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Abstract—In a systematic code (systematic in the strict sense)
a check symbol is appended to the data word. Here, the theory
and design of systematic binary block codes capable of correcting
t insertion and/or deletion of the symbol 0 in each and every
O-run is studied. This problem is related to the zero error
capacity achieving systematic codes in limited magnitude error
channels. Optimal and sub-optimal systematic code designs and
the encoding/decoding algorithms are given.

Index Terms—m-ary codes, O-insertion/deletion errors, max L
distance, error control codes, limited magnitude error channels,
communication systems, synchronization errors, sticky channels,
constant weight codes.

I. INTRODUCTION

In various communication and magnetic recording systems,
the channel may cause two types of synchronization errors.
The first one is not receiving a transmitted symbol (a deletion
error), and the second one is receiving a spurious symbol (an
insertion error). Furthermore, the propagation of these errors
will significantly reduce the performance of the systems. The
Insertion/Deletion Channel, along with channels like replica-
tion, substitutions, and combinations thereof, finds applications
in diverse fields, from computational biology to document
exchange and DNA data storage systems.

The general problem of designing efficient codes for in-
sertion/deletion of any symbol has been an open research
problem for over 55 years even though various results have
been given in [1], [7], [9]-[12], [15], [18], [19], [23], [25]-
[29] (and the references in these papers). Let Zo def {0,1}
be the binary alphabet. Some efficient binary code designs
for controlling the insertions/deletions of some fixed symbol,
say 0, are given in [5], [13], [14], [16], [18], [22], [30]-[33],
[35]. This simpler 0-error model finds application in achieving
reliable communication for the repetition (or, sticky) channel
model where the insertion and/or deletion of repeated symbols
may occur [5], [22], [35]. In [32] the O-error model with the
limited magnitude error [3] constraints is studied from the zero
error capacity perspective. In this setting, it comes natural to
assume that the number of insertions of the fixed symbol O
(i. e., O-insertions) and the number of the symbol O deletions
(i. e., 0-deletions) in each and every O-run (also referred to as
bucket of zeros in [32]) is at most ¢; and t4, respectively. In
[32], some theory and efficient optimal and suboptimal non-
systematic binary block code designs are presented and these
codes are capable of correcting up to ¢; O-insertions and ¢4
0O-deletions in each and every O-run ((¢;,¢s)-LMOEC codes),
for fixed t¢;,t; € N. For example, let ¢t;, = 1 and ¢4 = 2. If the
weight 7 codeword X = 0010000111011100€ Z2° is sent
and Y = €010ee01101€111000 = 01001101111000 € Z3*
is received (e being the empty string), then the number of 0-
insertion and O-deletions in each of the 7+ 1 = 8 O-runs is

*This work is supported by the National Science Foundation Grant CCF-
2006571.

less than ¢; = 1 and ¢4 = 2. In this case, the receiver, from
Y, can correct all the 1+2+1+4+1+1 =6 O-errors in Y.

Here, we focus our attention on the theory and design of
systematic (¢;,t4)-LMOEC binary block codes. Such theory is
based on the “max L distance" defined below and it should
not be confused with the theory on (¢;,¢4)-0EC codes, which
are based on the “L; distance" [31].

Definition 1 ((strict sense) systematic binary block code): A
binary block code C is systematic with £ €N information bits
and r € N check bits if, and only if, there exists a function

£:7k - € C Zh' such that £(X) ¥ X C(X), for all
X € Z%. The word C(X) C Z5 is called the check symbol
associated with the information word X.

This paper gives some efficient systematic (¢;,tq)-LMOEC
code designs (according to Definition 1) which are redundancy
optimal or close to optimal, as shown, for example, in Table
I. The paper is organized as follows. Section II gives some
notation and preliminary theory on O-errors control codes.
Section III contains a good lower bound on the minimal check
symbol length required by any systematic (;,tq)-LMOEC
code. Section IV presents the proposed efficient systematic
code designs. In Section V, some conclusions are drawn.

