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ABSTRACT

This paper develops a query-time missing value imputation frame-
work, entitled ZIP, that modifies relational operators to be imputation-
aware in order to minimize the joint cost of imputing and query
processing. The modified operators use a cost-based decision func-
tion to determine whether to invoke imputation or to defer to
downstream operators to resolve missing values. The modified
query processing logic ensures results with deferred imputations
are identical to those produced if all missing values were imputed
first. ZIP includes a novel outer-join based approach to preserve
missing values during execution, and a bloom filter based index to
optimize the space and running overhead. Extensive experiments
on both real and synthetic data sets demonstrate 10 to 25 times
improvement when augmenting the state-of-the-art technology, Im-
puteDB, with ZIP-based deferred imputation. ZIP also outperforms
the offline approach by up to 19607 times in a real data set.
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1 INTRODUCTION

A large number of real-world datasets contain missing values.
Reasons include human/machine errors in data entry, unmatched
columns in data integration [32], etc. Failure to clean the missing
data may result in the poor quality of answers to queries that may,
in turn, negatively influence tasks such as machine learning [34],
data analytics, summarization [25, 27], etc. built on top of data.
Missing value imputation has been extensively studied in the
literature, especially from the perspective of ensuring accuracy [16,
36, 43, 47]. Traditionally data cleaning (including missing value
imputation) is performed as a data preparation step prior to analy-
sis in data warehouses. Such an offline cleaning approach [31, 42]
can, however, become prohibitively costly if the volume of data is
large and cost per imputation is high. Data cleaning/imputation is
sometimes performed on dirty data as it arrives during ingestion in
an online manner [29]. Such ingestion time imputation approaches,
however, also becomes impractical if rate of data arrival exceeds the
rate at which it can be cleaned. Consider a use case scenario which
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motivates our work. At UC Irvine, for the past 4 years, we have
been using continuously generated WiFi connectivity data cap-
tured over a campus wireless networks for fine-grained localization
using a Wifi-based localization framework entitled LocatER[37].
LocatER exploits a person’s recent connection history to predict
the room a person is in given the access point a person is connected
to (which corresponds to an imputation problem [37]). LocatER
takes roughly 400ms per event for such an imputation. ! With 1000s
of WiFi access points, about 30,000+ individuals connected to the
network, and tens of thousand of WiFi events per second, it would
take over an 1 hour of processing per one second of data collected
from the WiFi infrastructure during peak load. An online approach
that imputes location value as soon as data is ingested is clearly
infeasible. Likewise, collecting and processing raw WiFi data peri-
odically using LocatER as an offline approach discussed earlier is
also equally impractical. Instead, we adopt an alternate query-time
approach that cleans data lazily when the need arises. Motivated
by similar requirements as the example above, a query-time ap-
proach to cleaning/imputation has become popular in several recent
studies [12, 13, 17, 21, 23, 24] discussed in related work (Section 2).

Query time cleaning offers several benefits. It significantly re-
duces the wasted effort and computational resources by cleaning
only parts of the data actually needed in analysis instead of indis-
criminately cleaning the entire dataset. This is especially important
when cleaning is expensive and/or datasets are very large, making
cleaning of the data fully infeasible. Predicting the dataset analysts
might use apriori so as to clean such data as a pre-analysis step
is often not feasible (e.g., when a common analysis operation con-
sists of adhoc queries on the data) [14]. In such situations, the only
recourse is to support data cleaning with query processing.

Query-time data cleaning opens new challenges, the prominent
of which is to minimize cleaning performed during query process-
ing to reduce latency. This paper develops ZIP, a laZy Imputation
query Processing approach that exploits query semantics to reduce
the cleaning overhead. When processing records with missing val-
ues, ZIP may delay imputations until later - such a lazy approach
to imputing can be beneficial if the record with the missing value
get eliminated in the query tree, thus, avoiding imputatons unnec-
essary for answering the query. Delaying imputations, comes at
a increase in processing cost, if imputation could not be avoided.
ZIP, given a query plan for an SQL query, develops an execution
strategy that minimizes the overall (joint) cost of imputing missing
data and executing the query. We illustrate the key intuition behind
ZIP through an example below.

1.1 A Case for Lazy Imputation

Consider a real camera-based localization application in Donald
Bren Hall building, UCI, which is instrumented with camera used
to locate people. A tuple in Camera-Snapshots (Table 1) stores
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Table 1: Camera-Snapshots (C)

Table 3: Space (S)
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Figure 1: Imputation in Different Query Plans.

the location (i.e., room) of a person (i.e., facelD determined using
face recognition) at a given time (i.e., the timestamp). The faceID
of a person could be determined by matching camera data with
picture(s) of a person stored in the database or through a model
trained using such pictures. User (Table 2) and Space (Table 3)
tables store the metadata about registered users and space. There
are 10 missing values (shown as NULL) in the 3 tables, and we also
display the corresponding imputed values (shown as blue color in
the bracket). Let us consider a simple query, find all snapshots (sid)
for graduate students in room 2099. Such a query joins Camera-
Snapshots with the User table, after selecting tuples matching query
predicates on each table as shown in Fig 1.

Let us consider various possible query-time imputation strategies
in different query plans. Fig 1-a) is the plan where all selections are
pushed down. In such a plan, all the missing values under location
column (i.e., N1, N2, N3) must be imputed since the selection opera-
tor Ojpcation='2099 Yequire missing values to be imputed prior to
execution. After imputations, only one tuple with sid 4 satisfies the
selection condition, and will thus be passed onto the join operator.
Since the faceID of this tuple (i.e., 35) does not match any facelD in
Table 2, the query execution will terminate.

One may be tempted to consider the additional imputation over-
head (i.e., N1, N2, N3 ) of Plan 1 to be a result of pushing selections
to the leaf level. This raises an issue whether the savings resulting
from modifying the operators could be achieved simply by mak-
ing the optimizer aware of expensive nature of imputations which
may, then, consider imputation required by the selection operator
Olocation="2099’ s expensive (as in [26]) resulting in the operator
to be pulled above the join condition, such as the Plan 2 in Fig 1-b).
Even such a plan would still require 2 imputations for N4, Ns. Fur-
thermore, such a plan would incur significant execution overhead
for tuples for which attribute values are not missing, since the input
size to join from table C will be the cardinality of C table without
any filtering. Thus, the benefits that can be achieved by modify-
ing the operator implementation cannot simply be mimicked by
changing the optimizer.

Now let us now consider the strategy illustrated in Fig 1-c)
wherein each operator o is replaced by a corresponding "imputation
aware" operator 0. A modified operator 0 behaves exactly the same
as the original operator o for tuples that do not contain missing

for the downstream operator to perform. Delaying imputation can
prevent unnecessary imputations, if such a tuple (whose imputa-
tions are delayed) does not satisfy predicates associated with the
downstream operators. In our example, if 6,¢4tion="2099’ forwards
the tuples with sid 2, 3, 4 in Table 1 to the downstream join without
imputing N, N2, N3, it would have resulted in the savings of all the
three imputations since the tuples do not meet the join condition
(the only graduate student in the User table has a facelD of 65 which
does not match the faceID of tuples with sid 2,3, and 4)!

Such a lazy strategy would possibly minimize the imputation
costs without sacrificing quality of result. In the example above,
saving two or three imputations may appear to be of little benefit
compared to the additional complexities that could arise in main-
taining state and modifying operators, in practice, when tables are
large and imputation costs are relatively expensive such savings
quickly add up. For instance, even for the simple query discussed
above if Camera-Snapshots contains millions of rows, imputing all
the missing locations would be very expensive.

