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Abstract

We define a notion of a viscous shock solution of the stochastic Burgers equation that con-
nects “top” and “bottom” spatially stationary solutions of the same equation. Such shocks
generally travel in space, but we show that they admit time-invariant measures when viewed in
their own reference frames. Under such a measure, the viscous shock is a deterministic function
of the bottom and top solutions and the shock location. However, the measure of the bottom
and top solutions must be tilted to account for the change of reference frame. We also show
a convergence result to these stationary shock solutions from solutions initially connecting two
constants, as time goes to infinity.

1 Introduction

We consider the one-dimensional stochastic Burgers equation, forced by the gradient of a Gaussian
noise that is smooth in space and white in time:

du(t, x) =
1

2
[∂2

xu(t, x) − ∂x(u2)(t, x)]dt + d(∂xV )(t, x), t, x ∈ R. (1.1)

Here, V = ρ ∗ W , where W is a cylindrical Wiener process on L2(R) whose covariance kernel is the
identity, so the Itô time differential dW is a white noise on R × R, and ρ ∈ C∞(R) ∩ H1(R). We
use ∗ to denote spatial convolution. A detailed construction of the solutions to (1.1) in a weighted
space X of continuous functions that grow at most as |x|1/2+ at infinity an be found in [13]. We
recall the precise result and the definition of this space in Section 2.

Spacetime-stationary solutions to the stochastic Burgers equation on the whole real line have
been studied extensively in the recent years. With apologies for the clumsiness, we will refer to
the single-time laws of such spacetime-stationary solutions as “space-translation-invariant invariant
measures.” Kick-type random forcing in (1.1) was considered in [1, 2, 4], and the white in time
setting, as in the present paper, was treated in [13]. We also refer to these papers for references to
the extensive literature on the torus case x ∈ R/Z.

For the unforced Burgers equation (V ≡ 0 in (1.1)), spacetime-stationary solutions are simply
constants. In addition, the unforced problem also admits traveling wave solutions, known as viscous
shocks, that are perhaps of a more direct interest in applications than constant solutions. They
have the explicit form

u(t, x) = −a tanh(a(x − bt − c)) + b =
b − a

1 + e−2a(x−bt−c)
+

b + a

1 + e2a(x−bt−c)
(1.2)

∗Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY

10012 USA, alexander.dunlap@cims.nyu.edu
†Department of Mathematics, Stanford University, Stanford, CA 94305 USA, ryzhik@stanford.edu

1





The space of viscous shocks is then

XSh =

{

(uB, uT, u) ∈ XBT × X :

ˆ 0

−∞
|uT − u| +

ˆ ∞

0
|u − uB| < ∞

}

. (1.5)

If (uB, uT, u) ∈ XSh, then we say that u is a shock connecting uT on the left to uB on the right.
We note that (1.4)–(1.5) give an “L1” notion of a shock, which is convenient because of the nice L1

properties of the stochastic Burgers dynamics (described in [13, Section 3]).
Given a pair (uB, uT) ∈ XBT of bottom and top solutions to (1.1), one can construct a semi-

explicit shock solution to this equation in terms of uB and uT, generalizing (1.2), so that the
triple (uB, uT, u) lies in XSh, as follows. If vB(x) < vT(x) for all x ∈ R, and b, γ ∈ R, define

Sb,γ [vB, vT](x) =
vB(x)

1 + exp{γ −
´ x

b [vT − vB](y) dy} +
vT(x)

1 + exp{−γ +
´ x

b [vT − vB](y) dy} . (1.6)

Let (uB, uT) be a solution to (1.3) with N = 2 such that uB(t, x) < uT(t, x) for all t and x, and bt

be the solution to the non-autonomous ordinary differential equation

∂tbt =
1

2
(−∂x(log(uT − uB)) + uB + uT)(t, bt). (1.7)

If we set
u(t, x) = Sbt,γ [(uB, uT)(t, ·)] (1.8)

for some fixed γ ∈ R, then it turns out that (uB, uT, u) solves (1.3) with N = 3. This is a general fact
true for any pair of ordered solutions uB and uT of (1.3). We will refer to bt as the “shock position.”
A more useful interpretation of bt, in terms of the KPZ equation, is presented in Lemma 3.1 in
Section 3. We postpone it until then as it requires some additional notions.

If (uB, uT)(t, ·) ∈ XBT (for which it suffices that this holds at t = 0, as shown in Lemma 2.2
below), and u(t, x) is given by (1.8), then for x − bt ≫ 1 we have u ≈ uB, while for x − bt ≪ −1
we have u ≈ uT. This is a direct way to see that (1.8) defines a connection between uT on the left
and uB on the right. The width of the transition region around bt depends on the size of uT − uB

near bt: the closer uT and uB get near bt, the wider the shock region. We will see this reflected in
the tilt of the invariant measure in Theorem 1.1 below.

The system (1.7)–(1.8) involves the random noise V only through uB and uT: conditional on
the top and bottom solutions, the shock position and profile are completely determined by (1.7)
and (1.8), respectively. The expression (1.8) is a direct generalization of (1.2). Indeed, if uB ≡ b−a
and uT = b+a, with some b ∈ R and a > 0, then for any b0 ∈ R, bt = bt+b0 solves (1.7). Then (1.8)
reduces to (1.2), with c = b0 − γ/2.

Motivated by (1.8) and continuing to assume the ordering of uB and uT, we can make a change
of variables

ζ =
1

2

ˆ x

bt

[uT − uB](t, x) dx, U =
2u − uB − uT

uT − uB
. (1.9)

Under this change of variables, (1.8) becomes the deterministic and time-independent profile

U(t, ζ) = − tanh ζ, (1.10)

which is the same as (1.2) in the deterministic case. As we will see, under the same change of
variables, the stochastic Burgers equation (1.1) takes the strikingly simple form

∂tU(t, ζ) =
1

8
∂ζ

(

(uT − uB)2 · (∂ζU − U2 + 1)
)

(t, ζ), (1.11)
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to which (1.10) is a solution.
The above computations did not use any statistical properties of uB and uT. Of particular

interest to us is the case when (uB, uT) is a spacetime-stationary solution to (1.3) as constructed
in [13, Theorem 1.2]. Assume that uB(t, x) < uT(t, x) for all t and x almost surely. In the
deterministic case, the viscous shock profile is stationary in the reference frame that moves with
the constant speed b of the shock. In the random case, the triple (uB, uT, u) is not expected to be
stationary in time, despite the time-stationarity of the difference uT − uB driving (1.11), because
the shock location bt need not be stationary. It is natural to expect that (uB, uT, u) would at least
be time-stationary in a reference frame moving along with bt: that is, that the randomly shifted
triple τb0−bt(uB, uT, u) would be time-stationary. Here, τ is the spatial translation defined by

τxf(y) = f(y − x). (1.12)

This is not quite right either, because bt is not independent of (uB, uT). We need to tilt the invariant
measure to account for this dependence, as described in the following theorem.

Theorem 1.1. Let ν be a space-translation-invariant invariant measure for the dynamics (1.3)
with N = 2, such that if (vB, vT) ∼ ν, then EvB(x)2,EvT(x)2 < ∞ and vB(x) < vT(x) for all x ∈ R

almost surely. Fix b ∈ R and define the measure ν̂ [b], absolutely continuous with respect to ν, with
Radon–Nikodym derivative

dν̂ [b]

dν
(vB, vT) =

(vT − vB)(b)

lim
L→∞

1
L

´ L
0 [vT − vB](x) dx

. (1.13)

Fix γ ∈ R and let (uB, uT, u) solve (1.3) with initial condition (uB, uT) ∼ ν̂ [b], independent of the
noise, and

u(0, x) = Sb,γ [(uB, uT)(0, ·)].
Let bt solve (1.7) with b0 = b. Then for all t ≥ 0 we have

Law(τb−bt(uB, uT, u)(t, ·)) = Law((uB, uT, u)(0, ·)). (1.14)

Note that the limit in the denominator in (1.13) exists ν-almost surely by the Birkhoff–Khinchin
theorem.

According to [13, Theorem 1.2], any space-translation-invariant invariant measure for (1.3)
having bounded second moment can be decomposed into a mixture of extremal such measures, which
are classified by their means. As in [13], we use the notation νaB,aT

for the extremal measure with

mean (aB, aT), and we write ν̂
[b]
aB,aT for the tilt of this measure defined by (1.13). If (vB, vT) ∼ νaB,aT

,
then [13, Theorem 1.2, property (P5)] and the Birkhoff-Khinchin theorem imply that

lim
L→∞

1

L

ˆ L

0
[vT − vB](x) dx = aT − aB,

so in that case the change of measure formula (1.13) has the simpler form

dν̂
[b]
aB,aT

dνaB,aT

(vB, vT) =
(vT − vB)(b)

aT − aB
. (1.15)

Note that (1.14) includes the statement that Law(τb−bt(uB, uT)(t, ·)) = Law((uB, uT)(0, ·)). In
fact, this statement contains most of the content of (1.14) once the semi-explicit nature of the shock
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profiles is understood as in the discussion following (1.6). Nonetheless, the change of measure (1.13)
can be more easily understood in the context of the shocks. (A more direct computational reason
for the tilt can be found in Lemma 3.1 below, and in particular, in expression (3.12).) The tilt
(1.13) is a type of size-biasing (or “mass-biasing”), arising from the mass conservation of both the
Burgers dynamics and the change of variables (1.9). The Burgers dynamics (1.3) has the form
of a conservation law and so preserves the integrals of differences between solutions (as is proven
formally in [13, Proposition 3.3]). As we show in Proposition 3.3, we have

ˆ

R

(Sb,γ [vB, vT] − Sb,γ′ [vB, vT]) = γ − γ′ (1.16)

for any b, γ, γ′ ∈ R and (vB, vT) in an appropriate function space. This is why γ remains fixed in
the evolution (1.8) and is thus a convenient way to parametrize the shocks. Consider the entire
ensemble of shocks (Sbt,γ [(uB, uT)(t, ·)])γ∈R evolving together between upper and lower solutions uB

and uT. Now consider γ, γ′ ∈ R with |γ−γ′| ≪ 1, and let b
(γ′)
t be a solution to (1.7) (with a different

initial condition than bt) such that

Sbt,γ′ [(uB, uT)(t, ·)] = S
b

(γ′)
t ,γ

[(uB, uT)(t, ·)]. (1.17)

It follows from (1.16) and (1.17) that

γ − γ′ =

ˆ

(Sbt,γ [(uB, uT)(t, ·)] − S
b

(γ′)
t ,γ

[(uB, uT)(t, ·)]) ∼ (bt − b
(γ′)
t ) · (uT − uB)(t, bt)

is independent of t, and we must have

bt − b
(γ′)
t ∼ γ − γ′

(uT − uB)(t, bt)
.

