
On Fixed Length Systematic All Limited Magnitude
Zero Deletion/Insertion Error Control Codes∗

Luca G. Tallini†, Hoang Vu‡ and Bella Bose‡
†Dipartimento di Scienze della Comunicazione, Università degli Studi di Teramo, Teramo, Italy. E-mail: ltallini@unite.it

‡School of EECS, Oregon State University, Corvallis, OR, USA. E-mails: {vuh,Bella.Bose}@oregonstate.edu

Abstract—In a systematic code (systematic in the strict sense)
a check symbol is appended to the data word. Here, the theory
and design of systematic binary block codes capable of correcting
t insertion and/or deletion of the symbol 0 in each and every
0-run is studied. This problem is related to the zero error
capacity achieving systematic codes in limited magnitude error
channels. Optimal and sub-optimal systematic code designs and
the encoding/decoding algorithms are given.

Index Terms—m-ary codes, 0-insertion/deletion errors, max L1

distance, error control codes, limited magnitude error channels,
communication systems, synchronization errors, sticky channels,
constant weight codes.

I. INTRODUCTION

In various communication and magnetic recording systems,
the channel may cause two types of synchronization errors.
The first one is not receiving a transmitted symbol (a deletion
error), and the second one is receiving a spurious symbol (an
insertion error). Furthermore, the propagation of these errors
will significantly reduce the performance of the systems. The
Insertion/Deletion Channel, along with channels like replica-
tion, substitutions, and combinations thereof, finds applications
in diverse fields, from computational biology to document
exchange and DNA data storage systems.

The general problem of designing efficient codes for in-
sertion/deletion of any symbol has been an open research
problem for over 55 years even though various results have
been given in [1], [7], [9]–[12], [15], [18], [19], [23], [25]–

[29] (and the references in these papers). Let Z2
def
= {0, 1}

be the binary alphabet. Some efficient binary code designs
for controlling the insertions/deletions of some fixed symbol,
say 0, are given in [5], [13], [14], [16], [18], [22], [30]–[33],
[35]. This simpler 0-error model finds application in achieving
reliable communication for the repetition (or, sticky) channel
model where the insertion and/or deletion of repeated symbols
may occur [5], [22], [35]. In [32] the 0-error model with the
limited magnitude error [3] constraints is studied from the zero
error capacity perspective. In this setting, it comes natural to
assume that the number of insertions of the fixed symbol 0
(i. e., 0-insertions) and the number of the symbol 0 deletions
(i. e., 0-deletions) in each and every 0-run (also referred to as
bucket of zeros in [32]) is at most ti and td, respectively. In
[32], some theory and efficient optimal and suboptimal non-
systematic binary block code designs are presented and these
codes are capable of correcting up to ti 0-insertions and td
0-deletions in each and every 0-run ((ti, td)-LM0EC codes),
for fixed ti, td∈N. For example, let ti = 1 and td = 2. If the
weight 7 codeword X = 001 00001 1 1 01 1 1 00∈Z16

2 is sent
and Y = ε01 0εε01 101 ε1 1 1000 = 01001101111000 ∈ Z14

2
is received (ε being the empty string), then the number of 0-
insertion and 0-deletions in each of the 7 + 1 = 8 0-runs is

∗This work is supported by the National Science Foundation Grant CCF-
2006571.

less than ti = 1 and td = 2. In this case, the receiver, from
Y , can correct all the 1 + 2 + 1 + 1 + 1 = 6 0-errors in Y .

Here, we focus our attention on the theory and design of
systematic (ti, td)-LM0EC binary block codes. Such theory is
based on the “max L1 distance" defined below and it should
not be confused with the theory on (ti, td)-0EC codes, which
are based on the “L1 distance" [31].

Definition 1 ((strict sense) systematic binary block code): A
binary block code C is systematic with k∈N information bits
and r ∈ N check bits if, and only if, there exists a function

E : Zk
2 → C ⊆ Zk+r

2 such that E(X)
def
= X C(X), for all

X ∈ Zk
2 . The word C(X) ⊆ Zr

2 is called the check symbol
associated with the information word X .

This paper gives some efficient systematic (ti, td)-LM0EC
code designs (according to Definition 1) which are redundancy
optimal or close to optimal, as shown, for example, in Table
I. The paper is organized as follows. Section II gives some
notation and preliminary theory on 0-errors control codes.
Section III contains a good lower bound on the minimal check
symbol length required by any systematic (ti, td)-LM0EC
code. Section IV presents the proposed efficient systematic
code designs. In Section V, some conclusions are drawn.

