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Abstract

We define a notion of a viscous shock solution of the stochastic Burgers equation that con-
nects “top” and “bottom” spatially stationary solutions of the same equation. Such shocks
generally travel in space, but we show that they admit time-invariant measures when viewed in
their own reference frames. Under such a measure, the viscous shock is a deterministic function
of the bottom and top solutions and the shock location. However, the measure of the bottom
and top solutions must be tilted to account for the change of reference frame. We also show
a convergence result to these stationary shock solutions from solutions initially connecting two
constants, as time goes to infinity.

1 Introduction

We consider the one-dimensional stochastic Burgers equation, forced by the gradient of a Gaussian
noise that is smooth in space and white in time:

du(t,z) = %[Qﬁu(t,x) — 0, (u?)(t, )]dt + d(8,V)(t, z), t,x € R. (1.1)

Here, V = px W, where W is a cylindrical Wiener process on L?(R) whose covariance kernel is the
identity, so the Itd time differential dIW is a white noise on R x R, and p € C*(R) N H'(R). We
use * to denote spatial convolution. A detailed construction of the solutions to (1.1) in a weighted
space X of continuous functions that grow at most as |z|'/?* at infinity an be found in [13]. We
recall the precise result and the definition of this space in Section 2.

Spacetime-stationary solutions to the stochastic Burgers equation on the whole real line have
been studied extensively in the recent years. With apologies for the clumsiness, we will refer to
the single-time laws of such spacetime-stationary solutions as “space-translation-invariant invariant
measures.” Kick-type random forcing in (1.1) was considered in [1, 2, 4], and the white in time
setting, as in the present paper, was treated in [13]. We also refer to these papers for references to
the extensive literature on the torus case x € R/Z.

For the unforced Burgers equation (V' =0 in (1.1)), spacetime-stationary solutions are simply
constants. In addition, the unforced problem also admits traveling wave solutions, known as viscous
shocks, that are perhaps of a more direct interest in applications than constant solutions. They
have the explicit form

b—a b+a
1+ e—2a(z—bt—c) + 1+ e2a(z—bt—c)

u(t,x) = —atanh(a(x — bt —¢)) + b= (1.2)
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(a) Viscous shock solution u between lower and (b) Viscous shock solution u between lower and
upper solutions up, ur of the deterministic Burg- upper solutions up,ur of the stochastic Burgers
ers equation. equation (1.3).

Figure 1.1: Viscous shock solutions to the deterministic and stochastic Burgers equations.

for constants a,b,c¢ € R, as can be checked directly. Such solutions “connect” the two constant
solutions b + |a|, by which we mean that

lim wu(t,z) = b+ |al,

T—F o0

as depicted in Figure 1.1a.

Existence and classification of the random shock measures

In this paper, we discuss analogues of these viscous shocks in the stochastically forced case. We
first must have analogues of the constant solutions that are connected by the shocks. We recall
that [13] considered spacetime-stationary families of solutions to (1.1), by which we mean jointly
spacetime-stationary solutions to the system of equations

du;(t, x) = %[@%ui(t, x) — Op(ud)(t, x)]dt + d(9,V)(t, x), t,x € R, (1.3)

which are coupled through the noise V. As shown in [13, Theorem 1.1], such coupled spacetime-
stationary solutions are almost-surely ordered according to their mean. One can construct them as
long-time limits of solutions starting with constant initial conditions, and the limits preserve the
order of the constants. It was also shown in [13, Theorem 1.1] that for any ax € R, k =1,..., N,
there exists a unique extremal space-translation-invariant invariant measure vg, . q, for (1.3) such
that if (v1,...,0N) ~ Vay.._ay, then Evg(x) = ay and Evg(z)? < oo foreachz € Rand k= 1,..., N.
The extremal invariant measures serve as attractors for the solutions to the Cauchy problem for a
large class of “not far from periodic” initial conditions.

A stochastic shock, rather than connecting two constants as in the deterministic case, connects
two ordered components up and up (“bottom” and “top”) of a (space-stationary, say) solution
to (1.3) with N = 2, as illustrated in Figure 1.1b. We define the set of bottom and top solutions

x

Xpr = {(uB,uT) e X? : ug <urpand lim [ur — up](y) dy = ioo} ) (1.4)

r—*+o0 0



The space of viscous shocks is then

0 00
XShZ{(UB,uT,U)GXBTXX : / |UT—U|+/ |U—UB|<OO}' (1.5)
—00 0

If (up,ur,u) € Xgp, then we say that u is a shock connecting ur on the left to ug on the right.
We note that (1.4)—(1.5) give an “L'” notion of a shock, which is convenient because of the nice L'
properties of the stochastic Burgers dynamics (described in [13, Section 3]).

Given a pair (ug,ur) € Xt of bottom and top solutions to (1.1), one can construct a semi-
explicit shock solution to this equation in terms of up and wr, generalizing (1.2), so that the
triple (up,ur,w) lies in Xgy, as follows. If vg(z) < vp(z) for all x € R, and b,y € R, define

_ vp(x) n vr(x)
1+exp{y — [, Tor —os](y)dy} 1+ exp{—y+ [, [T — vB](y) dy}

Let (up,ur) be a solution to (1.3) with N = 2 such that up(t,z) < up(t,x) for all t and =, and b;
be the solution to the non-autonomous ordinary differential equation

yb7-y[v}3, vr](x) (1.6)

Oy = %(—Gx(log(uT —up)) + up + ur)(t,by). (1.7)

If we set
u(t,x) = S, 5[(us, ur)(t, )] (1.8)

for some fixed v € R, then it turns out that (up, ur,u) solves (1.3) with N = 3. This is a general fact
true for any pair of ordered solutions ug and ur of (1.3). We will refer to b; as the “shock position.”
A more useful interpretation of by, in terms of the KPZ equation, is presented in Lemma 3.1 in
Section 3. We postpone it until then as it requires some additional notions.

If (up,ur)(t,:) € X (for which it suffices that this holds at ¢ = 0, as shown in Lemma 2.2
below), and w(t, z) is given by (1.8), then for x — by > 1 we have u ~ ug, while for z — by < —1
we have u ~ up. This is a direct way to see that (1.8) defines a connection between ur on the left
and ug on the right. The width of the transition region around b; depends on the size of ut — ug
near b;: the closer ut and up get near b;, the wider the shock region. We will see this reflected in
the tilt of the invariant measure in Theorem 1.1 below.

The system (1.7)—(1.8) involves the random noise V' only through ug and ur: conditional on
the top and bottom solutions, the shock position and profile are completely determined by (1.7)
and (1.8), respectively. The expression (1.8) is a direct generalization of (1.2). Indeed, if up = b—a
and up = b+a, with some b € R and a > 0, then for any by € R, b = bt +bg solves (1.7). Then (1.8)
reduces to (1.2), with ¢ = by — /2.

Motivated by (1.8) and continuing to assume the ordering of up and ur, we can make a change

of variables | e 5
C:_/ [UT_UB](t7x)dx7 U= u_UB_UT' (19)

2 Jy, UT — UB

Under this change of variables, (1.8) becomes the deterministic and time-independent profile
U(t,¢) = —tanh(, (1.10)

which is the same as (1.2) in the deterministic case. As we will see, under the same change of
variables, the stochastic Burgers equation (1.1) takes the strikingly simple form

0 (t,¢) = 50 ((ur — un)? - (AU — V% +1)) (1,0), (1.11)
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to which (1.10) is a solution.

The above computations did not use any statistical properties of ug and ur. Of particular
interest to us is the case when (up,ur) is a spacetime-stationary solution to (1.3) as constructed
in [13, Theorem 1.2]. Assume that up(t,z) < wrp(t,x) for all t and x almost surely. In the
deterministic case, the viscous shock profile is stationary in the reference frame that moves with
the constant speed b of the shock. In the random case, the triple (up,ur,u) is not expected to be
stationary in time, despite the time-stationarity of the difference ur — up driving (1.11), because
the shock location b; need not be stationary. It is natural to expect that (up,ur,u) would at least
be time-stationary in a reference frame moving along with b;: that is, that the randomly shifted
triple 7p,—p, (uB, uT,u) would be time-stationary. Here, 7 is the spatial translation defined by

T f(y) = fly — ). (1.12)

This is not quite right either, because b; is not independent of (up, ur). We need to tilt the invariant
measure to account for this dependence, as described in the following theorem.