This means that in an interval of size ε ≪ 1 around bt, we may expect to find b
(γ′)
t for

|γ′ − γ| . ε(uT − uB)(t, bt),

hence the change of measure (1.13).
One may ask about the uniqueness of the stationary shock profile measures given by (1.13). This

question is not entirely well-posed because one must specify the reference frame in which we require
stationarity. We give a uniqueness statement for the shock in Proposition 5.5 if the reference frame
is assumed to be given by a shock location {bt}t≥0 satisfying (1.7). The more intrinsic definition
of bt in Section 3 indicates that this choice of the reference frame is quite natural but further work
is needed to understand uniqueness without fixing a particular reference frame.

Stationary shock behavior has been extensively studied for asymmetric simple exclusion pro-
cesses, which are discrete microscopic models for Burgers-type dynamics. Similar phenomenology
occurs there: a shock moves randomly through space, but in the reference frame of the shock itself,
there is a stationary measure for the particle system [12, 14, 15]. We refer to the book [25] for more
discussion and references.

Stability of the random shocks

We now turn to the stability of the shocks (1.8). The study of the stability of the shocks (1.2) in
the deterministic case has a long history. Without any attempt at completeness, we mention in
particular the works [16, 17, 18, 19, 20, 21, 22, 24, 28, 29, 30, 31, 32] and the books [11, 33]. In a
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similar spirit to our problem is [35], which shows convergence to shock waves when the equation
is deterministic but the initial condition is random. As the Burgers equation is nonlinear, these
issues are closely related.

In the present stochastic setting, we show that if the initial condition is sandwiched between
two hyperbolic tangent functions (translated and scaled appropriately), with the same limits at
infinity, then an intermediate solution, shifted appropriately, converges to a shock of the form (1.8).
Actually, we show a somewhat stronger statement, that if we consider a finite collection of such
solutions, then they converge jointly to a family of such shocks. In the following theorem, as above,
X denotes the Fréchet space of continuous functions on R growing more slowly at infinity than
(1 + |x|)ℓ for all ℓ > 1/2, equipped with the corresponding family of weighted seminorms specified
in Section 2.

Theorem 1.2. Fix real constants aB < aT and γL < γR. Let (uB, uT, u1, . . . , uN) ∈ C([0, ∞); X 2+N )
solve (1.3) with initial conditions uB(0, ·) ≡ aB, uT(0, ·) ≡ aT, and for all x ∈ R and i = 1, . . . , N ,

S0,γL
[aB, aT](x) ≤ ui(0, x) ≤ S0,γR

[aB, aT](x).

For each i = 1, . . . , N , let b(i) be the unique b so that

ˆ b

−∞
[uT − ui](0, x) dx =

ˆ ∞

b
[ui − uB](0, x) dx, (1.18)

and let b
(i)
t solve (1.7) with initial condition b

(i)
0 = b(i). Let (vB, vT) ∼ ν̂

[b(1)]
aB,aT (defined after Theo-

rem 1.1) and for i = 1, . . . , N , put

vi = Sb(1),b(i)−b(1) [vB, vT]

and v = (vB, vT, v1, . . . , vN). Then we have

Law(τ
b(1)−b

(1)
t

(uB, uT, u1, . . . , uN )(t, ·)) → Law v (1.19)

weakly with respect to the topology of X 2+N . Also, with probability 1 we have

lim
t→∞

‖ui(t, ·) − S
b

(i)
t ,0

[(uB, uT)(t, ·)]‖L1(R) = 0. (1.20)

We recall that, as far as the stability of uB and uT themselves is concerned, it was shown
in [13, Theorem 1.3] that if u ∈ C([0, ∞); X N ) solves (1.3) with initial condition that is a decaying
perturbation of a spatially-periodic state u(0, ·), then Law(u(t, ·)) converges to νa1,...,aN

weakly
with respect to the topology of X N as t → ∞. Even stronger results are available for the stability
of the spacetime-stationary solutions for the kick forcing of the Burgers equation considered in
[4]. Theorem 1.2, however, only considers the case when the top and bottom solutions are initially
constant in space.

An interpretation of the shocks in terms of the Cole–Hopf transform

The Burgers viscous shocks can be interpreted in terms of the Cole–Hopf transform [6, 8, 18]. Recall
that if φ solves the multiplicative stochastic heat equation (SHE)

dφ =
1

2
∂2

xφ − φdV, (1.21)
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then h = − log φ solves the KPZ equation [23]

dh =
1

2
[∂2

xh − (∂xh)2 + ‖ρ‖2
L2(R)]dt + dV, (1.22)

and u = ∂xh = −(∂xφ)/φ solves the stochastic Burgers equation (1.1). Of course, this transform
can be extended to the system of equations (1.3). The multiplicative SHE (1.21) has the obvious
advantage of being linear, but for our purposes both (1.21) and (1.22) have the disadvantage that
they do not admit spacetime-stationary solutions. Spacetime-stationary solutions only arise when
the derivative is taken to form u, which destroys the growing zero-frequency mode of h.

Nonetheless, the stable viscous shock solutions (1.8) have a simple interpretation in terms of
solutions to the SHE (1.21). Indeed, if for X ∈ {B, T}, we have uX = −(∂xφX)/φX, and φX

solves (1.21), then by linearity φB + φT solves (1.21) as well, so that

u = −∂x(φB + φT)

φB + φT
=

uB

1 + φT/φB
+

uT

1 + φB/φT

solves (1.1). Noting that

(φT/φB)(t, x) = (φT/φB)(t, 0) exp

{

−
ˆ x

0
[uT − uB](t, y) dy

}

,

we recover an expression of the form (1.8) by appropriate choices of γ and bt.
Another, even more explicit, perspective considers the KPZ equation in relation to the change

of variables (1.9). As we show in Lemma 3.1, solutions to (1.7) are given by inverting (as a function
from R → R) half the difference between two solutions to (1.22), started at the corresponding
integrals of the initial conditions for uB and uT. Therefore, the integral appearing in the change
of variables (1.9) is exactly half the difference of two solutions to (1.22). In addition, as shown in
Lemma 3.1, the definition of the shock location bt is more naturally given in terms of the solution
to (1.22) than directly in terms of the Burgers equation itself.

Estimating the scale of fluctuations of bt is thus a question about the growth of the difference
between two solutions to (1.22). Long-time statistics for solutions to (1.22) are in general difficult to
estimate, especially in non-integrable cases such as ours where exact calculations are not available.
See [5, 7, 9, 27, 26] and their references for some results for integrable models, and [3] for more
background and conjectures in this direction. We do not address the question of estimating bt in
the present paper, reserving it for future work.

Organization of the paper We begin by introducing the relevant function spaces and recalling
the necessary setup and results from [13] in Section 2. We discuss the change of variables (1.9), the
resulting PDE (1.11), and the explicit shock solutions (1.8) in Section 3. We derive the change of
measure (1.13) and prove Theorem 1.1 in Section 4. In Section 5, we discuss more general shock
profiles and give a partial characterization of a certain notion of stationary shock profile (assuming
some nontrivial integrability conditions). Finally, we prove our stability result Theorem 1.2 in
Section 6. A technical lemma is relegated to Appendix A.

Acknowledgments We thank Erik Bates, Ivan Corwin, and Cole Graham for interesting discus-
sions. This work was supported by NSF grants DGE-1147470, DMS-1613603, DMS-1910023, and
DMS-2002118, BSF grant 2014302, and ONR grant N00014-17-1-2145.
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2 Function spaces and spacetime-stationary solutions

Because the viscous shock solutions to (1.1) are so intimately tied to the spacetime-stationary
solutions they connect, we rely on the framework and many ingredients from [13]. Here, we review
the setup and quote some of the results we will use.

First, we recall some definitions and set the notation. For a positive weight w = w(x), we
denote by Cw the Banach space of continuous functions f : R → R such that the norm

‖f‖Cw = sup
x∈R

|f(x)|
w(x)

is finite. Given ℓ ∈ R, we set pℓ = 〈x〉ℓ, where 〈x〉 =
√

4 + x2, and let

X =
⋂

ℓ>1/2

Cpℓ
,

equipped with the Fréchet space topology induced by the family of norms {‖ · ‖Cp1/2+1/k
}k∈N. This

space is denoted by X1/2 in [13]. The space X is separable and hence a Polish space.

The equation (1.3) is well-posed in X N , as was proved in [13, Theorem 1.1]. In particular, there
is a random solution map Ψ : X N → C([0, ∞); X N ) for the equation (1.3). The map Ψ is almost
surely continuous with respect to the locally uniform topology on C([0, ∞); X N ). It was also shown
in [13] that (1.3) has a comparison principle ([13, Proposition 3.1]), and if the difference of two
components of a solution to (1.3) is in L1(R) at t = 0, then its L1(R) norm is non-increasing in
time ([13, Proposition 3.2]).

As we have mentioned, it is shown in [13] that for any given set of means a1, . . . , aN , there is a
unique extremal space-translation-invariant and (1.3)-invariant measure νa1,...,aN

on X N such that
if v = (v1, . . . , vN ) ∼ νa1,...,aN

, then Evi(x) = ai and Evi(x)2 < ∞ for all x ∈ R. Here, “extremal”
means that the measure cannot be written as a nontrivial convex combination of measures with
the same properties.

