PLAQUE: Automated Predicate Learning at Query Time

YIMING LIN", University of California, Berkeley, USA
SHARAD MEHROTRA, University of California, Irvine, USA

Predicate pushing down is a key optimization used to speed up query processing. Much of the existing practice
is restricted to pushing predicates explicitly listed in the query. In this paper, we consider the challenge of
learning predicates during query execution which are then exploited to accelerate execution. Prior related
approaches with a similar goal are restricted (e.g., learn only from only join columns or from specific data
statistics). We significantly expand the realm of predicates that can be learned from different query operators
(aggregations, joins, grouping, etc.) and develop a system, entitled PLAQUE, that learns such predicates during
query execution. Comprehensive evaluations on both synthetic and real datasets demonstrate that the learned
predicate approach adopted by PLAQUE can significantly accelerate query execution by up to 33x, and this
improvement increases to up to 100x when User-Defined Functions (UDFs) are utilized in queries.

CCS Concepts: » Information systems — Query operators.
Additional Key Words and Phrases: Data Management, Query Processing

ACM Reference Format:
Yiming Lin and Sharad Mehrotra. 2024. PLAQUE: Automated Predicate Learning at Query Time. Proc. ACM
Manag. Data 2, 1 (SIGMOD), Article 46 (February 2024), 25 pages. https://doi.org/10.1145/3639301

1 INTRODUCTION

Predicate pushdown based on selectivity and cost estimates is a key strategy used to optimize
queries in relational databases. Pushing predicates down in a query tree could lead to significant
savings by reducing the size of data that migrates to downstream operators. In this paper, we seek
a new approach to query processing, entitled PLAQUE, automated Predicate Le Arning at QUery
timE, that learns selective predicates during query execution (beyond those listed explicitly) in
order to filter out tuples that would not result in any query results as early as possible during query
processing. To illustrate the key idea behind PLAQUE, we examine a slightly modified and simplified
version of TPC-H Query Q-10 that includes a theta-join condition. ! In this query, the predicates
o_orderdate < ’1993-01-01" and p_brand = ’:10’ can be pushed down to orders and parts tables.
However, the query contains no predicates on the lineitem table that could prune non-matching
lineitem records that do not result in any query results. Thus, any query plan without a built index
will scan over all records in the lineitem table.

SELECT MAX(I_discount)

FROM part, lineitem, orders

WHERE p_retailprice < |_extendedprice AND o_orderkey = |_orderkey AND o_orderdate < ’1993-
01-07 AND p_brand = :10°

“Work done at UC Irvine.
IThe similar query is used in previous works [23, 25] to evaluate theta-join in TPC-H benchmark.

Authors’ addresses: Yiming Lin, University of California, Berkeley, USA, yiminglin@berkeley.edu; Sharad Mehrotra,
University of California, Irvine, USA, sharad@ics.uci.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.
BY

© 2024 Copyright held by the owner/author(s).
ACM 2836-6573/2024/2-ART46
https://doi.org/10.1145/3639301

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

https://doi.org/10.1145/3639301
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3639301

46:2 Yiming Lin and Sharad Mehrotra

] Order isc
Ag; I_discount . P eeeee A (I_discount)
Ag”’“‘(’l iscount) L s o_orderkey [o_orderdate| @) py = [_orderkey € p,, p, = [_discount > 0.3
soin) D _extendedprice>p_retailprice 3 -=D_extendedprice>p_retailprice
_exte K ip 8 1 03 20 1 19920601 | @) Dpropped away by P2 _extendedprice>p_retailp
> w 1 0.04 2 2 1993-04-01)
) D orderkero_ordertes B @ p; = [_extendedprice > 10 ! iy ~
X I_orderkey=o_orderk UMTHU® . 04 m 3 1991-03.01 ® [)’ . oy P o_orderkey (,.,hmm‘u»
/\ part @ 3 06 5 Part ropped away by I3 | extendedpri 12 part
lineitem 0. orderdare<1593-01-01 (3) 3 o1 2 p_retailprice | p_brand ® Psisupdated to: p3 = 1_¢ ‘t“’”‘ eaprice > 12 P Gy orderdame<1993-01-01"
| ® 3 08 16 15 10 @® pyisupdated to: Py = [_discount > 0.8 | i
order 2 10 lineitem order

a) Query Plan Tree of Q b) Predicates Creation and Updates During Query Execution) Query Plan Tree with Leamned Fiers of Q

Fig. 1. Learned Predicates during Query Execution and the Updated Query Plan Tree of the Simplified TPC-H
Q1o.

Consider that all records in the lineitem table that result in an answer satisfy a predicate
I_discount > 0.7 - we will momentarily see how PLAQUE learns such predicates. Query execution
can be significantly accelerated by pushing such predicates down in the query to filter records in
the lineitem table. Only a small fraction of lineitem records will need to join with the orders and
parts tables resulting in significant savings.

Several prior works have explored learning predicates, other than those specified explicitly in
queries, to reduce downstream query processing. Such approaches, typically learn predicates prior
to the execution of the query based, especially, on exploiting query predicates on join columns
(e.g., [9, 12, 20, 22]). For instance, if the query above contained a predicate |_orderkey < 5) in addition
to the other predicates listed in the query, techniques such as [26] could infer a new predicate
o_orderkey < 5) which could then be used to filter tuples from the orders table to speed up the
query execution. Such prior work on learning predicates, however, is of limited applicability since
queries containing equi joins seldom contain additional selection predicates on the join column.
This can be observed by examining such equi-join queries over several real datasets and synthetic
benchmarks such as TPC-H [7] or TPC-DS [6] in which none of the equi-join queries contain
additional predicates on the join columns. As such, above mentioned techniques rarely result in
significant execution cost reduction of benchmark queries. An alternate strategy that empowers
predicates learned ahead of query execution has been explored in [16]. In this strategy, the system
maintains data statistics (e.g., min and max of columns) at the data block level which is used for
sideways information passing over equi-joins accelerating query execution, especially in big-data
systems such as Hive or Pig where data is partitioned across clusters. The work, however, is limited
to equi-joins.

In contrast to learning predicates before query execution, some prior work [15, 21, 27] have also
considered alternate strategies that, similar to PLAQUE, infer predicates to add to queries on the
fly during query execution. Much of this work, however, has been in the context of hash-joins
in main-memory database settings. Such strategies build summarization data structures, such as
bloom filters, for the build table and use them to skip tuples in the probe table. We note that
approaches that learn predicates prior to execution [9, 12, 20, 22], and those that learn predicates
during execution, can be considered as complementary - they can be used in conjunction.

In this paper, we propose PLAQUE that similar to [15, 21, 27] learns predicates to add to the
query during query processing. In contrast to them, PLAQUE takes a much more comprehensive,
as well as, an adaptive approach to learning and using predicates in query execution. PLAQUE
infers new predicates not just during execution of hash-join (as in [15, 21, 27]) but based on a
range of relational operators including aggregation operators such as min and max, theta-joins,
equi-joins, group-by operators and having conditions in queries. In PLAQUE, as query execution
proceeds and records pass through operators in the query tree, the system learns new predicates to
reduce downstream data processing. Such predicates learned are further refined as query processing
proceeds (and more data is seen) resulting in improved filters. Predicate learning in PLAQUE occurs
not just when the system uses a hash-based operator implementation (e.g., as in hash-joins) but

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:3

also when nested-loop or sort-merge algorithms are used (as will be clear in Section 3). In PLAQUE,
predicate learning and maintenance including predicate refinement is performed efficiently and
remains a negligible part of query execution cost. PLAQUE in addition to saving computation
cost by pruning unnecessary records, also supports checking of newly-learned predicates using
an index-based implementation to reduce I/O costs and decides on the optimal placement of the
learned filters (as we will show later, placement of the operator depends upon when it is learned
and a simple rule such as pushing the predicate as far down the tree as possible may not be optimal).
Comprehensive evaluations on two benchmarks (TPCH [7] and SmartBench [13]) and one real
dataset (IMDB) [2] in Section 6 demonstrate that adding the learned predicates using PLAQUE can
achieve significant improvement ranging from 2x-33x, especially in queries containing expensive
User-Defined-Functions (UDFs) where the improvement can be up to 100x in SmartBench [13].
Specifically, this paper makes the following contributions.

o A set of novel approaches to infer predicates during query execution from aggregate, equi join,
theta join, and having conditions in the given query, and place them wisely in the given query
tree to maximize the benefits from predicates pushdown using a partial-order based graphical
approach.

o A system entitled PLAQUE to exploit the learned predicates using index and in-memory
predicates to effectively save both I/O cost and memory footprint.

o A set of comprehensive experiments on both real and synthetic benchmarks to evaluate the
effectiveness of our learned predicates. We further test the learned predicates on queries with
UDFs to demonstrate their broader applicability.

2 PLAQUE OVERVIEW

PLAQUE learns predicates that act as filters to reduce the load on downstream operations acceler-
ating query processing. Before we discuss how PLAQUE works, we briefly discuss opportunities
that can be exploited to learn predicates during query processing.

Opportunities to Learn Predicates Consider a query processing pipeline illustrated in Figure 1-
a) that corresponds to the query plan generated by PostgreSQL (V 14.6) for the TPC-H query in
Section 1. In this plan, ™ o derkey=o_orderkey 1S implemented as a hash join and nested loop join
is used for ™y _extendedprice>p_retailprice- One opportunity to learn a predicate to accelerate query
execution is to exploit the hash join implementation of ™ o derkey=o_orderkey @S is proposed in prior
works such as [15, 21]. In particular, since order is the build table and lineitem is the probe relation,
once the hash table on order has been built, since all values of the join column of order are known
(they have been read during the build phase), such information can be used to learn a predicate
p1 = I_orderkey € p,or where poi corresponds to all values of o_orderkey in the build table (i.e.,
order) as shown in Figure 1-b). p; can be used to filter tuples in the probe side (i.e., lineitem). p;
in this example is a membership predicate which is effective in reducing the size of tuples for the
downstream operators. We can alternatively implement the predicates learned from the equi join
as range predicates, which are amenable to support index scan to bring additional I/O savings, as
we will show in Section 4.