Theorem 1.1. Let v be a space-translation-invariant invariant measure for the dynamics (1.3)
with N = 2, such that if (vg,vr) ~ v, then Bvg(z)?, Evr(x)? < oo and vg(x) < vr(z) for allz € R
almost surely. Fiz b € R and define the measure D, absolutely continuous with respect to v, with
Radon—Nikodym derivative

ol (o5, o) = (vr — vB)(b) ‘
dv Jim 7 [y fr — vp](x) da

(1.13)

Fiz v € R and let (up,ur,u) solve (1.8) with initial condition (ug,ut) ~ D, independent of the
noise, and
U(O, l‘) = ybﬁy[(uB’ UT)(O, )]

Let by solve (1.7) with by =b. Then for all t > 0 we have
Law (7y—p, (u, uT,u)(t,-)) = Law((up, ut, u)(0,-)). (1.14)

Note that the limit in the denominator in (1.13) exists v-almost surely by the Birkhoff-Khinchin
theorem.

According to [13, Theorem 1.2], any space-translation-invariant invariant measure for (1.3)
having bounded second moment can be decomposed into a mixture of extremal such measures, which
are classified by their means. As in [13], we use the notation v, 4, for the extremal measure with
mean (ag, at), and we write ﬁc[giﬂT for the tilt of this measure defined by (1.13). If (vB, vT) ~ Vag ars
then [13, Theorem 1.2, property (P5)] and the Birkhoff-Khinchin theorem imply that

1 L
lim — / [vr — vg](z)dx = ar — ap,
L—oo 0

so in that case the change of measure formula (1.13) has the simpler form

[b] .
dPag,ar (vp, v7) = (vr UB)(b)‘

1.15
dVaB,aT at — ap ( )

Note that (1.14) includes the statement that Law(7,_p, (up, ur)(t,-)) = Law((up,uT)(0,-)). In
fact, this statement contains most of the content of (1.14) once the semi-explicit nature of the shock



profiles is understood as in the discussion following (1.6). Nonetheless, the change of measure (1.13)
can be more easily understood in the context of the shocks. (A more direct computational reason
for the tilt can be found in Lemma 3.1 below, and in particular, in expression (3.12).) The tilt
(1.13) is a type of size-biasing (or “mass-biasing”), arising from the mass conservation of both the
Burgers dynamics and the change of variables (1.9). The Burgers dynamics (1.3) has the form
of a conservation law and so preserves the integrals of differences between solutions (as is proven
formally in [13, Proposition 3.3]). As we show in Proposition 3.3, we have

[ S lon.or] = S fomoxl) =~ 7 (1.16)

for any b,7,7" € R and (vp,vr) in an appropriate function space. This is why 7 remains fixed in
the evolution (1.8) and is thus a convenient way to parametrize the shocks. Consider the entire
ensemble of shocks (7, [(us,uT)(t, -)]) er evolving together between upper and lower solutions ug

and ur. Now consider 7,7’ € R with |[y—+/| < 1, and let b,ﬁ”') be a solution to (1.7) (with a different
initial condition than b;) such that

Fhylus, ur)(t, )] = Fon _[(us, ur)(t, )] (1.17)

It follows from (1.16) and (1.17) that

v— = / (b, wr) (8 )] = o[, ur) (8, )]) ~ (b = b)) - (wr = up) (8, by)
is independent of ¢, and we must have

by — b('Y/) =

~

! (ur —u)(t, )

This means that in an interval of size ¢ < 1 around b;, we may expect to find bgﬁ/) for

1V =] S elur —u)(t, by),

hence the change of measure (1.13).

One may ask about the uniqueness of the stationary shock profile measures given by (1.13). This
question is not entirely well-posed because one must specify the reference frame in which we require
stationarity. We give a uniqueness statement for the shock in Proposition 5.5 if the reference frame
is assumed to be given by a shock location {b;};>o satisfying (1.7). The more intrinsic definition
of b; in Section 3 indicates that this choice of the reference frame is quite natural but further work
is needed to understand uniqueness without fixing a particular reference frame.

Stationary shock behavior has been extensively studied for asymmetric simple exclusion pro-
cesses, which are discrete microscopic models for Burgers-type dynamics. Similar phenomenology
occurs there: a shock moves randomly through space, but in the reference frame of the shock itself,
there is a stationary measure for the particle system [12, 14, 15]. We refer to the book [25] for more
discussion and references.

Stability of the random shocks

We now turn to the stability of the shocks (1.8). The study of the stability of the shocks (1.2) in
the deterministic case has a long history. Without any attempt at completeness, we mention in
particular the works [16, 17, 18, 19, 20, 21, 22, 24, 28, 29, 30, 31, 32] and the books [11, 33]. In a



similar spirit to our problem is [35], which shows convergence to shock waves when the equation
is deterministic but the initial condition is random. As the Burgers equation is nonlinear, these
issues are closely related.

In the present stochastic setting, we show that if the initial condition is sandwiched between
two hyperbolic tangent functions (translated and scaled appropriately), with the same limits at
infinity, then an intermediate solution, shifted appropriately, converges to a shock of the form (1.8).
Actually, we show a somewhat stronger statement, that if we consider a finite collection of such
solutions, then they converge jointly to a family of such shocks. In the following theorem, as above,
X denotes the Fréchet space of continuous functions on R growing more slowly at infinity than
(1 + |z|)¢ for all £ > 1/2, equipped with the corresponding family of weighted seminorms specified
in Section 2.

Theorem 1.2. Fix real constants ag < at and vy, < Yr. Let (up,ur,u1,...,ux) € C([0,00); X2TN)
solve (1.3) with initial conditions ug(0,-) = ap, ur(0,-) = ar, and for allx € R andi=1,...,N,

yOv'YL [anaT] (z) < ui(ov‘r) < rSWOFYR [an aT](x)’
For eachi=1,...,N, let b be the unique b so that
b 00
/ [ur — u;)(0,z) dz = / [u; — upl(0, x) dz, (1.18)
—00 b
and let bgi) solve (1.7) with initial condition b(()i) = b, Let (v, vy) ~ ﬁéﬁf;}T (defined after Theo-
rem 1.1) and fori=1,...,N, put
Ui = Sy i) _p [UB, UT]

and v = (vg,vr,v1,...,0N). Then we have

LaW(Tb(l)_bgl) (uB,ur,ui,...,un)(t,-)) = Lawv (1.19)

weakly with respect to the topology of X*tN . Also, with probability 1 we have

i st ) = F4 [, w) 8N s ey = O (1.20)

We recall that, as far as the stability of ug and ur themselves is concerned, it was shown
in [13, Theorem 1.3] that if u € C([0,00); XV) solves (1.3) with initial condition that is a decaying
perturbation of a spatially-periodic state u(0,-), then Law(u(t,-)) converges to g, . q, weakly
with respect to the topology of XV as t — co. Even stronger results are available for the stability
of the spacetime-stationary solutions for the kick forcing of the Burgers equation considered in
[4]. Theorem 1.2, however, only considers the case when the top and bottom solutions are initially
constant in space.

An interpretation of the shocks in terms of the Cole—Hopf transform

The Burgers viscous shocks can be interpreted in terms of the Cole-Hopf transform [6, 8, 18]. Recall
that if ¢ solves the multiplicative stochastic heat equation (SHE)

a6 = 3326 — 6V, (1.21)



then h = —log ¢ solves the KPZ equation [23]
1
ah = 202 — (0.h)? + ol et + AV (1.2

and u = d,h = —(0,¢)/ solves the stochastic Burgers equation (1.1). Of course, this transform
can be extended to the system of equations (1.3). The multiplicative SHE (1.21) has the obvious
advantage of being linear, but for our purposes both (1.21) and (1.22) have the disadvantage that
they do not admit spacetime-stationary solutions. Spacetime-stationary solutions only arise when
the derivative is taken to form w, which destroys the growing zero-frequency mode of h.

Nonetheless, the stable viscous shock solutions (1.8) have a simple interpretation in terms of
solutions to the SHE (1.21). Indeed, if for X € {B, T}, we have ux = —(0,¢x)/¢x, and ¢x
solves (1.21), then by linearity ¢p + ¢ solves (1.21) as well, so that

0z(¢B + ¢1) up uT

o5 101 1+ o1/dn 1+ on/or

solves (1.1). Noting that

(01/68)(t.0) = (0r/o)(1.0)exp { - /0 "ot — us](t.y) ay}.

we recover an expression of the form (1.8) by appropriate choices of v and b;.

Another, even more explicit, perspective considers the KPZ equation in relation to the change
of variables (1.9). As we show in Lemma 3.1, solutions to (1.7) are given by inverting (as a function
from R — R) half the difference between two solutions to (1.22), started at the corresponding
integrals of the initial conditions for ug and uwyp. Therefore, the integral appearing in the change
of variables (1.9) is exactly half the difference of two solutions to (1.22). In addition, as shown in
Lemma 3.1, the definition of the shock location b; is more naturally given in terms of the solution
to (1.22) than directly in terms of the Burgers equation itself.