In deriving properties of the shock solutions, it will be convenient to state some necessary
properties of the “bottom” and “top” spatially-stationary solutions in a nonprobabilistic way. We
encode these properties in the function space

XBT =

{

(vB, vT) ∈ X 2 : vB < vT and lim
x→±∞

ˆ x

0
[vT − vB](y) dy = ±∞

}

, (2.1)

as previously defined in (1.4). The conditions in (2.1) are necessary so that the change of vari-
ables (1.9) is invertible.

The next two lemmas in this section are technical in nature. Lemma 2.1 shows that XBT is a
Polish space, so we can apply standard probabilistic tools such as Prokhorov’s theorem and the
Skorokhod representation theorem. Lemma 2.2 shows that the dynamics (1.3) preserves XBT, so
we can think of solutions to (1.3) as Markov processes on XBT.

Lemma 2.1. The space XBT is a Polish space.

Proof. We can write

{(vB, vT) ∈ X 2 : vB < vT} =
⋂

L∈N

{(vB, vT) ∈ X 2 : vB(x) < vT(x) for all x ∈ [−L, L]}
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and
{

(vB, vT) ∈ X 2 : lim
x→±∞

ˆ x

0
[vT − vB](y) dy = ±∞

}

=
⋂

M∈N





⋃

L∈(0,∞)

{

(vB, vT) ∈ X 2 : ±
ˆ ±L

0
[vT − vB](y) dy > M

}



 .

Therefore, XBT is a countable intersection of open subsets of X 2, or in other words a Gδ subset
of the Polish space X 2. By Alexandrov’s theorem (see e.g. [34, Theorem 2.2.1]) a Gδ subset of a
Polish space is again a Polish space.

Lemma 2.2. If u ∈ C([0, ∞); X 2+N ) solves (1.3) with initial condition u(0, ·) ∈ XBT × X N , then
with probability 1 we have, for all t ≥ 0, that u(t, ·) ∈ XBT × X N .

Proof. Let us write u = (uBT, ũ) = ((uB, uT), ũ). The comparison principle ([13, Theorem 3.1])
implies that, with probability 1, we have uB(t, x) < uT(t, x) for all t ≥ 0 and all x ∈ R. Thus it
remains to prove that, with probability 1, we have for all t ≥ 0 that

lim
x→±∞

ˆ x

0
[uT − uB](t, y) dy = ±∞. (2.2)

We will prove that + case of (2.2); the − case is analogous. The proof proceeds in a similar manner
to that of [13, Proposition 3.3]. Fix ℓ > 1/2 and define

ζ(x) = e21−ℓ−〈x〉1−ℓ
, x ∈ R,

and let χ be a smooth positive function so that χ|(−∞,−1] ≡ 0 and χ|[0,∞) ≡ 1. For δ > 0 we set

ζδ(x) = ζ(δx) and ωδ(x) = χ(x)ζδ(x).

Then we have

d

dt

ˆ

R

[uT − uB](t, x)ωδ(x) dx =
1

2

ˆ

R

[∂2
x(uT − uB) − ∂x(u2

T − u2
B)](t, x)ωδ(x) dx

=
1

2

ˆ

R

(uT − uB)(t, x)[ω′′
δ (x) + (uT + uB)(t, x)ω′

δ(x)] dx (2.3)

using integration by parts. The boundary terms at infinity vanish due to the at most polynomial
growth of uB(t, x) and uT(t, x) as |x| → ∞ ([13, Theorem 1.2, property (P4)]) and the superpolyno-
mial decay of ζδ at infinity. Now, as in [13, (3.12)–(3.13)], there is a constant C < ∞ (independent
of δ) so that

|ζ ′′
δ (x)| ≤ Cδ2ζδ(x) and pℓ(x)|ζ ′

δ(x)| ≤ Cδ1−ℓζδ(x) for all x ∈ R.

Therefore, we have

|ω′′
δ (x)| ≤ Cδ2ωδ(x) and pℓ(x)|ω′

δ(x)| ≤ Cδ1−ℓωδ(x) for all x ≥ 0,

and moreover (making C larger if necessary)

|ω′′
δ (x)|, pℓ(x)|ω′

δ(x)| ≤ C for all x ∈ [−1, 0].
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Using these bounds in (2.3), we have

∣

∣

∣

∣

d

dt

ˆ

R

[uT − uB](t, x)ωδ(x) dx

∣

∣

∣

∣

≤ 1

2

ˆ ∞

0
(uT − uB)(t, x)[|ω′′

δ (x)| + 2‖uBT(t, ·)‖Cpℓ
pℓ(x)|ω′

δ(x)|] dx

+ C

ˆ 0

−1
(uT − uB)(t, x)[1 + ‖uBT(t, ·)‖Cpℓ

] dx

≤ C(δ2 + ‖uBT(t, ·)‖Cpℓ
δ1−ℓ)

ˆ ∞

0
(uT − uB)(t, x)ωδ(x) dx + C〈‖uBT(t, ·)‖Cpℓ

〉2, (2.4)

where we have allowed the constant C to change from line to line. Now by the well-posedness
proved in [13, Theorem 1.1], for any T ≥ 0 we have

sup
t∈[0,T ]

‖uBT(t, ·)‖Cpℓ
< ∞ (2.5)

almost surely. By the assumption that uBT(0, ·) ∈ XBT, we have

lim
δ↓0

ˆ

R

[uT − uB](0, x)ωδ(x) dx → ∞. (2.6)

Combining (2.4), (2.5), (2.6), and Grönwall’s inequality, we see that

lim
δ↓0

ˆ

R

[uT − uB](t, x)ωδ(x) dx = ∞,

which implies that

lim
x→∞

ˆ x

0
[uT − uB](t, y) dy = ∞.

3 The change of variables and the explicit shock profiles

In this section we describe the change of variables (1.9) leading to the equation (1.11), and show
how this leads to the explcit shock profiles (1.8).

3.1 The change of variables

To understand the change of variables (1.9), the first step is to understand the shock position bt

in terms of the solution to the KPZ equation (1.22). Given a triple v = (vB, vT, v) ∈ XBT × X ,
let u = (uB, uT, u) ∈ C([0, ∞); X 3) solve (1.3) with initial condition u(0, ·) = v. By Lemma 2.2, we
have with probability 1 that

u(t, ·) ∈ XBT × X (3.1)

for all t ≥ 0. In addition, for a given b ∈ R, let h[b] = (h
[b]
B , h

[b]
T , h[b]) solve the KPZ equation (1.22)

with initial condition

h[b](0, x) =

ˆ x

b
u(0, y) dy.

We emphasize that h[b](t, x) is not equal to
´ x

b u(t, y) dy, even though

∂xh[b](t, x) = u(t, x) for all t ≥ 0 and x ∈ R. (3.2)
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Indeed, we have

h[b](t, x) = h[b](t, b) +

ˆ x

b
u(t, y) dy, (3.3)

and h[b](t, b) is not zero in general. Now we define

Zb[v](x) =
1

2

ˆ x

b
[vT − vB](y) dy =

1

2
[h

[b]
T − h

[b]
B ](0, x), (3.4)

and

Zb,t[v](x) =
1

2
[h

[b]
T − h

[b]
B ](t, x). (3.5)

Later on, we will use the notation Zb[v] and Zb,t[v] when v ∈ XBT × X N for some N ≥ 0; the
extension is obvious because these quantities only depend on the first two components of v. Observe
that Zb,0[v](x) = Zb[v](x) and that for any b′ ∈ R we have using (3.3) that

Zb,t[v](x) = Zb,t[v](b′) +
1

2

ˆ x

b′

[uT − uB](t, y) dy. (3.6)

By (3.1) and (2.1), Zb,t[v](x) is an invertible function of x for each fixed b and t. For the rest of
this section we will fix v and u as above, and write Zb,t = Zb,t[v].

Lemma 3.1. Fix b, ζ ∈ R, and for t ≥ 0, define bt = Z−1
b,t (ζ). Then (bt)t≥0 is the unique solution

to the ordinary differential equation (1.7) with initial condition b0 = Zb[v]−1(ζ).

Proof. We compute

0 = ∂t

(

Zb,t(Z
−1
b,t (ζ))

)

= (∂tZb,t)(Z
−1
b,t (ζ)) + (∂xZb,t)(Z

−1
b,t (ζ)) · ∂t(Z

−1
b,t (ζ).

The fact that (uB, uT)(t, ·) ∈ XBT means that ∂xZb,t(x) 6= 0 for all x ∈ R, so we can compute

∂t(Z
−1
b,t )(ζ) = −

(

∂tZb,t

∂xZb,t

)

(Z−1
b,t (ζ)) = −1

2

(

∂x(uT − uB) − u2
T + u2

B

uT − uB

)

(t, Z−1
b,t (ζ))

=
1

2
(−∂x(log(uT − uB)) + uB + uT) (t, Z−1

b,t (ζ)), (3.7)

so t 7→ Z−1
b,t (ζ) satisfies (1.7) for any fixed b and ζ. The vector field on the right side of (3.7) is locally

Lipschitz, so the uniqueness comes from the basic theory of ordinary differential equations.

Note that the initial condition b0 does not determine b and ζ uniquely. However, if we fix
some ζ ∈ R, then b is determined uniquely by b0. In particular, if ζ = 0 then b = b0. Alternatively,

if we fix b, which determines h
[b]
B and h

[b]
T , then the choice of b0 is equivalent to the choice of ζ, as

ζ =
1

2
[h

[b]
T − h

[b]
B ](0, b0),

and then the solution (bt)t≥0 to (1.7) with initial condition b0 is determined by the condition that

ζ =
1

2
[h

[b]
T − h

[b]
B ](t, bt).