For clarity of theory development, as usual [18], [19],
[22], [30]-[32], we assume no synchronization errors due to
erroneous receptions of sequences of codewords (i. e., we
assume that the receiver knows the length of the received
word). However, by encoding the Hamming weight of the
information word into the check word, our proposed codes can
be made self synchronizing under limited magnitude O-errors.
This is because our codes decode the received check word
first, are instantaneous in correcting the received O-runs (see
Section 1V) and 1-errors are forbidden in the 0-error model.
Furthermore, from the theory in [32] (see Theorem 1), any

(0, D — 1)-LMOEC code, D € N, is a (¢;,t4)-LMOEC code,

for all ¢;, 14 defp_ t; —1€N, so (t;,tq)-LMOEC codes are

also called D-LMOEC codes.

II. NOTATION AND PRELIMINARIES

For geNU{o0}, let Z,, def {0,1,...,g—1}. Given ¢,n €N,
the L, weight of a word X = z125... 2, EZ;L is the real sum

w(X) Y, (X)X >, x;. In this theory, the constant L,

weight codes are important. So, for n,w € N and a numeric
set B C N, let S(B,n,w) ¥ {X € B : wr,(X) = w}
be the set of all n digit long words over B with constant L,
weight w. Note that S(B,n,w) = J,cp S(B,n—1,w— )z,
where the union is a disjoint union of sets. If |S| indicates
the cardinality of a set S then the general recurring formula,
IS(B,n,w)| =>_,c5|S(B,n—1,w—z)| holds for the cardi-

nality of S(B,n,w). If B def Zg4 these “B-nomial coefficients”

become the “g-nomial coefficients", |S(Zy, n, w)| « (Z)q =
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TABLE I

NUMBER 7 € N OF CHECK BITS OF SYSTEMATIC (t;,t4)-LMOEC CODES FOR SOME VALUES OF INFORMATION BITS k€N AND D =
, 128, the LB labelled column gives a lower bound on r for any systematic D-LMOEC code; the CD column

In the Table, for each value of D = 2,3,.

4 (4 +t) + 1€N.

gives the value of r for the proposed D—LMOEC codes. The last column gives the value of r of the distinct weight codes in Subsubsection II-Al.

\D[ 2 | 3 4 [ 5 T 6 7 8 9 10 16 32 64 128 oo

E\ ‘[ LB CD|LB CD|[LB CD|LB CD|LB CD|LB CD[LB CD|LB CD|LB CD|[LB CD|[LB CD| LB CD | LB CD |Optimal CD|
1 0 0o 0 0o 0 o 0 o 0 0o 0 o 0o 0o 0 o 0 0o 0 0o 0 0 0 0 0 0 0
o 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 16 16| 32 32 64 64 128 128 1
3 3 3] 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 17 17 33 33 65 65 129 129 4
a3 4 6 6 7 8 9 9 10 10| 11 11| 12 12 13 13[ 14 14 20 20| 36 36| 68 68 132 132 11
5 4 5 7 8§ 9 9 10 11 12 13] 14 14 15 16] 17 17| 18 18] 24 24| 40 40 72 72 136 136 26
6 5 6] 8 9 11 12 13 13 14 15 16 17| 18 19] 20 21| 22 22[ 32 33] 50 50| 82 82 146 146 57|
716 7 10 11 12 13| 15 16 17 18] 19 19 20 21| 22 23] 24 25 35 36| 64 64 97 97| 161 161 120
8 7 8 11 12 14 15| 17 18] 19 20| 22 23] 24 25 26 27| 28 29 39 40| 70 71| 129 129 196 196 247
of 8 9o 13 14 16 17| 19 20 22 23] 24 25 27 28 29 30| 32 33 44 45| 75 76| 136 137 252 252 502
10 9 10] 14 15| 18 19 22 23] 25 26/ 27 28] 30 31| 33 34] 35 36| 50 51| 82 83| 144 145 269 270 1013
11 9 11| 15 17 20 21| 24 25 27 28] 30 31| 33 34] 36 37 39 40| 55 56| 90 91| 153 154 279 280 2036
12[ 10 12[ 17 18] 22 23] 26 27| 30 31| 33 34] 36 37] 39 40| 42 43[ 59 60| 101 102] 166 167| 293 294 4083
13[| 11 13 19 20 24 25 28 29| 32 33 36 37| 39 40| 43 44| 46 47| 64 65| 108 109] 182 183 309 310 8178
14 12 14| 20 21| 26 27] 31 32| 35 36/ 39 40| 43 44| 46 47| 50 51| 70 71| 116 117] 203 204] 334 335 16369
15| 13 18] 22 23] 28 29 33 34| 37 38 42 43| 46 47| 49 50| 53 54 74 75 123 124] 214 215 365 366 32752
16| 14 16] 23 24| 30 31| 35 36| 40 41| 45 46| 49 50| 53 54| 57 58] 80 81| 133 134] 225 226] 403 404 65519
32| 29 31| 48 49 61 62| 73 74/ 82 83| 92 93 100 101 109 110| 117 118 162 163| 267 268| 451 452 773 774 232-33
64| 61 62| 98 99| 125 127| 148 149| 168 170| 187 188| 205 206| 222 223| 238 239| 328 329| 540 541| 907 908| 1553 1554| 254—65
128|| 124 126 199 200| 255 256 301 302| 342 343| 379 380| 415 416| 449 450 482 483| 664 665/10891090| 1826 1827| 3123 3124|2'%% —129
256|| 251 253| 402 404| 514 515 607 608| 690 691| 766 767| 837 838| 906 907| 972 973[13391340(21922193| 3673 3674 6276 6277|226 —257
512|| 507 509| 809 811[1034 10361222 1223(1387 1388(1540 1541|1684 1685(1821 18221954 19552690 2691|4402 4403| 7373 737412593 12594|2°2 —513