Estimating the scale of fluctuations of b; is thus a question about the growth of the difference
between two solutions to (1.22). Long-time statistics for solutions to (1.22) are in general difficult to
estimate, especially in non-integrable cases such as ours where exact calculations are not available.
See [5, 7, 9, 27, 26] and their references for some results for integrable models, and [3] for more
background and conjectures in this direction. We do not address the question of estimating b; in
the present paper, reserving it for future work.

Organization of the paper We begin by introducing the relevant function spaces and recalling
the necessary setup and results from [13] in Section 2. We discuss the change of variables (1.9), the
resulting PDE (1.11), and the explicit shock solutions (1.8) in Section 3. We derive the change of
measure (1.13) and prove Theorem 1.1 in Section 4. In Section 5, we discuss more general shock
profiles and give a partial characterization of a certain notion of stationary shock profile (assuming
some nontrivial integrability conditions). Finally, we prove our stability result Theorem 1.2 in
Section 6. A technical lemma is relegated to Appendix A.
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2 Function spaces and spacetime-stationary solutions

Because the viscous shock solutions to (1.1) are so intimately tied to the spacetime-stationary
solutions they connect, we rely on the framework and many ingredients from [13]. Here, we review
the setup and quote some of the results we will use.

First, we recall some definitions and set the notation. For a positive weight w = w(z), we
denote by C,, the Banach space of continuous functions f : R — R such that the norm

|/ ()]

Cyp = SUP ——=
Iflle. = sup 22
is finite. Given ¢ € R, we set py = (x)¢, where () = V4 + 22, and let

X= (] Cy,
£>1/2

equipped with the Fréchet space topology induced by the family of norms {|| - ||CP1/2+1/k treen. This
space is denoted by &)/ in [13]. The space & is separable and hence a Polish space.

The equation (1.3) is well-posed in XV, as was proved in [13, Theorem 1.1]. In particular, there
is a random solution map ¥ : XV — C([0,00); XN) for the equation (1.3). The map V¥ is almost
surely continuous with respect to the locally uniform topology on C([0, 00); X™). It was also shown
n [13] that (1.3) has a comparison principle ([13, Proposition 3.1]), and if the difference of two
components of a solution to (1.3) is in L'(R) at ¢t = 0, then its L*(R) norm is non-increasing in
time ([13, Proposition 3.2]).

As we have mentioned, it is shown in [13] that for any given set of means ay,...,ay, there is a
unique extremal space-translation-invariant and (1.3)-invariant measure vg, . 4, on X N such that
if v.=(v1,...,UN) ~ Vay. ay, then Ev;(z) = a; and Ev;(z)? < oo for all x € R. Here, “extremal”

means that the measure cannot be written as a nontrivial convex combination of measures with
the same properties.

In deriving properties of the shock solutions, it will be convenient to state some necessary
properties of the “bottom” and “top” spatially-stationary solutions in a nonprobabilistic way. We
encode these properties in the function space

xX
ApT = {(UB,’UT) € &% : vg<wvrand lim [vr —vBl(y)dy = j:oo} ) (2.1)
r—F00 0
as previously defined in (1.4). The conditions in (2.1) are necessary so that the change of vari-
ables (1.9) is invertible.

The next two lemmas in this section are technical in nature. Lemma 2.1 shows that XpT is a
Polish space, so we can apply standard probabilistic tools such as Prokhorov’s theorem and the
Skorokhod representation theorem. Lemma 2.2 shows that the dynamics (1.3) preserves AT, so
we can think of solutions to (1.3) as Markov processes on Apr.

Lemma 2.1. The space Xt is a Polish space.

Proof. We can write

{(v,vr) € X% : v <wr} = ﬂ {(vB,vr) € X% : wvp(x) < vrp(x) for all z € [~L, L]}
LeN



and

xT

{(UB,UT) cx? : lim [vr —vBl(y)dy = ioo}

r—+oo 0

— ﬂ ( U {(’UB,UT)EX2 : i/OiL[UT—vB](y)dy>M}).

MeN \ Le(0,00)

Therefore, Xgr is a countable intersection of open subsets of X2, or in other words a Gy subset
of the Polish space X2. By Alexandrov’s theorem (see e.g. [34, Theorem 2.2.1]) a G subset of a
Polish space is again a Polish space. O

Lemma 2.2. Ifu € C([0,00); X2tN) solves (1.3) with initial condition u(0,-) € Xpt x XV, then
with probability 1 we have, for all t > 0, that u(t,-) € Agp x &N,

Proof. Let us write u = (upt,t) = ((up,ur), ). The comparison principle ([13, Theorem 3.1])
implies that, with probability 1, we have up(t,z) < ur(t,x) for all ¢ > 0 and all x € R. Thus it
remains to prove that, with probability 1, we have for all ¢ > 0 that

T

lim [ur — up](t,y) dy = +o0. (2.2)

r—+00 0

We will prove that + case of (2.2); the — case is analogous. The proof proceeds in a similar manner
to that of [13, Proposition 3.3]. Fix £ > 1/2 and define

()= geR,
and let y be a smooth positive function so that X‘(—oq—l] =0 and X\[Om) = 1. For § > 0 we set

G(r) =C(0x)  and  ws(z) = x(2)¢s(2).

Then we have

% R[UT —up|(t, x)ws(z) de = % /R[(‘)Q%(UT —up) — 9y (ud — uB)|(t, z)ws(z) dz
1

=5 /R(UT —up)(t, )W (z) + (ur + up)(t, z)wj(z)] do (2.3)

using integration by parts. The boundary terms at infinity vanish due to the at most polynomial
growth of up(t, z) and ur(t, ) as |x| — oo ([13, Theorem 1.2, property (P4)]) and the superpolyno-
mial decay of (5 at infinity. Now, as in [13, (3.12)—(3.13)], there is a constant C' < oo (independent
of 9) so that

CY(2)] < C8%Cs(x)  and  pe(2)|¢f(a)] < C6' " ¢s(x)  forallz € R.
Therefore, we have

|wi (z)| < C8%ws(x) and pe(x)|wh(z)] < O ws(x) for all x > 0,
and moreover (making C' larger if necessary)

|w§ ()], pe()|wh(z)] < C for all z € [-1,0].



Using these bounds in (2.3), we have

’% /R[UT — ug)(t, v)ws(z) dz

< /OO(UT —up) (t, 2)[|ws ()] + 2l[usr(t, ) e, Pe() |wh(2)[] dz
0

=2
0
+ C/ (ur — u)(t, z)[1 + [[upr(t,)[lc,, ] dz
-1
< C(6° + |Jupr(t, ‘)Hcpﬁl_g)/o (ur — uB)(t, x)ws(x) dz + C(|[upr(t,-)llc,, )%, (2.4)

where we have allowed the constant C' to change from line to line. Now by the well-posedness
proved in [13, Theorem 1.1], for any 7" > 0 we have

sup [lupr(t, )¢, < oo (2.5)
te[0,T

almost surely. By the assumption that ugr(0,-) € A, we have

lim [ [ur — up](0, x)ws(x) dx — oco. (2.6)
510 g
Combining (2.4), (2.5), (2.6), and Gronwall’s inequality, we see that
li - =
m R[UT ugl(t, z)ws(x) dz = oo,
which implies that

xT

lim [ur — up](t,y) dy = oc. O

T—00
0

3 The change of variables and the explicit shock profiles

In this section we describe the change of variables (1.9) leading to the equation (1.11), and show
how this leads to the explcit shock profiles (1.8).

3.1 The change of variables

To understand the change of variables (1.9), the first step is to understand the shock position b,
in terms of the solution to the KPZ equation (1.22). Given a triple v = (vp,vp,v) € Xt X X,
let u = (up, ur,u) € C([0,00); X3) solve (1.3) with initial condition u(0,-) = v. By Lemma 2.2, we
have with probability 1 that

u(t, ) € Xt x X (31)

for all t > 0. In addition, for a given b € R, let h!") = (hg], hlll:], hlY) solve the KPZ equation (1.22)
with initial condition

h"(0,z) = / u(0,y) dy.
b
We emphasize that h’(t, ) is not equal to fbx u(t,y) dy, even though

d.h"(t, z) = u(t, z) for all t > 0 and x € R. (3.2)

10



Indeed, we have

hl (¢, 2) = h(t, ) + /b ’ u(t,y) dy, (3.3)

and hl’(¢,b) is not zero in general. Now we define

Zi¥l(@) = [ lor = vl dy = 508~ l0.2), (3.4
and ]
Zyalvl(@) = Sk = (¢, ). (3.5)

Later on, we will use the notation Zy[v] and Zj;[v] when v € Xpr x AN for some N > 0; the
extension is obvious because these quantities only depend on the first two components of v. Observe
that Zyo[v](z) = Zp[v](x) and that for any ¥’ € R we have using (3.3) that

Zoaf¥)(@) = Zua¥) + 5 [ lur — unlt,) . (3.6)

By (3.1) and (2.1), Z+[v](x) is an invertible function of x for each fixed b and t. For the rest of
this section we will fix v and u as above, and write Z,; = Zp¢[V].