This gives a very simple geometric interpretation of bt in terms of the graphs of h
[b]
B (t, ·) and h

[b]
T (t, ·).
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With this notation introduced, we see that the change of variables (1.9) becomes

ζ = Zb0,t(x), U =
2u − uT − uB

uT − uB
. (3.8)

The inverse change of variables is

x = Z−1
b0,t(ζ), u =

1

2
[(uT − uB)U + uT + uB]. (3.9)

A convenient way to carry out this change of variables is to first define the corresponding KPZ
object

Q[b0](t, ζ) =

(

h[b0] − 1

2
h

[b0]
T − 1

2
h

[b0]
B

)

(t, Z−1
b0,t(ζ)), (3.10)

and then put

U [b0](t, ζ) = ∂ζQ[b0](t, ζ) =

(

2u − uT − uB

uT − uB

)

(t, Z−1
b0,t(ζ)). (3.11)

In (3.11) we used the fact that

∂ζZ−1
b0,t(ζ) =

1

(∂xZb0,t)(Z
−1
b0,t(ζ))

=
2

(uT − uB)(t, Z−1
b0,t(ζ))

(3.12)

by (3.2).
Having carried out the change of variables, we now show that U [b0] solves the PDE (1.11).

Proposition 3.2. We have

∂tU
[b0](t, ζ) =

1

8
∂ζ

(

J [b0](ζ)
(

∂ζU [b0](t, ζ) − (U [b0](t, ζ))2 + 1
))

, (3.13)

where
J [b0](ζ) = (uT − uB)2(t, Z−1

b0,t(ζ)).

Proof. We start by computing a PDE for Q[b0]. Using (3.2) and (3.7), we can differentiate (3.10)
to obtain

∂tQ
[b0](t, ζ) =

1

2

(

∂x

(

u − 1

2
uT − 1

2
uB

)

− u2 +
1

2
u2

T +
1

2
u2

B

)

(t, Z−1
b0,t(ζ))

− 1

2

((

u − 1

2
uT − 1

2
uB

)

· ((∂x(log(uT − uB)) − (uB + uT))

)

(t, Z−1
b0,t(ζ)).

(3.14)

On the other hand, we can differentiate the second equality in (3.11) (using (3.12) again) to get

∂2
ζ Q[b0](t, ζ)

=
4

(uT − uB)2

(

∂x

(

u − 1

2
uT − 1

2
uB

)

−
(

u − 1

2
uT − 1

2
uB

)

∂x(log(uT − uB))

)

(t, Z−1
b0,t(ζ)).

(3.15)

Recognizing the two terms in brackets in (3.15) in (3.14), we see that

∂tQ
[b0](t, ζ) =

1

8
(uT − uB)2(t, Z−1

b0,t(ζ)) · ∂2
ζ Q[b0](t, ζ)

+
1

2

(

1

2
u2

T +
1

2
u2

B − u2 +

(

u − 1

2
uT − 1

2
uB

)

(uB + uT)

)

(t, Z−1
b0,t(ζ))

=
1

8
(uT − uB)2(t, Z−1

b0,t(ζ)) · ∂2
ζ Q[b0](t, ζ) +

1

2
((uT − u)(u − uB))(t, Z−1

b0,t(ζ))

=
1

8
(uT − uB)2(t, Z−1

b0,t(ζ)) ·
[

∂2
ζ Q[b0](t, ζ) −

(

∂ζQ[b0](t, ζ)
)2

+ 1

]

. (3.16)
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Differentiating (3.16) in ζ and recalling (3.11), we get

∂tU
[b0](t, ζ) =

1

8
∂ζ

(

(uT − uB)2(t, Z−1
b0,t(ζ)) ·

[

∂ζU [b0](t, ζ) −
(

U [b0](t, ζ)
)2

+ 1

])

,

which is (3.13).

3.2 The shock profiles

We now describe the explicit shock profiles introduced in (1.8). It is clear from (3.13) that, for
any γ ∈ R, the deterministic profile

Uγ(t, ζ) = − tanh(ζ − γ/2)

is a solution to (3.13). Applying the change of variables (3.9), we see that if we define

u[b0,γ](t, x) =
1

2
[−(uT − uB)(t, x) tanh(Zb0,t(x) − γ/2) + (uB + uT)(t, x)]

=
eZb0,t(x)−γ/2

eZb0,t(x)−γ/2 + e−Zb0,t(x)+γ/2
uB(t, x) +

e−Zb0,t(x)+γ/2

eZb0,t(x)−γ/2 + e−Zb0,t(x)+γ/2
uT(t, x)

=
1

1 + eγ−2Zb0,t(x)
uB(t, x) +

1

1 + e2Zb0,t(x)−γ
uT(t, x), (3.17)

then (uB, uT, u[b0,γ]) solves (1.3).
We note (recalling the definitions (1.6) and (3.4)) that

Sb,γ [vB, vT](x) =
vB(x)

1 + eγ−2Zb[vB,vT](x)
+

vT(x)

1 + e2Zb[vB,vT](x)−γ
. (3.18)

Using (3.6) with b = b0 and b′ = bt, and noting by Lemma 3.1 (with ζ = 0) that Zb0,t(bt) = 0, we
have

Zb0,t(x) = Zb0,t(bt) +
1

2

ˆ x

bt

[uT − uB](t, y) dy

=
1

2

ˆ x

bt

[uT − uB](t, y) dy = Zbt [(uB, uT)(t, ·)](x).

Substituting this into (3.17) and using (3.18), we get

u[b0,γ](t, x) =
uB(t, x)

1 + eγ−2Zbt
[(uB,uT)(t,·)](x)

+
uT(t, x)

1 + e2Zbt
[(uB,uT)(t,·)](x)−γ

= Sbt,γ [(uB, uT)(t, ·)](x). (3.19)

Let us record the L1(R) distances between two of these explicit shock profiles.

Proposition 3.3. If vBT = (vB, vT) ∈ XBT, then

‖Sb0,γ [vBT] − Sb0,γ′ [vBT]‖L1(R) =

∣

∣

∣

∣

ˆ

R

(

Sb0,γ [vBT] − Sb0,γ′ [vBT]
)

∣

∣

∣

∣

= |γ − γ′|. (3.20)

Proof. It is clear from the definition (1.6) that Sb0,γ [vBT] and Sb0,γ′ [vBT] are ordered, hence the
first equality. For the second equality, we note that the change of variables (3.8) (with t = 0) can
be written as

U(t, ζ) = u(t, Zb[vBT]−1(ζ))∂ζZb[vBT]−1(ζ) − uB + uT

uT − uB
(t, Zb[vBT]−1(ζ)),
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hence the integral in (3.20) becomes

ˆ

R

| − tanh(ζ − γ/2) − (− tanh(ζ − γ′/2))| dζ = γ − γ′.

Proposition 3.4. The map R
2 × XBT ∋ ((b, γ), (vB, vT)) 7→ Sb,γ [vB, vT] ∈ X is continuous.

Proof. Suppose that (b(n), γ(n), v
(n)
B , v

(n)
T ) → (b, γ, vB, vT) in R

2 × XBT. It is clear that

Sb(n),γ(n) [v
(n)
B , v

(n)
T ] → Sb,γ [vB, vT]

uniformly on compact subsets of R. We note that, for each ℓ > 1/2, we have

‖Sb(n),γ(n) [v
(n)
B , v

(n)
T ]‖Cpℓ

≤ max{‖v
(n)
B ‖Cpℓ

, ‖v
(n)
T ‖Cpℓ

},

so (Sb(n),γ(n) [v
(n)
B , v

(n)
T ])n is bounded in each Cpℓ

, ℓ > 1/2. Therefore,

Sb(n),γ(n) [v
(n)
B , v

(n)
T ] → Sb,γ [vB, vT]

in the topology of each Cpℓ
, ℓ > 1/2, and hence in the topology of X .

4 Bottom and top solutions in the shock location reference frame

In this section we consider what happens when we look at the bottom and top solutions uB and uT

in the reference frame of the shock location bt. We first compute the translation formula

τySb,γ [vB, vT] = Sb+y,γ [τy(vB, vT)],

which is easily checked from the definition (1.6). Therefore, we can translate (3.19) in space to see
that (with notation as in that expression)

τb0−bt(uB, uT, u[b0,γ])(t, ·) = (τb0−bt(uB, uT)(t, ·), Sb0 ,γ [τb0−bt(uB, uT)(t, ·)]).

We note that the right side depends only on b0, γ, and τb0−bt(uB, uT)(t, ·). In other words, the
shock u[b0,γ] is a deterministic and time-independent functional of the top and bottom solutions in
the reference frame of the shock location. Thus, in this section we study just the translated top
and botom solutions, i.e. τb0−bt(uB, uT)(t, ·). The main results of this section concern the invariant
measure in this reference frame and its stability.

First we must define the evolution semigroup in the reference frame of the shock. Given an
initial condition v = (vBT, ṽ) ∈ XBT × X N , with some N ≥ 0, let

u = (uBT, ũ) = Ψ(v) ∈ C([0, ∞); XBT × X N )

solve (1.3) with u(0, ·) = v. As in [13], we define, for F ∈ Cb(XBT × X N ) (a bounded continuous
function on XBT × X N ),

PtF (v) = EF (u(t, ·)),
so that {Pt}t≥0 is the Markov semigroup for the dynamics (1.3) in the original reference frame.
Next let {bt}t≥0 solve (1.7) with initial condition b0 = b, set

Φ[b](v)(t, ·) = τb−btu(t, ·) ∈ C([0, ∞); XBT × X N ),
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and put, again for F ∈ Cb(XBT × X N ),

P̂
[b]
t F (v) = EF (Φ[b](v)(t, ·)).

It is easily checked that {P̂
[b]
t }t≥0 has the semigroup property. It is the evolution semigroup in

the reference frame of the shock. Moreover, {P̂
[b]
t }t≥0 has the Feller property (which was checked

for {Pt}t≥0 in [13, Theorem 1.1]). We endow the space C([0, ∞); XBT × X N ) with the topology of
uniform convergence (in the XBT × X N norm) on compact subsets of [0, ∞).

Proposition 4.1. The map Φ[b] : XBT × X → C([0, ∞); XBT × X N ) is continuous (with respect to

the just-defined topology on the target). Moreover, the semigroup {P̂
[b]
t }t≥0 has the Feller property:

if F ∈ Cb(XBT × X N ), then P̂
[b]
t F ∈ Cb(XBT × X N ) as well.

