
theorem.

Theorem 4: Let m,v,n,d €N, K be any field and 95 =
{a%at,...,;a"" 1} C K — {0}; « being a (primitive) n-th
root of unity, with n < |K| — 1. If g(z) = 2% € K[z] then the

code in (6), C(m,n,d,v) def

is an m-ary cyclic code of length n. Furthermore, if m = uv
with u € N then the code in (11) is also Z,, linear and, in
general, dr..(C) > min{d, v}.

Proof: Given X = zoZ1...Tp—2Tn—1 € Z], let X =
Tp—120T1 ... Tn—2 €L}, 1ndlcate the word obtalned from X
due to a rlght cyclic shift. From o (2) = [/ (1 —a’z)™
and o" = o = 1, it follows ox(az) = oy~ (z). Now, if
X €C then, for some k(z)€ K|[z] and 7x(z) €1 + zK|[z],

ox(2) = [rx(2)]” mod z¢

with 7x (2) €1 + zK 2] (i

c {XEZ”

ox(z) = [tx(2)]” mod 2¢ —
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ox(2) = [rx(2)]" + k(2)2! =
(a ) = [tx(a2)]” + k(az)a dyd —
v (2) = ox(az) = [1~ (2)]Y mod 27,

with 7+ (2) & 7 (az) €14 2K[z]. So X~ €C. The Z,,
linearity of C comes from Theorem 2. With regards to the
minimum Lee distance of C, note that if X € C—{0} then either
a) X =v- 8XW1th6X7é() orb) 0 # X # v-0X.If a) holds
then, simply, wLee(X) IAM(X)| > v|0(X)] > v. If b)
holds then, from Theorem 3 applied to the v-ary code (C mod
v), the word (X mod v) € (C mod v)—{0} and |A\/(X)| > d.

Since Al™ is non increasing, |A\"™/(X)| > |AY(X)[>d. =
Let us focus on the case m = uv = p', p = char(K) =
2,3,5,7,... prime, 8S = {a®, al, a1 C K - {0}; «

being a (primitive) n-th root of unity, with neN, n < |K|—1.
In this case the codes in (11),

def def

C =C(m,n,d,v) = (12)
n|ox(z) = [rx(2)]* mod 24, | _
{XEZ with 7x(2) €1 + 2K 2] -
Xezn 00(X) =1 and ¢;(X) = 0 for any
m mteger i€[1,d—1] such that i # 0 mod v
are Z,, linear cyclic codes of length n. Note that, when m =

p', p prime, then all the theories on the m-ary cyclic codes
given in [11], [6] and [2] hold. In particular, if any codeword
X €Z3, is represented by the codeword polynomial [2, p. 61]
in the variable ¢,

X)) Lag+at+at®+ . +a, " €L, (13)

then the codes in (12) are ideals of the principal ideal ring

R Y7z, [t]/(t™ — 1) and, for them, the minimum distance
properties in Theorem 3 hold. In particular, if (Fy, Fy,...)
indicates the ideal generated by F, F»,...€R then Theorem
6 and its Corollary in [6] say that any ideal in R has the
forms (G) = (Fy, pF1,p*Fa,...,p' " ' Fy_1) C Zy,[t] where
the F;(z)’s are divisors of t" — 1 €Z,,[t] satisfying

Fl—l‘Fl—Q‘ tee |F1|F0 and

G(1) o go+git+...4+gn1t" =
Fo(t) + pFi(t) + pP*Fa(t) 4+ ... + p' YR _ 1 (t) € Zo[t].

Starting from the factorization of t" — 1€ Z,|[t] it is possible
to find the Hensel lift factorization of ¢" — 1€ Z,,_,:[t] into
basic irreducible polynomials. Now, say, as done in Example
5 of [6], from this factorization it is possible to classify all
cyclic codes each of which is identified by a generator of the
form in (14). Now, if G(t) is any one of these generators and
G = gog1...9n—1 € C C Z, then the minimum distances
of the code (G) = C can be lower-bounded with Theorem
3. In other words, the o-polynomial of the generators of a
cyclic code give some information on the minimum L; and
Lee distances of the code.