Lemma 3.1. Fiz b, € R, and for t > 0, define by = Zz;tl(C). Then (bt)e>0 is the unique solution
to the ordinary differential equation (1.7) with initial condition by = Zy[v]~*().

Proof. We compute

0= 0 (Z4( 237 (©))) = O Zo)(Z571(0) + 0 Zo) (257 (0)) - 02771 (<).

The fact that (up,ur)(t, ) € Xt means that 0,2 (x) # 0 for all z € R, so we can compute

ur —u - u2 u2
zd0 =~ (52 ) iy = - (ML ) 00
_ % (0, (log(ur — up)) + up + ur) (t, Z;7(O)), (3.7)

sot i Zy L(C) satisfies (1.7) for any fixed b and ¢. The vector field on the right side of (3.7) is locally
Lipschitz, so the uniqueness comes from the basic theory of ordinary differential equations. O

Note that the initial condition by does not determine b and ( uniquely. However, if we fix

some ¢ € R, then b is determined uniquely by bg. In particular, if ( = 0 then b = bg. Alternatively,

if we fix b, which determines h]@ and h[Tb], then the choice of by is equivalent to the choice of (, as

Low b
(= §[h'[1‘] — hig)(0, bo),
and then the solution (b;);>0 to (1.7) with initial condition by is determined by the condition that
Lo b
¢ = 3lhr = hg'l(t. ).

This gives a very simple geometric interpretation of b; in terms of the graphs of h}@ (t,-) and h[Tb} (t,-).
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With this notation introduced, we see that the change of variables (1.9) becomes

2u — ur — UB

¢ = Zpy (), U= py— (3.8)
The inverse change of variables is
_ 1
x = Zbo’lt(g), u= —[(ur —up)U + up + up|. (3.9)

2
A convenient way to carry out this change of variables is to first define the corresponding KPZ
object

1 1 _
Qe ) = () = Sa) — Zal) (1, 2,100, (3.10)
and then put
20 —ur —u _
UM, ¢) = 0.QMI (1. ) = (B ) (1,25, <)) (3.11)
In (3.11) we used the fact that
_ 1 2
0cZyy () = = - (3.12)

(02 Z0.4)(Zy 1 (Q))  (ur — uB)(t, Zyy 4(C))

by (3.2).
Having carried out the change of variables, we now show that U] solves the PDE (1.11).

Proposition 3.2. We have

2 (1,¢) = 2o (7(¢) (U™ (1,0) — (P (1, ) +1)) (3.13)

where
JPN(C) = (ur — up)?(t, Z, 4 (0).

Proof. We start by computing a PDE for Q[*]. Using (3.2) and (3.7), we can differentiate (3.10)
to obtain
1 1 1 1 1
b _ 2 2 2 —1
2Q™I(t,¢) = 3 <8w <U U — §UB> —ut+gup §UB> (t, Zy, 4(C))
1 1 1

5 (0= 2ur = S ) (@uliomtun — ) — (s + ) ) (1, Z4())

On the other hand, we can differentiate the second equality in (3.11) (using (3.12) again) to get
Q™€)

(3.14)

4 1 1 1 1
= m <am <U - §UT - §UB) - <U - §UT - §UB> 9z (log(ur — UB))) (t, Zz;)}t(o)
(3.15)
Recognizing the two terms in brackets in (3.15) in (3.14), we see that
2@ (1,C) = S (ur — s (¢, Z3, () - 22QM(t,0)
+ % <%u2T + %uzB —u? <u - %UT — %UB) (up + uT)> (t, Zl;)}t(C))
= < um — u)(1, 2 () - B2QM(, )+ 5 (wr — ) — up)) (1, Z3,4(€))
= Slur —un)?( 24,0 - [2@Me.¢) - (0@, 0))" +1). (3.10)
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Differentiating (3.16) in ¢ and recalling (3.11), we get
1 _ 2
OU™(1,0) = 50 ((ur —un Z4(0) - U™, ¢) - (UM(,0))"+1] ).
which is (3.13). m

3.2 The shock profiles

We now describe the explicit shock profiles introduced in (1.8). It is clear from (3.13) that, for
any v € R, the deterministic profile

Uy(t,¢) = —tanh(¢ — 7/2)

is a solution to (3.13). Applying the change of variables (3.9), we see that if we define

w0 (¢, 2) = %[_(UT — up)(t, ) tanh(Zy, +(z) — v/2) + (up + ur)(t, )]

eZbg.t(2)=7/2 e~ Zbo.t(@)+7/2
g eZbO’t(m)_ﬁ//2 + e_ZbOvt(x)""Y/Q uB(ty x) + eZbO’t(m)_ﬁ//2 + e_ZbO7t(x)+Py/2 uT(tax)
1 1
B 1+ 67_2Zb0,t(x) uB (t, 33) * 1+ ezzbo,t(x)—'Y ’LLT(t, 33‘), (317)
then (up, ur,ul) solves (1.3).
We note (recalling the definitions (1.6) and (3.4)) that
FyqlvB, vr)(x) = va(2) + vr() (3.18)

T 14 er2Zosrl(@) ] 4 e2Zb[vsvr)(@)—y

Using (3.6) with b = by and b' = b, and noting by Lemma 3.1 (with { = 0) that Z,;(b;) = 0, we
have

1 x
Zoga(&) = Zna0)+ 5 | fur = usl(t.) dy
13

1

= 5 [ o = sl )y = Za (o, )1 ).

Substituting this into (3.17) and using (3.18), we get

up(t, ) ur(t, )

[b077] t f— — —
B (t,2) 1 4 7= 2Zp,[(upur)(t))(x) 1 4 o270, [(us,ur)(t)](2)—y

= L Al(un, ur)(t,)](2). (3.19)

Let us record the L!(R) distances between two of these explicit shock profiles.

Proposition 3.3. If vgr = (vp,vr) € AT, then

|-Zbo 1 [VBT] = Fbov VBT L1 (R) = ’/R (Fror[VBT] = Fho v [VBT])| = |7 = |- (3.20)

Proof. 1t is clear from the definition (1.6) that ., [veT]| and %, ,/[veT] are ordered, hence the
first equality. For the second equality, we note that the change of variables (3.8) (with ¢ = 0) can
be written as

U(t’ C) = u(tv7b[VBT]_1(C))ag‘?b[VBT]_l(C) _ uB + ur

uT — UuB

(t, Zolver] (),
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hence the integral in (3.20) becomes
| 1= tanh(¢ = 7/2) - (= tanh(¢ ~ /2|46 =7~ 7. 0
Proposition 3.4. The map R? x Xt > ((b,7), (vB,vr)) = S [vB, v1] € X is continuous.

Proof. Suppose that (b("),v("),vg"),v(Tn)) — (b,y,vB,vr) in R? x Ar. It is clear that

T 4 [0, 0] = S, v1]

uniformly on compact subsets of R. We note that, for each £ > 1/2, we have
|F00 0 10, 05 e, < masc{llog” ey, 05 ey, )

SO (yb(n)ﬁ(n) [v](gn),vr(fn)])n is bounded in each Cp,, £ > 1/2. Therefore,

Fpn) () oy, o8] = F lvs, vr]

in the topology of each Cp,, £ > 1/2, and hence in the topology of X' O

4 Bottom and top solutions in the shock location reference frame

In this section we consider what happens when we look at the bottom and top solutions ug and uy
in the reference frame of the shock location b;. We first compute the translation formula

Ty y VB, UT] = Fppy Ty (vB, vT)],

which is easily checked from the definition (1.6). Therefore, we can translate (3.19) in space to see
that (with notation as in that expression)

Tho—by (UB, ur, u[bo,“{])(t’ ) = (Tbo—bt (qu ’LLT)(t, ')7 eyb(),’y [Tb()—bt (uB7 UT)(tv )])

We note that the right side depends only on by, v, and 7p,—p, (uB,ur)(t,-). In other words, the
shock ult0] is a deterministic and time-independent functional of the top and bottom solutions in
the reference frame of the shock location. Thus, in this section we study just the translated top
and botom solutions, i.e. Tp,—p, (uB, uT)(t, ). The main results of this section concern the invariant
measure in this reference frame and its stability.