We will prove Proposition 4.1 at the end of this section.
The first main result of this section concerns the invariance of the tilted measures introduced

in the statement of Theorem 1.1.

Proposition 4.2. Let ν and ν̂ [b] be as in the statement of Theorem 1.1. Then

ν̂ [b](XBT) = 1 (4.1)

and
(P̂

[b]
t )∗ν̂ [b] = ν̂ [b]. (4.2)

The second main result concerns the stability of the tilted measures ν̂
[b]
aB,aT defined after the

statement of Theorem 1.1.

Proposition 4.3. Let aB < aT. Let δaB,aT
be the measure on XBT with a single atom at the

constant function (aB, aT). Then for any b ∈ R, we have

lim
t→∞

(P̂
[b]
t )∗δaB,aT

= ν̂ [b]
aB,aT

weakly with respect to the topology of XBT.

The key ingredient in the proofs of Proposition 4.2 and 4.3 is Proposition 4.4 below, which

describes how a translation-invariant measure evolves under P̂
[b]
t . This will allow us to tilt the

invariant measures constructed in [13] to obtain invariant measures in the reference frame of the
shocks. We use the notation from [13] that PR(XBT × X N ) is the space of translation-invariant
probability measures on XBT × X N . (The subscript R denotes invariance under the action of R on
the line by translations.) If µ ∈ PR(XBT) and (wB, wT) ∼ µ, then (as noted in the statement of
Theorem 1.1) the quantity

B[wB, wT] := lim
L→∞

1

L

ˆ L

0
[wT − wB](x) dx

exists almost surely by the Birkhoff–Khinchin theorem.

Proposition 4.4. Let N ≥ 0. Let µ0 ∈ PR(XBT × X N ). For each t ≥ 0, define another measure

µ̂
[b]
t on XBT × X N , absolutely continuous with respect to µt := P ∗

t µ0, by

dµ̂
[b]
t

dµt
((wB, wT), w̃) =

wT(b) − wB(b)

B[wB, wT]
. (4.3)
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Then µ̂
[b]
t is a probability measure and

(P̂
[b]
t )∗µ̂

[b]
0 = µ̂

[b]
t . (4.4)

Moreover, for any t ≥ 0, if v̂ ∼ µ̂
[b]
t , then for any deterministic ζ ∈ R, we have

τb−Zb[v̂]−1(ζ)v̂
law
= v̂. (4.5)

Proof. First we check that µ̂
[b]
t is a probability measure. Let I be the translation-invariant sub-σ-

algebra of the Borel σ-algebra on XBT × X N . Then by the Birkhoff-Khinchin theorem, B[wB, wT]
is I-measurable and in fact

B[wB, wT] = E[wT(b) − wB(b) | I] > 0.

It follows that

E

[

wT(b) − wB(b)

B[wB, wT]

]

= E

[

E

[

wT(b) − wB(b)

B[wB, wT]

∣

∣

∣

∣

I
]]

= E

[

E[wT(b) − wB(b) | I]

B[wB, wT]

]

= 1,

so µ̂
[b]
t is a probability measure as claimed.

Let v̂(t, ·) ∼ µ̂
[b]
t for all t ≥ 0; we will not use any coupling between v̂(t, ·) and v̂(s, ·) for t 6= s.

Consider a function F ∈ L∞(XBT × X N ). To prove (4.4), we need to show that

EF (v̂(t, ·)) = EP̂
[b]
t F (v̂[b](0, ·)). (4.6)

Let u ∈ C([0, ∞); XBT × X N ) solve (1.3) with initial condition u(0, ·) ∼ µ0 (independent of the
noise). We abbreviate Zb,t = Zb,t[u(0, ·)]. We will show that both the left and right sides of (4.6)
are equal to

lim
M→∞

1

M

ˆ M

0
E[F (τb−Z−1

b,t
(ζ)u(t, ·)] dζ.

We first show that

EF (v̂(t, ·)) = lim
M→∞

1

M

ˆ M

0
E[F (τb−Z−1

b,t
(ζ)u(t, ·))] dζ. (4.7)

The crux of the argument is the simple identity

1

L

ˆ L

0
F (τ−xu(t, ·))[uT − uB](t, b + x) dx =

2

L

ˆ Zb,t(L+b)

Zb,t(b)
F (τb−Z−1

b,t
(ζ)u(t, ·)) dζ, (4.8)

which comes from making the change of variables

x = Z−1
b,t (ζ) − b, dx =

2

[uT − uB](t, b + x)
dζ. (4.9)

By the Birkhoff–Khinchin theorem, we have the limit

lim
L→∞

1

L

ˆ L

0
F (τ−xu(t, ·))[uT − uB](t, b + x) dx = E[F (u(t, ·))[uT − uB](t, b) | I] (4.10)

almost surely. Also by the Birkhoff-Khinchin theorem (recalling (3.6)), we have

lim
L→∞

Zb,t(L + b) − Zb,t(b)

L
=

1

2
B[(uB, uT)(t, ·)] (4.11)
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almost surely. Combining (4.8)–(4.11), we have

lim
L→∞

1

Zb,t(L + b) − Zb,t(b)

ˆ Zb,t(L+b)

Zb,t(b)
F (τb−Z−1

b,t
(ζ)u(t, ·)) dζ =

E[F (u(t, ·))[uT − uB](t, b) | I]

B[(uB, uT)(t, ·)]

almost surely. Since lim
L→∞

Zb,t(L + b) = ∞ almost surely by (3.6) and (3.1), and F is bounded, this

means that

lim
M→∞

1

M

ˆ M

0
F (τb−Z−1

b,t
(ζ)u(t, ·)) dζ =

E[F (u(t, ·))[uT − uB](t, b) | I]

B[(uB, uT)(t, ·)] (4.12)

almost surely. Since F is bounded and B[(uB, uT)(t, ·)] is I-measurable, taking the expectation
in (4.12) and using the bounded convergence theorem we deduce that

lim
M→∞

1

M

ˆ M

0
E[F (τb−Z−1

b,t
(ζ)u(t, ·))] dζ = E

[

F (u(t, ·))[uT − uB](t, b)

B[(uB, uT)(t, ·)]

]

,

which implies (4.7) because u(t, ·) ∼ µt.
The next step is to show that, for any s ≥ 0, we have

EP̂ [b]
s F (v̂[b](0, ·)) = lim

M→∞

1

M

ˆ M

0
E[F (τb−Z−1

b,s
(ζ)u(s, ·))] dζ. (4.13)

For a random variable y ∈ R, measurable with respect to u(0, ·), let u[y] solve (1.3) with initial
condition u[y](0, ·) = τyu(0, ·). We can compute

P̂ [b]
s F (τyu(0, ·)) = E[F (τb−Zb,s[τyu(0,·)]−1(0)u

[y](s, ·)) | u(0, ·)]
= E[F (τb−(Zb,s[τyu(0,·)]−1(0)−y)τ−yu[y](s, ·)) | u(0, ·)]
= E[F (τb−Z−1

b−y,s
(0)u(s, ·)) | u(0, ·)]. (4.14)

The first equality above is by the definition of P̂
[b]
s and the second is a tautology. The third

holds because by the translation-invariance of the noise, (Zb,s[τyu(0, ·)]−1(0) − y, τyu[y](s, ·)) and
(Z−1

b−y,s(0), u(s, ·)) have the same conditional law given u(0, ·).
Now apply (4.7) with t = 0 and F in that equation taken to be P̂

[b]
s F . This gives

E[P̂ [b]
s F (v̂(0, ·))] = lim

M→∞

1

M

ˆ M

0
EP̂ [b]

s F (τb−Z−1
b,0

(ζ)u(0, ·)) dζ

= lim
M→∞

1

M

ˆ M

0
EF (τb−Z−1

Z−1
b,0

(ζ),s
(0)u(s, ·)) dζ, (4.15)

where in the second equality we used (4.14) with y = b − Z−1
b,0 (ζ). Now we can compute

ZZ−1
b,0

(ζ),s(x) =
1

2

(

h
[Z−1

b,0
(ζ)]

T − h
[Z−1

b,0
(ζ)]

B

)

(s, x) =
1

2

(

h
[b]
T − h

[b]
B

)

(s, x) − 1

2

ˆ Z−1
b,0

(ζ)

b
[uT − uB](0, y) dy

= Zb,s(x) − ζ = Zb,s(b) + Zb[u(s, ·)](x) − ζ.
(4.16)

In the second equality we used the fact that the identity

1

2

(

h
[Z−1

b,0
(ζ)]

T − h
[Z−1

b,0
(ζ)]

B

)

(s, x) =
1

2

(

h
[b]
T − h

[b]
B

)

(s, x) − 1

2

ˆ Z−1
b,0

(ζ)

b
[uT − uB](0, y) dy
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for all x ∈ R holds at s = 0 and thus for all s ≥ 0 as well. In the third equality of (4.16) we
used (3.6). It follows from (4.16) that

Z−1
Z−1

b,0
(ζ),s

(κ) = Zb[u(s, ·)]−1(κ + ζ − Zb,s(b)). (4.17)

Substituting (4.17) (with κ = 0) into (4.15), we get

E[P̂ [b]
s F (v̂(0, ·))] = lim

M→∞

1

M

ˆ M

0
EF (τb−Zb[u(s,·)](x)(ζ−Zb,s(b))u(s, ·)) dζ

= lim
M→∞

1

M

ˆ M−Zb,s(b)

−Zb,s(b)
EF (τb−Zb[u(s,·)]−1(ζ)u(s, ·))

= EF (v̂(s, ·)),

where the last equality is again by (4.7), this time with t = s. This completes the proof of (4.13).
As indicated above, (4.7) and (4.13) together imply (4.6).