Besides exploiting the equi join (hash-join in particular) to learn filters, let us explore how other
relational operators offer additional opportunities. We continue to use the example in Figure 1-b).
For ease of illustration, we use small instances of lineitem, part and order tables, respectively.

Assume that after the execution of the build phase for order, during the probe phase over lineitem,
a tuple (1,0.3,20) (D in Figure 1-b) rises to the join operator >I_orderkey=o_orderkey, Where it joins
appropriate records in order and part tables and reaches the aggregate operator Aggmax (I_discount).
At this stage, we can establish that the final query answer (i.e., MAX (I_discount)) is at least 0.3,
since 0.3 is the current maximum [_discount in the quantifying tuples reaching the aggregate

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:4 Yiming Lin and Sharad Mehrotra

Query Query Plan Query Query Answer
—> e — _—
Query Optimizer Executor End user
4
event adaption
\4
PLAQUE

Fig. 2. PLAQUE Architecture
operator so far. We can, thus, create a new predicate p,, i.e., [_discount > 0.3, and push this
predicate down to p in Figure 1-c). Such a predicate could potentially reduce the query execution
cost significantly, especially in the scenario where the maximum value of the discount in lineitem is
close to 0.3. In this case, all future tuples in lineitem table can be eliminated from consideration! In
our current example, the second tuple (2) in lineitem will be dropped away by p, since its [_discount
(0.04) is less than 0.3.

Consider now the third tuple (3) in lineitem that joins with the record in order table to reach the
nested loop join with the part table. It fails to meet the condition I_extendedprice > p_retailprice in
the theta-join for every record in part. As aresult, we can learn a new predicate p; = I_extendedprice
10, since failure of tuple (3) with I_extendedprice = 10 to join any tuple in part establishes all
values of p_retailprice must be greater than or equal to 10 and thus all values in I_extendedprice
must be greater than 10 in order to successfully join and produce an answer. Such a filter will allow
Tuple @ in lineitem to be eliminated since it violates p3;, which implies that it must fail the theta
join operator.

Note that predicates learned above can be refined to more selective predicates as data processing
proceeds. To see this, consider the fifth tuple (5) in the lineitem table. When it joins with order
table and reaches ™ ¢xtendedpricesp._retailprice, it fails to join any tuple in part table, and thus we
can update p3 to a more selective predicate as [_extendprice > 12. Likewise, when tuple (6 in the
lineitem table reaches the aggregate operator with I_discount as 0.8, we can similarly update p, to
be a more selective predicate I_discount > 0.8. The more selective predicates can prune additional
tuples early further reducing query execution costs.

The example above illustrates several opportunities to learn predicates that can serve as filters
to accelerate query processing from different relational operations — from equi join (p;), theta
join (p3), and MAX/MIN (p). In Section 3 we consider a more comprehensive set of relational
operators that can help determine predicates. We note that several predicates we learn can be
refined as query processing proceeds as illustrated above - e.g., predicates learned from theta join
conditions, aggregations such as MIN/MAX. Furthermore, different types of predicates can be
learned from equi join conditions (e.g., range filters or membership filters), and such predicates can
be implemented in different ways - as filters in memory or using an index, in which case, it could
potentially reduce I/O costs of reading a relation from disk. Finally, note that the predicates learned
from equi join could potentially provide more benefit if they are learned from a more downstream
join operator. For instance, consider the theta join condition [_extendedprice > p_retailprice in
Figure 1-c), if we modify it to be equi join [_extendedprice = p_retailprice and assume it uses hash
join with part as the build table. The predicates learned from p_retailprice when the hash table of
part is built can be pushed further down to the scan of lineitem (as part of p in Figure 1-c). Such a
predicate would filter away tuples early by using the condition from a downstream join operator.

Above, we highlighted several opportunities to infer predicates during query execution that can
help accelerate query execution. To our best knowledge, PLAQUE is the first such comprehensive

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

>

PLAQUE: Automated Predicate Learning at Query Time 46:5

attempt to explore learning and refining predicates during query processing to prune away redun-
dant tuples that do not result in query results. Before we discuss PLAQUE architecture, we first
highlight some key challenges that arise in learning predicates that will be addressed by PLAQUE.

Challenges. Learning predicates and using them to accelerate query execution leads to several
challenges. One such challenge is to devise ways to infer and refine predicates by exploiting
semantics and implementations of various relational operators that comprise a query. The predicate
learned should be selective so that it prunes away as many records as possible. However, the
predicate must simultaneously be correct in the sense that its usage does not change query results.
Second, where should we insert the learned predicates in the query tree? As will be shown later,
pushing the predicates down to the scan (leaves) of the query tree might not always be the best
option. Third, it is critical to implement the learned predicates carefully such that applying them
will not introduce significant overhead while ensuring the correctness of the learned predicates.

PLAQUE Design. PLAQUE addresses the above challenges by making careful design choices. The
overview of the architecture of PLAQUE is in Figure 2. Given a SQL query, in PLAQUE a query
optimizer first generates a query plan sent to the query executor. During query execution, PLAQUE
will capture certain events to either learn new predicates or update/refine predicates that have been
learned previously. PLAQUE ensures that such predicate addition and/or refinements do not change
the results of the original query. Learning or refining predicates in PLAQUE are implemented
using ECA rules [3] based on the state of execution of the query. An ECA rule consists of three
components: an event is defined as [WHEN: event, IF: condition, THEN action]. As an example
in Figure 1, consider the first tuple (D in the lineitem table, and the following event: [WHEN:
tuple (D reaches the aggregate operator Aggmax (I_discount), IF tuple (D is the first tuple reaching
AgGmax(I_discount), THEN a predicate [_discount > 0.3] is created. Similarly, PLAQUE will detect
events to learn/update new predicates from MIN/MAX, theta-join, equi-join, HAVING/GROUP BY
conditions in Section 3.

Once the new predicates are learned, PLAQUE applies the learned predicates in the query
executor to speed up the execution. This is achieved in PLAQUE through two subtasks:

o Deciding where to place the learned predicates in the given query plan tree PLAQUE makes
the decision based on evaluating dependence between different query blocks of a query tree and
determining a placement strategy to maximize the benefit of predicate placement (discussed in
Section 5).

e Deciding how to implement the learned predicates in the executor, i.e., whether or not to use
index-scan (discussed in Section 4).

Finally, the executor returns the query answer to end users.

PLAQUE has been implemented in an Apache project VanillaDB [8, 24], which consists of
several key components (query executor and optimizer) and supports most popular operator
implementations such as hash-join, index/table scan, index join, sort-merge join, nested loop join,
etc. Thus VanillaDB is suitably modified for a reference implementation of PLAQUE. In particular,
PLAQUE added the code to implement the learned predicates in VanillaDB by creating in-memory
predicate or index predicate, which requires minimal modifications to current DBMS codes with
low overhead. The in-memory predicate is implemented as an in-memory checker that is directly
applied to the data flow among operators during query execution to eliminate any tuple that
fails the corresponding predicate, while the index predicate is implemented as index-scan to fetch
tuples using an index. We discuss the two implementations in detail in Section 4. Furthermore,
mechanisms to add and dynamically refine predicates in the executing query using ECA rules
were added to the codebase. Extending other open-source DBMSs, such as PostgreSQL, to support
learned-predicate-based query execution is part of our future work.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:6 Yiming Lin and Sharad Mehrotra

3 PREDICATE CREATION

In this section, we describe how PLAQUE learns predicates from various relational operations
in a query, including MIN/MAX aggregate, theta join, equi join, and group by/having conditions.
In particular, PLAQUE aims to learn two types of predicates during query execution, i.e., range
predicate and membership predicate which are of the form [a op v] and [a € V] respectively, where
op is a relational operator such as >, >, etc., and v is a value in the domain of attribute g, and V is a
set of such values.

Predicates learned in PLAQUE that are used to modify the query do not result in a change of
the final answers returned by the query (correctness). Furthermore, PLAQUE uses a monotonic
refinement approach to modifying predicates learned wherein a predicate, say p may be replaced
by a predicate p’ learned later if p’ is more selective compared to p, i.e., p” — p. As an example, a
predicate a > 10 may be replaced by a > 20 since the latter is more selective. PLAQUE uses such a
monotonic refinement strategy to filter more tuples thereby improving performance. Monotonic
refinement of learned predicates does not jeopardize the correctness of the approach, which
produces exactly the same results as that produced by the original query without learned predicates.
Below we restrict ourselves to discussing only the predicate learned from different operators.
Arguments about the correctness of the approach, and the exact definition of correctness in the
context of adding newly learned predicates during query execution, while intuitively simple, are
nonetheless, more formally treated in [5].

3.1 MIN/MAX Aggregation

Consider an aggregate query with max or min conditions on attribute a, MAX(a) or MIN (a). Let ¢
be a tuple and t.a be the attribute value of a in tuple t. We first describe the event that causes the
corresponding ECA rule (discussed in Section 2) to trigger the creation of a predicate learned from
extremal aggregate operators. We restrict our discussion to the MAX operator. The logic for MIN is
very similar and follows directly from the discussion below.

EVENT 1. PREDICATE CREATION FROM MAX OPERATOR.
WHEN: MAX (a) operator receives a tuple ¢
IF: t is the first tuple MAX (a) receives
THEN: a predicate p, a > $a, is created, where $a = t.a.

Note that a > $a satisfies the predicate correctness since none of the records with values of
a < $a would satisfy the query answer. As an example in Figure 1, consider the first tuple (D in the
lineitem table. A predicate [_discount > 0.3 is created when tuple (D reaches Aggmax (I_discount)
with [_discount as 0.3. Eliminating records with [_discount < 0.3 will not change the query results.

Once a predicate is learned from MAX aggregate operator, it may be updated later during query
processing. Such a refinement is captured by the following event.

EVENT 2. PREDICATE REFINEMENT FROM MAX OPERATOR.
WHEN: MAX (a) aggregate operator receives a tuple ¢
IF: the predicate p associated with MAX (a) exists and t.a > $a
THEN: update p to be a > $a, where $a = t.a.