1024{[1018 1020|1625 1626[2076 2077|2451 2452(2783 2785|3089 3090[3378 3379|3653 36543920 3921[5395 5396|8827 8828[14780 14781[25240 25241(219241023

Sy (Z:i) , which, for ¢ = 2, reduce to the usual binomial DX (B, C) = co. Note that, for all D,n€N,

coefficients, ( ) If instead B % N = Zoo then S(N,n,w) VA,BeZ}, DX (A,B) < D. 3)

is the set of all compositions of the natural number w into

n natural numbers and |S(N, n, w)| % (M. =0"".1In
what follows, it is relevant to note that each set S (Zg,n,w)
can be encoded in lexicographic order with the enumerative
source encoding technique, say, with O(n?logq) bit opera-
tions by storing O(n%qlogq) bits [4], [32]. Now, let B* be
the set of all finite length sequences over an alphabet B. As
in [18], [30], [32], consider the bijective map A : Z5 — N*
which associates any X € S(Za, m,u) C Z3, m,u€N, with

AX) Y ajas ... (1)

where, ¢ def q(m,u) L | and, for all integers h €

[1u+1], an < an(X)€Z, C Nis the h-th O-run length in
the word X . For example, if X = 010000111011100 € Z3 then
A(X) = 14001002 € N*. This mapping A defines a bijection
from the set of all binary words of any finite length m € N
and Hamming weight u (= number of 1’s of the binary words)
into the set of words over N of length u + 1 (= number of
O-runs of the binary words) and L; weight m —u (= number
of 0’s of the binary words). For example, for m = 6, the

mapping A acts on Z$ is as shown in Table II, where £(X)
def

AuOyt1 €S(Zg,u+1,m —u) C Zy,

indicates the length of any string X . Given ¢€N, let |a—b| =
max{a — b,b — a} € Zy, C R, for all a,b € Z,;. The max
L, distance plays an important role in the code design. This
max L; distance, D1 : Ly x Ly = Lq C R*, for any

A=aa;s.. .ag(A),B =b1bsy.. .bg(B)EZ:; is defined as
max a; — b;|} if £ ={(B),

Dhia ) | {l |} if £(A) = £(B) @
00 if £(A) # ¢(B).