For clarity of theory development, as usual [18], [19],
[22], [30]–[32], we assume no synchronization errors due to
erroneous receptions of sequences of codewords (i. e., we
assume that the receiver knows the length of the received
word). However, by encoding the Hamming weight of the
information word into the check word, our proposed codes can
be made self synchronizing under limited magnitude 0-errors.
This is because our codes decode the received check word
first, are instantaneous in correcting the received 0-runs (see
Section IV) and 1-errors are forbidden in the 0-error model.
Furthermore, from the theory in [32] (see Theorem 1), any
(0, D − 1)-LM0EC code, D ∈ N, is a (ti, td)-LM0EC code,

for all ti, td
def
= D − ti − 1∈N, so (ti, td)-LM0EC codes are

also called D-LM0EC codes.

II. NOTATION AND PRELIMINARIES

For q∈N∪{∞}, let Zq
def
= {0, 1, . . . , q−1}. Given q, n∈N,

the L1 weight of a word X = x1x2 . . . xn∈Zn
q is the real sum

w(X)
def
= wL1

(X)
def
=

∑n
i=1 xi. In this theory, the constant L1

weight codes are important. So, for n,w ∈N and a numeric

set B ⊆ N, let S(B, n, w)
def
= {X ∈ Bn : wL1

(X) = w}
be the set of all n digit long words over B with constant L1

weight w. Note that S(B, n, w) =
⋃

x∈B S(B, n− 1, w−x)x,
where the union is a disjoint union of sets. If |S| indicates
the cardinality of a set S then the general recurring formula,
|S(B, n, w)| =

∑

x∈B |S(B, n−1, w−x)| holds for the cardi-

nality of S(B, n, w). If B
def
= Zq these “B-nomial coefficients"

become the “q-nomial coefficients", |S(Zq, n, w)|
def
=

(

n
w

)

q
=
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TABLE I

NUMBER r∈N OF CHECK BITS OF SYSTEMATIC (ti, td)-LM0EC CODES FOR SOME VALUES OF INFORMATION BITS k∈N AND D
def
= (ti + td) + 1∈N.

In the Table, for each value of D = 2, 3, . . . , 128, the LB labelled column gives a lower bound on r for any systematic D-LM0EC code; the CD column
gives the value of r for the proposed D-LM0EC codes. The last column gives the value of r of the distinct weight codes in Subsubsection II-A1.

\D 2 3 4 5 6 7 8 9 10 16 32 64 128 ∞

k\ LB CD LB CD LB CD LB CD LB CD LB CD LB CD LB CD LB CD LB CD LB CD LB CD LB CD Optimal CD

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 16 16 32 32 64 64 128 128 1

3 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 17 17 33 33 65 65 129 129 4

4 3 4 6 6 7 8 9 9 10 10 11 11 12 12 13 13 14 14 20 20 36 36 68 68 132 132 11

5 4 5 7 8 9 9 10 11 12 13 14 14 15 16 17 17 18 18 24 24 40 40 72 72 136 136 26

6 5 6 8 9 11 12 13 13 14 15 16 17 18 19 20 21 22 22 32 33 50 50 82 82 146 146 57

7 6 7 10 11 12 13 15 16 17 18 19 19 20 21 22 23 24 25 35 36 64 64 97 97 161 161 120

8 7 8 11 12 14 15 17 18 19 20 22 23 24 25 26 27 28 29 39 40 70 71 129 129 196 196 247

9 8 9 13 14 16 17 19 20 22 23 24 25 27 28 29 30 32 33 44 45 75 76 136 137 252 252 502

10 9 10 14 15 18 19 22 23 25 26 27 28 30 31 33 34 35 36 50 51 82 83 144 145 269 270 1013

11 9 11 15 17 20 21 24 25 27 28 30 31 33 34 36 37 39 40 55 56 90 91 153 154 279 280 2036

12 10 12 17 18 22 23 26 27 30 31 33 34 36 37 39 40 42 43 59 60 101 102 166 167 293 294 4083

13 11 13 19 20 24 25 28 29 32 33 36 37 39 40 43 44 46 47 64 65 108 109 182 183 309 310 8178

14 12 14 20 21 26 27 31 32 35 36 39 40 43 44 46 47 50 51 70 71 116 117 203 204 334 335 16369