1.2 Challenges in Supporting Laziness

First, while supporting laziness, it is not trivial to ensure the cor-
rectness of query answers returned by ZIP, i.e., the query answers
returned by ZIP is same as the approach that first imputes all miss-
ing values on the entire datasets and then run query processing.
To this end, we carefully design the mechanism of the “imputation-
aware” modified operator to delay missing values based on outer
join strategy and reconstruct the query answers correctly using the
replay algorithm. Second, how to adaptively co-optimize the impu-
tation cost and query processing overhead remains a challenging
task. In ZIP, we design the decision function to automatically make
the decision on whether to delay imputation or impute missing val-
ues right away in each operator based on the estimated expectation
cost of imputation and query processing. Third, it is critical and
non-trivial to perform the laziness in ZIP in an efficient way. We
developed techniques to improve the efficiency of ZIP. We exploit
the opportunities to remove redundant imputations by leveraging
the upstream and downstream predicates using the filter and verify
step in the modified operator. What’s more, the bloom filter is used
to ensure the replay algorithm can be performed efficiently.

1.3 Contributions
The paper introduces a ZIP framework to answer SQL queries over
data that may contain missing values. The primary contributions
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include (a) simple modification to the logic of relational opera-
tors that empowers operators to choose to either impute or delay
missing values, (b) a decision-function logic to enable operators to
determine whether the imputation should be performed right away
or delayed based on a cost-based analysis of tradeoffs between the
two choices, (c) efficient mechanisms to maintain state of the execu-
tion and the modified query processing logic to continue execution
over imputed values so as to generate the right query results. ZIP
designs modified operator logic for a wide range of operators, such
as selection, join, projection, aggregate-group by, union, set minus
and can handle a large class of queries of significant complexity
including nested query. ZIP provides orders of magnitude savings -
E.g., using ZIP based query processing over ImputeDB query plans
can result in savings from 10 to 25 times depending upon the query
and data sets. It provides order-of-magnitudes improvement over
offline approach (i.e., imputing all missing values in data set and
then running query) up to 19607 times in a real data set.

2 RELATED WORK

Missing Value Imputation. As in [17], we view imputation ap-
proaches as blocking or non-blocking in terms of query processing.
A blocking strategy reads the whole data to learn a model for impu-
tation (before it imputes any missing value), while a non-blocking
strategy can impute missing values independently reading only
a (subset of related) tuples. Imputation approaches can roughly
be characterized as statistics based, rule based, master data based,
time-series based, or learning based approaches [36]. Of these, other
than the learning based approaches, many techniques could be used
in a non-blocking setting. For instance, ImputeDB [17] used a non-
blocking statistics-based mean-value method that replaces a missing
value with the mean of the available values in the same column
using histograms. Since histograms are often maintained for query
optimization and approximate processing [28, 44] such a technique
is non-blocking. Strategies that use master data [20, 41, 45, 46]
are also non-blocking since they look up a knowledge base and
crowd source the imputations one tuple (or a set of tuples) at a time.
Imputation strategies in time series data [15, 30, 37] are often per-
formed by learning patterns over historical data to forecast current
missing values or using the correlation across the time series. An
example is LOCATER [37] that imputes each missing location of a
user at one time stamp by learning user’s pattern from historical
data. Such methods also clean one tuple at a time and are, hence,
non-blocking. Rule based imputation methods based on differential
dependency [43] or editing rules [22] often impute missing values
by replacing them with corresponding value of similar objects.

In non-blocking strategies the overall cost of imputation is pro-
portional to the number of tuples imputed and hence, ZIP, which is
designed to exploit query semantics to reduce number of imputa-
tions performed, can bring significant improvements.

In contrast to the above, learning-based approaches [18, 38, 40]
are often blocking. ZIP helps learning-based approach by reducing
the number of tuples to be imputed (and thus reducing inference
time), and ZIP can bring significant improvement when inference
time is not negligible, such as KNNImpute ? which takes 9.73 sec-
onds to impute 1k missing values.

2A standard library to impute missing values in scikit-learn in python [8]
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ZIP also helps reduce training time since ZIP only learns the
model on the columns required by the query. For instance, consider
AdventureWork dataset [6] which contains more than 200 columns
with missing values. Instead of learning models for all such columns
as the offline approach does, ZIP only needs to learn models for
only a few columns required by the query. Note that the learned
models can be reused and thus save training time for later queries
that requires imputations on the same columns.

Additionally, given the significant training overhead of learning
based approaches, several prior works have explored reducing the
training time of learning-based methods by using sampling [40]
or histograms [4]. In this situation, when learning-costs can be
brought down to make blocking strategies practical in online set-
tings, ZIP can bring further improvements by reducing redundant
imputations.

In summary, ZIP provides a framework for lazy imputations
during query processing where any imputation approach could
be properly used in ZIP. ZIP will adaptively adjust its behaviors
(impute now or delay imputations) when using imputations with
various complexity, and it will provide the most advantages when
the imputation cost is significant and data is large. When cheap
imputations are used, ZIP will not be any worse compared to the
offline approaches since ZIP does not repeatedly clean - it does so
only once and then subsequently remembers the imputed values.
Note that ZIP does not require an analyst to pre-decide what type
of imputation functions to use (cheap, expensive, or in-between)
in advance, since ZIP will adaptively adjust its behaviors (impute
now or delay imputations) by estimating the imputation cost and
query processing cost.

Query-Time Data Cleaning. Query-time strategy has been ex-
plored in several data cleaning problems. [24] explores analysis-
aware conflicting values detection and repair in database. Specifi-
cally, their approach performs repair of denial constraint [19] vi-
olations on-demand to integrate data cleaning into the analysis
by relaxing query results. QDA [12, 13] develops query-driven ap-
proach for entity resolution problem with the goal of reducing the
number of cleaning steps that are necessary to exactly answer se-
lection queries. ImputeDB [17] explores a dynamic optimization
strategy to design query plans for queries over relations with miss-
ing data. In particular, ImputeDB introduces 2 new operators - drop
and impute. For any predicate where the condition being evaluated
is over an attribute that may contain missing values, ImputeDB
introduces one of these two operators. For any tuple that passes
through the impute operator, ImputeDB will call the corresponding
imputation function to resolve the tuple prior to passing it to the
predicate in the original operator in the query tree. In contrast, for
a drop operator it will simply drop the tuples whose corresponding
attribute contains a missing value. The placement of impute/drop
operators explores a trade-off between the accuracy of results and
the corresponding overheads, specially when imputations can be
expensive and dominate the query evaluation cost. While Imput-
eDB explores such a trade-off to generate a query plan with drop
and impute operators, ZIP explores a complementary execution
strategy by modifying query processing by changing how tuples
with missing values are processed by relational operators in order
to reduce the need to impute data. In particular, in ZIP, relational
operators may delay imputing missing values in the hope that such
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Figure 2: ZIP query plan.

a) Original Query Plan Tree

SELECT C.sid FROM C, U, S
WHERE C.faceID = U.faceID AND
C.location = S.room AND S.building = ‘DBH’ AND
C.location in {2065, 2011, 2082, 2206}

Figure 4: Query
tuples are eliminated by downstream operators preventing the need
to impute the missing values. ImputeDB and ZIP can be used in
isolation or together since the approaches are complementary. In-
deed, in Section 8, we show improvements due to ZIP over query
plans already optimized using ImputeDB optimizer to highlight
additional advantages that result from ZIP.

3 ZIP OVERVIEW

This section provides an overview of how ZIP achieves delayed
imputation by appropriately modifying the relational operators.
We will use the query shown in Fig 4 to illustrate ZIP. We shift to
this query instead of a simpler query we used which will no longer
suffice to illustrate all the cases ZIP needs to handle to ensure correct
execution. The Fig 2-a) shows the query tree generated by a third-
party optimizer, (e.g., PostgreSQL). ZIP modifies such a plan by
replacing operators by their modified versions and by adding a new
operator p at the top of the tree as shown in Fig 2-b) that imputes
missing values whose imputation has been delayed by previous
operators. ZIP has been implemented in the context of pipeline
query execution using an Iterator Interface. The execution starts
from the root of query tree by calling a root.getNext() that retrieve
tuples from the child nodes that satisfy the associated conditions.
Child nodes, in turn, recursively call getNext() operator on their
children. ZIP modifies the relational operators to process incoming
tuples that contain missing values differently. Other tuples (that do
not contain missing values) are processed exactly as they would
be by the original operator. In particular, ZIP does not change the
underlying operator implementation - for instance, the relational
operator can continue to use hash/sort/nested loop/index-based
operator implementations supported in the underlying database
without change. ZIP simply routes tuples containing missing values
through a sequence of steps (i.e., filter, verify, decision function,
generate). Thus, besides code to implement such steps, ZIP only
changes the routing logic of operators which requires a very small
amount of new code (approx. 500+ lines) while preserving the
existing code of the database.