The predicate refinement based on MAX (a) operator defined above is monotonic and hence the
refinement may filter additional records since the corresponding predicate is more selective. We
note that predicates learned from MAX operator would be most effective if the true maximum
value (or a value close to it) appears early in lineitem table, which will then allow early pruning of
other tuples that would not make it pass the aggregation operator.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:7

3.2 MIN/MAX with GROUP BY

Let us now consider MIN and MAX predicates in conjunction with GROUP BY operators. For now,
let us assume there is no HAVING clause in the query which is addressed separately in Section 3.3.
Let a be the attribute on which the MAX or MIN value is computed, and b is the attribute used
to create groups, e.g., SELECT MAX(a), b, FROM..., WHERE..., group by b. For such a GROUP BY
aggregate operator, PLAQUE adds a predicate an initial predicate p as follows at the beginning of
the query processing.

EVENT 3. PREDICATE INITIALIZATION MIN/MAX GROUP BY.
WHEN: at start of query execution
THEN: Add a predicate p = —(b € $groups), where $groups = 0.

p initially will return true for any tuple since $groups = 0. When a tuple ¢ reaches the aggregation
operator, the predicate p is appropriately modified by adding a new predicate p; as a disjunct, where
pi corresponds to a predicate for the group (i.e., the b value) associated with the tuple ¢.

EVENT 4. PREDICATE ADDITION MIN/MAX GROUP BY.
WHEN: MAX (a) operator receives a tuple ¢
IF: ¢ is the first tuple MAX (a) receives in the group whose group value b = t.b
THEN: create a predicate p; = (b = b;) A (a > $a;), where $a; = t.a. Modify the variable $groups
in the predicate p associated with the aggregation to $groups U {b;}. Finally, add p; as a disjunct to
p creating a modified /extended version of p. More formally, let p = =(b € $groups} vV p’. 2 The p
is modified to be: p = =(b € {$groups U {b;}} v p’ vV ((b =b;) A (a > $a;)).

Consider a modified TPCH query in Section 1 where the aggregate attribute a = I_discount
and the group attribute is [_shipmode = { ’Air’, ’Mail’, ...}. When the first tuple ¢t reaches the
aggregate operator whose t.I_shipmode =’Air’ and t.I_discount = 0.3, the predicate p is updated
to =(b € {’Air’}) v ((b =’Air’) A (a > 0.3)). At this time instance, if we were to apply the learned
predicate p on a new tuple ¢’ to check if ¢’ can be skipped or not, and assume t’'.I_shipmode =
’Mail’, the predicate returns true and tuple ¢’ will pass since its group does not associate with any
filtering condition.

The newly learned disjunct to the predicate p associated with the GROUP BY aggregation
operator contains a filtering condition (a > $a;) which is further refined as more tuples of the
same group b; are seen as query execution proceeds.

EVENT 5. PREDICATE REFINEMENT FROM MIN/MAX GROUP BY.
WHEN: MAX (a) operator receives a tuple ¢
IF: t is in group b; where b; € $groups, and t.a > $q;
THEN: update p to p = —(b € $groups) vV p’ v ((b = b;) A (a > $a;), where $a; = t.a.

When a new tuple t reaches the aggregate operator whose t.I_shipmode =’Air’ and t.I_discount =
0.8, the predicate p is refined to —=(b € { ’Air’ }) V ((b ="Air’) A (a > 0.8)). For each group b;, $a;
is the maximum value in this group observed so far during execution. In Section 4, we will detail
how to implement such a disjunction of predicates.

We note that the above strategy of maintaining a predicate for each group to filter tuples may
introduce non-trivial storage and processing overhead when the number of groups is large. PLAQUE
uses several optimizations to reduce such overhead. To reduce the overhead of maintaining and
checking a disjunction for each group, PLAQUE maintains predicates for a small set of k groups. We
choose the k groups for which to maintain predicates based on estimating the size of different groups

2Note that after initialization, when —(b € $groups), then p’ is empty. As more disjuncts get added to the predicate p,

the subsequent value of predicate p has a non-empty p’ which itself contains one disjunct for each group that has been
observed so far.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:8 Yiming Lin and Sharad Mehrotra

by a bootstrapping process by processing an initial sample of records without any predicates. From
the sample, we determine the top-k largest groups and then subsequently learn filters on the chosen
b; values based on frequency. The intuition behind the choice is that predicate-based filtering will
be most effective on such groups given their size. We can further reduce the overhead of checking if
a value of b in a tuple has been previously observed (i.e., =(b € {$groups) by maintaining $groups
as a bloom filter. Note that false positives in the bloom filter does not jeopardize the correctness - it
only implies that PLAQUE will not be able to form a predicate on b; if the bloom filter indicates
that b; is already in $groups as a false positive.

3.3 Conditions in HAVING Clause

Consider a query with having condition, SELECT Agg(a), b FROMR;, ..., R, WHERE ... Group
by b HAVING Agg(a) op v, where a is the aggregate attribute and b is the group attribute. op is
oneof > | > | < | <| = visavalue, and Agg = max | min | sum | count.

During query execution, the aggregate operator maintains the aggregated value Agg(a) (e.g.,
SUM(a)) for each group. Agg(a) will be updated when any new tuple reaches the aggregate
operator.

Consider the scenario where Agg is count, and HAVING condition is count(a) < 100. If the
HAVING condition becomes false, i.e., count(a) > 100, it will always remain false during later query
execution for that group. On the other hand, for the HAVING condition count(a) > 100, once it
becomes true, it will always remain true in the future when more tuples are processed. We capture
such a concept by defining in-preserving and out-preserving properties for the condition in the
HAVING clause. Subsequently, we describe how to learn predicates that can be used to filter tuples
based on the conditions in the HAVING clause.

DEFINITION 1. IN/OUT-PRESERVING PROPERTY OF HavING CONDITION. A condition H =
[Agg(a) op Constant] in the HAVING clause is in-preserving, if H becomes true at any instance ¢
during query execution (based on partially observed tuples belonging to a given group), H always
remains frue at any instance t” where ¢’ > t, when more tuples of that group have been observed.
On the other hand, H is out-preserving, if H is false at an instance ¢t during query execution, it
remains false at any future instance ¢’ where ¢’ > t when more data has been observed. O

Given the above concepts of In/Out preserving conditions, we can now define the event to create
the corresponding predicate.

EVENT 6. PREDICATE LEARNED FrROM HAVING.
WHEN: Agg(a) in a HAVING condition is updated for group with group value b;
IF: the HAVING condition is out-preserving, and Agg(a) fails the condition (false-condition)
THEN: a membership predicate p; = ={b;} is created.

Whenever an out-preserving having condition becomes false during query execution in the
group whose group value is b;, PLAQUE learns the predicate p; to skip all later tuples in the same
group. In particular, for any tuple ¢, if t.b = b;, ¢ fails the predicate p; and it will be skipped. Note
that the In/Out-preserving property of HAVING containing MIN, MAX or COUNT aggregation
can be decided together with op in advance of query execution. For instance, max(a) > 100 is in-
preserving and max(a) < 100 is out-preserving. As for sum aggregate operation, if the data statistics
of attribute a is known in advance, say all values in a are non-negative, then the out-preserving
property of sum can also be determined a-priori to query execution. For instance, sum(a) < 100 is
out-preserving if Yo € Vals(a),v > 0.

3.4 Learning from Theta Join

In this part, we show how to learn predicates from theta join conditions in the given query during
query execution. Let R be a relation. Consider a theta join condition between relations R; and Ry,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:9

Ry v4g0pp Ry, where a and b are two attributes, and op := > | > | < | <. To better illustrate the
idea, without loss of generality, let us assume op is >, i.e., the theta join condition is a > b. We first
define the event to trigger the creation of predicates learned from a theta join operator.

EVENT 7. PREDICATE CREATION FROM THETA-JOIN OPERATOR. WHEN: tuple t € R; arrives at a
theta join operator, Ry >4, p Ry
IF: t is the first tuple that fails to join with any tuples in Ry, 3
THEN: a predicate p, a > $a, is created, where $a = t.a

A tuple t € R, failing to join with any tuple in R, implies that for any tuple ¢ € R, that comes to
this theta join operator, the attribute value of ¢ .b must be greater than or equal to t.a, i.e., b > t.a.
Since a > b, this naturally implies a > t.a, thus establishing the correctness of the learned predicate
p. Consider the tuple (3 in the lineitem table in Figure 1-b). As shown in Section 2, the theta join
MI_extendedprice>p_retailprice learns the predicate p_retailprice > 10 when tuple (3 of lineitem fails
to join any tuple in the part table.

Once the predicate p = a > $a is learned, it could be updated during later query execution when
$a is updated to a larger value. In particular, we define the event of predicate refinement from theta
join operator below.

EVENT 8. PREDICATE REFINEMENT FROM THETA-JOIN OPERATOR. WHEN: tuple ¢ € Ry arrives at
a theta join operator, Ry >, Ry
IF: p = a > $a, t fails to join with any tuples in Ry, and t.a > $a
THEN: the predicate p is updated to be, a > $a, where $a = t.a.

The predicate refinement discussed above is monotonic. The operand $a in predicate a > $a
is the maximum value of attribute a in the tuple from R; that failed join test in the theta join
operator so far. So failure of a larger a value to join any tuple in the theta join can be used to refine
the predicate to a more selective predicate while ensuring correctness of the execution. This was
illustrated in Figure 1 by refining the predicate from [_extendedprice > 10 to [_extendedprice > 12
when processing the tuple (5 of the lineitem which also failed to join with any tuples in the part
table in theta join operator ™ _extendedprice>p_retailprice-

Likewise, when op in the theta join condition is >, we follow Event 7 and Event 8 to learn exactly
the same predicate as the one when op is >. In contrast, when op is < or <, the learned predicate is
a < $a, where $a is the minimum value of attribute a in the tuple from R; that failed the join test
in the theta join operator so far.