First we must define the evolution semigroup in the reference frame of the shock. Given an
initial condition v = (vpr, V) € Xt x XY, with some N > 0, let

u= (uBT,ﬁ) = \I/(V) S C([0,00);XBT X XN)

solve (1.3) with u(0,-) = v. As in [13], we define, for F' € C, (AT x XN) (a bounded continuous
function on Xpt x XN),
BF(v) =EF(u(t,-)),

so that {P;}¢>0 is the Markov semigroup for the dynamics (1.3) in the original reference frame.
Next let {b;}+>0 solve (1.7) with initial condition by = b, set

ol (v)(t,) = m_p,u(t, ) € C([0,00); Xpp x XN),
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and put, again for F' € Cp(Apr x &N),
P (v) = EF (0P (v)(¢,-).

It is easily checked that {pt[b]}tzo has the semigroup property. It is the evolution semigroup in

the reference frame of the shock. Moreover, {]%[b]}tzo has the Feller property (which was checked
for {P,}4>0 in [13, Theorem 1.1]). We endow the space C([0, 00); Xgr x A) with the topology of
uniform convergence (in the Xt x XY norm) on compact subsets of [0, o).

Proposition 4.1. The map ® : Xpp x X — C([0,00); Xt x XN) is continuous (with respect to
the just-defined topology on the target). Moreover, the semigroup {]%[b]}tzo has the Feller property:
if F € Cp(ApT x &N), then If’t[b}F € Cp(ApT x &) as well.

We will prove Proposition 4.1 at the end of this section.
The first main result of this section concerns the invariance of the tilted measures introduced
in the statement of Theorem 1.1.

Proposition 4.2. Let v and DY) be as in the statement of Theorem 1.1. Then

ol (xgr) =1 (4.1)
and R
(PIhy=pltl = pltl, (4.2)

The second main result concerns the stability of the tilted measures ﬁgg,aT defined after the
statement of Theorem 1.1.

Proposition 4.3. Let ap < at. Let 045, be the measure on Xpt with a single atom at the
constant function (ag,ar). Then for any b € R, we have

hm (pt[b])*éaB,aT — ])[b]

t—00 aB,aT
weakly with respect to the topology of XgT.

The key ingredient in the proofs of Proposition 4.2 and 4.3 is Proposition 4.4 below, which
describes how a translation-invariant measure evolves under ]%[b]. This will allow us to tilt the
invariant measures constructed in [13] to obtain invariant measures in the reference frame of the
shocks. We use the notation from [13] that Pr(XpT x XV) is the space of translation-invariant
probability measures on Xt x XV, (The subscript R denotes invariance under the action of R on
the line by translations.) If u € Pg(AXpr) and (wp,wr) ~ p, then (as noted in the statement of
Theorem 1.1) the quantity

N
Blwp, wt] = Lh—I};oE/O [wr — wp](z) dz

exists almost surely by the Birkhoff-Khinchin theorem.

Proposition 4.4. Let N > 0. Let uy € Pr(Xpr x XN). For each t > 0, define another measure

ﬂl[tb} on Xt x XN, absolutely continuous with respect to y; = P} g, by

wT(b) — wB(b)
B[wB, ’LUT] ’

((wB7wT)7w) = (43)
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Then ﬂ,[f’] s a probability measure and

SO\ % ~[b ~[b
Py ) = pi. (4.4)

[b]

Moreover, for anyt >0, if v ~ [Ltb , then for any deterministic ( € R, we have

law

<>

T-Zfw oV = V- (4.5)

Proof. First we check that ,&,[fb] is a probability measure. Let Z be the translation-invariant sub-o-
algebra of the Borel o-algebra on At x X N Then by the Birkhoff-Khinchin theorem, Blwg, wr]
is Z-measurable and in fact

B[wB,wT] = E[wT(b) - wB(b) | I] > 0.

It follows that

wr(b) — wp(b)
Blwg, wr]

E

:E[E

i o

SO ﬂl[tb} is a probability measure as claimed.

Let v(t,-) ~ Al[fb] for all ¢ > 0; we will not use any coupling between V(t,-) and V(s,-) for ¢ # s.
Consider a function F' € L®(Xpt x XN). To prove (4.4), we need to show that

EF(v(t,-)) = EPP R0, ). (4.6)

Let u € C([0,00); gt x XN) solve (1.3) with initial condition u(0,-) ~ pg (independent of the
noise). We abbreviate Zy,; = Z;;[u(0,-)]. We will show that both the left and right sides of (4.6)
are equal to

M
e % /0 R GRURILS
We first show that
1 M
BR(() = Jin_ 37 [ BP0 it ). (4.7)

The crux of the argument is the simple identity

1 L 9 (2 (L+D)
17 /0 F(t_gu(t,-))[ur — up](t,b+ z)dr = = /Z " F(7,_g-10yu(t, ) dS, (4.8)

which comes from making the change of variables
2
=7, b dz = d¢. 4.9
x b,t (() ) €T [UT . UB](t, b i x) < ( )

By the Birkhoff-Khinchin theorem, we have the limit

L

Jim. % [ Pt e — up](tb+ ) de = B{F(u(t, ) ur — ugl(t.8) | 7] (4.10)

almost surely. Also by the Birkhoff-Khinchin theorem (recalling (3.6)), we have

lim Zys (L +b) — Zy4(b)
L—oo L

= 2 Bl(up,ur)(t, ) (111)
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almost surely. Combining (4.8)-(4.11), we have

1 ZualL40) _ E[F(u(t,)[ur — up)(t,b) | 7]
/Zb,t(b) F(Tb_Zl:tl(OU(t’ )) d< B B[(UB, UT)(tv )]

i
150 Zy (L + b) — Zy4(b)

almost surely. Since Llim Zpt(L +b) = oo almost surely by (3.6) and (3.1), and F' is bounded, this
—00

means that

1 E[F(u(t,-))[ur — us](t,b) | Z]

M
Py, /0 Fy g1 ult))de = Bl(us, ur) ()] (412)

almost surely. Since F' is bounded and Bl(up,ur)(t, )] is Z-measurable, taking the expectation
in (4.12) and using the bounded convergence theorem we deduce that

(u(t,-))[ur — us](t,b)
B(us, ur)(t, )] ’

1M F
fim 57 | BP( o gut)]aC = E|

which implies (4.7) because u(t,-) ~ .
The next step is to show that, for any s > 0, we have

Db b 1 M
EPPIF(P(0,) = lim — /0 E[F(7y_z-1 (s, )] dC. (4.13)

M—o0

For a random variable y € R, measurable with respect to u(0,-), let ul’ solve (1.3) with initial
condition ul¥(0,-) = 7,u(0,-). We can compute
PIF (r,u(0,)) = E[F (Ty—7, ,[ru(0, -2 )1 (5, ) | u(0, )]
= E[F(Ty—(2, . [ryu(0,))-1(0)—5) =1 ¥ (5,)) | u(0,)]
ElF(r,_z-1 (uls:) [u(0,-)]. (4.14)

b—y,s

The first equality above is by the definition of 13!)} and the second is a tautology. The third
holds because by the translation-invariance of the noise, (Zy¢[7,u(0,-)]71(0) — y, 7,ul(s,-)) and

(Zb__l%s(O), u(s,-)) have the same conditional law given u(0,-).

Now apply (4.7) with ¢ =0 and F in that equation taken to be ]ADS[b]F. This gives

. . ) 1 M
BIPPF@O.)] = Jim 57 [ EPYFG_ o u(0.9)4¢

M—o0
1 M
= lim —/ EF(r,_,— u(s,-))d¢, (4.15)
M—o0 0 b ZZ;&(C),S(O)

where in the second equality we used (4.14) with y = b — Z, J(¢). Now we can compute

1/ 027001 122 1 1 [Z0(©)
ZZ’l(g‘),s(x) _ 1 (hT RACY hy, 5,0 > (s,z) = 3 (hr[llj} _ h][é’]) (s,x) — 5/5 [ur — up](0,y) dy

= Zys(x) — (= Zp5(b) + Zp[u(s,)|(z) — ¢
(4.16)
In the second equality we used the fact that the identity

1/ 0251 12,2 1 1 [Z0(©)
S (hT b0l _p o ) (s,z) = 3 (h[Tb} — h][é’]) (s,x) — §/b [ur — up](0,y) dy
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for all x € R holds at s = 0 and thus for all s > 0 as well. In the third equality of (4.16) we
used (3.6). It follows from (4.16) that

2y 2730, F) = Zoluls, N7+ ¢ = Zos())- (4.17)

Substituting (4.17) (with x = 0) into (4.15), we get

. A ) 1 M
E[PIF((0.))] = lim 7 / EF (Tb Zalua(s,))(2)(C— 20,5 (6 25> 7)) A

M—o00
M- st
= e M / ay T o)
=EF(v ( 7'))7

where the last equality is again by (4.7), this time with ¢ = s. This completes the proof of (4.13).
As indicated above, (4.7) and (4.13) together imply (4.6).