The proof of (4.5) is similar but easier. Without loss of generality, assume that t = 0. Let

w = (wB, wT, w̃) ∼ µ0 and ŵ ∼ µ̂
[b]
0 . For y ∈ XBT × X N put Fb,ζ(y) = F (τb−Zb[y]−1(ζ)y). By (4.7),

applied at t = 0, we have

EF (τb−Zb[v̂]−1(ζ)ŵ) = EFb,ζ(ŵ)

= lim
M→∞

1

M

ˆ M

0
E[Fb,ζ(τb−Zb[w]−1(ζ′)w)] dζ ′

= lim
M→∞

1

M

ˆ M

0
E[F (τb−Zb[τ

b−Zb[w]−1(ζ′)
w]−1(ζ)τb−Zb[w]−1(ζ′)w)] dζ ′. (4.18)

For any y ∈ R, we have
Zb[τyw]−1(ζ) = Zb−y[w]−1(ζ) + y

almost surely, which means that (taking y = b − Z
−1
b [w](ζ ′))

Zb[τb−Z
−1
b [w](ζ′)

w]−1(ζ) = Z
Z

−1
b [w](ζ′)

[w]−1(ζ) + b − Z
−1
b [w](ζ ′),

so

b − Zb[τb−Zb[w]−1(ζ′)w]−1(ζ) = Z
−1
b [w](ζ ′) − Z

Z
−1
b [w](ζ′)

[w]−1(ζ) = Z
−1
b [w](ζ ′) − Zb[w]−1(ζ + ζ ′),

where the second equality can be seen either by (4.17) with s = 0, ζ = ζ ′, u(0, ·) = w, and κ = ζ
or by a simple direct argument. Substituting this into (4.18) we obtain

EF (τb−Zb[ŵ]−1(ζ)ŵ) = lim
M→∞

1

M

ˆ M

0
E[F (τb−Zb[w]−1(ζ+ζ′)w)] dζ ′

= lim
M→∞

1

M

ˆ M+ζ

ζ
E[F (τb−Zb[w]−1(ζ′)w)] dζ ′ = EF (ŵ),

with the last equality again by (4.7).

Now we can prove Propositions 4.2 and 4.3.
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Proof of Proposition 4.2. The Birkhoff–Khinchin theorem, along with the assumed ordering of the
components of a function distributed according to ν, implies that ν(XBT) = 1. Then, since ν̂ [b] is
absolutely continuous with respect to ν, we have (4.1). Then (4.2) holds by Proposition 4.4 applied
with µt = ν for all t, since ν is an invariant measure for (1.3).

Proof of Proposition 4.3. We note that (P̂
[b]
t )∗δaB,aT

is ergodic with respect to the group R of spatial
translations due to the spatial ergodicity of the driving noise V . Therefore, by Proposition 4.4 and

the Birkhoff–Khinchin theorem, (P̂
[b]
t )∗δaB,aT

is absolutely continuous with respect to P ∗
t δaB,aT

with
Radon–Nikodym derivative

d
(

(P̂
[b]
t )∗δaB,aT

)

d(P ∗
t δaB,aT

)
(wB, wT) =

wT(b) − wB(b)

aT − aB
.

For any F ∈ L∞(X 2), if û[b](t, ·) ∼ (P̂
[b]
t )∗δaB,aT

and u(t, ·) = (uB, uT)(t, ·) ∼ P ∗
t δaB,aT

, then we
have by the definitions that

EF (û[b](t, ·)) = E

[

F (u(t, ·))
(

uT(t, b) − uB(t, b)

aT − aB

)]

. (4.19)

By the L2 bound proved as [13, Lemma 5.3], there is a constant C < ∞ so that, for all t ≥ 0, we
have

E

(

uT(t, b) − uB(t, b)

aT − aB

)2

≤ C.

This means that the term inside the expectation on the right side of (4.19) is uniformly integrable.
Since P ∗

t δaB,aT
converges to νaB,aT

(weakly with respect to the topology of X 2) by the stability
result [13, Theorem 1.3], we have

lim
t→∞

F (û[b](t, ·)) = lim
t→∞

E

[

F (u(t, ·))
(

uT(t, b) − uB(t, b)

aT − aB

)]

= E

[

F (v)

(

vT(b) − vB(b)

aT − aB

)]

= EF (v̂[b]),

where v = (vB, vT) ∼ νaB,aT
and v̂[b] ∼ ν̂

[b]
aB,aT . Hence, (P̂

[b]
t )∗δaB,aT

converges weakly to ν̂
[b]
aB,aT with

respect to the topology of X 2.

It remains to show that in fact (P̂
[b]
t )∗δaB,aT

converges weakly to ν̂
[b]
aB,aT with respect to the

topology of XBT. If F is a bounded Lipschitz function on XBT, then F is in particular uniformly
continuous, so it can be extended to a bounded continuous function on the closure of XBT in X 2,
and hence by the Tietze extension theorem to a bounded continuous function on X 2. Then the
argument of the previous paragraph applies, and by the portmanteau lemma this completes the
proof.

Proof of the Feller property

Now we prove the Feller property Proposition 4.1.

Proof of Proposition 4.1. We recall that by [13, Theorem 1.1], the solution map Ψ : XBT × X N →
C([0, ∞); XBT × X N ) is continuous with probability 1, if the target space is given the topology of
uniform convergence on compact subsets of [0, ∞). Thus, to show that Φ is continuous it suffices
to show that the map XBT ∋ v 7→ (Zb,t[v]−1(0))t≥0 ∈ C([0, ∞)) is continuous with probability 1,
where C([0, ∞)) is similarly given the topology of uniform convergence on compact sets. This could
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be proved using the ODE (1.7), but we will instead argue using the KPZ equation and the formulas
of the previous section.

Let v ∈ XBT and let u ∈ C([0, ∞); XBT) solve (1.3) with initial condition u(0, ·) = v. Observe
that, if (hB, hT) solves (1.22) with initial condition

(hB, hT)(0, x) =

ˆ x

b
(vB, vT)(y) dy,

so that

Zb,t[v](x) =
1

2
[hT − hB](t, x) = Zb,t[v](b) +

1

2

ˆ x

b
[uT − uB](t, y) dy, (4.20)

then Zb,t[v] satisfies the ODE

∂tZb,t[v](b) =
1

2
∂2

x[hT − hB](t, b) − 1

2
∂x[hT − hB](t, b) · ∂x[hT + hB](t, b)

=
1

2
∂x(uT − uB)(t, b) − 1

2
(uT − uB)(t, b) · (uT + uB)(t, b). (4.21)

Fix a smooth, compactly supported function ϕ on R such that
´

ϕ = 1 and define

Qt[v] =

ˆ

R

Zb,t[v](x)ϕ(x − b) dx. (4.22)

Integrating (4.21) in time and against ϕ(· − b) in space, and integrating by parts, we obtain

Qt[v] =
1

2

ˆ t

0

ˆ

R

(uT − uB)(s, x)[−ϕ′(x − b) − (uT + uB)(s, x)ϕ(x − b)] dx ds. (4.23)

On the other hand, using (4.20) in (4.22) we can also write

Qt[v] =

ˆ

R

(

Zb,t[v](b) +
1

2

ˆ x

b
[uT − uB](t, y) dy

)

ϕ(x − b) dx

= Zb,t[v](b) +
1

2

ˆ

R

ˆ x

b
[uT − uB](t, y)ϕ(x − b) dy dx. (4.24)

Combining (4.23) and (4.24) gives

Zb,t[v](b) =
1

2

ˆ t

0

ˆ

R

(uT − uB)(s, x)[−ϕ′(x − b) − (uT + uB)(s, x)ϕ(x − b)] dx ds

− 1

2

ˆ

R

ˆ x

b
[uT − uB](t, y)ϕ(x − b) dy dx.

By this and [13, Theorem 1.1], the map v 7→ (Zb,t[v](b))t≥0 is almost-surely continuous.
Now we can write, by (4.20), that

Zb,t[v]−1(0) = Zb[u(t, ·)]−1(−Zb,t[v](b)).

By Lemma A.1 and [13, Theorem 1.1], this implies that v 7→ (Zb,t[v]−1(0))t≥0 is almost-surely
continuous. Therefore, Φ is almost-surely continuous. Now if F ∈ Cb(XBT × X N ) and vn → v

in XBT × X N then

P̂
[b]
t F (vn) = EF (Φ(vn)(t, ·)) = EF (Φ(v)(t, ·)) = P̂

[b]
t F (v)

by the bounded convergence theorem. This proves that P̂
[b]
t is Feller.
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5 Uniqueness of the stationary shock profiles

In this section we show that shock profiles of the form (1.8) are the only “stationary” shock profiles
that satisfy a certain integrability condition. We define this integrability condition through the
space

XSh =

{

(vB, vT, v) ∈ XBT × X :

ˆ 0

−∞
|vT − v| +

ˆ ∞

0
|v − vB| < ∞

}

, (5.1)

as previously given in (1.5). This is a space of viscous shock fronts. As in the previous sections, vB

and vT are the “bottom” and “top” solutions, respectively, while v is a viscous shock. Note that
for any (vB, vT) ∈ XBT and b, γ ∈ R, we have Sb,γ [vB, vT] ∈ XSh.

Next, we need a way to track the location of a moving shock. We define

XSh,b,γ =

{

(vB, vT, v) ∈ XSh :

ˆ b

−∞
[v − vT] +

ˆ ∞

b
[v − vB] = γ

}

.

Observe that (recalling the definition (2.1)), for any (vB, vT, v) ∈ XSh, the map

I(c) =

ˆ c

−∞
[v − vT] +

ˆ ∞

c
[v − vB]

is decreasing and, moreover,
lim

c→±∞
I(c) = ∓∞.

Therefore, for each fixed b ∈ R, we have

XSh =
⊔

γ∈R

XSh,b,γ,

and for each fixed γ ∈ R, we have
XSh =

⊔

b∈R

XSh,b,γ,

where
⊔

denotes disjoint union.
We now show that the shocks (1.8) lie in the corresponding XSh,b,γ .

Lemma 5.1. We have (vB, vT, Sb,γ [vB, vT]) ∈ XSh,b,γ for any (vB, vT) ∈ XBT and any b, γ ∈ R.