Missing Value Representation: Before we discuss how modi-
fied operators are implemented in ZIP, we first specify how ZIP
represents missing attribute values. In ZIP missing values are rep-
resented using NULLs. However, to differentiate between a value
of an attribute being NULL or missing, the relational schema is ex-
tended with an additional attribute that contains a bit per attribute
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Figure 3: Modified Operators.

of the relation. If the value of attribute a in a tuple ¢ is missing, its
value is NULL and its corresponding bit is set to 1. If attribute a is
NULL but its bit is 0, then a is not missing, instead it is NULL.
Routing logic of modified operator. Fig 3 shows the modified
logic of the unary and binary operators. The tuple incoming to the
operator first pass through a filter step (the purpose of which will
become clear momentarily). It is then checked to determine if the
attribute value (on which the operator is defined) is missing (by
checking for the appropriate bit in the additional attribute stored
in the tuple). If the value is not missing, the tuple is directed to
the I-operation, i.e., Imputation-aware operation, which, for such
tuples, implements the exact same logic as the original operator. If
value is missing, the tuple is diverted through a decision function
(DF) which may decide to either impute or delay imputation of the
missing value. If imputation is delayed, the tuple again is routed to
the I-operation which, in turn, forwards the tuple to downstream
operators with missing value preserved without checking the asso-
ciated predicate, if any, with the operator. For unary operators (e.g.,
selection), the tuple is forwarded as is, and for binary operators (e.g.,
join) the tuples are forwarded to the next operator in the pipeline
in a way similar to the way they are in an outer-join as illustrated
in the example below. For projection operators, ZIP preserves all
attributes in a tuple that contain missing values and that may be
imputed later. Tuples that DF decides to impute are first routed to
verify and generate steps. The goal of the verify step is to determine
if the imputed value satisfies all the predicates associated with the
previous operators (and hence the tuple would have made it to the
current operator). If a tuple ¢ passes the verify step, the generate step
is invoked on t. This step generates all additional tuples that would
have resulted by executing the logic of upstream operators had ¢
been imputed at the very beginning of query execution. The gener-
ated tuples, now with missing value imputed, are passed through
the operator logic and processed just the same way the original
unmodified operator would have processed tuples. The imputed
value of an attribute a in a tuple ¢ may also be present in other
tuples in multi-join queries. When a is imputed, all the tuples with
the imputed values will be forwarded to generate step in order to
generate all the results as we discussed in Section 5.

We next explain the roles verify, filter, generate and decision
function (DF) play in the implementation of the modified operator.
Verify: The verify operator is invoked whenever a missing value
is imputed in the current operator to check if, had it been imputed
earlier, it would have caused the tuple to be eliminated by a prior
upstream operator. In such a case, the tuple can be dropped since
such a tuple would not have passed the logic of a prior operator
and would, thus, have not reached the current operator.



Filter: Filter operator in ZIP works in a manner dual to verify -
while verify is used to check if a tuple whose missing value imputa-
tion was delayed in a prior (upstream) operator can be pruned after
imputation since it would have failed predicates in prior operators,
the filter test is used to prune tuples based on predicates associated
with future downstream operators that the tuple will not satisfy.
Filter test associated with an operator o can, thus, result in early
pruning of tuples saving imputations.
Generate: In operator o, generate step is responsible to generate
possible tuples that satisfy all the previous upstream predicates
of o. If the imputation of Nj is delayed by the join operator until
later (say, until p executes), necessary joining tuples that could
have resulted from #; will need to be generated. To this end, ZIP
maintains state of all tuples that flow through the join operator
and uses the state to support a carefully designed mechanism that
ensures correct query answer even when imputations are delayed.
Decision function: ZIP creates a decision function associated with
each operator to determine whether to impute the missing values
or delay imputation. Intuitively, it is tempting to delay imputing in
operator o if imputations are expensive and the downstream opera-
tors of o are selective. If the tuple is eliminated by a downstream
operator, imputation required to execute o would be saved. On the
other hand, if ZIP decides to impute missing values right away, the
imputed tuple will have a chance to be eliminated by the current
operator saving execution cost. Decision function is a cost-based
solution to estimate the expected execution cost of imputing right
away versus delaying the imputation, and chooses the option with
lower cost. We discuss decision function in Section 7.
p Operator: ZIP adds a new operator p at the top of the tree which
imputes all missing values in the attributes associated with query
predicates that have not been imputed so far. The structure of the p
operator is same as that of unary operator with the difference that
for p the DF is always set to impute®. Like other unary operators,
once a tuple is imputed in the p operator, it goes through the verify
step, and if passing verification, goes through the generate step.
Since p is the final operator, the way p executes the generate differs
slightly compared with other operators as will be discussed in
Section 6. We note that p will impute any missing values in the
projected attributes if any and removes all attributes in the imputed
tuples that were not part of the projection in the query. 4

We use a complete example in Figure 2 to illustrate ZIP. Con-
sider a tuple #; = (2,41,2pm,N;) in table C with a missing value
in the location field for a query in Fig 2-b. Assume that selection
operator delays imputation. Thus, #; is passed to the join opera-
tor as it is. The modified join operator, which is also defined on
the location field, will decide whether to impute the missing lo-
cation field or to delay its imputation further. If join decides to
delay, it preserves the missing value in location in a way similar
to the way outer joins preserve tuples. In particular, it generates
a tuple ¢, = NULL,NULL,2,41,2pm,N7) where Nj is the preserved
missing value and the NULLs represent that the values of those
fields are NULL. Here we denote N; by missing values and the

3We could alternatively, also consider drop operator, similar in spirit to ImputeDB,
which will allow our technique to explore the cost-quality tradeoff as well.

4When a tuple with multiple missing values reaches p, ZIP simply prefers imputing
attributes in selection conditions. Alternative strategy can be first imputing the missing
value with lowest estimated imputation cost.
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associated value of NULL for null values. Consider the missing
value Nj, and assume decision function decides to further delay its
imputation in 6¢ jocation in Loc- If this value is imputed later during
query processing (e.g., in operator p), ( @ in Fig 2), the imputed
value must satisfy every predicate that applies to the imputed value
in the upstream operators prior to p. Now consider how filter step
works. Assume that the decision function associated with the join
operator ‘;‘C.faceID:U.faceID decides to impute all missing values
of U.faceID, and ‘;‘C.faceID:U.faceID is implemented as a hash
join with U being the build table used in the hash join. Then all
possible values U.facelD (i.e., {20, 65, 55}) could take would have
been determined early in the pipeline query processing as soon as
the build phase of the hash join is complete. Now consider tuple #3
passing through 0 jocation in Loc- t3 Will be pruned since its faceID
35 is not in {20, 65, 55}, and thus not be part of the answer.
Roadmap: In the reminder of the paper, we first describe the im-
plementation of the verify and filter operators in Section 4. The
imputation-aware operations (i.e., I-operation) and answer gener-
ation (i.e., generate step) are described in Section 5 and Section 6
respectively. Finally we show the design of decision function (i.e.,
DF step) in Section 7. We restrict the discussion to the modified ver-
sions of the select, project, and join operators and illustrate query
processing in ZIP through the SP] queries. Extensions to other
operators other unary and binary operators (aggregation, group-by,
union, intersection, set difference) are relatively straightforward
and described in the longer version of this paper [11].