For example, if A = 210, B = 021 and C = 0104 € Z}
then DL1(A, B) max{2,1,1} 2 and DL1(A, Q)

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded pif

With the one-to-one mapping A we can define a max distance
metric in Z35 as

VX,Y€Z;, DEL(X,Y)Y DL(AX), AY)).
For example, if X = 001011, Y 100101 and Z
10110000 € Z} then DEL(X,Y) = max{2,1,1} = 2 and
D{L(X,Z) = D{L(Y,Z) = oo. As for the distinct L,
distance based O-error model in [30], [31], note that, with
definition (4), the bijection A becomes also an isometry
between the metric spaces (N*, DL1) and (Z3, D}). From
the zero error capacity perspective [2], [3], [6], [8], [21], [24],
the channel adjacency matrix [24] of the O-error channel model
with limited magnitude ¢ is the graph adjacency matrix of
G’(t) def (z3, EM) with edge set E(®) def {(X,Y) eZ; :
DEL(X,Y) < t}. Note that, since 1-errors are forbidden,

4)

VX, YEC, w(X)#w(Y) < DH(X.Y)=00. (5

In [32], the following theorem is proved in terms of Dcfcl.

Theorem 1 (Comb. character. of (t;,tq)-LMOEC codes): Let

m,t;, tq, D dﬁft +tq+ 1€N be given. A code C C Z7*

(t;, tq)-LMOEC if, and only fif,
VX,YeC, X #Y = DiL(X,Y)>D. (6)

It is also shown in [32] that the cardinality of the optimal
non-systematic D-LMOEC code, C,,:, of length m, satisfies

LB(m, D) defz <u+ L:LE’UJ) < [Copt| < (7)
u 0
Z <u—|— 1+ Lm—uJ) def UB(m, D);
= u+1
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TABLE II
THE MAPPING A ACTING ON Z§.

wX)| X AX) [ HAX)) | we,y (AX))
0 [000000]6 1 6

000001 || 50
000010 || 41
1 000100 || 32 2 5
001000 || 23
010000 || 14
100000 || 05

000011
000101
000110
001001
001010
001100
010001 || 130
2 010010 || 121 3 4
010100 || 112
011000 || 103
100001
100010
100100
101000
110000

000111
001011
001101
001110
010011
010101
010110
011001
011010
3 011100
100011
100101
100110
101001
101010
101100
110001
110010
110100
111000

001111
010111
011011
011101
011110
100111
101011
4 101101
101110
110011
110101
110110
111001
111010
111100
011111
101111
5 110111
111011
111101
111110

[§ 111111

20000
11000
10100
10010
10001
02000
01100
01010 5 2
01001
00200
00110
00101
00020
00011
00002
100000
010000
001000 6 1
000100
000010
000001

0000000 7 0

for all m, D € N. In addition, it is shown in [32] that the
following codes
Conp L{X €ZT + ap(X) = 0mod D, Vhe[l,w(X)]} (8)

are D-LMOEC codes with |C,,, p| = LB(m, D) codewords.

Also, if ¢ < ¢€,,p C Z2 and C, & € N S(Zy,myu) &

Cu,m, s for all we [0,m], then C = U, ¢(g ) Cu With [Cu| =
(UH(m—u)/DJ )

Example 1 (m = 6 and D = 3): The code C = Cg3 is
given through the map A by

Cs) X (0000000}, 7 = 7,w = 0,q = 1;

ACo) ¥ {6}, n=1w="6,q=T1,
AC) ¥ (32,05} ,n=2,w=5,q =6,
A(C2) % (301,031,004}, n = 3,w=4,q = 5,
(C5) % 3000, 0300, 0030,0003}, n = 4,w = 3,9 = 4,
(C2) & {00002}, n = 5,w =2,¢ =3,
(
(

N

Cs) % (000001}, n = 6,w = 1,q = 2,
) ($)

TABLE III
THE CODE IN EXAMPLE 2
Cu|lY=XM,eC A(Y) L(A(Cu)) | wr, (A(Cu))

000000 11 600
00010001 330
Ca 100000 01 060 3 6
000110 00 303
100010 00 033
110000 00 006