The proof of (4.5) is similar but easier. Without loss of generality, assume that ¢ = 0. Let
w = (wp,wr, W) ~ po and W ~ ,u[ | For y € Xpr x XN put By ((y) = F(1y_7,y1-1)Y)- By (4.7),
applied at ¢ = 0, we have

EF(1,_z,-10W) = EFp (W)

N /
= lim M/() E[Fbvﬁ(Tb—?b[er(C)w)] dC

M—o0

o1 :
= lim M\/O E[F(Tb_?b[‘rbiib[w]fl(C/)W}71(C)Tb_2b[w}7l(cl)w)] dC (418)

M—o0

For any y € R, we have

Zylryw] T (C) = Zpy W] 1) +y
almost surely, which means that (taking y = b — 7;1[w](§’ )

2l 7 iy (€)= Dty W1 (€ + 0= 2 WI(C),

SO

b— 7b[Tb—7b[W}*1(C/)W]_1(C) = Zb_l[w](cl) - ngl[w}(gr)[w]_l(g) = Zb [W](gl) - 7b[w]_1(< + 4/)7

where the second equality can be seen either by (4.17) with s =0, ( = ¢/, u(0,:) = w, and k = ¢
or by a simple direct argument. Substituting this into (4.18) we obtain

X N ,
EF( ZywoW) = i 37 /0 B (7,_z, -1 (c+¢y ™)) 46
. 1 [M+¢ / R
= a7 /C (7,7, w)-1(c) W) 4" = EF (W),
with the last equality again by (4.7). O

Now we can prove Propositions 4.2 and 4.3.
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Proof of Proposition 4.2. The Birkhoff-Khinchin theorem, along with the assumed ordering of the
components of a function distributed according to v, implies that v(Apr) = 1. Then, since ol s
absolutely continuous with respect to v, we have (4.1). Then (4.2) holds by Proposition 4.4 applied
with pu; = v for all ¢, since v is an invariant measure for (1.3). O

Proof of Proposition 4.3. We note that ( At[b})*éanaT is ergodic with respect to the group R of spatial

translations due to the spatial ergodicity of the driving noise V. Therefore, by Proposition 4.4 and
the Birkhoff-Khinchin theorem, (ﬁlt[b])*5
Radon—-Nikodym derivative

ap.ay 15 absolutely continuous with respect to P dgp qp With

NN
A (P By ) wr(b) — wp(b)
(wp, wr) = 22O = wn()
AP 3up ) ar — ap

A

For any I’ € LOO(X2)7 if ﬁ[b} (t7') ~ (Pt[b})*éaB,aT and u(ta ) = (UB,UT)(t,’) ~ Pt*(saB,aTy then we
have by the definitions that

EF(al(t,.) = E [F(u(t, ) (“T(t’ b) — up(t, b)ﬂ . (4.19)

at — ap

By the L? bound proved as [13, Lemma 5.3], there is a constant C' < oo so that, for all ¢ > 0, we

have )
ar — as

This means that the term inside the expectation on the right side of (4.19) is uniformly integrable.
Since P}up.qr converges to gy qp (weakly with respect to the topology of X?) by the stability
result [13, Theorem 1.3], we have

tim F(al(1,)) = Jim B [Pt ) (DD g [y (20 =m0

t—o0 t—o00 aT — ap aT — ap

where v = (v, vT) ~ Vag.ap and ¥ ~ ﬁc[gﬂT. Hence, (I:’t[b})*éaBﬂT converges weakly to ﬁL@,aT with
respect to the topology of X2.

It remains to show that in fact (ﬁt[b})*éaB,aT converges weakly to ﬁLﬂ,aT with respect to the
topology of Xpr. If F'is a bounded Lipschitz function on XpT, then F' is in particular uniformly
continuous, so it can be extended to a bounded continuous function on the closure of Xpt in X2,
and hence by the Tietze extension theorem to a bounded continuous function on X2. Then the
argument of the previous paragraph applies, and by the portmanteau lemma this completes the
proof. O

Proof of the Feller property

Now we prove the Feller property Proposition 4.1.

Proof of Proposition 4.1. We recall that by [13, Theorem 1.1], the solution map ¥ : Xpt x XN —
C([0,00); Xpt x &XN) is continuous with probability 1, if the target space is given the topology of
uniform convergence on compact subsets of [0,00). Thus, to show that ® is continuous it suffices
to show that the map At 2 v — (Z54[v]71(0))i>0 € C([0,00)) is continuous with probability 1,
where C(]0, 00)) is similarly given the topology of uniform convergence on compact sets. This could
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be proved using the ODE (1.7), but we will instead argue using the KPZ equation and the formulas
of the previous section.

Let v € Xp7 and let u € C([0,00); Xpr) solve (1.3) with initial condition u(0,-) = v. Observe
that, if (hp, hr) solves (1.22) with initial condition

(hs, ) (0, ) = /b " (o8, 01) () dy,
so that

Zual¥)(@) = 5lhr = bul(t.2) = Zuavl(6) + 5 [ lur = wnlt.n) (120)

then Z,[v] satisfies the ODE

8th,t[V](b) = %83 [hT - hB](t7 b) - %81‘ [hT - hB](t7 b) O [hT + hB](tv b)

1 1
= 5896(’[1/1* — UB)(t, b) — §(UT — UB)(t, b) . (UT + UB)(t, b) (4.21)
Fix a smooth, compactly supported function ¢ on R such that [ ¢ =1 and define

Qulv] = /R Zns[V)(@)p(x — b) da. (4.22)

Integrating (4.21) in time and against ¢(- — b) in space, and integrating by parts, we obtain

— % /0 /R(UT —u)(s,z)[—¢ (x — b) — (ur + us)(s,v)p(xr — b)]drds. (4.23)

On the other hand, using (4.20) in (4.22) we can also write
= [ (th[ ®)+ 5 [ lur —unlt. ) dy) ol - b do
= Zp4|v // ur — up)(t,y)p(z — b) dy dz. (4.24)

Combining (4.23) and (4.24) gives
Zp v / / ur —ug)(s,x)[—¢' (x — b) — (ur + up)(s,x)p(x — b)] dz ds

5 [ e - wsle ot~ )y,

By this and [13, Theorem 1.1], the map v + (Z,+[v](b))s>0 is almost-surely continuous.
Now we can write, by (4.20), that

Zyo[V]7H(0) = ZyJu(t, )] 7 (= Zoa[v] (D).

By Lemma A.1 and [13, Theorem 1.1], this implies that v ~ (Z+[v]7}(0))t>0 is almost-surely
continuous. Therefore, ® is almost-surely continuous. Now if F € C,(Xpr x &V) and v, — v
in Apr x XY then

B (v,) = EF(®(v,)(t,)) = EF@(W)(t,-)) = B P(v)

by the bounded convergence theorem. This proves that pt[b} is Feller. O
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5 Uniqueness of the stationary shock profiles

In this section we show that shock profiles of the form (1.8) are the only “stationary” shock profiles
that satisfy a certain integrability condition. We define this integrability condition through the

space

0 00
XSh:{(’UB,UT,v)EXBTXX : / ‘UT—U‘-F/ ‘U—UB’<OO},
—00 0

(5.1)

as previously given in (1.5). This is a space of viscous shock fronts. As in the previous sections, vp
and vt are the “bottom” and “top” solutions, respectively, while v is a viscous shock. Note that

for any (v, vr) € At and b,v € R, we have .7, ,[vg, vT]| € Xsp.
Next, we need a way to track the location of a moving shock. We define

b 00
Xsnpy = {(UB,UT,U) € Xsp - / [v —vr] +/ [v—vp] = 7}'
—00 b

Observe that (recalling the definition (2.1)), for any (vp,vr,v) € Xgp, the map
I(c) :/ [v—vT]+/ [v — vB]

lim I(c) = Foo.

c—+oo

Therefore, for each fixed b € R, we have

Xsh = |_| Xsh by
vER

is decreasing and, moreover,

and for each fixed v € R, we have

Xsp = |_| Xsh,bys
beR

where | | denotes disjoint union.
We now show that the shocks (1.8) lie in the corresponding Xgy -

Lemma 5.1. We have (vB, vr, % [vB,v1]) € Xsnpy for any (v,vr) € AT and any b,y € R.