4 VERIFY & FILTER STEPS

Data Structures. Implementation of Verify and Filter steps of
an operator o requires ZIP to maintain several data structures.
Verify Set. Verify set for operator o consists of all the predicates
over the attribute A, which are associated with all the upstream
operators (i.e., those that appear below o in the query tree) , where
A, are the attributes associated with the predicate in o. Fig 5 shows
the verify sets for all operators in query tree in Fig 2.

Filter Set. A filter set for an operator o consists of predicates defined
over attributes associated with the tuples that are input to o. These
predicates correspond to conditions associated with operators that
are downstream to o (i.e., are higher up in the query tree) and are
defined over attributes other than A, on which o is defined. As
an example, consider selection operator o = 0 pyilding='DBH’ in
Fig 2-b) where A, = {S.Building}. We add the predicate {S.room =
C.location} from the downstream join operator to the filter set
since it is defined on the attribute S.room which is different from



the attribute S.Building on which the selection operator is defined.
The filter set for 0 = 05 uilding="pBH’ can be expanded further by
additional predicates which can be inferred from the current filter
set. In the example, the predicate {C.location in Loc} coupled the fil-
ter {S.room = C.location} enable filter set of 0 = 05 uilding='DBH’
to be expanded to {S.room = C.location,S.Room in Loc}. The con-
ditions in the filter set are used in ZIP to eliminate tuples earlier
thereby saving unnecessary imputations.

Bloom Filters. ZIP constructs a bloom filter [5] for each join attribute
in the equi-join operator. Such a bloom filter, BF (a) for the attribute
a is constructed incrementally as the tuples are processed by the
modified join operator. When the modified operator processes a
(non-missing) attribute value, it stores the value into the bloom
filter BF (a). Likewise, whenever a missing value in a tuple for a
join attribute is imputed (either as part of the join or a further
downstream operator) and passes the verification test, it is added
into the corresponding bloom filter. The bloom filters help prune/-
filter tuples early in upstream operators based on downstream join
conditions. For instance, in the example above, using the bloom
filter, the operator o pyilding="pBr’ could use the join condition
in its filter set (e.g., {S.room = C.location} to check if the room
associated with the current tuple matches any C.location using the
bloom filter BF(C.location). In addition to helping implement the
filter step, ZIP uses bloom filter in the modified join will also be
used to support the modified join operator (in Section 5).

Bloom Filter Completeness. A bloom filter BF(a) for a join attribute
a in a query Q is said to be complete with respect to Q if BF(a)
contains all values of a that could result in tuples in the answer set
of Q. Note that the completeness condition does not require all
values of a to be in BF(a). Tuples that are filtered away by the
selection/join operators (and hence do not contribute to the query
answers) may not be in BF(a) for it to be considered complete.
Let Q be a query over relations Ry, Ry, ..., R,. WL.O.G, let a be an
attribute in R; that participates in a join predicate in Q. The bloom
filter BF(a) is said to be complete w.r.t. Q if for all tuples t; € Ry,
such that there exists tuples ta, t3, . .., t, in Ry, R3, . . ., R, that along
with t; produce a tuple in the answer set, BF(a) contains ¢.a.

We denote the event during query processing that causes the
bloom filter BF(a) to become complete as BFC(a) and we refer to
it as completeness event for BF(a). For BFC(a) to be reached, two
conditions should be held. First, all the tuples with missing values in
a should have been imputed or eliminated and there is no missing
values. To test such a condition, for a query Q, ZIP maintains a
missing value counter MC(a) that records the number of missing
values for each attribute a in Q. Such an array is initialized using
the metadata or statistics maintained by in database. Whenever a
missing value in attribute a is imputed or dropped, (e.g., as a result
of a filter operator), ZIP reduce the count of MC(a) appropriately.

Second, reaching BFC(a) further depends upon the specific join
algorithm used to compute a join. Consider a join RE.q =« RR.b,
where R and RR are the left and right relations respectively, and a
and b are join attributes. If no ambiguity, we will refer to RE and RR
simply as L and R. If L.a >« R.b is implemented using nested loop,
for inner relation R, bloom filter BF (R.b) contains all values in R.b
(i.e., BFC(R.b) is reached) when there are no more missing values
of R.b and the first pass of relation R has been processed. For outer
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relation L, such a condition becomes true only when all tuples have
been processed through the join operator. For hash joins, the bloom
filter contains all values as soon as the hash table based on build
relation has been built and for outer relation such a condition is
reached when all tuples have been processed. For sort merge, or
multi-pass hash join, the bloom filters for both relations L and R
contains all values when the sort or hash table build is finished. ZIP
maintains for each attribute a in a join a boolean, entitled JC(a)
that becomes true when all the values in a have been processed. ZIP
modifies the scan operator to detect and set JC conditions when
all tuples in a relation have been consumed.

Thus to determine BFC(a) ZIP simply needs to check when both
MC(a) = 0 and JC(a) = true has been reached.

Verify and Filter Implementation. To implement verify and
filter operation, for incoming tuples, ZIP only needs to check con-
ditions stored in verify and filter set to determine if the tuples
satisfy them or not. If the conditions are selections, tuples can be
evaluated right away. For join conditions, we check if the bloom
filters of the join attributes are complete or not. If they are com-
plete in pipeline query processing, we use the bloom filter to test
if the tuple satisfy this join condition. For instance, consider op-
erator ES,huilding:’ paH’ Whose filter set contains a join condition
S.room = C.location in Fig 5. For tuple t received by 35.building=’DBH/’
if S.room is not missing, and the bloom filter BF(C.location) is com-
plete, ZIP uses BF(C.location) to check if S.room has any matched
values in BF(C.location). If BF(C.location) returns false, we drop
tuple t. This check operation is safe because bloom filter does not
have false negative. Else, we do nothing and let t pass.

5 IMPUTE-AWARE OPERATORS

In this section we describe the impute-aware operation, i.e., I-
operation in Fig 3, for selection, projection, join and p operators.

Unary Operators: I-operation for the select, project and p opera-
tors are straightforward. For selection, I-operation simply evaluates
the selection predicate if the corresponding attribute value is not
missing. Else, it forwards the tuple to the next operator. I-operation
for the projection operator, besides forwarding attributes in the
projection, also preserves values associated with attributes in query
predicates for tuples that have missing values in those attributes.
The I-operation for the p operator at the top of tree returns the
tuples after projecting to the attributes in the final results. We il-
lustrate the execution using an example in Fig 6. Fig 6-a) is the
ZIP query plan for query in Fig 4, and the decisions taken by the
decision functions in each operator are marked. In Fig 6-b) to g), the
numbered red circle represents the tuples returned by get Next () for
each operator. Assume ZIP decides to delay imputations in two se-
lection operators Gs pyilding="DBH’ @0 OC Jocation in Loc> 20d their
getNext() tuples are shown in Fig 6-b) and Fig 6-c), respectively.
The projection operator ﬁsid returns tuples in Fig 6-f), it not only
projected sid, but also all the attributes in query predicates.

Join Operator: The I-operation for the join operator is more
complex. Consider modified join operation < ,_p p, and a tuple ¢
that reaches I-operation of the join in either relation L or R. Note
that such a tuple t has passed through the filter, decision function,
verify and generate steps in Fig 3. W.L.O.G, let ¢ belongs to relation
L. First, if the attribute value a in ¢, t.a, is not missing, ZIP adds
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Figure 7: Example of Missing Value Duplication.

t.a into the bloom filter BF (a) and simply uses the original join
implementation to join t with tuples in R whose b values are not
missing. For instance, if the query plan specified a hash (or a index,
or nested-loop) join, ZIP simply continues to use the original code
for such joins that were part of the database prior to modifying
the operators to be impute-aware. If t.a is missing, however, ZIP
bypasses the original join code and instead generates a new output
tuple that contains all the attribute values of t including the missing
value, and NULL values for all the attributes of the other relation
(i.e., ZIP preserves the missing value of t.a for later query processing
by creating a tuple similar to the tuple created by the left-outer
join). Likewise, if t € R, then ZIP creates a corresponding tuple by
concatenating NULLs for the attributes in L (i.e., creating a tuple
as would be created by the right-outer join).