15 13 15 22 23 28 29 33 34 37 38 42 43 46 47 49 50 53 54 74 75 123 124 214 215 365 366 32752

16 14 16 23 24 30 31 35 36 40 41 45 46 49 50 53 54 57 58 80 81 133 134 225 226 403 404 65519

32 29 31 48 49 61 62 73 74 82 83 92 93 100 101 109 110 117 118 162 163 267 268 451 452 773 774 232−33

64 61 62 98 99 125 127 148 149 168 170 187 188 205 206 222 223 238 239 328 329 540 541 907 908 1553 1554 264−65

128 124 126 199 200 255 256 301 302 342 343 379 380 415 416 449 450 482 483 664 66510891090 1826 1827 3123 3124 2128−129

256 251 253 402 404 514 515 607 608 690 691 766 767 837 838 906 907 972 9731339134021922193 3673 3674 6276 6277 2256−257

512 507 509 809 811103410361222122313871388154015411684168518211822195419552690269144024403 7373 73741259312594 2512−513

1024 101810201625162620762077245124522783278530893090337833793653365439203921539553968827882814780147812524025241 21024−1023

∑q−1
x=0

(

n−1
w−x

)

q
, which, for q = 2, reduce to the usual binomial

coefficients,
(

n
w

)

. If instead B
def
= N = Z∞ then S(N, n, w)

is the set of all compositions of the natural number w into

n natural numbers and |S(N, n, w)|
def
=

(

n
w

)

∞
=

(

n+w−1
w

)

. In
what follows, it is relevant to note that each set S(Zq, n, w)
can be encoded in lexicographic order with the enumerative
source encoding technique, say, with O(n2 log q) bit opera-
tions by storing O(n2q log q) bits [4], [32]. Now, let B∗ be
the set of all finite length sequences over an alphabet B. As
in [18], [30], [32], consider the bijective map A : Z∗

2 → N∗

which associates any X∈S(Z2,m, u) ⊆ Z∗
2, m,u∈N, with

A(X)
def
= a1a2 . . . auau+1∈S(Zq, u+ 1,m− u) ⊆ Z∗

q , (1)

where, q
def
= q(m,u)

def
= m − u + 1 and, for all integers h∈

[1, u+ 1], ah
def
= ah(X)∈Zq ⊆ N is the h-th 0-run length in

the word X . For example, if X = 010000111011100∈Z∗
2 then

A(X) = 14001002∈N∗. This mapping A defines a bijection
from the set of all binary words of any finite length m ∈ N
and Hamming weight u (= number of 1’s of the binary words)
into the set of words over N of length u + 1 (= number of
0-runs of the binary words) and L1 weight m− u (= number
of 0’s of the binary words). For example, for m = 6, the
mapping A acts on Z6

2 is as shown in Table II, where `(X)

indicates the length of any string X . Given q∈N, let |a−b|
def
=

max{a − b, b − a} ∈ Zq ⊆ R+, for all a, b ∈ Zq . The max
L1 distance plays an important role in the code design. This
max L1 distance, DL1

∞ : Z∗
q × Z∗

q :→ Zq ⊆ R+, for any
A = a1a2 . . . a`(A), B = b1b2 . . . b`(B)∈Z∗

q is defined as

DL1

∞ (A,B)
def
=

{

max
i∈[1,n]

{|ai − bi|} if `(A) = `(B),

∞ if `(A) 6= `(B).
(2)

For example, if A = 210, B = 021 and C = 0104 ∈ Z∗
5

then DL1

∞ (A,B) = max{2, 1, 1} = 2 and DL1

∞ (A,C) =

DL1

∞ (B,C) = ∞. Note that, for all D,n∈N,

∀A,B∈Zn
D, DL1

∞ (A,B) < D. (3)

With the one-to-one mapping A we can define a max distance
metric in Z∗

2 as

∀X,Y ∈Z∗
2, DL1

0E(X,Y )
def
= DL1

∞ (A(X), A(Y )). (4)

For example, if X = 001011, Y = 100101 and Z =
10110000 ∈ Z∗

2 then DL1

0E(X,Y ) = max{2, 1, 1} = 2 and

DL1

0E(X,Z) = DL1

0E(Y, Z) = ∞. As for the distinct L1

distance based 0-error model in [30], [31], note that, with
definition (4), the bijection A becomes also an isometry
between the metric spaces (N∗, DL1