Symmetrically, for a theta join Ry <, Ry, if there is a tuple coming from the right side of
the join, i.e., R, and it fails the join test, we create a predicate b < $b, where $b is the minimum
value of R,.b in the tuples from R; that fails join test in this theta join operator so far during query
execution.

In a nested loop implementation of theta join Ry >, - Ry, if a tuple rises from R; and the join
algorithm checks the entire R, relation to perform the join, we refer to R, as outer relation and
R, as inner relation Table 1 summarizes all the predicates that can be learned from a theta join
condition based on the op and on which side the tuple ¢ ascends into the join. In the table, we
denote max, and min, by the maximum and minimum value in attribute a that fails join test so far
during query execution. It can easily be shown that the process of replacing predicates added to
the query tree earlier by stronger predicates discovered later in the execution is monotonic and
ensures the correctness of the execution.

Analysis: The effectiveness of predicates learned from theta joins in accelerating query processing
depends on the implementation used to implement the join. The most commonly used theta-join

3The above observation can be easily captured during query execution since the join output for ¢ in current theta join
operator will be empty (NULL).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:10 Yiming Lin and Sharad Mehrotra

Theta join Ri>gopp Ra
Quter relation Ry Ry
op >or = <or< >or = <or<
Predicates a>maxg | a < ming | b < ming, | b > maxy

Table 1. Learned Predicates for Theta Join

implementations can be categorized as (block-based) nested loop join, index nested-loop join or
sort-merge joins with a few variants, such as ripple join, that performs join R > S by sampling
tuples from both relations simultaneously. Consider the theta-join operator R; »<,~ Ry and let the
join be implemented using nested loop (or index nested loop). W.L.O.G., assume R;.a is the outer
relation where each tuple t in R; reaches the operator, and then the operator checks ¢ matches any
tuples in R, (inner relation). * The learned predicates from such a join operator are expected to
provide improvement when (block-based) nested loop join, index join and ripple join are used and
the values in R;.a reaching the theta join operator is not sorted. The advantage of the predicate
would not benefit the sort-merge implementation because tuples are processed in sort order. All
the remaining tuples yet to be processed satisfy the learned predicate and, hence, would not be
pruned further.

3.5 Learning from Equi Join

Equi join is the most common SQL query. We start with identifying several opportunities to learn
predicates from equi join.

To identify opportunities to learn predicates from equi join we first need to define a concept of
convergence point.

DEeFINITION 2. Convergence Point Let R be a relation that participates in a join in a query Q.
A convergence point for R wrt to the join operator is defined to be the earliest point in the query
execution when all the possible tuples of R that could possibly participate in the join have passed
through the join operator at least once. O

The convergence point of a relation participating in a join depends upon the join algorithm
used. For instance, in the case of a hash join, the convergence point of the build relation occurs
when the corresponding hash table has been built. In the query tree in Figure 1-a), the conver-
gence point of order table is reached after we build the hash table for order table. Similarly, the
convergence point of part table is reached when the first outer loop is complete in the join operator
™_extendedprice>p_retailprice When using nested loop join. At the convergence point for a relation
in a join, all possible values of the relation that could participate in the join have already been
observed and this information can be exploited in learning the appropriate predicates from joins.
Note that different relations reach convergence points at different instances, based on the join
implementation. For instance, in Figure 3 the convergence point for lineitem occurs close to the
end of query execution since lineitem is the probe table and we have to consume all tuples from
lineitem table to complete the query. In general, for one-pass hash join or nested loop join, their
build table or inner table will potentially reach convergence points early during query execution
when the build phase is complete or the first outer loop is complete. For multi-pass hash join (e.g.,
grace hash join) and sort-merge join, both relations will reach their convergence points when the
scan or sort for both relations is complete.

We can learn either membership or range predicates from equi joins at the convergence point of
participating relations.

4For index join, the inner relation corresponds to the one that performs the index scan for each tuple coming from the outer
relation. Ripple join switches the inner and outer relations during join execution.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:11

Begin Order Part Lineitem End

Timeline of pipeline query processing

Fig. 3. Convergence Points of Relations.

l fi=1221] |
fl=124] 2=8,11] £ =119.21]

= @ 2

— —
2 4 8 11 19 21

Fig. 4. Range Predicates Learned From Equi Join.

v

EVENT 9. PREDICATE CREATION FROM EQUI JOIN.
WHEN: R, reaches its convergence point
THEN: define a predicate p on relation R, on the join column R;.a where p; is either a set of range
predicates that cover the attribute values in R;.a or p; is a membership predicate a € Vals(R;.a),
where Vals(R;.a) consist of all values in R;.a.

We next discuss how membership/range predicates are learned.

Learning Membership Predicate from Equi Join: When a relation R reaches its convergence point
early during query execution, we can learn a membership predicate p,,, from the join attribute in
R. We adopt the choice of bloom filters to implement membership predicates as in the previous
work [15, 21, 27] to enable more efficient filtering due to the succinct nature of the bloom filters.

Membership predicates can save on the computational cost of computing join by filtering records
that will not join with records in the other relation. Such functions, however, do not save the
I/O cost of reading tuples from disk. For such a benefit. we instead can learn index-based range
predicates. Below we describe the range predicate learning strategy used in PLAQUE that brings
about 3x I/O saving compared with the membership filter as shown in Section 6). We will show
how to implement an index scan using the range predicates from equi join conditions in Section 4.

Learning Range Predicate from Equi Join: Consider an equi join operator >, 4=g, 5, Where a and
b are join attributes in R; and R,. Assume that R; reaches its convergence point early during query
execution (e.g., R; is the build table) and, thus, all values of R;.a are known early at the convergence
point. Our goal is to learn a set of range predicates from the values in R;.a that can be pushed down
to the other relation R, relation (e.g., the probe side) in the query plan tree to help filter away tuples
using an index on Ry, thus saving I/O costs. Figure 4 shows the histogram of values in R;.a (blue

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:12 Yiming Lin and Sharad Mehrotra

buckets) ° where the size of a bucket is unit size, i.e., 1. Let P, = {p.} be a set of range predicates.
Our approach to learning range predicates does not explicitly construct the histogram for R;.a - we
use the histogram in Figure 4 for better illustrations. To learn P, from values in R;.a in the equi
join condition p<g, 4=g, », several factors are considered.

o Completeness: the learned range predicates P, should not introduce false negatives, i.e., P,
should contain all values of Ry.a. Otherwise using P, on the probe side will incorrectly filter
potential correct values in the query answer.

o Effectiveness: P, should not result in large number false positives. One possible learned predicate
for R;.a in Figure 4 is p, = {[2, 21]}, which has zero false negatives. However, p, is not effective
since it has large false positives. (e.g., [5, 7], [12, 18]) Instead, P, = {[2, 4], [8, 11], [19, 21]} may
be a better set of predicates learned from R, .a since it does not introduce any false positives
nor false negatives.

o Complexity: the number of predicates in P, should be constrained. If we simply learn the unit
predicates (i.e., create one predicate for one value, such as [2, 2], [3, 3], ...[21, 21]), P, downgrades
to a membership-like predicate but using a less efficient implementation, and |P,| will be equal
to the number of distinct values in the column R;.a, which increases the complexity of predicate
implementation as we will show in Section 4.

The predicate p, we learn from an equi join condition on attribute a has the format [/, u], where
I and u represent the lower and the upper values in attribute a. Let [(p,) be the number of domain
values covered by the predicate, where [(p,) = u — [+ 1. For a value v, we denote by v € p, if v is in
the interval of p,. Formally, we define the Range Predicate Learning (RPL) problem as follows.

DEFINITION 3. RANGE PREDICATE LEARNING. Given a set of values V in join attribute and k,
the maximum number of range predicates, RPL aims to find a set of range predicates P, = {p’},
such that,

RPL)min " I(p}) (1)
prebr

st [P <k ()

Yo eV,veP, (3)

The range predicate learning defined based on Definition 3, condition 2 guarantees that the
number of learned range predicates is at most k (i.e., complexity), and condition 3 makes sure the
learned predicates will contain all attribute values and thus no false negatives. (i.e., completeness)
By minimizing the total length of range predicates, we are able to maximize the effectiveness of
the predicates since less number of false positives (i.e., gaps in the histogram of attribute values)
will be introduced by more concise predicates. RPL defined above can be shown to be NP-Hard by
reducing from size-constrained weighted set cover problem [11]. PLAQUE, thus, uses a fast greedy
approach k-Max-Gap to find the range predicates. The detailed analysis of problem hardness and
algorithm description using pseudo code is put in [5].

ExampLE 1. Consider the example in Figure 4. Assume k = 3, i.e,, |P,| < 3 implying that our
goal is to find at most 3 range predicates. We first sort the values in the join key and find the top-2
largest gaps (the distance between two consecutive values in a sorted list) between two consecutive
values in the join key, and they are (11, 19) and (4, 8). Dropping these two gaps from the value
interval of the join key leads to three predicates, [2,4], [8, 11] and [19, 21].

3 Assume the value type of R;.a is an integer, which can easily be relaxed to float.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:13

3.6 Sideway Information Passing

The above sections specify how PLAQUE learns predicates from relational operators. In addition,
PLAQUE uses a sideway information passing (SIP) approach to learn new predicates based on
predicates learned from relational operators when queries have joins.

SIP via Equi Join. Consider an equi join »<g, 4=p, 5. W.L.O.G., assume we have learned a predicate
p1 which is applicable in join column R;.a, e.g., p; = Ry.a > 10, PLAQUE learns a new predicate p;
in Ry.b by passing p; via equi join condition, i.e., po = Re.b > 10.

SIP via Theta join. Consider a theta join »<g, q0p r,.5, Where op :=> | > | < | < | £ WL.O.G,
assume we have learned a predicate p; which is applicable to join column R;.a. If p; is a membership
predicate, i.e., Ry.a € Vals(R;y.a), and op is the operator #, then PLAQUE learns a new predicate p;
on R,.b where p; is Ry.b ¢ Vals(R;.a). Alternatively, if op is >, then PLAQUE can learn a predicate
Ry.b <= x, where x is the maximum of the elements in Vals(R;.a). Similar predicates can be learned
for other instantiation of the operator, e.g., if op is <, then we can learn the predicate R,.b >= x,
where x is the minimum value in Vals(R;.a).