00011111 300000
10001111 030000
Cs 110001 11 003000 6 3
11100011 000300
11110001 000030
11111000 000003
Cs 11111111 000000000 9 0

where n ACY) =u+1, w o wr, (A(Cy)) =m —u

and q C o — u+ 1. Since DEL(C) = D = 3, the code C
can correct two 0-deletions (i. e., t; = 0, ty = 2) or two 0-
insertions (i. e., t; = 2, ty = 0) or one 0-deletion and one
O-insertion (i. e., t; = 1, tg = 1). It has |C| = LB(6,3) =
G+ C)+ () () + () + () + (0) = 13 codewords
The codes in (8) are instantaneous (i. e., any received
O-run can be corrected as soon as it is received (please
see [32, Subsection III.C]) but not self synchronizing under
(t;, tq)-LMOEC. To recover synchronization at the receiver

. def
end, here we note that the string M, = 0P—D—ru]tu ¢

S(Z,D — 1, 11), with 1y & (m — 1 — w) mod D € Zp,
can be appended to each constant weight u code Cy m p-
In this way, the instantaneous and self synchronizing code
Com.D def U2 o Cuym,p M, is obtained with fixed length

r % m 4+ D — 1 which is exactly equal to

Cm.p ={X€Zj:ap(X)=0mod D, Vhe[l,w(X) + 1]}
c U S(Zs, 7, u). ©)

u€[0,r])N(D-Z+r mod D)

Example 2 (m =6, D =3 and r =m+ D —1=28): The
code C = Cg3 = Ca UCs UCg is given in Table III.

The (t;,t4)-LMOEC on a received codeword sequence for
the non systematic codes C,,, p in (9) can be accomplished on
the current received O-run by first computing its length o’ and
then correcting o’ by adding up to ¢4 or subtracting up to t; so
that o’ becomes the nearest multiple of D = ¢; + t4 + 1; this
computation can be done instantaneously bit by bit until the
length of the entire corrected bit sequence is exactly r so that
the parsing point of the current received codeword is detected.

The check symbols in the systematic code design give in
Section IV are codewords of the big enough instantaneous and
self synchronizing codes in (9) and convey some information
on the information word. The CD column in Table I gives
exactly the length » €N of such codes.

A. Some simple systematic code designs

Here, two interesting simple code designs are given.

1) Systematic Distinct Weight (DW) codes: In a distinct
weight (DW) code no two codewords have the same Hamming
weight. From (2), the minimum max L; distance of any
distinct weight code is oo and so they can be used to correct
any number of O-errors in any O-run. Indeed, as class of
codes DW = c0-0EC = 0o-LMOEC [31]. Now, a DW code
of length n € N contains n + 1 distinct codewords. Hence,
an optimal DC code with k£ € N information bits has length
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TABLE IV
SYSTEMATIC DW (k = 3,n = 7) CODE.

[ d(X) ]| X [Check of X [Jw(£(X))]
0 000 0000 0
1 001 0000 1
2 010 0001 2
3 011 0001 3
4 100 0111 4
5 101 0111 5
6 110 1111 6
7 111 1111 7

=28 1. Let d : Z — [0,2% — 1] be the one-to-one
map which associates any X with the natural number d(X)
whose binary representation is X. An efficient optimal DW
systematic encoding, £ : Z§ — Z2 for k information bits
can be defined as £(X) = L x gn—h—ld(0) —w(X)] 1d(X)—w(X),
Table IV gives an example with £ = 3 information bits.

2) Repetition Codes: A D-repetition code is a code where
each data symbol is repeated D € N times. Since the minimum
max L; distance of these codes is clearly D, they are D-
LMOEC (and, even D-LM{0, 1}EC) codes with k € N data
bits, length n = DkeNand r = (D—1)k €N check bits. Even
though they are not systematic in the strict sense considered in
Definition 1 they are systematic in a wider sense [36, Section
IV] and so it is interesting to consider them as touchstones.

III. REDUNDANCY LOWER BOUNDS FOR SYSTEMATIC
D-LMOEC CODES

First, the following definition can be given in general for
any class of binary systematic block error control codes.