∞ ) and (Z∗
2, D

L1

0E). From
the zero error capacity perspective [2], [3], [6], [8], [21], [24],
the channel adjacency matrix [24] of the 0-error channel model
with limited magnitude t is the graph adjacency matrix of

G(t) def
= (Z∗

2, E
(t)) with edge set E(t) def

= {(X,Y ) ∈ Z∗
2 :

DL1

0E(X,Y ) ≤ t}. Note that, since 1-errors are forbidden,

∀X,Y ∈C, w(X) 6= w(Y ) ⇐⇒ DL1

0E(X,Y ) = ∞. (5)

In [32], the following theorem is proved in terms of DL1

∞ .
Theorem 1 (Comb. character. of (ti, td)-LM0EC codes): Let

m, ti, td, D
def
= ti + td + 1∈N be given. A code C ⊆ Zm

2 is
(ti, td)-LM0EC if, and only if,

∀X,Y ∈C, X 6= Y =⇒ DL1

0E(X,Y ) ≥ D. (6)

It is also shown in [32] that the cardinality of the optimal
non-systematic D-LM0EC code, Copt, of length m, satisfies

LB(m,D)
def
=

m
∑

u=0

(

u+
⌊

m−u
D

⌋

u

)

≤ |Copt| ≤ (7)

m
∑

u=0

(

u+ 1 +
⌊

m−u
D

⌋

u+ 1

)

def
= UB(m,D);

1114Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 27,2024 at 18:20:49 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
THE MAPPING A ACTING ON Z6

2
.

w(X) X A(X) `(A(X)) wL1
(A(X))

0 000000 6 1 6
000001 50
000010 41

1 000100 32 2 5
001000 23
010000 14
100000 05
000011 400
000101 310
000110 301
001001 220
001010 211
001100 202
010001 130

2 010010 121 3 4
010100 112
011000 103
100001 040
100010 031
100100 022
101000 013
110000 004
000111 3000
001011 2100
001101 2010
001110 2001
010011 1200
010101 1110
010110 1101
011001 1020
011010 1011

3 011100 1002 4 3
100011 0300
100101 0210
100110 0201
101001 0120
101010 0111
101100 0102
110001 0030
110010 0021
110100 0012
111000 0003
001111 20000
010111 11000
011011 10100
011101 10010
011110 10001
100111 02000
101011 01100

4 101101 01010 5 2
101110 01001
110011 00200
110101 00110
110110 00101
111001 00020
111010 00011
111100 00002
011111 100000
101111 010000

5 110111 001000 6 1
111011 000100
111101 000010
111110 000001

6 111111 0000000 7 0

for all m,D ∈ N. In addition, it is shown in [32] that the
following codes

Cm,D
def
= {X∈Zm

2 : ah(X) = 0 mod D, ∀h∈ [1, w(X)]} (8)

are D-LM0EC codes with |Cm,D| = LB(m,D) codewords.

Also, if C
def
= Cm,D ⊆ Zm

2 and Cu
def
= C ∩ S(Z2,m, u)

def
=

Cu,m,D, for all u∈ [0,m], then C =
⋃

u∈[0,m] Cu with |Cu| =
(

u+b(m−u)/Dc
u

)

.
Example 1 (m = 6 and D = 3): The code C = C6,3 is

given through the map A by

A(C0)
def
= {6}, n = 1, w = 6, q = 7,

A(C1)
def
= {32, 05}, n = 2, w = 5, q = 6,

A(C2)
def
= {301, 031, 004}, n = 3, w = 4, q = 5,

A(C3)
def
= {3000, 0300, 0030, 0003}, n = 4, w = 3, q = 4,

A(C4)
def
= {00002}, n = 5, w = 2, q = 3,

A(C5)
def
= {000001}, n = 6, w = 1, q = 2,

A(C6)
def
= {0000000}, n = 7, w = 0, q = 1;

TABLE III
THE CODE IN EXAMPLE 2

.
Cu Y = X Mu∈C A(Y ) `(A(Cu)) wL1

(A(Cu))

000000 11 600
000100 01 330

C2 100000 01 060 3 6
000110 00 303
100010 00 033
110000 00 006
000111 11 300000
100011 11 030000

C5 110001 11 003000 6 3
111000 11 000300
111100 01 000030
111110 00 000003

C8 111111 11 000000000 9 0

where n
def
= `(A(Cu)) = u + 1, w

def
= wL1

(A(Cu)) = m − u

and q
def
= m − u + 1. Since DL1

0E(C) = D = 3, the code C
can correct two 0-deletions (i. e., ti = 0, td = 2) or two 0-

insertions (i. e., ti = 2, td = 0) or one 0-deletion and one

0-insertion (i. e., ti = 1, td = 1). It has |C| = LB(6, 3) =
(

2
0

)

+
(

2
1

)

+
(

3
2

)

+
(

4
3

)

+
(

4
4

)

+
(

5
5

)

+
(

6
6

)

= 13 codewords.