Proof. By (3.18) and the change of variables

ζ = Zb[vB, vT](x), dζ =
1

2
[vT − vB](x)dx,

(similar to (1.9)), we have

ˆ b

−∞
(Sb,γ [vB, vT] − vT)(x) dx =

ˆ b

−∞

vB(x) − vT(x)

1 + eγ−2Zb[vB,vT](x)
dx

= −2

ˆ 0

−∞

1

1 + eγ−2ζ
dζ = − log(1 + e−γ). (5.2)

Similarly, we have
ˆ ∞

b
(Sb,γ [vB, vT] − vB)(x) dx =

ˆ ∞

b

vT(x) − vB(x)

1 + e2Zb[vB,vT](x)−γ
dx = 2

ˆ ∞

0

1

1 + e2ζ−γ dζ
= log(1 + eγ).

(5.3)
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Adding (5.2) and (5.3) yields

ˆ b

−∞
(Sb,γ [vB, vT] − vT)(x) dx +

ˆ ∞

b
(Sb,γ [vB, vT] − vB)(x) dx = γ,

completing the proof.

The following simple lemma gives an alternative characterization of XSh,b,γ .

Lemma 5.2. We have the equivalence

(vB, vT, v) ∈ XSh,b,γ ⇐⇒ v − Sb,γ [vB, vT] ∈ L1(R) and

ˆ

R

(v − Sb,γ [vB, vT]) = 0. (5.4)

Proof. If (vB, vT, v) ∈ XSh,b,γ and (vB, vT, ṽ) ∈ XSh,b,γ̃ , then

ˆ ∞

−∞
[v − ṽ](y) dy =

ˆ b

−∞
[v − vT] +

ˆ b

−∞
[vT − ṽ] +

ˆ ∞

b
[v − vB] +

ˆ ∞

b
[vB − ṽ] = γ − γ̃. (5.5)

Combining (5.5) and Lemma 5.1 yields the “ =⇒ ” direction of (5.4).
On the other hand, if v − Sb,γ [vB, vT] ∈ L1(R), then (vB, vT, v) ∈ XSh since Sb,γ [vB, vT] ∈ XSh.

Thus the “ ⇐= ” direction of (5.4) follows immediately from the second equality in (5.5).

The next lemma shows that for an arbitrary shock, the shock location follows the location bt.

Lemma 5.3. Suppose that u = (uB, uT, u) ∈ C([0, ∞); XBT × X ) is a solution to (1.3) such
that u(0, ·) ∈ XSh,b,γ, and let (bt)t≥0 solve with (1.7) with initial condition b0 = b. Then, with
probability 1, for all t ≥ 0, we have u(t, ·) ∈ XSh,bt,γ.

Proof. Define
uexplicit(t, x) = Sbt,γ [(uB, uT)(t, ·)](x),

so (uB, uT, u, uexplicit) solves (1.3) by (3.19). Now by the mass conservation of the Burgers dynamics
([13, Proposition 3.3]) we have

0 =

ˆ

R

(uexpicit(0, x) − u(0, x)) dx =

ˆ

R

(uexplicit(t, x) − u(t, x)) dx

=

ˆ

R

(Sbt,γ [(uB, uT)(t, ·)](x) − u(t, x)) dx.

Thus Lemma 5.2 implies that u(t, ·) ∈ XSh,bt,γ for all t ≥ 0.

Definition 5.4. Let µ be a probability measure on XSh and b ∈ R. We say that µ is the law of a

stationary shock profile with respect to b if (P̂
[b]
t )∗µ = µ.

An immediate consequence of (3.19) and Proposition 4.2 is that if aB < aT, b ∈ R, and

(vB, vT) ∼ ν̂
[b]
aB,aT (as defined in (1.13)), then for any γ ∈ R, (vB, vT, Sb,γ [vB, vT]) has the law of a

stationary shock profile with respect to b. We can also prove a partial converse of this property.

Proposition 5.5. If v = (vB, vT, v) has the law of a stationary shock profile with respect to b, then
there is a random γ ∈ R so that v = Sb,γ [vB, vT] almost surely.
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Proof. Let γ be such that v ∈ XSh,b,γ and u = (uB, uT, u, uexplicit) solve (1.3) with initial condition

u(0, ·) = (v, Sb,γ [vB, vT]).

Then, in particular, if (bt)t≥0 solves (1.7) with initial condition b0 = b, then

uexplicit(t, x) = Sbt,γ [(uB, uT)(t, ·)](x)

by (3.19). By the mass conservation of the Burgers equation ([13, Proposition 3.3]) we also know
that

ˆ

R

(u − uexplicit)(t, x) dx = 0 (5.6)

for all t ≥ 0. Since (vB, vT, v) is a stationary shock profile, it follows that

0 =
d

dt

ˆ

R

|τ−btu(t, ·) − τ−btuexplicit(t, ·)| =
d

dt

ˆ

R

|u(t, ·) − uexplicit(t, ·)|.

This allows us to use the ordering result proved in [13, Proposition 3.9] (using hypothesis (H2’)
there) which then implies that u and uexplicit must be ordered almost surely. In light of (5.6), this
means that v = Sb,γ [vB, vT] almost surely, as claimed.

6 Stability of the viscous shocks

In this section we study the stability of the viscous shocks (1.8) and prove Theorem 1.2. The
proof follows a strategy, based on ordering and L1 contraction, similar to [13]. We begin with a
time-averaged result.

Proposition 6.1. Fix real numbers aB < aT and γL < γR. Let (uB, uT, u) ∈ C([0, ∞); XBT × X )
solve (1.3) with initial conditions satisfying uY(0, ·) ≡ aY for Y ∈ {B, T}. Let b, γ ∈ R be such that
(aB, aT, u(0, ·)) ∈ XSh,b,γ, and let (bt)t≥0 solve (1.7) with initial condition b0 = b. Further asume
that for all x ∈ R, we have

Sb,γL
[aB, aT](x) ≤ u(0, x) ≤ Sb,γR

[aB, aT](x). (6.1)

If (wB, wT) ∼ ν̂
[b]
aB,aT , then we have

lim
T →∞

ˆ T +1

1
Law(τb−bt(uB, uT, u)(t, ·)) = Law(wB, wT, Sb,γ [wB, wT])

weakly with respect to the topology of XBT × X .

Proof. Let us define γC = γ for simplicity of notation later on. Consider the joint families

ũ = (uB, uT, u) ∈ C([0, ∞); XBT × X )

and
u = (uexplicit, u) = ((uB, uT, uL, uC, uR), u) ∈ C([0, ∞); XBT × X 4)

solving (1.3) with initial conditions

uX(0, ·) = Sb,γX
[vB, vT]
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for X ∈ {L, C, R}. We note that

τb−btuX(t, ·) = Sb,γX
[τb−bt(uB, uT)(t, ·)] (6.2)

for X ∈ {L, C, R}. Also, the comparison principle and (6.1) imply that

uL(t, x) ≤ u(t, x) ≤ uR(t, x), for all t ≥ 0 and x ∈ R

and
uL(t, x) ≤ uC(t, x) ≤ uR(t, x), for all t ≥ 0 and x ∈ R.

In addition, by Lemmas 5.2 and 5.3, we have
ˆ

R

[u − uC](t, x) dx = 0. (6.3)

Therefore, we have, for X ∈ {L, R}, that

‖τb−bt [u − uX](t, ·)‖L1(R) =

∣

∣

∣

∣

ˆ

R

[u − uX](t, x) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

R

[uC − uX](t, ·)
∣

∣

∣

∣

= |γ − γX|,

with the second equality by (6.3) and the third by Proposition 3.3.
We claim that the family {τb−btu(t, ·)}t≥1 is tight in XBT × X . Indeed, by Proposition 4.3,

the family {τb−bt(uB, uT)(t, ·)}t≥0 converges in law with respect to the topology of XBT as t → ∞,
so in particular by Prokhorov’s theorem (which applies since XBT is a Polish space as proved in
Lemma 2.1) this family is tight in XBT. By the comparison principle ([13, Proposition 3.1] we have

uB(t, x) ≤ u(t, x) ≤ uT(t, x)

for all t ≥ 0 and x ∈ R, so the family {τb−btu(t, ·)}t≥0 is uniformly bounded in probability in X .
Then [13, Proposition 2.2] this implies that {τb−btu(t, ·)}t≥1 is tight in X . Therefore, {τb−btu(t, ·)}t≥1

is tight in the topology of XBT × X 4.
Now let Tk ↑ ∞ be a sequence so that

µ = lim
k→∞

1

Tk

ˆ Tk+1

1
Law(τb−btu(t, ·)) dt

exists in the sense of weak convergence of probability measures on XBT. Consider

w = (wB, wT, wL, wC, wR) ∼ µ,

and w̃ = (wB, wT, w). By (6.2) and Proposition 3.4, we have wX = Sb,γX
[wB, wT] for X ∈ {L, C, R}

almost surely. By the Skorokhod representation theorem, Fatou’s lemma, and the L1(R) contraction
property of the Burgers equation as stated in [13, Proposition 3.2], we therefore have

‖w − wC‖L1(R) ≤ ‖(u − uC)(0, ·)‖L1(R) < ∞ (6.4)

almost surely. Similarly, for X ∈ {L, R}, we have

‖w − wX‖L1(R) ≤ ‖(u − uX)(0, ·)‖L1(R) = |γX − γ| (6.5)

almost surely. We see from (6.4) that (wB, wT, w) ∈ XSh almost surely. Moreover, the Krylov–
Bogolyubov theorem (see e.g. [10, Theorem 3.1.1]) tells us that

(P̂
[b]
t )∗ Law(w̃) = Law(w̃) for any t ≥ 0.

24



Therefore, w̃ is a stationary shock profile in the sense of Definition 5.4. By Proposition 5.5, there
is a random γ̃ ∈ R so that w ∈ Sb,γ̃ [wB, wT] with probability 1. This means that ‖w − wX‖L1(R) =
|γX − γ̃| for X ∈ {L, R}. Combined with (6.5), this means that γ̃ = γ almost surely. This uniquely
identifies µ. Since the topology of weak convergence of probability measures is metrizable, we
therefore have

lim
T →∞

1

T

ˆ T +1

1
Law(τb−btũ(t, ·)) dt = µ

weakly with respect to the topology of XBT × X , as claimed.