Likewise, PLAQUE learns appropriate predicates on R;.b values based on a set of range predicates
learned over R;.a. Consider a predicate p; consisting of a set of ranges: p; = pr1 V pr2 V ... V Prn,
where p,; = [l u;] and u; < l;4; learned over R;.a. Based on the operator op in the theta join
><R,.q op Ry.b» PLAQUE learns predicates on R; as follows. If op is >, then the predicate learned on
Ry.b corresponds to R,.b < x, where x = u,, and u, is the largest value in the range predicates
covering R;.a values. Likewise, if op is <, we add a predicate R;.b > x, where x = [}, where [; is the
smallest value in the range predicates covering R;.a. Note that in both the above cases, if [; or u,
are not bounded, we do not learn any predicate on R,. For instance, if the first range predicate on
Ry.a corresponded to say Ry.a < 5, then its range is (—oo, 5]. Thus, in such a situation, since /; is
not bounded, no predicate on R, will result from the above join condition. Above, we have specified
a few cases of how SIP predicates are learned in the case of theta joins. The comprehensive set of
learned predicates depends upon the set of operators in the theta join, but the essential logic is
similar to the one highlighted above.

4 PREDICATE IMPLEMENTATION

In this section, PLAQUE implements learned predicates as either in-memory predicate or as index
predicate.

In-memory Predicate. The in-memory predicates can be either range predicate, membership
predicate, or a disjunction of range predicates as in the MIN/MAX with GROUP BY (see Section 3.2).

Membership predicate is implemented by converting the value set to bloom filter. Note that the
bloom filter will not have false negatives but may introduce false positives. Such a false positive
may result in tuples going through but such tuples will be eliminated by the downstream operators,
and thus will not generate wrong answers. In-memory range predicates are simply implemented as
range conditions. The disjunction of range predicates learned from MIN/MAX with GROUP BY is
converted into a map, where the key is the group value and the value corresponds to the filtering
condition in the corresponding group.

Index Predicate. In-memory predicates are easy to implement and can be placed everywhere in
the query tree. While they offer great flexibility and are able to eliminate tuples early during query
execution, they do not help reduce the I/O cost of query execution. The alternate implementation
of learned predicates using index can additionally offer I/O saving by exploiting index scans. Index
based implementation of learned predicates is, however, more complex since refining predicates
dynamically during query execution with more selective predicates, as is done in PLAQUE, becomes
more complex when using an index-based implementation. (e.g., as is the case with the predicates

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:14 Yiming Lin and Sharad Mehrotra

learned from max/min aggregate operator and theta join operator). Furthermore, shifting the
original scan in the given query plan tree to index scan of learned predicates at query execution
time, if not carefully implemented, will generate duplicated query answers, as will be clear shortly.
Index based implementation of predicates needs to be implemented carefully only when it will
bring obvious performance improvement.

We thus consider implementing the index based predicate p when the following conditions are
satisfied:

o index of the attribute that a learned predicate p operates on already exists in the database

e p is able to be pushed down to just above the scan of relation R that p is applicable in the query
plan tree.

o the original scan of R is not index scan. (e.g., linear scan) Otherwise, the benefit from p using
index scan would be diminished, and implementing index scan using more than one predicate
adds high complexity to the executor, thus not worthy.

e p is a range predicate instead of a membership predicate.

We begin with a bootstrapping phase to estimate the selectivity of a learned predicate p, i.e., the
percentage of the tuples satisfying p over all sampled tuples so far during a bootstrapping phase. In
this stage, p is implemented as an in-memory predicate and placed in the optimal location in the
query plan tree using Algorithm 1. If the selectivity of p is lower than a predefined threshold (i.e., p
is selective), we shift p from an in-memory predicate to an index predicate. Let T be the timestamp
when the index predicate is built and operated, and Tuples be a set of tuples in R that have been
already processed during query execution before T. An index scan p on R typically retrieves all
tuples satisfying p, which might contain a subset of Tuples, leading to potential duplication of
query answers. PLAQUE remembers all the RIDs of the Tuples, and skips Tuples returned by the
new index scan. Especially, when the rows are accessed in the increasing order of the record id
(RID) (for efficient sequential I/O) in the table scan on relation R, PLAQUE uses a more efficient
strategy to prevent duplication. Let cur_RID be the RID of the row in R at the time T when index
predicate p is built. We add a predicate RID > cur_RID (implemented as in-memory predicate) in
p immediately to prevent the duplication of already processed rows whose RID is smaller than or
equal to cur_RID.

5 PREDICATE PLACEMENT

We next discuss the strategy used in PLAQUE to place the learned predicates during query execution
in a given query tree so as to maximize its benefit of filtering away spurious tuples. Predicate
placement in the traditional context before query execution is relatively straightforward - typically
optimizers push down predicates as far down the query tree and as close to the relational scan
as possible. Interestingly, when predicates are learned mid-flight during query execution, their
placement as far down the query tree as possible might not be a good strategy. For example, assume
PLAQUE learns a new predicate R.a > val at a given stage during execution. Assume that the
relation R was part of a join condition and was designated as a build table in a hash-join. Pushing
the predicate below the hash function in such a case, if the build process has already occurred by
the time the predicate is learned, would not help since the hash table based on R is already built. In
contrast, placing the predicate, perhaps, above the hash-join to reduce the number of tuples that
reach downstream operators could still be very useful in accelerating query execution. In general,
one has to be careful on where and how to place operators in the query tree, when predicates are
not known apriori and are learned during query execution. Our goal in this section is to develop a
strategy that maximizes the impact of the predicate by placing it at an appropriate location in the
query tree.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:15

Fig. 5. Optimal Predlcate Placement and Execution Graph.

In a pipeline query plan, a query is often executed in several blocks based on the specific
implementations in relational operators, where all operations in one block are pipelined. Consider
a four-way join aggregate query plan tree in Figure 5, where R; and R; are joined using Index
Nested Loop Join (INL]), and all the other joins are hash join. For each hash join, the probe phase is
executed after the build phase is complete, leading to naturally two blocks of execution, i.e., build
and probe.

ExaMmPLE 2. Figure 5 shows four execution blocks in the query tree, represented by nodes A, B, C, D
with different colors. Let b; be a block where all the operations can be executed using pipelining. In
Figure 5, node A is one block where the INL], two probing operations, and aggregate operation can
be pipelined together, while the build operation in Join 2 is in one individual block. (i.e., node B in
Figure 5). Similarly, the probe phase of Join 4 can be pipelined with the build phase of Join 3 in
node C, while the build of Rs in Join 4 is an individual block.

We formulate query execution on a given query plan tree into a partial order graph to capture
the order of block executions.

DEFINITION 4. JoIN GRAPH. Let G = (V,) be a directed graph, where each b; € V represents
a block, and e;; € & denoting that the execution of block b; must be executed after b; is complete.

ExampLE 3. The join graph in Figure 5 has four nodes, A, B, C, D. The edge from B to A denotes
that all the operations in A can be executed only when the build table of Rs is complete.

Formulating query execution as a partial order join graph is helpful in identifying where to place
the learned predicates. On one hand, we wish to push the learned predicates as low as possible
in the query tree to maximize their benefits to potentially skip more rows early during query
execution. On the other hand, it is not beneficial to place the predicates in a block whose execution
has already been completed before the time when the predicates are learned. The partial order join
graph provides a way to determining where to place the predicates in the example below.

Assume a range predicate p, is learned from the max operator (e.g., Agg in Figure 5), and it
is applicable in Ry, then the best location to place p, is just above the scan of Ry, since doing so
will filter away tuples earliest. However, if p, is applicable to Rs, inserting p, above the scan of
Rs will not help remove tuples since the build phase of Rs is complete before the p, is learned in

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:16 Yiming Lin and Sharad Mehrotra

Algorithm 1: Predicate Insertion
Input: p,G = (V,8)
1 b :=node where p is created
2 Desg(b) := the set of descendants nodes of b in G
3 for b; € Desg(b) U {b} do
4 ‘ pushdown(p, b;)

the aggregate operator. Instead, the best location for p, is Ry (or Ry) if R; joined with R; (or Ry).
Intuitively, we wish to push the learned predicate as deep as possible in the query plan tree, while
ensuring the predicate will effectively filter away tuples.

We formally describe the algorithm to place any learned predicate in the query plan tree in
Algorithm 1. Given a learned predicate p and the partial order execution graph G = (V, &), we
first identify the node b € V (i.e., block) where p is created. (Ln.1) Second, we identify the set of
descendant nodes of b in graph G, Desg(b), i.e., the set of nodes that are reachable from b. Finally,
in block b and each block in Desg (b), we push down the predicate p into each such block if p is
applicable in the corresponding relations in the block. (Ln.3-4)

ExampLE 4. In Figure 5, assume a predicate p is learned in node D (i.e., after the hash table of Rs
is complete). Obviously, p cannot be pushed down further in D. Consider the set of descendants of
D, ie., {C, B}. p can be pushed down in C to the probe of Ry, and it can also be immediately pushed
down above the scan of the applicable base relation in node A via Join 3 (e.g., if Join 3 is Ry »< Ry,
then p can be pushed down above the scan of R;). Similarly, a predicate p learned in node C (after
the build table of R4 is complete) can be passed through Join 3 and pushed down to node A. Note
that p learned in C will not help eliminate tuples in its ancestor nodes in the graph G, such as D,
since p is learned after the block D is fully executed. When the predicate p is learned from Agg in
node A (e.g., max or min operator), the only node we can push p down is A since A does not have
any child nodes in the graph. In particular, p can be pushed down appropriately into the different
execution points in A based on the applicable attribute of p. For instance, if p is applicable in either
Ry or R;, then p can be pushed down to the scan of Ry or R,. If p is applicable in Rs, then p will
be placed in probe phase in Join 2 in the node A, which is not the deepest location in A, but will
help eliminate tuples early for downstream operations in A, such as the probe phase in Join 3 and
aggregation.