The codes in (8) are instantaneous (i. e., any received
0-run can be corrected as soon as it is received (please
see [32, Subsection III.C]) but not self synchronizing under
(ti, td)-LM0EC. To recover synchronization at the receiver

end, here we note that the string Mu
def
= 0(D−1)−µu1µu ∈

S(Z2, D − 1, µu), with µu
def
= (m − 1 − u) mod D ∈ ZD,

can be appended to each constant weight u code Cu,m,D.
In this way, the instantaneous and self synchronizing code

C̄m,D
def
=

⋃m
u=0 Cu,m,DMu is obtained with fixed length

r
def
= m+D − 1 which is exactly equal to

C̄m,D = {X∈Zr
2 : ah(X) = 0 mod D, ∀h∈ [1, w(X) + 1]}

⊆
⋃

u∈[0,r]∩(D·Z+r mod D)

S(Z2, r, u). (9)

Example 2 (m = 6, D = 3 and r = m+D − 1 = 8): The

code C = C̄6,3 = C2 ∪ C5 ∪ C8 is given in Table III.

The (ti, td)-LM0EC on a received codeword sequence for
the non systematic codes C̄m,D in (9) can be accomplished on
the current received 0-run by first computing its length a′ and
then correcting a′ by adding up to td or subtracting up to ti so
that a′ becomes the nearest multiple of D = ti + td + 1; this
computation can be done instantaneously bit by bit until the
length of the entire corrected bit sequence is exactly r so that
the parsing point of the current received codeword is detected.

The check symbols in the systematic code design give in
Section IV are codewords of the big enough instantaneous and
self synchronizing codes in (9) and convey some information
on the information word. The CD column in Table I gives
exactly the length r∈N of such codes.

A. Some simple systematic code designs

Here, two interesting simple code designs are given.
1) Systematic Distinct Weight (DW) codes: In a distinct

weight (DW) code no two codewords have the same Hamming
weight. From (2), the minimum max L1 distance of any
distinct weight code is ∞ and so they can be used to correct
any number of 0-errors in any 0-run. Indeed, as class of
codes DW ≡ ∞-0EC ≡ ∞-LM0EC [31]. Now, a DW code
of length n ∈ N contains n + 1 distinct codewords. Hence,
an optimal DC code with k ∈ N information bits has length

1115Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 27,2024 at 18:20:49 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV
SYSTEMATIC DW (k = 3, n = 7) CODE.

d(X) X Check of X w(E(X))

0 000 0000 0
1 001 0000 1
2 010 0001 2
3 011 0001 3
4 100 0111 4
5 101 0111 5
6 110 1111 6
7 111 1111 7

n = 2k − 1. Let d : Zk
2 → [0, 2k − 1] be the one-to-one

map which associates any X with the natural number d(X)
whose binary representation is X . An efficient optimal DW
systematic encoding, E : Zk

2 → Zn
2 for k information bits

can be defined as E(X)
def
= X 0n−k−[d(X)−w(X)] 1d(X)−w(X).

Table IV gives an example with k = 3 information bits.
2) Repetition Codes: A D-repetition code is a code where

each data symbol is repeated D∈N times. Since the minimum
max L1 distance of these codes is clearly D, they are D-
LM0EC (and, even D-LM{0, 1}EC) codes with k ∈ N data
bits, length n = Dk∈N and r = (D−1)k∈N check bits. Even
though they are not systematic in the strict sense considered in
Definition 1 they are systematic in a wider sense [36, Section
IV] and so it is interesting to consider them as touchstones.

III. REDUNDANCY LOWER BOUNDS FOR SYSTEMATIC

D-LM0EC CODES

First, the following definition can be given in general for
any class of binary systematic block error control codes.