Example 1: let p = 2, 1 3, m 8, h = 4,
K = GF(2") = Zy[2]/(z* + z + 1), S be the ordered
set 3S = (a%al,...,a!?) = K — {0} and n = 0S| =
15. Considering K as a vector space over Zz, deﬁne the
words Fy = 111111111111111 = £(a at,a? o) — {0},
2F, = 2220220020 20000 = 2(L(a?, o', a2) - {0}) 4F,

(14)
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44004 00000 00000 = 4(L(a®, a')—{0}) and G = Fo+2F,+
4Fy; where L(p1,p2,.-.,ps) < K is the linear closures of the
multiset {p1,pa,...,ps}. From equation (7) in [21] and (5),
we have that og9ip, (2) 1 + ¢;2% mod z'2, with ¢; € K,

¢t = 0,1,2. From Theorem 3 with d = m + m/2 = 12,

C (@) < eim =81 =15,d = 12) has dpe.(C) > 12

and d7°(C) > 8 (but, note that 4/, €C and so 3 > du(C)).
Indeed C is of type 112446 (with the notation in [6]) and so it

is a Zg linear code with k = logg(8'4426) = 17/3 = 5.6
information digits and length n = 15. With an abuse of
notation, a generator matrix is,
(1 1111111111111 1]
0222022002020°00
002220220020200
000222022002020
ef |00 0022202200202
G=1000004400400000
000O0O0OO0O4400400°O00
0000O0OO0OO0O440040°00
000O0O0OO0OO0OOM4400400
0000O0OO0OO0OOOM440040
L0 0O0O0O0O0O0OO0OO0OOA4400 4]

Now, let RM (p, h) be the binary p-th order Reed-Muller code
of length n + 1 = 2", dimension k¥ = 1 + ( ) + (g) +

.+ (h) and minimum Hamming distance dg = 2"~ (see
[12 pages 370-385]). By adding the parity check symbol
Too = —|X|mod8 for X € C a code CT = C*(m
8n = 16,k = 5.6,dre. > 16) can be obtained. The
minimum distance is dr..(CT) > 16 because of the fol-
lowing. For any n,h,m = 2" € N and X € Z", let
B,(X) % [|X/2¢] mod 2] € Z3, for all p = 0,1,2, note
that [ X| = [By(X)| + 2[By(X)] + 4[By(X)| > [Bo(X)|
and B,(ro) = |B,(X)| mod 2 = |By(X/2”)| mod 2 when
X €(2°)-Z™. So, if X €[(2°)-Z"]NCT then By(X/2°) €
RM (p,h). Also, note that By(X) — Bo(A™(X)) = X —
AM(X) = 0mod 2 and A (2X) = 2\"/2(X). Now,
assume X € Ct — {0}. If By(X) € (C*t mod 2) — {0}
then, from above, By(X) € RM§p7 h), Bo()\[m](X)) =
Bo(X) and so, \™I(X)| > [By(A"™ (X)) = |Bo(X)| >
2h=p = 2470 = 16. Otherwise, if By(X) 0 and
Bi(X) € [(CT/2) mod 2] — {0} then, from above, X €
2Z7, 5. Bo(X/2) € RM(1,h), By(\!™/3 (X/2)) = By(X/2)
and so, A(X)| = WIR(X/2)] = 2N/x/D)] >
2\Bo (72X /2)) 2IBy(X/2)] > 22" =

-1 16. Finally, if Bo(X) = Bi(X) 0 then
from above, B(X) € [(C*/4) mod 2] — {0}, X € 4Z}, ;.
Bo(X/4) € RM(2,h), Bo(A\"™/4(X/4)) = By(X/4) and
s0, [AIM(X)] A 4(X/4))) = 4Am(X/4)] >
4|Bo(A™/4(X/4))| = 4|Bo(X/4)| > 4 - 27 = 16. Now,
not many error correcting Z,, linear codes are known in
the literature, however it is known that the Gray mapping
sets a contraction between the metric space (Zg:,dre.) and
(Zk,dgr) (which is an isometry for [ = 2 [11]) [14, p. 321].
This implies that the minimum Hamming distance, d, of the
binary codes of length In gives the minimum Lee distance of
at least d with length n over Zo:. Given this, the extended
code CT = (G)* may be considered equivalent to a linear
(m=2,n=3-16=48,k =3-5.6 = 17,dy > 16) code
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which has not been discovered yet and the closer code to this
is a linear (m = 2,n =51,k = 3-5.6 = 17,dy > 16) code
[9], [13]. So, this example code is rather remarkable. It can
be considered a Zg — RM (2,4) code and can be generalized
to any m = 2", 1,h € N to get Z,, — RM(p = h — 2,h)
codes of length n = 2h | K|, Lee dlstance dree > 2m with
k=log,, |Ct|=Y'C o (Y - i i(") data digits.