6 EVALUATION

We evaluate PLAQUE'’s ability to accelerate query execution using two synthetic data sets and one
real data set.

6.1 Methodology

6.1.1 Data Sets. « TPC-H. We use TPC-H (SF=1) as our first data set generated using standard
datagen [7] which creates the uniformly distributed data. The default TPC-H does not represent a
practical data distribution, which is often skewed. Therefore, we further use a modified datagen [1]
to create TPC-H datasets with different amounts of skew, i.e., Zipf factor as 1 and 2, respectively.
e SmartBench. To evaluate the learned predicates on a User-Defined-Functions (UDFs) benchmark
where UDFs are used in queries, we choose SmartBench [13] which is derived from a smart space
sensor system and focuses on analytics of IoT data. Smartbench contains multiple sensor tables,
such as Bluetooth, WiFi, or camera as well as a space table (that connects sensors to locations),
where several UDFs are supported, such as location and occupancy computations.

o IMDB. We finally use a real data set IMDB [2], which contains around 4GB size files.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:17

I VanillaDB [Z1QS
I Sia I PLAQUE]|

Q@21 Q21-max Q21-min Q22 Q22-max Q22-min Q5 Q5-max Q5-min Q4 Q4-max Q4-min

(a) TPC Queries (Top-4 Performance).

= - o
> o 3
T

Running Time (Seconds)

o

o

N

[VanilaDB C1QS
Il sia I PLAQUE|

Running Time (Seconds)
» > ® 3

r

o

Q6 Q6-max Q6-min Q19 Q19-max Q19-min Qat Qi-max Q1-min Q10 Q10-max Q10-min

(b) TPC Queries (Bottem-4 Performance).
Fig. 6. TPCH Queries.

| | | L 1 1 4
Il VanillaDB QS i
105 £ [EEPLAQUE
@ E
© []
=
3 I |
§10§ El
s | :
= |]
E10%F] -
= E
o]
2]
£t]
210°] E
10°

Q3 Q3-max Q3-min Q5 Q5-max Q5-min Q9 Q9-max Q9-min Q10 Q10-max Q10-min
SmartBench Queries (log10-scale)

Fig. 7. Query Run Time on SmartBench.

6.1.2 Queries. We tested all queries {Qy, ..., 022} in TPCH. ® In addition to testing the query Q;
to test the effect of MIN and MAX optimizations, we also test PLAQUE for Q; with the aggregate
modified to MIN and MAX, denoted by Q;-max and Q;-min to evaluate the predicates learned from
MIN/MAX conditions. We refer to the modified TPCH query set with MIN and MAX conditions as
TPCH-max and TPCH-min. In the SmartBench we pick four representative queries, Q3, Q5, Q9
and Q10, where two UDFs, computing location of a person [18] and occupancy of a room [19]. 7 In
IMDB data set, we manually create four selection-projection-join-aggregate queries (i.e., Q1-Q4),

For a comprehensive test, minor query modifications are made while preserving the query complexities and semantics,
such as adding proper having conditions on the aggregated attributes (if any).

"We did not test other queries in SmartBench since they are either not interesting (without join and UDFs) or they are
similar to one of the representative queries above.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:18 Yiming Lin and Sharad Mehrotra

| | |
16 - [E VanillaDB [1QS n
| [sia EEPLAQUE

61 |
4

2

0 1 M Il

Qi Q1-max Q1-min Q2 Q2-max Q2-min Q3 Q8-max Q3-min Q4 Q4-max Q4-min
IMDB Queries

Running Time (Seconds)
©
T

Fig. 8. Query Run Time on IMDB.

T .
Il selectivity-0.2
[l selectivity-0.4 1
[selectivity-0.6
Il selectivity-0.8

>

N
T

o

©

Improvement Kartio
[}

TPCH-Q2 TPCH-Q4 SB-Q3 SB-Q10 IMDB-Q4

(a) Learned Predicates from Join.

T
Il selectivity-0
60 ||l selectivity-0

[selectivity-0
50 |-l selectivity-0

2
4
.6
-8

Improvement Ratio

) I
TPCH-Q2-max TPCH-Q4-max SB-Q3-max SB-Q10-max IMDB-Q4-max

(b) Learned Predicates from MAX.
Fig. 9. Improvement Ratio on Different Selectivities.

and for each query Q; we modify the aggregate condition to be MAX and MIN, and thus creating
additional two queries Q;-max and Q;-min for each Q;.

6.1.3 Compared Approaches. We compared the performance of the following four strategies. (1)
VanillaDB: standard query optimizer and executor implemented in VanillaDB [8, 24]. (2) Sia [26]:
Sia learns synthesized predicates given a SQL query before query execution. (3) QuickStep (QS) [21]:
QS builds bloom filters for build table in hash join and use them to filter (4) PLAQUE.

6.2 Experimental Results

6.2.1 Performance of Learned Predicates. We start with reporting the performance of our learned
predicates on TPCH (Zipf is 0 using the standard datagen [7]), SmartBench and IMDB data sets
in Figure 6, Figure 7 and Figure 8, respectively. Let improvement ratio be %’%, where
Time() is the run time of a certain strategy.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:19

T
Il saving
B Overhead

T
[l Saving
B Overhead

Running Time (Milliseconds)
%)

Running Time (Milliseconds)

max max+groupby having theta-join equi-join max max-+groupby having theta-join equi-join

(a) TPCH-Q4 (b) TPCH-Q11

T
[l Saving
B Overhead

@
S

T
Il Saving
B Overhead

33
S
T

g gzt F
< i<
8 8
@40 - og
£ @
= =3r
= =
30 o
£ £
F F2r
Saor 2
c c
< <
& E1r
) I
0 L 1 I\ L 0
max max+groupby having theta-join equi-join max max+groupby having theta-join equi-join
(c) SmartBench-Q5 (d) IMDB-Q4

Fig. 10. Saving and Overhead Breakdown of Learned Predicates.

Performance on TPCH. We tested all queries in TPCH and report the queries with Top-4 and
Bottem-4 performance ranked by the improvement ratio of PLAQUE on the TPCH queries (not
TPCH-max or TPCH-min). We report the experimental results for all TPCH queries in [5].

Figure 6(a) shows that PLAQUE, by exploiting learned predicates, achieves improvements up
to 3.54x (Q21) over the basic plan without filters for TPCH queries. The improvement become
up to 33.5x (Q21-min) for MIN/MAX variants of these queries. As for the bottom-4 queries in
Figure 6(b), PLAQUE still shows a slight improvement over VanillaDB (and most other baselines),
and a noticeable improvement is observed for their corresponding MIN/MAX queries. This is
primarily because these queries contain few conditions/predicates (e.g., join, aggregate, group-by,
having, etc,.) that PLAQUE could learn effective predicates from. For instance, PLAQUE has similar
performance as VanillaDB in Q6, since Q6 does not have join, max/min, group-by and having
conditions, and thus PLAQUE fails to learn any new predicates. However, when we add MIN or
MAX conditions as in Q6-max or Q6-min, PLAQUE outperforms VanillaDB by 2.76x immediately.
Overall, PLAQUE’s plan with learned predicates outperforms the plan without learned predicates by
2.1x, 12.3x, and 12.7x on average in all queries in TPCH, TPCH-max, and TPCH-min, respectively.
This observation demonstrates that the learned predicates could significantly speed up query
execution especially when the MIN/MAX is used as the aggregate condition, the learned predicates
are able to skip a large number of tuples to be processed, thus leading to significant savings.
Performance on SmartBench. In Figure 7, we use log10 scale to plot the query running time.
The improvement of PLAQUE over the standard query executor, VanillaDB, is up to 6.6x for non-
MIN/MAX queries and 58x for MIN/MAX queries. It demonstrates that if queries contain expensive
UDFs, the impact of filtering tuples (as done by learned predicates) is even more significant.
Performance on IMDB. In IMDB data set in Figure 8, we made similar observations. The predicates
learned in PLAQUE improves the standard query executor, VanillaDB, by around 2x (Q1) to 3.7x

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:20 Yiming Lin and Sharad Mehrotra

(Q4) for join queries without MIN/MAX aggregate conditions, and the improvement goes up from
2.2 (Q3-max) to 5.7x in Q4-min.

Comparison with Sia. Among all queries in TPCH benchmark, Sia is only able to generate new
predicates for Q4 and Q21. For instance, in Q21, Sia leverages the condition |_shipdate <’1992-07-01’
and I_shipdate > |_commitdate, thus a new predicate |_commitdate < 1992-07-01’. Sia fails to
learn new predicates for all queries in SmartBench and IMDB workloads. Sia works well when
the query when queries contain additional predicates on join columns. PLAQUE works in a much
wider spectrum of queries and achieves higher performance improvement. Sia is complementary
to PLAQUE and the predicates learned by Sia before query execution could be combined with the
one learned by PLAQUE during query run time.

Comparison with QS. QS focuses on hash join and builds the bloom filter for the hash table,
which is used to filter tuples in the probe table. The filtering approach of QS is included already in
PLAQUE- its counterpart is learning the membership predicate from a hash join. However, PLAQUE
expands the opportunities to learn predicates in several ways - based on a much larger repertoire
of operators and supports both main memory and index-based implementation of the filter. The
experimental results clearly demonstrates that PLAQUE significantly outperforms QS by 5.5X, 9.4X
and 2.2X in TPCH, SmartBench and IMDB, respectively.

We also performed experiments on JOB [4] (Join Order Benchmark), and we observed that
PLAQUE achieves significant speed ups over VanillaDB by 5.56x on average, and outperforms the
best baseline QS by 4.49x on average since JOB use MIN as the aggregate conditions and have
a relatively large number of joins in our tests. (Detailed results are shown in [5] due to space
limitation.)