Definition 2 (check-blocking set): Given a class of sys-
tematic error control code with k£ € N information bits let
C: Z’g — Z5, r €N, be any function which associates every
information word X €75 with its check symbol C(X) €Z5 so

that the length n® k+reNcode ¢ Y {XO(X): Xezk}
with r check bits is in the class. A set A %' A(k) C Z§ of
information words is called check-blocking if, and only if, for
any check symbol assignment function C,

VX, YEA, X #Y = C(X) #C(Y).

Simply note that a lower bound on (the largest) |A| gives
a lower bound on the number of check symbols (and hence,
check bits) required by any systematic code design in the
class. From (4) and (2), the D-LMOEC code class A data word
set is check-blocking if, and only if, it satisfies the following
condition.

VX,YeA, X#Y = DIL(X,Y)<D. (10

We have the following theorems.
Theorem 2: Given the class of D-LMOEC codes with k
information bits, k, D € N, the largest check-blocking set of

information words, A % A(k, D) C 75, has a cardinality of
<k: —v+1

|A| > max
v

v>0

Furthermore, if D > |k/2| then

412 (Uc];ﬂ)z'

) T NCLB(k, D). (11)
D

(12)

Proof: For all ve [0, k] let u ' k —ve[0, k] and

def

= (X €S(Za, k,u) : AX)ES(Zp,u+1,v)} CZE.

Note that if a data word X € A, then X contains v 0’s and «
1’s. For example, if k = 6 and D = 3 then Ay = §(Z>, 6,4),
but Ay = A71({220,211,202,121,112,022}) € S(Z,,6,2)
(see Table II). For all v € [0,k], A, is a check-blocking set
of Definition 2. In fact, if X,Y € A, then A(X),A(Y) €
A(A,) C Z. So, from (4) and (3), Dyh(X,Y) =
DLi(A(X),A(Y)) < D; i. e, A, is check-blocking because
of (10). Now, |A,| = |8(Zp,u + 1,v)] = (“}'),, because
the map A is injective. So, (11) follows 51mply because
|A| > |A,|, for all v € [0, k]. Finally, if D > v then A, =
S(Zs, k,u) and |A,| = (*). So, (12) follows if v = |k/2]. ®

For example, if k = 6 and D = 3 then the lower bound in
(11) gives |A| > max, >¢ (7;”)3 = (3 )s = [8(Z3,4,3)] =
16, as reported in Table V.

Theorem 3: Let k,D € N and A def A(k, D)
given as in Theorem 2 and, for all a € [0,k — 1] let Ga
{C(X10%) : X10* € A} C {C(X) : X € A} 4" G. Then
D{L(Ga) > D, |G| > maxyso (707 . for all a€ [0,k —
1], and |G| = Zae[o,k—l] Gal.

Proof: For any a € [0, k—1], let C(X10%),C(Y10%) e G,

with X10*, Y10 € A. If X # Y then X10* # Y10* and

cx ¢ C(X10%) # C(Y'10%) ' Cy because A is check-

blocking. So, from (4), (2) and Definition 2,

DEL(X10% Cx, Y10 Cy) =
max{D (A(X), A(Y)), DX (Cx,Cy)} 2 D.

But, from X10%,Y10% € A, relation (4) and (10) it follows
Dé,;(xma Y10%) = DL (A(X), A(Y)) < D. So, from (4),
+(Cx,Cy)} = DX (Cx,Cy)} > D. So, D{5(G.) > D.
The relations on |G,| and |G| follow as in Theorem 2 and
because the G,’s are pairwise disjoint, respectively. [ ]
Let T ¥ {C(X): X ¢ Zk} D G. Theorem 3 implies
that, in the optimal case I' = @, if, say, a = 0 then
max, > o (F77° “)p <1Go| < |G| =T and Gy C T is a D-
LMOEC code. Note that the case a = 0 would be equivalent
to have a synchronizing “1" between X and C'(X). In Table
I, for comparison purposes, we simply assumed Gy = I' and
the existence of D-LMOEC length m codes with UB(m, D)
in (7) codewords, for all m, D € N. We computed the smallest
length m (K, D) such that UB(m, D) > NCLB(k, D)
in (11); and reported in the LB labelled columns the value
of rpp(k,D) = o+ D—1. We thought fair to add D — 1
check bits to m, in spite of the assumption Gy = I" and the
synchronization non-guarantee between checks (codewords of
a possibly existing D-LMOEC code) and data words.