In addition, for one of the two inputs (i.e., L or R) for the join
operator 0 = >y _,_p p, ZIP maintains a list of tuple identifiers of the
base relations from which the missing value of L.a or R.b originated.
These lists are denoted by L (o, a) and L (o, b) respectively. ZIP only
populates one of £(o0,a) and L(o, b) leaving the other empty. ZIP
chooses the list that is expected to be smaller (e.g., with lesser
number of missing values in the corresponding base relation) to
reduce overhead. Thus, if either of the two inputs do not contain
missing values, ZIP will choose that attribute, and hence both lists
would be empty. These lists, as we will see in Section 6, are required
to ensure result tuples are generated only once with no duplicates.

To illustrate the modified join operator, consider join operator
55 room=C.location i Fig 6-d), where only C.location has missing
values. We assume decision function decides to delay imputation
in this join operator. The tuple (D in Fig 6-d), is a joined tuple from
tuple (D in S relation in Fig 6-b) and tuple (D in C relation in Fig 6-
c). All the other tuples, i.e., tuples @-@ in Fig 6-e), are the right
outer join results of S and C where the missing values N1, Na, N3
are preserved with NULLs in columns in S side.

Note that a missing value may appear in multiple tuples if one
tuple t matches multiple tuples in join operation. In Fig 7, in the
join operation ‘;’C.faceID:U.faceID , N1 appears more than once in
the join result. To prevent having to impute the same missing value
more than once, when a missing value is imputed, references to the
value in all tuples are replaced at the same time. For this purpose,
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we maintain a link from the missing values to all tuples in which
they appear. When a missing value is imputed, all of these tuples
will (with the missing attribute imputed) will be passed on to the
generate step to compute the corresponding results.

6 THE GENERATE STEP

This section describes how ZIP generates tuples when a tuple with
an attribute (whose imputation had been delayed by a previous
operator) is imputed as part of a downstream operator (e.g., another
relational operator or the p operator). Let generate step be invoked
when a missing value in attribute a of a tuple ¢ is imputed and
passes the verify step for an operator o. Generate reconstructs all
the tuples that would be present in the output of o to which t.a
would have contributed, had t.a been imputed earlier. The essential
idea in the generate step is to replay the joins on tuple ¢ contributed
by the imputation of t.a, as shown in Algorithm 1.

Given operator o, let UJ (o, a) be the set of predicates associated
with join operators upstream of o whose associated predicate con-
tains attribute a. U J (o, a) can be identified from the join predicates
in the verify set of o. For instance, UJ(p, C.location) = {S.room =
C.location}. Note that U J(p, C.location) does not contain join con-
dition C.faceID = U.facelD even though it is also an upstream
join of p since it does not contains C.location. If U J (o, a) is empty,
then tuple ¢ is forwarded to the I-operation in o. (Ln.8) Else, for
each predicate p in UJ (o, a), the generate step first checks if the
attribute (other than a) in p has reached its bloom filter complete-
ness (i.e., BFC(b) is true, where b is an attribute in p, and b # a)
by calling CHECK_REPLAY_READY_(0, @). In such a case it generates
all the tuples that would have resulted from the imputed value of
a in t by replaying the joins (Ln.3-7). Note that if any attribute
present in predicates in U J (o, a) (other than a) is not bloom filter
complete, the join processing for the tuple containing the imputed
value cannot be processed fully right now. Hence, the original gen-
erate step after imputation would simply forward the tuple to the
I-operation of o which will forward it to downstream operators
for future processing similar to the way I-operators pass tuples
containing missing values (Ln.8). If 0 is the p operator (and, thus,
there is no further downstream operator for o to push the tuple
whose join processing is not complete), ZIP banks such tuples whose
CHECK_REPLAY_READY_ (0, a) fails until the time the condition be-
comes true. Once the condition becomes true, the tuple is rerouted
to generate all the relevant results using the replay function. For
tuples not delayed by p, all the generated answers are returned as
output by passing the tuples to the corresponding I-operation of p.



Algorithm 1: generate step in operator o

Algorithm 2: REpLAY

Input: o, ¢,a
1 T« {t}
2 if CHECK_REPLAY_READY (0, a) then
3 new_7 « 0
4 foro; € UJ(o,a) do
5 fort; € 7 do
6 L new_7 « new_7 U REPLAY(L;, 0, @)

7 T «— new_ T

8 return 7 to the I-operation of o

Note that for all tuples delayed in the p operator, eventually
the CHECK_REepLAY_READY_(0, @) will become true, which requires
that the BFC(b) be true for any attribute b that is an attribute in
any predicate p in UJ (o, a) other than a. Reaching BFC(b) requires
MC(b) = 0 and JC(b) = true. The condition JC(b), as discussed in
Section 4, is a property of the join algorithm used and will eventually
always be met for all attributes as the scan for the base relation
containing b has processed all the tuples that satisfy the predicates
(if any) associated with the scan. The condition MC(b) will also
be eventually reached as the p operator continues to impute the
remaining missing values.

Replay Function: We now explain the REprLAY function in Algo-
rithm 2. Consider executing replay function for a tuple ¢ in operator
o0, and assume the join condition is a = b. ZIP first checks if the
imputed value ¢.a is in the bloom filter of attribute b, i.e., BF(b).Ifa
matched value is not found, then the tuple ¢ will not join with any
tuple in current join operator o and thus an empty set is returned.
(Ln.2-3) Else, if the bloom filter matches the imputed value of a,
ZIP first retrieves all the tuples in the relation that match with ¢ on
the join attribute a using the index built on a (Ln.4), and remove
the tuples stored in the L (o, b) to prevent from generating possible
duplicated join answers. Its correctness will be clear in later discus-
sion part in this section. ZIP then updates each such matched tuple
to ¢ and returns the results by using the merge function. (Ln.7-8) >

As an example in Fig 6. consider the generate step in p oper-
ator in Fig 6-g. When the input tuple to p (tuple @ in Fig 6-f),
t ={NULL,NULL, 3, 20, No, 20} with missing C.location N is im-
puted as 2206, ZIP generates the answers resulting from this impu-
tation for all the join conditions containing C.location in the tree.
In this query tree, 545 Room=C.location 15 the only upstream join op-
erator of p that is applicable to C.location. We further assume that
the bloom filter of S.room is complete (e.g., S.room does not have
missing values and is the build side of join.). When ZIP replays
t = {NULL,NULL,3, 20, N2, 20} using join condition S.Room =
C.location, ZIP checks BF(S.room) = {2206, 2011, 2065} and the im-
puted value 2206 is found. ZIP then retrieves the matched tuple in re-
lation S which is {2206, DBH }, and update ¢ to {2206, DBH, 3, 20, 2206,
20}, as the tuple @) in Fig 6-g. Note that such update can be easily
achieved since the schema of each (composite) tuple is maintained
in each operator and we could project the matched tuples into
corresponding fields in ¢ by aligning their schema.