6.2.2 The Effect of Query Selectivity. Figure 9 examines the performance of PLAQUE approach
over the standard query executor on queries with different selectivities. We pick five queries
from TPCH, SmartBench (SB for short), and IMDB data sets, i.e., TPCH-Q2, TPCH-Q4, SB-Q3,
SB-Q10, and IMDB-Q4, and report the results in Figure 9(a). We also pick their corresponding
MAX queries in Figure 9(b). We vary the selectivity of a query to be 0.2,0.4,0.6,0.8. A query
with lower selectivity indicates it is more selective since less number of tuples are in the results.
We plot the improvement ratio under various selectivities of query workloads. For join queries
without MIN/MAX aggregate conditions, when queries are more selective (low selectivity value),
the improvement due to PLAQUE is larger. This is because for any equi join operator o, if one of its
inputs, say the left side of o, oy, is highly selective, then PLAQUE would be able to learn selective
predicates from the tuples coming to o from its left side oy, and pass the learned selective predicates
along the query plan tree using the algorithm in Section 5, leading to larger improvement.

For aggregate queries with MAX conditions in Figure 9(b), interestingly, we have made a different
observation. The improvement from the learned predicates is larger when the query is less selective
(higher selectivity value). This is because when a query is less selective, the tuples will probably
reach the aggregate operator at an earlier time and thus the predicates can be learned earlier
and updated to be more selective (due to its monotonicity) in the aggregate operator using the
predicate creation algorithm in Section 3. On the other hand, when the query is less selective,
the improvement brought by the predicates learned from join operators is smaller as observed
in Figure 9(a). It turns out the improvement due to the predicates from MAX operator is more
significant than the one learned from join operators, thus leading to an overall performance
improvement with the increase of selectivity. This observation indicates that the predicates learned
in MIN/MAX aggregate conditions will work better for slow queries that are less selective, which
demonstrates that such learned predicates are even more suitable for long-running queries with
significant overheads.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:21

Time(PLAQUE _P)/Time(PLAQUE) | IMP_avg | IMP_min | IMP_max
TPCH (TPCH-max) 1.4 (1.5) 1(1) 2.2 (2.4)
SmartBench (SB-max) 2.8 (3.5) 1(1) 5.8 (7.9)
IMDB (IMDB-max) 1.6 (1.7) 1(1) 1.9 (2.3)

Table 2. Predicate Pushdown VS Optimal Predicate Placement.

Selectivity Threshold [0 0.05 0.1 0.15 0.2 |

TPCH 14 1.68 2.13 2.1 2.04
TPCH-max 4.2 119 128 124 12.1
TPCH-min 4.1 10.8 123 126 122
SmartBench 3.1 3.6 4.2 4.1 4

SmartBench-max 323 341 359 36.1 356
SmartBench-min 31.2 342 361 363 359

IMDB 1.3 1.6 2.3 2.2 2
IMDB-max 1.7 2.4 3.1 3.1 2.8
IMDB-min 1.7 2.4 3.1 3.1 2.8

Table 3. Improvement Ratio of Memory Predicate VS Index Predicate.

l Selectivity Threshold [
TPCH

0 005 01 015 0.2 |

0 006 011 024 0.28
TPCH-max 0 021 024 029 033
TPCH-min 0 021 024 029 033
SmartBench 0 009 017 025 0.29

0

0

0

0

038 0.44 0.52 0.54
038 0.44 052 0.54
IMDB 0.11 0.17 021 0.24
IMDB-max 0.28 031 035 0.39
IMDB-min 0 028 031 035 0.39
Table 4. Percentage of Index Predicates.

SmartBench-max

SmartBench-min

6.2.3 The Effect of Optimal Predicate Placement. We examine the effect of the predicate placement
algorithm in Section 5 and report the results in Table 2. In particular, we compared our placement
strategy with the standard strategy that always pushes the learned predicates down to the leaf
nodes of the query tree, denoted by PLAQUE _P, and we reported the improvement of PLAQUE
compared with PLAQUE _P, i.e., Time(PLAQUE _P)/Time(PLAQUE). We performed the tests over
all queries in TPCH, SmartBench, IMDB, and all their variants (e.g., TPCH-max, IMDB-min), and
reported the average, minimum, and maximum improvement of the optimal predicate placement
over the predicate pushdown strategy (denoted by IMP_avg, IMP_min and IMP_max in Table 2).
Note that due to space limitation, we do not report TPCH-min, SmartBench-min, and IMDB-min
since its performance and improvements are very similar to that for the MAX queries.

In Table 2 we observe that by using our optimal predicate placement, PLAQUE could maximize
the benefit of the learned predicates by placing them in the most effective locations in the query
tree, which outperforms the pushdown strategy by 1.4x, 2.8x, and 1.6x on average, and up to 2.2x,
5.8x and 1.9x in TPCH, SmartBench, and IMDB, respectively. Our strategy has a slightly better
performance on the query variants with MAX aggregate conditions.

6.2.4 The Effect of Data Distributions. In this experiment, we explore the effect of data distributions
on the query performance in Figure 11. In particular, we use a modified datagen [1] to create TPC-H
datasets with different amounts of skew, i.e., Zipf factor as 1 and 2, respectively. The standard

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:22 Yiming Lin and Sharad Mehrotra

[Saving Overhead ‘

TPCH 3.92 0.37
TPCH-max 7.21 0.41
TPCH-min 7.13 0.42
SmartBench 67.1 0.31

SmartBench-max 84.9 0.37
SmartBench-min 82.6 0.39

IMDB 491 0.49
IMDB-max 7.13 0.53
IMDB-min 7.38 0.55

Table 5. Saving VS Overhead in Seconds.
TPC-H [7] comes with a Zipf as 0, which means that the data values have a uniform distribution in
each column. We report the improvement ratio of PLAQUE over the VanillaDB, and discuss the
result for queries with and without MAX aggregate conditions in Figure 11.

For join queries without MIN/MAX aggregate conditions (left picture in Figure 11), the improve-
ment due to the learned predicates becomes larger on a more skewed data set with a higher Zipf
value. This is expected since using the predicates learning algorithm in Section 3.5, we are able to
learn a more selective predicate from equi join conditions when values are more skewed. We have
similar observations for the MAX aggregate queries. The improvement from the learned predicates
slightly increases on a more skewed data set, which is primarily contributed by the predicates
learned from equi join conditions, and it turns out the predicates learned from MAX aggregate
condition are less sensitive to the skewness of the data set than the predicates learned from join
conditions.

6.2.5 Overhead and Saving of the Learned Predicates. To understand the overheads and savings of
learned predicates, we report the average (in Table 5) as well as report the breakdown of the costs
and savings for each type of the learned predicates (in Figure 10) for sample queries in each of the
datasets. We measure the overhead of the learned predicates by computing overheads of predicate
creations and applications, and we measure the savings by the query runtime reduction due to the
added predicates.

In Table 5, we observe that PLAQUE pays a minimal overall overhead to achieve 8.2x, 186x, and
8.3x savings in TPCH, SmartBench, and IMDB in return. With a slightly higher overhead in the
MAX/MIN variants of the above three benchmarks, we observe even higher savings due to the
MIN/MAX (group-by) predicates up to 14x, 207x, and 12x, respectively. In Figure 10 we showed the
breakdown of overheads and savings for each type of learned predicate. We picked four interesting
queries that contain the most query conditions/predicates that can trigger the predicate learning in
PLAQUE. In particular, we examined five types of predicates, the predicates learned from single
MIN/MAX, MIN/MAX+group-by, having, theta-join and equi-join. ® When evaluating a certain type
of learned predicate, we used the knobs to disable the creations and applications of all the other
types of learned predicates. We observe that the overheads of predicates learned from equi-join
and group-by are noticeably higher than other types of learned predicates since learning predicates
from equi-join involves possible sorts but they need to be done only one time, and group-by involves
the maintenance of multiple range predicates in each group. Note that most range predicates (e.g.,
ones learned from MIN/MAX, theta join, etc,.) are very efficient since the predicate updates and
applications are simply updating the operands in the predicate during query execution. Overall the
MIN/MAX related predicates and the predicates learned from equi-join provided the most savings.

8We slightly modified the above queries such that they contain all the conditions to trigger the learning of the above five
predicates.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:23

TPCH-Q2 -©-TPCH-Q5 | TPCH-Q2-max -©-TPCH-Q5-max
Sl -o-TPCH-Q3 -©-TPCH-Q23 | 7l -6-TPCH-Q3-max -~ TPCH-Q23-max
-©-TPCH-Q4 TPCH-Q24 -©-TPCH-Q4-max TPCH-Q24-max
60
o6)/ﬁ) O/_e/6
& Eso0f
5% 5
2 240
[[
gef 2
s S30p
E £

w

N
o

@E@;S

ZipF-0 ZipF-1 ZipF-2 ZipF-0 ZipF-1 ZipF-2

Fig. 11. Improvement Ratio on Different Data Distributions.

6 6

[--ZipF-0 —%ZipF-1 -5 ZipF-2] [-©-ZipF-0 —ZipF-1 -5 ZipF-2]

5 5
o o
3 3
Ta Ta
= =
(7] (7]
£ £
[[
33 33
o o
£ £

2 2

’ ‘ ‘ ‘ ‘ ‘ ’ ‘ ‘ ‘ ‘ ‘

0 5 10 15 20 25 30 0 5 10 15 20 25 30
K K
(a) TPCH-Q2 (b) TPCH-Q4

Fig. 12. Improvement Ratio on Various k for Predicates Learned from Equi Join.

6.2.6 Index Predicates VS Memory Predicates. PLAQUE implements index-based predicates when
the selectivity of a learned predicate is below a given threshold ts. (see Section 4 for details)
We vary ts by chosing values from {0, 0.05,0.1,0.15,0.2} and report the improvement ratio, i.e.,
% and the percentage of index-based predicates in all learned predicates in Table 3
and Table 4. We observe that the best performance is achieved when the selectivity thresholds
range from [0.1,0.15] in the tested datasets, and the percentage of index-based predicates accounts
for roughly 20% on average. Note that the predicates learned from MIN/MAX are the most selective.
When the selectivity threshold becomes larger, the time stamp of index switching tends to become

later, and thus less I/O savings.

6.2.7 Parameter Selection in Join Queries. In Section 3.5, when we learn range predicates from equi
join conditions, we use k to specify the maximum number of range predicates we wish to learn from
an equi join condition. In this experiment, we explore the effect of k to the query performance on
TPCH-Q2 and TPCH-Q4, by varying k from 1 to 30, and report the improvement ratio in Figure 12.