Proof. By (3.18) and the change of variables

— 1

¢ = Zplvp, vr](x), d¢ = E[UT — vp](z)dz,

(similar to (1.9)), we have
b up(x) —vr(2)
oo 1 + e7—2Zplvp,v1](2)

/ " (Sl or] — o) () d = /

—00 —

0
1 _
Similarly, we have
o0 *  wp(z) —vp(x) /°° 1
- dz = 2 dz=2[ ——— —log(l+e").
\/b (yb,’}/ [UB7 UT] UB)(Z’) x A 1 + e2Zb[UvaT}(I)—“/ T 0 1 + eQC_»Y dC Og( + € )
(5.3)
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Adding (5.2) and (5.3) yields
b [e'e)
/ (Fbylv,vr] — vr)(2) doe + / (FbylvB,vr] — vB)(2) do = v,
oo b
completing the proof. O
The following simple lemma gives an alternative characterization of Xgy, 4 .

Lemma 5.2. We have the equivalence

(’UB,UT,’U) S XSh,b,«/ — U — ybn[vg,vT] S Ll(R) and /I‘&(’U — yb,«/[UBfUT]) =0. (54)

Proof. If (vB,vr,v) € Agnp and (v, vT,0) € Xsnyp 5, then

/_Z[U—ﬁ](y)dy:/_I;O[U—UT]+/_I;O[UT—1~)]+/I)OO[U—UB]—I—/I)OO[UB—f)]:’7—’7. (5.5)

Combining (5.5) and Lemma 5.1 yields the “ = ” direction of (5.4).
On the other hand, if v —.%} ,[vg, vr] € LY(R), then (vg, vT,v) € Xsy since %, [vp, vr] € Xsh.
Thus the “ <= " direction of (5.4) follows immediately from the second equality in (5.5). O

The next lemma shows that for an arbitrary shock, the shock location follows the location b;.

Lemma 5.3. Suppose that u = (up,ur,u) € C([0,00); Xgr X X) is a solution to (1.3) such
that u(0,-) € Xsnpy, and let (by)i>0 solve with (1.7) with initial condition by = b. Then, with
probability 1, for allt >0, we have u(t,-) € Xspp, -

Proof. Define
uexplicit(ta x) = ybtp/[(uBy UT)(t7 )](Z’),

0 (uB, UT, U, Uexplicit) S0lves (1.3) by (3.19). Now by the mass conservation of the Burgers dynamics
([13, Proposition 3.3]) we have

0= /I‘%(Uexpicit(oa ‘T) - u(07 ‘T)) dz = /R(uexplicit(ta ‘T) - u(t7 (/E)) dz
- /R (Fhunl(um,ur) (2, )](@) — u(t, 7)) da

Thus Lemma 5.2 implies that u(t,-) € Agp gy, for all t > 0. O

Definition 5.4. Let pu be a probability measure on Xg, and b € R. We say that u is the law of a
stationary shock profile with respect to b if (ﬁt[b])* = .

An immediate consequence of (3.19) and Proposition 4.2 is that if ag < ar, b € R, and

(vB,vr) ~ ﬁggﬂT (as defined in (1.13)), then for any v € R, (vB,vr, % [vB,vr]) has the law of a
stationary shock profile with respect to b. We can also prove a partial converse of this property.

Proposition 5.5. If v = (vp,vr,v) has the law of a stationary shock profile with respect to b, then
there is a random v € R so that v = 7, ,[vg, vr| almost surely.
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Proof. Let v be such that v € Xgp,, and u = (uB, UT, U, Uexplicit) Solve (1.3) with initial condition
u(0,-) = (v, Zby[v, vr]).
Then, in particular, if (bt)¢>0 solves (1.7) with initial condition by = b, then

Uexplicit (¢, T) = S, 4 [(us, wr)(t, )] (2)

by (3.19). By the mass conservation of the Burgers equation ([13, Proposition 3.3]) we also know
that

/(u — Uexplicit) (£, ) dz =0 (5.6)
R

for all ¢ > 0. Since (vp,vT,v) is a stationary shock profile, it follows that

d d
0= & /I\Q ‘T—btu(ta ) - T—btuexplicit(ty )’ = & /]R ‘u(t7 ) - uexplicit(ta )‘

This allows us to use the ordering result proved in [13, Proposition 3.9] (using hypothesis (H2’)
there) which then implies that u and uexplicit must be ordered almost surely. In light of (5.6), this
means that v = .7 ,[vB, vr] almost surely, as claimed. O

6 Stability of the viscous shocks

In this section we study the stability of the viscous shocks (1.8) and prove Theorem 1.2. The
proof follows a strategy, based on ordering and L' contraction, similar to [13]. We begin with a
time-averaged result.

Proposition 6.1. Fiz real numbers ag < ar and v, < yr. Let (up,ur,u) € C([0,00); XpT X &)
solve (1.3) with initial conditions satisfying uy(0,-) = ay for Y € {B,T}. Let b,y € R be such that
(aB,ar,u(0,)) € Xsnpy, and let (by)i>0 solve (1.7) with initial condition by = b. Further asume
that for all x € R, we have

L los,ar](x) < u(0,x) < A4, las, ar)(x). (6.1)

If (wp,wr) ~ ﬁL‘ﬂ,aT, then we have

T+1

Tlgn LaW(Tb_bt (UB, ur, u)(t, )) = Law(wB, wr, yb,'y [wB, ’LUT])
0 J1

weakly with respect to the topology of Xt X X.
Proof. Let us define y¢ = v for simplicity of notation later on. Consider the joint families
u = (up,ur,u) € C([0,00); XpT X X)

and
u= (uexplicitau) = ((UB,UT,UL,UC,UR),U) € C([ano);XBT X X4)

solving (1.3) with initial conditions

ux(0,-) = Fpyx [UB, V7]
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for X € {L,C,R}. We note that
To-b U (t,-) = Fox [To-b, (uB, ur) (2, )] (6.2)
for X € {L,C,R}. Also, the comparison principle and (6.1) imply that
ur(t,z) <u(t,z) < ug(t,x), forallt >0and z € R

and
ur(t,x) <uc(t,z) < ugr(t,z), for all t > 0 and z € R.

In addition, by Lemmas 5.2 and 5.3, we have

/ fu — uc](t, 2) dz = 0. (6.3)
R
Therefore, we have, for X € {L,R}, that

I7o—b, [ — ux](t, )| L1 r) = ‘/R[u —ux](t,z)dx /R[uc — ux](t, -)‘ = |y — x|,

with the second equality by (6.3) and the third by Proposition 3.3.

We claim that the family {7,_p u(t,-)}¢>1 is tight in At x X. Indeed, by Proposition 4.3,
the family {7y_p, (up,uT)(t, ) }+>0 converges in law with respect to the topology of Xpt as t — oo,
so in particular by Prokhorov’s theorem (which applies since Xt is a Polish space as proved in
Lemma 2.1) this family is tight in Xgp. By the comparison principle ([13, Proposition 3.1] we have

up(t,z) < wu(t,x) < wup(t,x)

for all t > 0 and z € R, so the family {7,_p,u(t,-)}+>0 is uniformly bounded in probability in X'
Then [13, Proposition 2.2] this implies that {7,_p,u(t, -) }+>1 is tight in X'. Therefore, {r,_p,u(t, ) }i>1
is tight in the topology of Xpt x X4.