Discussion: The correctness of ZIP requires 1) soundness: the tu-
ples returned by ZIP would have been returned had we imputed

SZIP requires indices on all join attributes. If such an index does not exist, ZIP will
create a hash index as part of the execution of the join operator.
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Input: t,0,a
1 b : the join attribute in o other than attribute a
2 if t.a not in BF(b) then

3 ‘ return 0

1 else

5 Tmatched < look_up(t.a)

6 Tmatched — Tmatched \ L(O, b)
7 Ans « 0

8 for t; € Tynarchea do

9 L Ans «— Ans U merge(t,t;)
10 return Ans

in the base relations prior to executing the query; 2) completeness:
ZIP will not miss a result; 3) non-duplicates: ZIP will not generate
duplicated results. We focus on joins execution since proving the
correctness of other (unary) operators is simpler. Consider join
operation L.a = R.D, let 7;‘ (7.%) be the tuples in L that pass filter
and verify steps and have (do not have) missing values in L.a. Like-
wise, ‘7;R and 7R are similarly defined. L.a >< R.b can be rewritten
as (7L u 7;,L) ba (TR U 7;,R) In join operator o =p<; ,_g p, the
I-operation of o will implement 7;L > ‘7;R as normal join. Tuples in
‘7;1“ and ‘7;R will be pushed to the downstream operators by append-
ing NULLSs for the attributes in the other relation. In later query
processing, when the bloom filter of R.b is complete, ‘7;1L > R.b will
be computed by the generate step. Similarly, when L.a reaches its
bloom filter completeness condition, L.a >« 7:1R will be generated.

Note that this may result in the duplicated results for ‘7;“ > ‘GR.
Recall that ZIP maintains a list £(o, a) (or L(0,b)) in every join
operator o to prevent the generation of such duplicated tuples.

7 DECISION FUNCTION

In the decision function in ZIP, the decision of whether a missing
attribute value should be imputed prior to the execution of the
operator or should imputation be delayed depends upon whether
the imputation method is non-blocking or blocking. We focus on
an adaptive cost-based solution for non-blocking imputations, de-
noted by ZIP-adaptive. For blocking imputations such as learning
approaches, we use a lazy strategy, denoted by ZIP-lazy, which al-
ways delays imputing until the tuple with the missing value reaches
the imputation operator p. When learning based approach is used,
ZIP uses the same training data as the offline approach to guarantee
that the query answers returned by ZIP is same as the one returned
by the offline approach. Although this might increase latency to
ZIP if the size of training data is large, there are several practical
strategies to mitigate this problem. Once a model is learned, it can
be reused to impute missing data in later queries. We thus can
employ a warm-up phase to first run a small amount of queries
where the models learned for those frequently-queried columns are
reused and save learning time for later queries. ZIP-lazy is detailed
in the long version of the paper in [11].

Obligated Attributes Non-blocking imputations in ZIP can be
placed anywhere in the query tree since ZIP, through operator mod-
ification, decouples imputation from the operator implementation.
To guide the actions of each operator, we first define a concept of



Definition 7.1. (Obligated Attributes) Given the set of attributes
in predicate set of a query Q (denoted by Ag), an attribute a in re-
lation R is said to be obligated if

e attribute a appears in a predicate in Q, i.e., a € AQ, orais
one of the attributes listed in a projection operator; and

o all attributes of R (other than attribute a) do not appear in
any predicate in Q. That is, Vad €R-a,d ¢ Ap.

If an attribute a € R is neither in the projection list nor in

Ag, imputing its missing values will not be required to answer
Q and hence a would not be obligated. Likewise, if a predicate
in Ap contains an attribute b which is also in R, it is possible
that such a predicate may result in the tuple of R to be eliminated
thereby making imputation of the corresponding a value (in case
it was missing) unnecessary, which would prevent a from being
classified as obligated. U.facelD in Table 2 is a obligated attribute
for query Q in Fig 4 because other attributes U.name and U.type
are not in any predicate of query Q and U.facelD is in join predicate
U.facelD=T.facelD. Since missing values of obligated attributes must
always be imputed, there is no benefit in delaying their imputations.
In contrast, imputing could potentially reduce number of tuples
during query processing. For the remaining attributes, ZIP performs
a cost-benefit analysis to decide whether to impute.
Decision function For each operator o in query tree, ZIP asso-
ciates a decision function df (a, 0) for all attribute a that appears in
the predicate associated with o. Decision to delay/impute missing
values has implications on both imputation and query processing
costs. Consider a tuple ¢ in relation R = (a, b, ¢, d) and a query tree
in Fig 8-a). Say t; = (N1, 1,2,3) (N represents missing value), if
we delay imputing t;.a, and t1.b does not join with any tuples in
the other relation, we can avoid imputing #1.a. On the other hand,
imputing #;.a for t; = (N1, Na, 2,3), could prevent imputation of
t2.b, if the imputed value of t;.a is filtered in the selection operator.
Imputing #;.a may also reduce query processing time since it does
not require the operator on attribute b to be executed.

Since decisions on whether to impute/delay are made per tuple
containing missing values locally by the operator, the decision func-
tion must not incur significant overhead. In making a decision for
operator 07 over attribute value t.a of a tuple ¢, ZIP assumes if ¢
contains other missing values in attributes, say t.b (on which predi-
cates are defined in downstream operators), say oz, those operators
will decide to impute ¢.b if (and when) the tuple ¢ reaches those op-
erators. For instance, in query tree in Fig 8-a), in making a decision
for imputing /delaying t.a, i.e., N1, in developing a cost model we
assume that the missing value Ny (t.c) will be imputed right away.
This prevents, ZIP to have to recursively consider a larger search
space that enumerates (potentially exponential number of other
possibilities wherein downstream operators may delay/impute.)

We build a cost model below to estimate impact of delay/impute
decision on both the imputation cost and the query processing cost
based on which the operators make decisions in ZIP. To compute the
imputation and query processing costs associated of the decision
for an operator, ZIP maintains the following statistics:

e impute(a): Cost of imputing a missing value of attribute a, com-
puted as an average over all imputations performed so far for miss-
ing values of a.

{?l‘ , where T, (Ts) are

o Selectivity of selection operator o;, S, =
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Figure 8: Decision Function Example.

tuples that are processed (satisfy) the predicate associated with ;.
o Selectivity of join operator between relation L and R computed

| T
[TLITR]>

are tuples that satisfy o; ®

o TT Join,: the average time to join tuples in (join) operator o;
® 75: the average number of evaluation tests to perform per tuple
in operator o for tuples without missing values in the attribute to
be evaluate in 0. 8 If 0 is join operator, evaluation tests refer to join
tests. Else, if o is selection operator, we set 7, = 1.

To bootstrap the process of statistics collection, ZIP initially
delays all imputations forcing tuples to rise up to the top of the tree
(or be dropped if they fail some predicates en-route). During this
process, ZIP collects imputed tuple samples to compute impute(a)
and to determine other statistics such as 7 (o), join cost TT Join,
and selectivity So,. These statistics are then adaptively updated
during query processing.

Cost Model for Imputations. We illustrate how to estimate the
imputation cost using an example, and include the mathematical
model for imputations and query processing in [11].

Consider a query tree in Fig 8-a), and a tuple t =(Nj, 2, No, 3).
To decide whether to impute or delay missing value t.a (N7), ZIP
estimates the total imputation cost in case it chooses to impute or
to delay imputing t.a. The set of possible executions that may result
for either of the decisions are illustrated in the decision tree shown
in Fig 8-b). Each path of the tree corresponds to a possible outcome
based on the decision to impute/delay imputing t.a. For instance,
in path ps, t.a is imputed but fails the predicate in 01, while in
path ps3, t.a is delayed and ¢ passes the predicates associated with
02 and o3, and reaches the imputation operator p, where t.a is
imputed and evaluated in p using predicate associate with 0. The
estimated imputation cost in the case of imputing (delaying) ¢.a, is
the summation of the expected imputation cost of all paths in the left
(right) side of tree, i.e., p1, p2, ps, Ps- (P3, P4, p7, P8)- The expected
costs of various paths (shown in Fig 8-c) are computed as a weighted
sum of imputations along the path, where the weight corresponds
to the probability of execution of that imputation. For instance, for
path p1, we impute t.a with the probability of 1, and, subsequently

as So; = where T, (TR) are tuples in relation L (R) and T

7

*We exclude those tuples containing missing values from T, T, T, and Tg.

"We also use the notation TT join, for selection operator, in this case, TT join, = 0.
8A tuple with missing value in the attribute that passes through o will be pushed to
the above operator without evaluation immediately, and thus 7, for such tuple is 1.



impute t.c with the probability of Sy, So,. Thus, the cost of path p;
is impute(a) + So, So,impute(c).