When k is 1, both queries Q2 and Q4 have the same run time as the standard query executor
without improvement. In this case, one range predicate learned from equi join condition contains
the maximum and minimum values on one side of the join input, which will not help eliminate
any tuples, and thus will not improve the query performance. With increasing k, the improvement
ratio quickly increases and then flattens out when k reaches about 10 for both Q2 and Q4. When k
is too large, such as 30, the improvement ratio is slightly lower. This is because learning too many
range predicates, which will although improve the selectivity of the overall learned predicates
marginally, leads to additional complexity of applying the learned predicates in the query processing.
Empirically, we recommend k as 10 to be the ideal setting when we learn predicates from equi join
conditions.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:24 Yiming Lin and Sharad Mehrotra

7 RELATED WORK

The paper has already discussed (and/or experimentally studied) several approaches developed in
prior related work that have also explored learning predicates [15, 16, 21, 26, 27]. Additional related
work include techniques to move predicates using magic set [9, 20], algebraic equivalence [12],
value-based pruning [22]. Like the syntax-driven rewrite rules in [26], this work also requires
additional query specified predicates on join columns (which, as mentioned in the introduction, is
not comment based on looking at standard benchmark queries, such as in TPC-H, TPC-DS).

Prior research has also explored the use of data properties, such as functional dependencies
and column correlations, to accelerate query processing [10, 14, 17]. However, determining these
properties can be computationally expensive (e.g., [14] employs a student t-test for each column
pair). Moreover, it remains uncertain whether these properties can be sustained as data evolves.
Additionally, imprecise data properties may have limited utility in query optimization (e.g., a soft
functional dependency, which does not retain set multiplicity, cannot ensure the accuracy of specific
plan transformations involving group-bys and joins).

Finally, we note that the predicates learned before query execution [10, 14, 16, 17, 26] (which
has been the dominant line of investigation so far) are complementary to the learned predicates
using our approach at query time, and they can be used together to boost query performance.

8 CONCLUSION

In this work, we study the predicate inference problem at query run time. We proposed a set of
approaches to learn new predicates from aggregate, equal join, theta join, group by/having condi-
tions, and further place the learned predicates wisely in the given query plan tree to maximize their
benefit of skipping rows early during query execution, leading to possibly significant improvement.
The learned filters exhibit monotonic properties, becoming increasingly selective during query
processing. We have built a prototype system, PLAQUE, based on ideas described in this paper and
used the implementation to conduct comprehensive evaluations on both synthetic and real datasets.
Our experiments demonstrate that our learned predicates approach can accelerate query execution
by up to 33x, and this improvement increases to up to 100x when User-Defined Functions (UDFs)
are utilized in queries.

This work opens several interesting new research opportunities. One is to combine PLAQUE
with query compilation. One could pre-compile operators with predicate templates placed at
appropriate places in the query tree, and the templates can get modified/instantiated dynamically
with new values as the execution proceeds and predicates are learned. The other is to explore query
optimization when query processing may learn new predicates. For instance, given that PLAQUE
might discover new predicates early in the nested loop join when the first tuple in the outer loop
is processed, the optimizer may prefer it over other join algorithms, such as hash join in some
cases, when it expects a very effective filter. Last but not least, extending PLAQUE to parallel query
execution is also interesting. How to learn and share predicates in data partitions in a parallel
setting, and how to optimize the data partitions based on the query predicates to learn effective
predicates early are both interesting directions of further exploration.

ACKNOWLEDGMENTS

This material is based on research sponsored by HPI under Agreement No. FA8750-16-2-0021, and it
is partially supported by NSF Grants No. 1527536, 1545071, 2032525, 1952247, 1528995 and 2008993.

REFERENCES

[1] 2016. Skew TPC-H Benchmark.https:// bit.ly/ 2wvdNVo.
[2] 2022. IMDB Data Set.https:// developer.imdb.com/non-commercial-datasets/.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

https://bit.ly/2wvdNVo
https://developer.imdb.com/non-commercial-datasets/

PLAQUE: Automated Predicate Learning at Query Time 46:25

[3] 2023. Event Condition Action (ECA).https://en.wikipedia.org/ wiki/Event_condition_action.

[4] 2023. Join Order Benchmark.https:// github.com/gregrahn/join-order-benchmark.

[5] 2023. Technical Report of PLAQUE: Automated Predicate Learning at Query Time.https:// drive.google.com/file/ d/ 1QhFot-

kEM9dAS5TJorliMXFjlsh_jG03z/ view?usp=drive_link.

2023. TPC-DS Benchmark.http:// www.tpc.org/ tpeds.

2023. TPC-H Benchmark.http:// www.tpc.org/tpch.

2023. VanillaDB.https:// www.vanilladb.org/.

Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. 1985. Magic sets and other strange ways

to implement logic programs. In Proceedings of the fifth ACM SIGACT-SIGMOD symposium on Principles of database

systems. 1-15.

[10] Paul G Brown and Peter J Haas. 2003. BHUNT: Automatic discovery of fuzzy algebraic constraints in relational data.
In Proceedings 2003 VLDB Conference. Elsevier, 668—679.

[11] Lukasz Golab, Flip Korn, Feng Li, Barna Saha, and Divesh Srivastava. 2015. Size-constrained weighted set cover. In
2015 IEEE 31st International Conference on Data Engineering. IEEE, 879-890.

[12] Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data Eng. Bull. 18, 3 (1995), 19-29.

[13] Peeyush Gupta, Michael] Carey, Sharad Mehrotra, and oberto Yus. 2020. Smartbench: A benchmark for data manage-
ment in smart spaces. Proceedings of the VLDB Endowment 13, 12 (2020), 1807-1820.

[14] Thab F Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga. 2004. CORDS: Automatic discovery of
correlations and soft functional dependencies. In Proceedings of the 2004 ACM SIGMOD international conference on
Management of data. 647-658.

[15] Zachary G Ives and Nicholas E Taylor. 2008. Sideways information passing for push-style query processing. In 2008
IEEE 24th International Conference on Data Engineering. IEEE, 774-783.

[16] Srikanth Kandula, Laurel Orr, and Surajit Chaudhuri. 2019. Pushing data-induced predicates through joins in big-data
clusters. Proceedings of the VLDB Endowment 13, 3 (2019), 252-265.

[17] Hideaki Kimura, George Huo, Alexander Rasin, Samuel Madden, and Stanley B Zdonik. 2009. Correlation maps: A
compressed access method for exploiting soft functional dependencies. Proceedings of the VLDB Endowment 2, 1 (2009),
1222-1233.

[18] Yiming Lin et al. 2021. Locater: cleaning wifi connectivity datasets for semantic localization. Proceedings of the VLDB
Endowment 3 (2021), 329 - 341.

[19] Yiming Lin, Pramod Khargonekar, Sharad Mehrotra, and Nalini Venkatasubramanian. 2021. T-cove: an exposure
tracing system based on cleaning wi-fi events on organizational premises. Proceedings of the VLDB Endowment 14, 12
(2021), 2783-2786.

[20] Inderpal Singh Mumick and Hamid Pirahesh. 1994. Implementation of magic-sets in a relational database system.
ACM SIGMOD Record 23, 2 (1994), 103-114.

[21] Jignesh M Patel, Harshad Deshmukh, Jiangiao Zhu, Navneet Potti, Zuyu Zhang, Marc Spehlmann, Hakan Memisoglu,
and Saket Saurabh. 2018. Quickstep: A data platform based on the scaling-up approach. Proceedings of the VLDB
Endowment 11, 6 (2018), 663-676.

[22] Nga Tran, Andrew Lamb, Lakshmikant Shrinivas, Sreenath Bodagala, and Jaimin Dave. 2014. The Vertica Query
Optimizer: The case for specialized query optimizers. In 2014 IEEE 30th International Conference on Data Engineering.
IEEE, 1108-1119.

[23] Julian Weise, Sebastian Schmidl, and Thorsten Papenbrock. 2021. Optimized Theta-Join Processing. BTW 2021 (2021).

[24] Shan-Hung Wu, Tsai-Yu Feng, Meng-Kai Liao, Shao-Kan Pi, and Yu-Shan Lin. 2012. T-Part: Partitioning of Transactions
for Forward-Pushing in Deterministic Database Systems. In Proceedings of the 2016 ACM SIGMOD International
Conference on Management of Data (SIGMOD). ACM.

[25] Xiaofei Zhang, Lei Chen, and Min Wang. 2012. Efficient multi-way theta-join processing using mapreduce. arXiv
preprint arXiv:1208.0081 (2012).

[26] Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Jinpeng Wu. 2021. Sia: Optimizing queries using learned
predicates. In Proceedings of the 2021 International Conference on Management of Data. 2169-2181.

[27] Jiangiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M Patel. 2017. Looking ahead makes query plans robust:
Making the initial case with in-memory star schema data warehouse workloads. Proceedings of the VLDB Endowment
10, 8 (2017), 889-900.

(=

7
8
9

— s ——

]
]
]
]

—

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

https://en.wikipedia.org/wiki/Event_condition_action
https://github.com/gregrahn/join-order-benchmark
https://drive.google.com/file/d/1QhJot-kEM9dA5TJ0rljMXFJlsh_jG03z/view?usp=drive_link
https://drive.google.com/file/d/1QhJot-kEM9dA5TJ0rljMXFJlsh_jG03z/view?usp=drive_link
http://www.tpc.org/tpcds
http://www.tpc.org/tpch
https://www.vanilladb.org/

	Abstract
	1 Introduction
	2 PLAQUE Overview
	3 Predicate Creation
	3.1 MIN/MAX Aggregation
	3.2 MIN/MAX with GROUP BY
	3.3 Conditions in HAVING Clause
	3.4 Learning from Theta Join
	3.5 Learning from Equi Join
	3.6 Sideway Information Passing

	4 Predicate Implementation
	5 Predicate Placement
	6 Evaluation
	6.1 Methodology
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