Now let T} T 0o be a sequence so that

1 Tht1
= lim —/ Law(7p_p,u(t,-)) dt
k—o0 Tk 1

exists in the sense of weak convergence of probability measures on Agr. Consider
W = (W, WT, WL, WC, WR) ~ [,

and W = (wp, wt,w). By (6.2) and Proposition 3.4, we have wx = %}, - [wg,wr]| for X € {L,C,R}
almost surely. By the Skorokhod representation theorem, Fatou’s lemma, and the L'(R) contraction
property of the Burgers equation as stated in [13, Proposition 3.2], we therefore have

|w —wellprry < [[(w—uc)(0,)]|L1 @) < o0 (6.4)
almost surely. Similarly, for X € {L, R}, we have
= wx ) < 1= w0, er ey = v = (65)

almost surely. We see from (6.4) that (wp,wr,w) € Xgp almost surely. Moreover, the Krylov—
Bogolyubov theorem (see e.g. [10, Theorem 3.1.1]) tells us that

(ﬁt[b})* Law(w) = Law (W) for any ¢ > 0.
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Therefore, w is a stationary shock profile in the sense of Definition 5.4. By Proposition 5.5, there
is a random 7 € R so that w € %}, 5[wp, wr] with probability 1. This means that [w —wx||L1(®) =
|vx — 4| for X € {L,R}. Combined with (6.5), this means that 4 = v almost surely. This uniquely
identifies p. Since the topology of weak convergence of probability measures is metrizable, we

therefore have

1 T+1
hm.ii/ Law(ry_p,fi(t, ) dt = 1
1

weakly with respect to the topology of Xgr x X, as claimed. O

The next proposition shows the almost sure L' (IR) convergence of the solution to an initial value
problem to a viscous shock arising from a corresponding shift of (up,ur).

Proposition 6.2. With the same notation and assumptions as Proposition 6.1, we have
Jim [ 7y—p,u(t, <) = Loy [Tob, (up, wr) ()]l L1 @) = 0
almost surely.

To prove Proposition 6.2, we first prove the following lemma.

Lemma 6.3. Suppose that (v, vr,v), (vB,vr,0) € Xsn and, for some b € R and v1, < ygr we have

Fon B, v1)(2) < v(2) < Fop [UB, V1) (), (6.6)
S lvB, vr](z) < 0(2) < Fpap [UB, v7](T) (6.7)

for all x € R. Then there is a constant C < oo, depending only on 1, and yr, so that for all L > 0
and all ¢ > 1/2 we have

o= ey < 200 + L)l — ok, + O (Zalmrl0h) o Thlwenlrid)  (65)
Proof. For each L > 0, we have

v =70l = llv=0llpp-rpsr) + v = Dl @®\p-L.b+1)) (6.9)
and
lo = Bll 1 (p—r 4.2y < 20181 + L) o = Dlicy, - (6.10)
Using (6.6)—(6.7) and arguing as in Proposition 3.3, we have
b—L b—L
[ o= t@lde < [ hon, 01)(0) = Sy on, 1) 2] do

—00 —00

Zp[vs,vr](b—L)
— / [— tanh(¢ — yr) + tanh (¢ — yr)] d¢

—00

S CeZEb[UBﬂ)T}(b_L)’ (611)

with a constant C' depending only on 7, and vg. Similarly,

!ALm—ﬂ@WM§C€ﬁWWﬂHU (6.12)
+
Using (6.10)(6.12) in (6.9) yields (6.8). 0
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Now we can prove Proposition 6.2.
Proof of Proposition 6.2. We set Zy; = Zp+[(us, ur)(0, )] and consider

W = (’LUB,’LUT) ~ ﬁc[zl;;];,aT'

By the Birkhoff ergodic theorem, [13, Theorem 1.2, property (P5)], and the fact that ﬁggﬂT is
absolutely continuous with respect to vgy o, We have

b+L
Ll—i}iloo I /b [wr — wp](z) dz = £(atr — aB)

almost surely, and in particular in probability. Hence, given € > 0, there is an L. < oo so
that L > L. then

_ 1 — 1
P (Zb[w](b 1) >~ (ar —an)L or Zylwl(b+ L) < o (ar - aB)L) << )

In addition, we can choose L. so large that for all L > L. we have
2Ce~(@r—am)l < ¢ /9 (6.14)

with C' as in Lemma 6.3. By Proposition 6.2, we can find a T, < oo so large that if T" > T,
and St ~ Uniform([1,T + 1]) is independent of everything else, then (using in addition (6.13))

Zp[To-bs,, (up, u)(St,-)](b = L) > —g(aT —ag)

P . < % (6.15)
or Zb[Tb—bsT (UB, ’LLT)(ST, )](b + L) < §(aT — CLB)
and (using in addition Proposition 3.4)
g g
P <H7'b_bST’LL(ST, ) — yb,’y[Tb—bsT (’LLB,UT)(ST, )] oy > m) < 3 (6.16)

Then we can compute, using (6.8),

HTb—bSTU(ST, ) = FLon[To-bg, (uB, ur) (ST, ‘)]‘ @)

< 2Jbl + L) |71, w(St, ) = o [mobs, (wp, ur) (S, )]

Cpy
+ Cexp {27b[Tb—bsT (up,ur) (ST, )] (b — L)}
+ Cexp {~2Z[m s, (us, ur)(S7, )] (b + L) } . (6.17)

Using (6.14)—(6.16) in (6.17), we get

F (HTb—bsTu(ST, ) = Fon[To-bg, (uB, ur) (ST, ‘)]‘

> E) < e,
L'(R)

SO
HTb_bSTu(ST, ) — yb,‘Y[Tb—bsT (UB, UT)(ST, )]HLl(R) — 0 in probability as T — oo. (618)

On the other hand, by the L! contractivity property (proved as [13, Proposition 3.2]), with proba-
bility 1 the norm
[7o—b,u(t; -) = Fby[To—p, (uB, wr) (¢, )]l L1 (m)

is decreasing in ¢t. Together with (6.18) this means in fact this norm goes to zero almost surely. [
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Now we can remove the random time St in the statement of Proposition 6.1, proving Theo-
rem 1.2.

Proof of Theorem 1.2. First we note that by Proposition 6.2 for each i € {1,...,N} we have
(setting b= b, b, = bgi), and v = 0)
0= lim |70 _yoult,) = S0 070y (us, ur) ()l ey
= Hm {u(t,) = 7_y6 400 0lTy0 g0 (uBs ur) (8 ) 1wy
= tim [lu(t,") = Fo o[(us, ur)(t, )L @),
which is (1.20).

Let u = (uy,...,un), u = (up,ur, ), with notation as in the statement of the theorem. The
assumption (1.18) means that (ap, ar,u;(0,-)) € Xgy, p) o- We set Zy = Zya) 4[ap, ar] and b = b,

by = bgl). By the same argument as in the proof of tightness in Proposition 6.1, we see that
{mp—p,u(t, ) }+>1 is tight in the topology of AT X XN Suppose that we have a sequence tj 1 0o
and a limiting random variable w = (wg, wr, wy, ..., wy) € At x XV so that

Tb—btku(tka ) — W
in law in the topology of Xt x XY. By Proposition 4.3, we have

Law(wg, wr) = D (6.19)

ap,atT”
Therefore, using Proposition 3.4, we have

!
Toby,, Wi (ks ) — Sy 0[To—br, (uB, uT)(2, )] ﬁ w; — Sy pti) _pn) [WB, W]

with respect to the topology of X. On the other hand, Proposition 6.2 implies that, with probability
1, foreach 1 <i< N

i (17t ) — Sy [, ( wr) () 2 gy = 0.

Combined, the last two displays show that w; = yb(l)b(i)_b(l) [wp, wr] almost surely. Since the

topology of weak convergence of probability measures with respect to the topology of Xgr x XN
is metrizable, this, (6.19), and Proposition 3.4 imply (1.19). O

A A technical lemma

Lemma A.1l. Let Y be a metric space and let (¢ — F,) : YV — CL.(R) be continuous and such
that Oy[Fy(z)] > 0 for all ¢ € Y and all x € R. Let G : Y — R be continuous. Then the map
Yoqg— Fq_l(G(q)) € R is continuous.

Proof. Let ¢ € Y and let € > 0. There is a k > 0 so that

inf Fl(z) > k. (A.1)
z: la—Fy Y (G(g))|<2e

Since Fq_1 oG : Y — R is continuous, there is a 6 > 0 so that if dy(q,§) < J, then



and
sup |Fg(x) — Fy(x)| < ke/2. (A.3)
z : |z—Fy 1(G(g)|<2e

Now if dy(q,q) < & then |[F,1(G(§)) +& — F; {(G(q))| < 2, so
F3(FH(G(@) +2) = G(9)
= Fy(F; 1 (G(@) +€) — Fy(FyH(G(Q)) + &) + Fy(FH(G() +¢) — Fy(FH(G(3)))
> —Ke/2 + ke = Ke/2
by (A.1) and (A.3). This means that
FHG(@) + e > FfHG(Q) + re/2) > Ff HG(Q))
Similarly, we have

F7HG(©G) — € < FHG(@Q@)),

q

so in fact we have

[FyH(G@) = Ff (G(@)] < e (A.4)

q
Combining (A.2) and (A.4), we obtain

|Fy 1 (Gla) — F (G@)] < 1FH(G(a) = FyHG@)] + [FHG(@) - B HG@)] < 2e.

This completes the proof. O
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