C Z% be
def

13)

IV. PROPOSED SYSTEMATIC CODE DESIGNS

Let (), denote the z mod b operation. The code design
for k € N data bits is defined as follows and relies on (5)
and the max L, distance systematic g-ary code designs in [3,
Subsection II.C], [6], where ¢ def q(X) def g _ w(X) + 1,
for all data words X € U, o 1) S(Z2, k,u) = Z5. For any

u=w(X) 4} — v, the idea is to consider the vector A(X)e
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TABLE V

LOWER BOUND ON THE NUMBER OF CHECKS NEEDED IN ANY SYSTEMATIC CODE DESIGN AND THAT USED IN THE PROPOSED CODE DESIGN.
For some k and any D €N, the LB labelled columns give the lower bound in (11) and the CD columns the code design value in (14). If the entry is N,
then N is the number of distinct check symbols and v is a value where the maximum in (11) and (14) is obtained for the LB and CD columns, respectively.

\D 2 3 4 5 6 7 8 9 D > 10
k\ LB CD LB CD LB CD LB CD LB CD LB CD LB CD LB CD LB CD
1 1o 1o 1o 1o 1o 1o 1o 1o 1o 1o 1o 1o 1o 1o 1o 1o 1o 1o
2 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21
3 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
4 41 41 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
5 62 T2 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102
6 102 115 163 173 203 203 203 203 203 203 203 203 203 203 203 203 203 203
7 152 162 303 313 353 353 353 353 353 353 353 353 353 353 353 353 353 353
8 215 263 503 513 654 664 704 704 704 704 704 704 704 704 704 704 704 704
9 353 423 904 964 1204 1214 1264 1264 1264 1264 1264 1264 1264 1264 1264 1264 1264 1264
10 563 643 1614 1684 2165 2225 2465 2475 2525 2525 2525 2525 2525 2525 2525 2525 2525 2525
11 843 994 2664 2945 4135 4205 4555 4565 4625 4625 4625 4625 4625 4625 4625 4625 4625 4625
12| 1264 1634 5045 5405 7285 756¢ 8756 882¢ 9176 918¢ 924¢ 924¢ 924¢ 924¢ 924¢ 924¢ 924¢ 924¢
13| 2104 2564| 8825 9275 | 1428s 1464| 16526 1660g| 17085 1709¢| 17166 1716g| 17166 17166| 1716 1716g|| 1716 1716
14| 3304 3864 15546 1711lg| 2598s 2643¢| 31447 31807| 33687 33767 | 34247 34257 | 34327 34327| 34327 34327|| 34327 34327
15| 4954 6385| 28506 3061¢| 49507 51157| 60307 60757| 63547 63637 | 64267 64277| 64357 64357| 64357 64357|| 64357 64357
16|| 7925 10245| 4917¢ 53657| 92407 94607 |113855 115508 (124655 125108 (127895 12798g|12861g 128625 (128705 128703 || 128705 128708
17([12875 15865 | 90427 99337 |172058 179115|221108 223308 (237605 23815g 242105 24220g 243008 24301g 243108 24310g||243108 24310g
18((20025 25106 |162367 174697 |328028 337935 (414709 421859464209 466409 |480709 481259 485209 485309 [486109 486119 ||486209 486209
19(|30035 40966 283145 318245|599509 628439 (813679 823689 (892329 895189 (916529 917189 |922579 922689 (923679 923689 ||923789 923789