Definition 2 (check-blocking set): Given a class of sys-
tematic error control code with k ∈ N information bits let
C : Zk

2 → Zr
2, r∈N, be any function which associates every

information word X∈Zk
2 with its check symbol C(X)∈Zr

2 so

that the length n
def
= k+r∈N code C

def
= {X C(X) : X∈Zk

2}

with r check bits is in the class. A set ∆
def
= ∆(k) ⊆ Zk

2 of
information words is called check-blocking if, and only if, for
any check symbol assignment function C,

∀X,Y ∈∆, X 6= Y =⇒ C(X) 6= C(Y ).

Simply note that a lower bound on (the largest) |∆| gives
a lower bound on the number of check symbols (and hence,
check bits) required by any systematic code design in the
class. From (4) and (2), the D-LM0EC code class ∆ data word
set is check-blocking if, and only if, it satisfies the following
condition.

∀X,Y ∈∆, X 6= Y =⇒ DL1

0E(X,Y ) < D. (10)

We have the following theorems.
Theorem 2: Given the class of D-LM0EC codes with k

information bits, k,D ∈ N, the largest check-blocking set of

information words, ∆
def
= ∆(k,D) ⊆ Zk

2 , has a cardinality of

|∆| ≥ max
v≥ 0

(

k − v + 1

v

)

D

def
= NCLB(k,D). (11)

Furthermore, if D > bk/2c then

|∆| ≥

(

k

dk/2e

)

2

. (12)

Proof: For all v∈ [0, k] let u
def
= k − v∈ [0, k] and

∆v
def
= {X∈S(Z2, k, u) : A(X)∈S(ZD, u+ 1, v)} ⊆ Zk

2 .

Note that if a data word X∈∆v then X contains v 0’s and u
1’s. For example, if k = 6 and D = 3 then ∆2 = S(Z2, 6, 4),
but ∆4 = A−1({220, 211, 202, 121, 112, 022}) ( S(Z2, 6, 2)
(see Table II). For all v ∈ [0, k], ∆v is a check-blocking set
of Definition 2. In fact, if X,Y ∈ ∆v then A(X), A(Y ) ∈
A(∆v) ⊆ Zu+1

D . So, from (4) and (3), DL1

0E(X,Y ) =
DL1

∞ (A(X), A(Y )) < D; i. e, ∆v is check-blocking because
of (10). Now, |∆v| = |S(ZD, u + 1, v)| =

(

u+1
v

)

D
because

the map A is injective. So, (11) follows simply because
|∆| ≥ |∆v|, for all v ∈ [0, k]. Finally, if D > v then ∆v =
S(Z2, k, u) and |∆v| =

(

k
v

)

. So, (12) follows if v = bk/2c.
For example, if k = 6 and D = 3 then the lower bound in

(11) gives |∆| ≥ maxv≥ 0

(

7−v
v

)

3
=

(

4
3

)

3
= |S(Z3, 4, 3)| =

16, as reported in Table V.

Theorem 3: Let k,D ∈ N and ∆
def
= ∆(k,D) ⊆ Zk

2 be

given as in Theorem 2 and, for all a ∈ [0, k − 1], let Ga
def
=

{C(X10a) : X10a ∈∆} ⊆ {C(X) : X ∈∆}
def
= G. Then

DL1

0E(Ga) ≥ D, |Ga| ≥ maxv≥0

(

k−v−a
v

)

D
, for all a∈ [0, k−

1], and |G| =
∑

a∈[0,k−1] |Ga|.
Proof: For any a∈ [0, k−1], let C(X10a), C(Y 10a)∈Ga

with X10a, Y 10a ∈ ∆. If X 6= Y then X10a 6= Y 10a and

CX
def
= C(X10a) 6= C(Y 10a)

def
= CY because ∆ is check-

blocking. So, from (4), (2) and Definition 2,

DL1

0E(X10a CX , Y 10a CY ) = (13)

max{DL1

∞ (A(X), A(Y )), DL1

∞ (CX , CY )} ≥ D.

But, from X10a, Y 10a ∈∆, relation (4) and (10) it follows
DL1

0E(X10a, Y 10a) = DL1

∞ (A(X), A(Y )) < D. So, from (4),

DL1

0E(CX , CY )} = DL1

∞ (CX , CY )} ≥ D. So, DL1

0E(Ga) ≥ D.
The relations on |Ga| and |G| follow as in Theorem 2 and
because the Ga’s are pairwise disjoint, respectively.