The next proposition shows the almost sure L1(R) convergence of the solution to an initial value
problem to a viscous shock arising from a corresponding shift of (uB, uT).

Proposition 6.2. With the same notation and assumptions as Proposition 6.1, we have

lim
t→∞

‖τb−btu(t, ·) − Sb,γ [τb−bt(uB, uT)(t, ·)]‖L1(R) = 0

almost surely.

To prove Proposition 6.2, we first prove the following lemma.

Lemma 6.3. Suppose that (vB, vT, v), (vB, vT, ṽ) ∈ XSh and, for some b ∈ R and γL < γR we have

Sb,γL
[vB, vT](x) ≤ v(x) ≤ Sb,γR

[vB, vT](x), (6.6)

Sb,γL
[vB, vT](x) ≤ ṽ(x) ≤ Sb,γR

[vB, vT](x) (6.7)

for all x ∈ R. Then there is a constant C < ∞, depending only on γL and γR, so that for all L > 0
and all ℓ > 1/2 we have

‖v − ṽ‖L1(R) ≤ 2〈|b| + L〉1+ℓ‖v − ṽ‖Cpℓ
+ C

(

e2Zb[vB,vT](b−L) + e−2Zb[vB,vT](b+L)
)

. (6.8)

Proof. For each L > 0, we have

‖v − ṽ‖L1(R) = ‖v − ṽ‖L1([b−L,b+L]) + ‖v − ṽ‖L1(R\[b−L,b+L]), (6.9)

and
‖v − ṽ‖L1([b−L,b+L]) ≤ 2〈|b| + L〉1+ℓ‖v − ṽ‖Cpℓ

. (6.10)

Using (6.6)–(6.7) and arguing as in Proposition 3.3, we have

ˆ b−L

−∞
|[v − ṽ](x)| dx ≤

ˆ b−L

−∞
[Sb,γR

[vB, vT](x) − Sb,γL
[vB, vT](x)| dx

=

ˆ Zb[vB,vT](b−L)

−∞
[− tanh(ζ − γR) + tanh(ζ − γR)] dζ

≤ Ce2Zb[vB,vT](b−L), (6.11)

with a constant C depending only on γL and γR. Similarly,

ˆ ∞

b+L
|[v − ṽ](x)| dx ≤ Ce−2Zb[vB,vT](b+L). (6.12)

Using (6.10)–(6.12) in (6.9) yields (6.8).
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Now we can prove Proposition 6.2.

Proof of Proposition 6.2. We set Zb,t = Zb,t[(uB, uT)(0, ·)] and consider

w = (wB, wT) ∼ ν̂ [b]
aB,aT

.

By the Birkhoff ergodic theorem, [13, Theorem 1.2, property (P5)], and the fact that ν̂
[b]
aB,aT is

absolutely continuous with respect to νaB,aT
, we have

lim
L→±∞

1

L

ˆ b+L

b
[wT − wB](x) dx = ±(aT − aB)

almost surely, and in particular in probability. Hence, given ε > 0, there is an Lε < ∞ so
that L ≥ Lε then

P

(

Zb[w](b − L) ≥ −1

2
(aT − aB)L or Zb[w](b + L) ≤ 1

2
(aT − aB)L

)

<
ε

4
. (6.13)

In addition, we can choose Lε so large that for all L ≥ Lε we have

2Ce−(aT−aB)L < ε/2, (6.14)

with C as in Lemma 6.3. By Proposition 6.2, we can find a Tε < ∞ so large that if T ≥ Tε

and ST ∼ Uniform([1, T + 1]) is independent of everything else, then (using in addition (6.13))

P









Zb[τb−bST
(uB, uT)(ST , ·)](b − L) ≥ −L

2
(aT − aB)

or Zb[τb−bST
(uB, uT)(ST, ·)](b + L) ≤ L

2
(aT − aB)









<
ε

2
. (6.15)

and (using in addition Proposition 3.4)

P

(

∥

∥

∥τb−bST
u(ST , ·) − Sb,γ [τb−bST

(uB, uT)(ST , ·)]
∥

∥

∥

Cpℓ

≥ ε

4L1+ℓ

)

<
ε

2
. (6.16)

Then we can compute, using (6.8),
∥

∥

∥τb−bST
u(ST , ·) − Sb,γ [τb−bST

(uB, uT)(ST , ·)]
∥

∥

∥

L1(R)

≤ 2〈|b| + L〉1+ℓ
∥

∥

∥τb−bST
u(ST , ·) − Sb,γ [τb−bST

(uB, uT)(ST , ·)]
∥

∥

∥

Cpℓ

+ C exp
{

2Zb[τb−bST
(uB, uT)(ST , ·)](b − L)

}

+ C exp
{

−2Zb[τb−bST
(uB, uT)(ST , ·)](b + L)

}

. (6.17)

Using (6.14)–(6.16) in (6.17), we get

P

(

∥

∥

∥τb−bST
u(ST , ·) − Sb,γ [τb−bST

(uB, uT)(ST , ·)]
∥

∥

∥

L1(R)
≥ ε

)

< ε,

so

‖τb−bST
u(ST , ·) − Sb,γ [τb−bST

(uB, uT)(ST , ·)]‖L1(R) → 0 in probability as T → ∞. (6.18)

On the other hand, by the L1 contractivity property (proved as [13, Proposition 3.2]), with proba-
bility 1 the norm

‖τb−btu(t, ·) − Sb,γ [τb−bt(uB, uT)(t, ·)]‖L1(R)

is decreasing in t. Together with (6.18) this means in fact this norm goes to zero almost surely.
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Now we can remove the random time ST in the statement of Proposition 6.1, proving Theo-
rem 1.2.

Proof of Theorem 1.2. First we note that by Proposition 6.2 for each i ∈ {1, . . . , N} we have

(setting b = b(i), bt = b
(i)
t , and γ = 0)

0 = lim
t→∞

‖τ
b(i)−b

(i)
t

u(t, ·) − Sb(i),0[τ
b(i)−b

(i)
t

(uB, uT )(t, ·)‖L1(R)

= lim
t→∞

‖u(t, ·) − τ
−b(i)+b

(i)
t

Sb(i),0[τ
b(i)−b

(i)
t

(uB, uT )(t, ·)‖L1(R)

= lim
t→∞

‖u(t, ·) − S
b

(i)
t ,0

[(uB, uT )(t, ·)‖L1(R),

which is (1.20).
Let ũ = (u1, . . . , uN ), u = (uB, uT, ũ), with notation as in the statement of the theorem. The

assumption (1.18) means that (aB, aT, ui(0, ·)) ∈ XSh,b(i),0. We set Zt = Zb(1),t[aB, aT] and b = b(1),

bt = b
(1)
t . By the same argument as in the proof of tightness in Proposition 6.1, we see that

{τb−btu(t, ·)}t≥1 is tight in the topology of XBT × X N . Suppose that we have a sequence tk ↑ ∞
and a limiting random variable w = (wB, wT, w1, . . . , wN ) ∈ XBT × X N so that

τb−btk
u(tk, ·) → w

in law in the topology of XBT × X N . By Proposition 4.3, we have

Law(wB, wT) = ν̂ [b]
aB,aT

. (6.19)

Therefore, using Proposition 3.4, we have

τb−btk
ui(tk, ·) − Sb(i),0[τb−btk

(uB, uT)(t, ·)] law−−−→
k→∞

wi − Sb(1),b(i)−b(1) [wB, wT]

with respect to the topology of X . On the other hand, Proposition 6.2 implies that, with probability
1, for each 1 ≤ i ≤ N

lim
t→∞

‖τb−btui(t, ·) − Sb(i),0[τb−bt(uB, uT)(t, ·)]‖L1(R) = 0.

Combined, the last two displays show that wi = Sb(1),b(i)−b(1) [wB, wT] almost surely. Since the

topology of weak convergence of probability measures with respect to the topology of XBT × X N

is metrizable, this, (6.19), and Proposition 3.4 imply (1.19).

A A technical lemma

Lemma A.1. Let Y be a metric space and let (q 7→ Fq) : Y → C1
loc(R) be continuous and such

that ∂x[Fq(x)] > 0 for all q ∈ Y and all x ∈ R. Let G : Y → R be continuous. Then the map
Y ∋ q 7→ F −1

q (G(q)) ∈ R is continuous.

Proof. Let q ∈ Y and let ε > 0. There is a κ > 0 so that

inf
x : |x−F −1

q (G(q))|<2ε
F ′

q(x) ≥ κ. (A.1)

Since F −1
q ◦ G : Y → R is continuous, there is a δ > 0 so that if dY(q, q̃) < δ, then

∣

∣

∣F −1
q (G(q)) − F −1

q (G(q̃))
∣

∣

∣ < ε (A.2)
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and
sup

x : |x−F −1
q (G(q))|<2ε

|Fq̃(x) − Fq(x)| < κε/2. (A.3)

Now if dY(q, q̃) < δ then |F −1
q (G(q̃)) + ε − F −1

q (G(q))| < 2ε, so

Fq̃(F −1
q (G(q̃)) + ε) − G(q̃)

= Fq̃(F −1
q (G(q̃)) + ε) − Fq(F −1

q (G(q̃)) + ε) + Fq(F −1
q (G(q̃)) + ε) − Fq(F −1

q (G(q̃)))

> −κε/2 + κε = κε/2

by (A.1) and (A.3). This means that

F −1
q (G(q̃)) + ε > F −1

q̃ (G(q̃) + κε/2) ≥ F −1
q̃ (G(q̃)).

Similarly, we have
F −1

q (G(q̃)) − ε < F −1
q̃ (G(q̃)),

so in fact we have
|F −1

q (G(q̃)) − F −1
q̃ (G(q̃))| < ε. (A.4)

Combining (A.2) and (A.4), we obtain

|F −1
q (G(q)) − F −1

q̃ (G(q̃))| ≤ |F −1
q (G(q)) − F −1

q (G(q̃))| + |F −1
q (G(q̃)) − F −1

q̃ (G(q̃))| < 2ε.

This completes the proof.
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