Cost Model for Query Processing. Since join costs dominate
query execution, ZIP estimates query processing costs by the cor-
responding join costs. Consider the same decision tree in Fig 8-b).
The expected query processing cost if we impute (delay) ¢.a is the
sum of the expected query processing costs for all the paths in the
left (right) side of the tree. Fig 8-d) lists the probability of each path,
and also, its query processing cost. The probability is estimated
based on selectivity of the predicates along the path, and the cost
is estimated by summing execution cost of execution of operators
along the path incurred in processing tuple(s) that are generated
as a result of processing t. Take pg as an example. Its correspond-
ing probability is So, (1 — Sp,) since t passes o1 but fails o,. The
estimated cost for processing ¢ (shown in Fig 8-a) in operator oy,
denoted by QP(01), is 7o, * TT Join,, which is 0 in this example
since o1 is a selection operator for which 7, is 1 and TT Join,, = 0.
The cost QP(02) = 75,70, * TTJoin,, since o is a join operator
and 75, 75, is the estimated number of join tests to perform in o3.
Decision function will decide to impute missing values if the esti-
mated cost of imputation is lower. Otherwise, if the estimated cost
of query processing is lower, the imputation will be delayed.

8 EVALUATION

In this section we evaluate ZIP over two real data sets and one
synthetic data set. We implemented ZIP on top of a database proto-
type system, SimpleDB [3] ?. Note that the ImputeDB optimizer is
also implemented in SimpleDB. We did so, so that we can directly
measure the improvements due to ZIP on ImputeDB query plans.

8.1 Data & Query sets

WiFi. The first data set consists one week of WiFi connectivity
events at Donald Bren Hall Building in UCI. WiFi based occupancy
determination has recently received a lot of attention due to the
pandemic with several companies offering related products [7, 9, 10]
and research projects [33, 35, 37]. The database consists of three
tables, users, wifi and occupancy with 4018, 240, 065 and 194, 172
number of tuples, and totally 383, 676 missing values respectively.
WiFi records the continuous connectivity data of devices - i.e.,
which device is at which location in which time interval. occupancy
records the number of people at different locations over time.
CDC NHANES. We use the subset of 2013-2014 National Health
and Nutrition Examination Survey (NHANES) data collected by U.S.
Centers for Disease Control and Prevention (CDC) [1]. 1° CDC data
set has three tables, demo, exams and labs, which are extracted from
a larger complete CDC data set. demo, exams and labs have 10175,
9813, 9813 tuples, respectively, and all of them have 10 attributes.
Among them, there are totally 24 attributes that contain missing
values, whose missing rate ranges from 0.04% to 97.67%, with total
81, 714 missing values.

Smart Campus. Smart-campus data set consisting of 3 synthetic
sensor tables, WiFi, Bluetooth, Camera, a space table (that connects
sensors to locations) user table (that connects a user to a device
mac-address). In addition, two additional tables are derived from the

9SimpleDB, developed at MIT has been used for research purposes at several universi-
ties including MIT, University of Washington, and Northwestern University.
19We thank ImputeDB [17] for providing this data set whose link can be found in [2].
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Table 4: ZIP VS QTC-Eager.

Time(secs)

# of Imp (¥10%)
Tmputation | QIC-Eager _ ZIP-lazy _ ZIP-adaptive | QTC-Eager _ ZIP-lazy _ ZIP-adaptive
Mean 1.6 23 1.6 79 3.2 74
Loc 393.4 19.1 19.2 78 3.4 3.6
KNN 769.2 30.6 - 79 33 -
XGboost 144.7 126.2 - 79 3.2
Mean 0.12 0.12 0.12 12.1 13
KNN 9.63 1.02 - 12 13
XGboost 42.5 37.8 - 119 13 -
Mean 3.8 9.6 3.8 16 4.7 15.9
LOC 97.8 32.5 27.2 16 4.7 4.8
KNN 157.1 44.3 - 16 4.6
XGboost 101.8 72.6 - 16 4.7

Data Sets

WiFi

10.7
CDC -

Smart
Campus

sensor data. The first table location consists of location of user over
time and the second table occupancy consists number of people
at a given location over time. smart-campus data set has totally
1,892,500 tuples and 1,634,720 missing in occupancy and location
and occupancy tables.

Query Set We create three query workloads to evaluate ZIP, ran-
dom (with random selectivity), low-selectivity and high-selectivity.
In each query workload, the majority of queries are SPJ-aggregate
queries that contains select, project, join, aggregate (group by) oper-
ations. SP queries are also included. Each query workload contains
20 queries, and we describe the query samples as well as the above
three data sets in more detail in the long version of ZIP [11].

8.2 Imputation Methods

Note that any imputation approach could be approapiately used in
ZIP, and we choose several popular and easily used methods, which
could be called in standard Python library or be well-packaged in
Git-hub. For the CDC NHANES dataset we use three imputation
approaches, Top-k nearest neighbor [8] (KNN), XGBoost [4, 18],
and histogram-based mean value imputation [17]. Of these, the first
two are blocking while the third is non-blocking. KNN, XGBoost
and mean value imputations are widely used and their implemen-
tations are available in standard Python packages, such as sklearn
or xgboost. For the WiFi and Smart Campus data set to impute
location and occupancy values, in addition to using the above three
approaches, we further use a proprietary non-blocking imputation
method LOCATER [37] (LOC in short). The complexity of each
imputation method is described in the long version of ZIP [11].
8.3 Strategies Compared

We evaluate the two versions of ZIP - ZIP-lazy and ZIP-adaptive as
defined in Section 7 with a baseline query-time strategy, QTC-Eager,
that imputes missing values eagerly without delay during query
execution as soon as the imputed value is required during query
processing. Comparing ZIP to QTC-Eager will show benefits of
the lazy imputation strategy. We also compare against the offline
approach that first imputes all missing data and then run queries.
In Experiment 1 to 5 below, we use the query plan generated by
PostgreSQL as the input for ZIP to execute. !! In Experiment 6, we
incorporate ZIP with query plans generated from ImputeDB and
explore the performance of the combination.

8.4 Results

Experiment 1: ZIP VS Offline. To show the needs of query-time
imputation (i.e., ZIP) by comparing with the offline approach, we
collected a larger real data set WiFi-large by extending the WiFi data
set from one building to 40+ buildings over campus, and we report
the runtime of ZIP and the offline approach in Table 5 and Figure 9.
In Figure 9, the offline approach takes 6.4 hours in WiFi data set

e implement an API in simpleDB that could read and translate the PostgreSQL
plan to be executed in its executor.
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Table 5: ZIP VS Offline.

(Seconds) | Min | Max | Avg | Avg Speed Up
WiFi 3.9 46.3 | 19.2 1200X
WiFi-Large | 6.2 74.5 | 33.6 19607X

and estimated 183 hours in WiFi-large 12 data set, respectively.
In contrast, in Table 5, ZIP has only 19.2 and 33.6 seconds of run
time in WiFi and WiFi-large data sets, and it speeds up the offline
approach by 1200X and 19607X in WiFi and WiFi-large data sets.
Experiment 2: ZIP VS QTC-Eager. In Table 4 we report the
runtime (in seconds) and number of imputations, i.e., the number of
missing values imputed for QTC-Eager, ZIP-lazy and ZIP-adaptive
approaches using the random query set. Note that LOC is applied on
WiFi and Smart-Campus since it is not applicable on CDC data set.
In Fig 10, we compare the performance of QTC-Eager with ZIP-lazy
and ZIP-adaptive. We show the percentage of run time and number
of imputations performed by ZIP-lazy and ZIP-adaptive compared
to QTC-Eager. time ratio is the run time of ZIP-lazy (or ZIP-adaptive)
divided by the time of QTC-Eager times 100 (percentage). Similarly,
# Imp ratio is the percentage of imputation numbers.