Let Γ̄
def
= {C(X) : X ∈ Zk

2} ⊇ G. Theorem 3 implies
that, in the optimal case Γ̄ = G, if, say, a = 0 then
maxv≥ 0

(

k−v−a
v

)

D
≤ |G0| ≤ |G| = |Γ̄| and G0 ⊆ Γ̄ is a D-

LM0EC code. Note that the case a = 0 would be equivalent
to have a synchronizing “1" between X and C(X). In Table
I, for comparison purposes, we simply assumed G0 = Γ̄ and
the existence of D-LM0EC length m codes with UB(m,D)
in (7) codewords, for all m,D∈N. We computed the smallest

length m
def
= m(K,D) such that UB(m,D) ≥ NCLB(k,D)

in (11); and reported in the LB labelled columns the value

of rLB(k,D)
def
= m +D − 1. We thought fair to add D − 1

check bits to m, in spite of the assumption G0 = Γ̄ and the
synchronization non-guarantee between checks (codewords of
a possibly existing D-LM0EC code) and data words.

IV. PROPOSED SYSTEMATIC CODE DESIGNS

Let 〈x〉b denote the x mod b operation. The code design
for k ∈ N data bits is defined as follows and relies on (5)
and the max L1 distance systematic q-ary code designs in [3,

Subsection II.C], [6], where q
def
= q(X)

def
= k − w(X) + 1,

for all data words X ∈
⋃

u∈[0,k] S(Z2, k, u) = Zk
2 . For any

u = w(X)
def
= k−v, the idea is to consider the vector A(X)∈
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TABLE V
LOWER BOUND ON THE NUMBER OF CHECKS NEEDED IN ANY SYSTEMATIC CODE DESIGN AND THAT USED IN THE PROPOSED CODE DESIGN.

For some k and any D∈N, the LB labelled columns give the lower bound in (11) and the CD columns the code design value in (14). If the entry is Nv

then N is the number of distinct check symbols and v is a value where the maximum in (11) and (14) is obtained for the LB and CD columns, respectively.

\D 2 3 4 5 6 7 8 9 D ≥ 10

k\ LB CD LB CD LB CD LB CD LB CD LB CD LB CD LB CD LB CD

1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
2 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21
3 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31
4 41 41 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
5 62 72 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102
6 102 112 163 173 203 203 203 203 203 203 203 203 203 203 203 203 203 203
7 152 162 303 313 353 353 353 353 353 353 353 353 353 353 353 353 353 353
8 212 263 503 513 654 664 704 704 704 704 704 704 704 704 704 704 704 704
9 353 423 904 964 1204 1214 1264 1264 1264 1264 1264 1264 1264 1264 1264 1264 1264 1264

10 563 643 1614 1684 2165 2225 2465 2475 2525 2525 2525 2525 2525 2525 2525 2525 2525 2525
11 843 994 2664 2945 4135 4205 4555 4565 4625 4625 4625 4625 4625 4625 4625 4625 4625 4625
12 1264 1634 5045 5405 7285 7566 8756 8826 9176 9186 9246 9246 9246 9246 9246 9246 9246 9246
13 2104 2564 8825 9275 14286 14646 16526 16606 17086 17096 17166 17166 17166 17166 17166 17166 17166 17166
14 3304 3864 15546 17116 25986 26436 31447 31807 33687 33767 34247 34257 34327 34327 34327 34327 34327 34327
15 4954 6385 28506 30616 49507 51157 60307 60757 63547 63637 64267 64277 64357 64357 64357 64357 64357 64357
16 7925 10245 49176 53657 92407 94607 113858 115508 124658 125108 127898 127988 128618 128628 128708 128708 128708 128708
17 12875 15865 90427 99337 172058 179118 221108 223308 237608 238158 242108 242208 243008 243018 243108 243108 243108 243108
18 20025 25106 162367 174697 328028 337938 414709 421859 464209 466409 480709 481259 485209 485309 486109 486119 486209 486209
19 30035 40966 283148 318248 599509 628439 813679 823689 892329 895189 916529 917189 922579 922689 923679 923689 923789 923789

Zu+1
q in (1) and encode the vector 〈A(X)〉D = A(X) mod

D ∈ Zu+1
D into a check symbol C(X) ∈ Γ; where Γ is a

self synchronizing non systematic D-LM0EC code in (9). The
code Γ of length r ∈ N must be chosen big enough, but it
can be independent of u = w(X) = `(A(X)) − 1 ∈ [0, k]
because of (5) and the assumption that the receiver knows
the length of the received codeword. Specifically, the check
symbol assignment map can be the union of k+1 distinct maps
Cu : S(Z2, k, u) → Γ, each encoding 〈A(X)〉D ∈〈S(Zq, u+