Example 2: Here the parameters are as in Example 1 but
m = 16 (i. e., m is doubled). In this case, it is possible to
add the word 8F3 = 8000000000 00000 = 8( (%) — {0})
as a generator because ogr,(z) = 1+ 1- 2% mod z'2. From
Theorem 4 with v = m/2 = 8 and d = m/2 +m/4 = 12,
CY (@) <Clm=16,n=15,d=8) has dr..(C) > v =8
and d§: (C) > 8 (so, it can correct 7 asymmetric errors). The
code C is a Zj¢ linear code with k = log16(161844624) =
32/4 = 8 information digits and length n = 15 which, as
in Example 1, can be extended by adding the parity check
symbol zo, = —|X| mod 16 for X € C. In this way, a code
Ct =C"(m = 16,n = 16,k = 8,dr.. > 16) can be ob-
tained. It can be considered a Z16— RM (3, 4) code and can be
generalized to any m = 2',1eNto get Z,, —RM(p =1—1,1)
codes of length n = 2l = |K| = m, Lee distance dp.. > m
and k=log,, |C*|=log,, Hizo(m/T)(z) =m,/2 data digits.

Note that the generator matrices of permutation equivalent
codes to all these codes can be constructed as done for m = 4
in Subsection II.G of [11].

With regard to decoding, the general T-SyEC/D-SyED
Algorithm 2 in [16] is an efficient GF(2") field based alge-
braic decoding algorithm. It relies on solving the general key
equation (14) in [16], which is the Lee distance analogous to
equation (2) for the L; distance [19]. In particular, the above
specific examples for m = 8,16 can be used to correct 7 and
detect (at least) 8 symmetric Lee errors.

We note that equation (7) in [21] and the Theorems given
here are so general that efficient generalizations for any values
of the prime p may be possible.

APPENDIX

For m,n €N, X = zox1...2p—1 €Z], and an index set
98 {ao,al, coyan1 ) let px(a;) def Ta, def x; € L, be
the i-th component of X or, equivalently, the multiplicity of
a; €X.

Proof of Theorem 3: Let us prove (9) first. The leftmost
relation comes from d}’ (X,Y) > dp..(X,Y), for all X,Y €
7. So, let us prove drc.(C(m,n,d)) > d. For any vector
X ez letus write X = Bo+Bip+Bop?*+...+B_1p'~te
Ly = ZZ‘n, where B; € Zj, for all integer j €[0,] — 1]. In this
way, any component z; € Z, of X can be written in the base
p number system as z; = px(a;) = pp,(a;) + pp, (a;)p +

-+ pp,_,(a;)p'~" where each component iz, (a;) of the
word/multiset B; € Zj, is such that up; (a;) € Zy, for all integer
1€[1,n] and j€[0,! — 1]. Note that, from (5) and (8),

XeC = ox(2) = 05, (2) [05, () 05, ()
[oB, ()" =lrx(2)]” mod 2.
Assume X €C — {0}. Then, let s€[0,! — 1] be such that

By=B1=...=Bs-1=0€Z; and Bs # 0. (15)
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Note that such s exists. For such X €C — {0} we have
s s+1
ox(2) = lop,(2)]" [05.,,(2)]"
-1 0
om ()" =[x () mod 2.

Now, for all j €[0,] — 1], ged(oss, 2%) = 1 and dB; C 9S
imply ged(o,,2%) = 1; so, there exists [0, (2)] ! mod 24
Hence, from (16) and s + 1 < [, there exists 7_(z) € K|[z]
such that [o_ (2)]” = [r. ()" = {[r5.(2)]’}" mod z°.
Since char(K) = p, the application = — 2" is a (Frobenius)
automorphism of K, for all s € N. So the above relation is
equivalent to the polynomial equation

k(2)2t = [0, (2) = [rB, ()] =

05, (2)]" —A{l78,(2)]"}"
being true for some k(z) € K|z] such that k(z)z? € K|[z]
is the p®-th power of a polynomial. Now, given ¢(z) € K|[z]
let qI"/(2) € K[2] indicate the polynomial containing only the
monomials, say ¢;z*, of ¢(z) such that ¢ = r mod p®. From
(17), we have

k(z)zd — kl(»®—d) mod ps](z)zd _
(k-[(l)s—d) mod ps](z)/z(ps—d) mod ps) Z(ps—d) mod p* Zd _

()] [Zrd/pﬂ]f _ [h(z)zrd/m]f

(16)

. (17)

where kl(7"=d) mod p°] () /(0" ~d) mod »° — [p()]P € K2
for some h(z)€ K|z]. So, the above relation and (17) give
75,0~ [, PP = [n2):107]

which, by taking the inverse of the Frobenius automorphism,
gives o, (2) — [78,(2)]” = h(2)2/%/?"1, and hence,