We make several observations. First, ZIP-lazy and ZIP-adaptive
perform similarly and they both outperform QTC-Eager by around
20x when expensive imputations are used, which demonstrate that
delaying imputations significantly improves performance when
imputations are expensive. Second, when cheap imputations are
used such as Mean imputation, ZIP-adaptive tends to impute data
first since doing so will potentially save the query processing time
by reducing temporary tuples, and thus has similar imputations as
QTC-Eager. This shows that the decision function in ZIP-adaptive
works correctly and is able to actively adjust its decision based
on the cost of imputations. Third, ZIP-lazy requires slightly less
imputations than ZIP-adaptive since it always delays imputation
to the end of processing, while ZIP-adaptive performs similarly as
ZIP-lazy in WiFi and CDC and ZIP-adaptive slightly outperforms
ZIP-lazy in Smart Campus due to the more complex join work-
load (higher join selectivity). Fourth, as expected, when learning
approaches are used whose training time dominates the inference
costs (e.g., as in XGboost), reducing number of imputation will not
offer a big improvements. For instance, ZIP-lazy imputes 11.6% of
imputations needed for QTC-Eager, but it takes 89% run time of
QTC-Eager (i.e., saving only 11%).

Experiment 3: Quality of Query Answer. Quality of query an-
swer depend upon the imputation method used and the query itself.
Figure 11 plots the accuracy of imputation methods (Accy) and that

12\e stop cleaning at 10 hours and the offline approach only imputes around 5%
missing data.
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Figure 11: Accuracy of Imputations and Query Answer

XGboost

XGboost

of the corresponding query answers (Accg). Accy is the percentage
of correctly imputed values. For aggregate queries, Accg is mea-
AT-A
AT
returned using an imputation method. For set based queries Accg is

measured using Jaccard similarity. Using different imputations with
different accuracy, the accuracy of query answers is also different.
The experiment above highlights the impact of choice of imputa-
tion method on query answer quality. To measure the difference
between answers returned by ZIP and the offline approach, we use
Symmetric-Mean-Absolute-Percentage-Error (SMAPE) [39] (also
used by ImputeDB [17]). SMAPE is computed as a tuple-wise abso-
lute percentage deviation between ZIP & offline approach. Since
ZIP-lazy and ZIP-adaptive all return exactly the same answers as
offline, the SMAPE value for all is 0.
Experiment 4: Query Selectivity Effects. We use the query tem-
plate below to generate low-selectivity and high-selectivity query
workloads: SELECT a, AVG(b) FROM Ry, ..., R, WHERE [Predy]
[Preds] GROUP BY a., where Pred; and Preds are join and selec-
tion predicates. We varied the selectivity of each selection predicate
as 0, 0.2, 0.4, 0.6, 0.8, 1, and the selectivity of join predicate is set
to be low and high by modifying the matching numbers of joined
attribute values. KNN is applied in CDC data set, while in WiFi
and Smart-Campus data set, LOC is used to impute location and
occupancy, and Mean-value is used to impute other missing values.
In CDC and WiFi data set, we report the effect from selectivity of
selection predicates in Fig 12, and the effects from both join and
selection selectivity are evaluated in synthetic data set in Fig 13. In
this and later experiments, if no ambiguity, we call ZIP as the hybrid
of ZIP-lazy and ZIP-adaptive — ZIP always uses ZIP-adaptive for
non-blocking imputations and ZIP-lazy for blocking imputations.
Number of imputations and running time increases for both QTC-
Eager and ZIP when selectivity of predicates increases, though ZIP
has considerably lower overhead and running time at all selectivity
levels. In CDC, since KNN is costly and join operations are selective,
ZIP delays imputations in selection operators. Join predicates help
eliminate tuples reducing imputations needed thus reducing cost.

sured as | |, where A 7 is the true answer and A is the answer
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In WiFi where join attributes (e.g., location) have missing values,
instead of paying expensive imputations (e.g., LOC) to impute all
missing values in join attributes as QTC-Eager, ZIP delays the im-
putations of the missing values in join and allow the downstream
operators to wisely choose cheap imputations (e.g., Mean) for miss-
ing values that are not in join attributes to help eliminate tuples
if the corresponding predicates are selective. In synthetic data set,
when the join operators are highly selective, (i.e., selectivity is low)
as in Fig 13(a), ZIP delays imputing missing values in selection
operators to exploit join operators to help eliminate most tuples
and thus save most imputations. When join is less selective (i.e.,
more result tuples in Fig 13(b)) but the selection predicates are
selective, ZIP might choose to partially delay the imputations in
join attributes and the downstream operators (could be selective
due to other selections) to help remove tuples to avoid expensive
imputations in join attributes (e.g., location). However, when the
selection predicates are also less selective and query processing
overhead is higher than imputation costs, ZIP prefers imputing
missing values immediately same as QTC-Eager.

Experiment 5: The effect of Missing Rates. Figure 14 shows
how missing rates affect the query performance. With the increas-
ing missing rates, the runtime and imputation times taken by ZIP
slightly increase and tend to converge, since the amount of imputa-
tions needed to answer a given query depends on the selectivity
of the query. For the set of queries with fixed selectivities, their
performance will not be dramatically affected by the number of
missing data in the data, which demonstrates the robustness of ZIP.

600 700 800

Missing Rate

Figure 14: Missing Rate Effects.

Experiment 6: ZIP with ImputeDB plans. We investigate ZIP
using ImputeDB-generated query plans. ImputeDB [17] adds impute
and drop operators to a query plan based on a parameter « (0 <
a < 1) that balances efficiency and quality (see Section 2). Higher
the value of a, more drop operators are used causing more tuples
with missing value to be dropped. To incorporate ImputeDB plans
in ZIP, we added the drop operators that mirror the drop operator

39
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Figure 13: Selectivity Effects on Synthetic Data Set.

in ImputeDB. Given a ImputeDB plan, impute operators are treated
as regular ZIP impute operator that could be evaluated lazily based
on decision function but drop operator checks if a tuple contains
missing values in the appropriate attribute and, if so, drops the
tuple. We generated several plans based on varying « from 0 to
1 and execute the plan both in ImputeDB and in ZIP modified as
above to support ImputeDB plans with drop operator.

Fig 15 shows the average quality (1-SMAPE) versus runtime of
queries for the CDC and WiFi data using the KNN imputation ap-
proach on random query sets for ImputeDB plans with and without
ZIP optimization. Each line plot shows 6 points corresponding to
a =1,0.8,0.6,0.4,0.2, and 0 from left to right. The improvements
are 10x to 25x when « = 0 (i.e, when ImputeDB plan optimizes for
quality, choosing impute over drop). When « increases, the relative
improvements due to ZIP optimization reduces. This is expected
since ZIP optimization only applies to tuples that are imputed. With
increasing a more tuples are dropped reducing the need for ZIP op-
timization. When the cost-quality tradeoff across ImputeDB plans
with and without ZIP optimization, to achieve the same level of
quality, plans with ZIP optimization require significantly less time.
Furthermore, ImputeDB plans when executed with ZIP optimiza-
tion achieve significantly higher quality in the same amount of
time spent in query processing. Thus, execution of ImputeDB plans
with ZIP significantly dominates the ImputeDB plans without ZIP.
The experiment clearly establishes that even in use cases where we
explore cost-quality tradeoffs, ZIP-optimization can help improve
systems such as ImputeDB that explore such tradeoffs, and ZIP and
ImputeDB are complementary approaches integration of which
provides a powerful query time imputation approach.

9 CONCLUSION

This paper studies query-driven missing value imputation and pro-
poses ZIP, a technique to intermix query processing and missing
value imputation to minimize query overhead. Specifically, ZIP
co-optimizes imputation and query processing cost, and proposes a
new implementation based on outer join to preserve missing values.
Real experiments shows that ZIP combined with the state-of-the-art
technique has 10x to 25x improvement, and ZIP outperforms the
offline approach by up to 19607x in the real data set.
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