1, v)〉D
def
= Vu ⊆ Zu+1

D ; i. e., for all u ∈ [0, k], for all X ∈
S(Z2, k, u) it must be

C(X) = Cu(X) = Fu(〈A(X)〉D);

with Fu : Vu → Γ injective. Now, assume E = X Cw(X)(X)∈

Zk+r
2 is sent and Ê

def
= X̂ Ĉ ∈Z∗

2 is received; where X̂ and

Ĉ are the erroneous version of X ∈Zk
2 and Cw(X)(X)∈Zr

2,

respectively. On receiving Ê, the following (ti, td)-LM0EC
procedure is performed. From right to left, the receiver first
corrects and parses Ĉ obtaining Cw(X)(X) then it computes

w(X̂) = w(X) = u, and then it decodes C(X) = Cu(X)

to obtain 〈A(X)〉D
def
= α1α2 . . . αu+1. Then, it corrects the

current received data part 0-run by computing its length, âi
def
=

ai(X̂), and then adding to âi up to td or subtracting up to ti
so that âi−αi becomes the nearest multiple of D = ti+td+1;
this, until X̂∈(0∗10∗)∗ has been parsed completely.

Theorem 4: Let Γ
def
= Γ(k,D) ⊆ Zr

2 be the set of check
symbols required by the proposed D-LM0EC code design with
k information bits, k,D∈N. Then

|Γ| = max
v≥0

bv/Dc
∑

i=0

(

k − v + 1

v − iD

)

D

. (14)

Note that, if D>bk/2c then |Γ|=
(

k
dk/2e

)

2
is optimal since it

reaches the lower bound in (12). In general, Γ is the shortest
D-LM0EC code in (9) so that (14) holds and its length is given
in the CD labelled column of Table I for some k,D∈N.

Proof: For all X ∈Zk
2 , let u

def
= w(X) and v

def
= k − u.

Note that, X ∈ S(Z2, k, u) =⇒ A(X) ∈ S(Zv+1, u + 1, v)
=⇒ 〈A(X)〉D∈〈S(Zv+1, u+ 1, v)〉D = Vu, where, really,

Vu =
⋃

ν∈[0,v]∩(D·Z+〈v〉D)

S(ZD, u+ 1, ν).

Now, for all u = k − v ∈ [0, k], the above map Fu must be
injective (i. e., the check Cu(X) must encode any possible
value of 〈A(X)〉D ∈ Vv) so, the code Γ must have |Γ| =

maxv≥0 |Vv| = maxv≥0

∑bv/Dc
i=0

(

u+1
v−iD

)

D
elements.

Example 3: If k = 5 and D = 3 then maxv≥0 |Vv| =
|V2| = |S(Z3, 4, 2)| =

(

4
2

)

3
=

(

5
3

)

2
= 10 and Γ can be

chosen by picking, say, the first 10 words of the code C̄6,3 =
A−1(3 · [S(N, 3, 2)∪ S(N, 6, 1)∪ S(N, 9, 0)]) in Table III. Its

length r = 8 is given in Table I.
Example 4: If k = 6 and D = 3 then maxv≥0 |Vv| = |V3| =

|S(Z3, 4, 0) ∪ S(Z3, 4, 3)| =
(

4
3

)

3
+

(

4
0

)

3
= 16 + 1 = 17 and

Γ can be chosen by picking, say, the first 17 words of C̄7,3 =
A−1(3 · [S(N, 1, 3)∪S(N, 4, 2)∪S(N, 7, 1)∪S(N, 10, 0)]). Its

length r = 9 is given in Table I.
Because each S(Zq, n, w) can be indexed lexicographically

as in [4], the entire coding process can be implemented with
the indexing method as in [32] with O(k2 logD) bit operations
by storing O(k2D logD) bits.

V. CONCLUDING REMARKS

In this paper, some theory and design of optimal or close
to optimal binary systematic D-LM0EC block codes are
presented. Good lower and upper bounds are given for the
number of distinct check symbols required by any systematic
D-LM0EC block code in Theorem 2 and 4, respectively. In
this respect, if D > bk/2c then the number of distinct check
symbols required by any code design is equal to the number of
check symbols,

(

k
dk/2e

)

, used by the proposed codes. Remark-

ably, as D grows, the proposed codes outperform the wider
sense systematic D-repetition codes given in Subsubsection
II-A2 as shown, for example, in Table I.
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