24t in (1) and encode the vector (A(X))p = A(X) mod
D € Z'5" into a check symbol C(X) € T'; where T is a
self synchronizing non systematic D-LMOEC code in (9). The
code I' of length » € N must be chosen big enough, but it
can be independent of ©v = w(X) = (A(X)) — 1 € [0, k]
because of (5) and the assumption that the receiver knows
the length of the received codeword. Specifically, the check
symbol assignment map can be the union of k41 distinct maps
Cu : 8(Za, k,u) — T, each encoding (A(X))p € (S(Zg,u +
1L,v))p &V, € Z4 i e, for all ue [0,k], for all X €
S(Zg, k, u) it must be
C(X) = Cu(X) = Fu((A(X))D);

with F, : V,, — I injective. Now, assume £ = X C,,(x)(X) €
Z5tT is sent and F U XcCe 73 is received; where X and
C' are the erroneous version of X €7k and Cuw(x)(X) €Z3,
respectively. On receiving E, the following (;,t4)-LMOEC
procedure is performed. From right to left, the receiver first
corrects and parses C' obtaining Cy,(x)(X) then it computes
w(X) = w(X) = u, and then it decodes C(X) = C,(X)

. def .
to obtain (A(X))p = ajas...q1. Then, it corrects the
def

current received data part O-run by computing its length, a;
a;(X), and then adding to a; up to ty4 or subtracting up to ¢;
so that a; —a; becomes the nearest multiple of D = ¢, +t;+1;

this, until X € (0*10*)* has been parsed completely.

Theorem 4: Let T % T'(k,D) C Z} be the set of check

symbols required by the proposed D-LMOEC code design with
k information bits, k, D € N. Then

Lo/ 2] k—v+1

—~ v—iD ),
Note that, if D> |k/2] then |['|= (Ucljﬂ)g is optimal since it
reaches the lower bound in (12). In general, I' is the shortest

D-LMOEC code in (9) so that (14) holds and its length is given
in the CD labelled column of Table I for some &k, D € N.

IT'| = max (14)

v>0

Proof: For all X €75, let u wf w(X) and v L
Note that, X € §(Zo, k,u) = A(X) € S(Zy41,u + 1,v)
= (A(X))p €(S(Zy41,u+ 1,v))p = Vy, where, really,

Vi = U  S@putiw).
v€[0,9]N(D-Z+(v) p)

Now, for all u = k — v € [0, k], the above map F, must be
injective (i. e., the check C,(X) must encode any possible
value of (A(X))p € V,) so, the code I" must have |I'| =
max,>o |Vy| = max,>o Z}%DJ (v“j}))D elements. [ ]

Example 3: If k = 5 and D = 3 then max,>o [V,| =
Vol = |S(Z3,4,2)| = (3)3 = (2)2 = 10 and T' can be
chosen by picking, say, the first 10 words of the code @6,3 =
A71(3-[S(N,3,2) US(N,6,1) US(N,9,0)]) in Table III. Its
length r = 8 is given in Table L.

Example 4: If k = 6 and D = 3 then max, > | V| = |V3| =
|8(Z3,4,0) US(Z3,4,3)| = (3)5 + (5)5 = 16+ 1 = 17 and
T' can be chosen by picking, say, the first 17 words of C_773 =
A3 [S(N,1,3)US(N, 4,2)US(N, 7,1)US(N, 10,0)]). Its
length r =9 is given in Table I

Because each S(Z,, n, w) can be indexed lexicographically
as in [4], the entire coding process can be implemented with
the indexing method as in [32] with O(k? log D) bit operations
by storing O(k?D log D) bits.

V. CONCLUDING REMARKS

In this paper, some theory and design of optimal or close
to optimal binary systematic D-LMOEC block codes are
presented. Good lower and upper bounds are given for the
number of distinct check symbols required by any systematic
D-LMOEC block code in Theorem 2 and 4, respectively. In
this respect, if D > |k/2] then the number of distinct check
symbols required by any code design is equal to the number of
check symbols, (r kI;Q])’ used by the proposed codes. Remark-
ably, as D grows, the proposed codes outperform the wider
sense systematic D-repetition codes given in Subsubsection
II-A2 as shown, for example, in Table 1.
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