05.(2) = [tB.(2)]” mod 2I4/?"1 with B, €Z, —{0}.

pe

At this point we take the derivative and, since char(K) = p,
obtain

ol () = 0mod z[¥/P"1=1 with B,eZr —{0}.  (18)

Let e, () € K[z] be the evaluator polynomial associated with
B,. From Lemma 1-b) given below with Y = B, we have
0. (2) = €B,(2)oB, - 9B, (2). Substituting this in (18), we get
ol (2) = €B,(2)0p,-05,(2) = 0mod z[¥/?"1=1. So, from
ged (05, 2/¥P7171) = 1 and (B, ~ 0B;) C 0B, C 98, it
follows ged (0, a5, 2P 171) = 1; and so,

ep,(z) = 0mod 2I*/P"1=1 with BiezZr — {0}.  (19)

Since B, € ZI' — {0}, €p,(2) = k(2)z[¥P"1=! for some
k(z) € Klz] — {0}. This, char(K) = p and Lemma
lI-c) with Y = B, imply, |[0Bs| — 1 > deg(ep,) >
deg (2/%/P"1=1) = [d/p*] — 1. So, from X D 9B, it
follows |0X| > |0Bs| > [d/p®]. However, from Lemma
2 given below, (15) implies wre.(X) > p*l0X|, and so
Wree(X) > p*|0X| > p® [d/p®] > d. In conclusion, we have
shown that either X = 0 € C or wpe.(X) > d. This means
that dpc.(C(m,n,d)) > d and (9) is proved.

Let us prove (10) when m > 0. Note that if X € C then
ox(2) = [Tx(2)]™ mod 2%, with 7x(2) ) bz e+
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... € K|[z] — {0}. Since char(K) = p and m = p', the
application * — a™ is a Frobenius automorphism of K.
Hence,

I —a2)>@ =140 (X)z+02(X)2"+... =
acos

[T (2)]™ =1+ 7"2™ + 772%™ + ... mod 24
implies that o;(X) = 0 for any integer i € [1,d — 1] such that
i # 0 mod m and vice-versa. That is,

Ux(Z) =

XeC < 0;(X) =0 for any integer i €[1,d — 1]
such that ¢ # 0 mod m.

Let § & min{d, m}. In any case, if X €C then 0;(X) =0
for any integer i € [1,d — 1], and so C is a subset of the o-code

Cosn = {XGZZ@ : ox(2) =1 mod z‘s},

whose minimum asymmetric L; distance is § [20]. Finally, if
m = 0 then the code C in (8) itself becomes a o-code,

C=Chay= {XEN" : ox(z) =1 mod zd}

and, again, the minimum asymmetric L; distance is d. ]
Lemma 1 (see [22]): Let m,n € N, K be any field and
0S8 C K — {0}. For any Y €Z", let

m

Av(2) = ooy (2) = [ (1 —az)* @ ek
a€dsS
be the locator polynomial of Y and

ev(z) ==Y pyla)a J[ @@-b2)rP ekl
a€ds beds{a}

be the evaluator polynomial of Y. For all ¥ € Z7, the
following relations hold.

a) oy (z) = Ay (2)oy-ay(2),

b) o4 (2) = ey (2)oy-py(z) and

¢) if m = char(K) then Hamming weight of Y satisfies

wy(Y) = |0Y| = deg(Ay) > deg(ey) + 1.
Lemma 2: Let n,p,h,m = p' €N, and

def

X = By+Bip+ Bop®> + ...+ B_iptez;

where B; € Zj, for all integer j € [0, — 1]. If s€[0,[] is an
integer such that By = B; = ... = B,_; = 0 then the m-ary
Lee weight of X is such that w{™ (X) > p*|0X].

Proof: If m = 0 then the Lee weight is equal to the L;
weight and the theorem is true because p® = 0° = 1. Assume
m > 0. For all €S % [1,n], let z; = px (i) < p*y; €2,
with y; = 2;/p® € Zy,jp- = {0,1,...,p'7% — 1}. This is
possible because B; = 0, for all j € [0,s —1]. So, Y def
Y1Y2 - .- Yn GZZL/pS and

w[LWi(X) = Z Al () = Z min{z;,m —z;} =

€08 i€0S

> min{p*yi,m —p'y;} = > p*min{y;, (m/p*) — yi} =

€S i€as

p* Y min{yi, (m/p’) — i} = pw (V) = p*l9Y].
i€ds

Since |0Y| = |0X]| the statement follows. [ |
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