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ABSTRACT
This paper develops a query-time missing value imputation frame-

work, entitled ZIP, thatmodifies relational operators to be imputation-

aware in order to minimize the joint cost of imputing and query

processing. The modified operators use a cost-based decision func-

tion to determine whether to invoke imputation or to defer to

downstream operators to resolve missing values. The modified

query processing logic ensures results with deferred imputations

are identical to those produced if all missing values were imputed

first. ZIP includes a novel outer-join based approach to preserve

missing values during execution, and a bloom filter based index to

optimize the space and running overhead. Extensive experiments

on both real and synthetic data sets demonstrate 10 to 25 times

improvement when augmenting the state-of-the-art technology, Im-

puteDB, with ZIP-based deferred imputation. ZIP also outperforms

the offline approach by up to 19607 times in a real data set.
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1 INTRODUCTION
A large number of real-world datasets contain missing values.

Reasons include human/machine errors in data entry, unmatched

columns in data integration [32], etc. Failure to clean the missing

data may result in the poor quality of answers to queries that may,

in turn, negatively influence tasks such as machine learning [34],

data analytics, summarization [25, 27], etc. built on top of data.

Missing value imputation has been extensively studied in the

literature, especially from the perspective of ensuring accuracy [16,

36, 43, 47]. Traditionally data cleaning (including missing value

imputation) is performed as a data preparation step prior to analy-

sis in data warehouses. Such an offline cleaning approach [31, 42]

can, however, become prohibitively costly if the volume of data is

large and cost per imputation is high. Data cleaning/imputation is

sometimes performed on dirty data as it arrives during ingestion in

an online manner [29]. Such ingestion time imputation approaches,

however, also becomes impractical if rate of data arrival exceeds the

rate at which it can be cleaned. Consider a use case scenario which
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motivates our work. At UC Irvine, for the past 4 years, we have

been using continuously generated WiFi connectivity data cap-

tured over a campus wireless networks for fine-grained localization

using a Wifi-based localization framework entitled LocatER[37].

LocatER exploits a person’s recent connection history to predict

the room a person is in given the access point a person is connected

to (which corresponds to an imputation problem [37]). LocatER

takes roughly 400ms per event for such an imputation.
1
With 1000s

of WiFi access points, about 30,000+ individuals connected to the

network, and tens of thousand of WiFi events per second, it would

take over an 1 hour of processing per one second of data collected

from the WiFi infrastructure during peak load. An online approach

that imputes location value as soon as data is ingested is clearly

infeasible. Likewise, collecting and processing raw WiFi data peri-

odically using LocatER as an offline approach discussed earlier is

also equally impractical. Instead, we adopt an alternate query-time

approach that cleans data lazily when the need arises. Motivated

by similar requirements as the example above, a query-time ap-

proach to cleaning/imputation has become popular in several recent

studies [12, 13, 17, 21, 23, 24] discussed in related work (Section 2).

Query time cleaning offers several benefits. It significantly re-

duces the wasted effort and computational resources by cleaning

only parts of the data actually needed in analysis instead of indis-

criminately cleaning the entire dataset. This is especially important

when cleaning is expensive and/or datasets are very large, making

cleaning of the data fully infeasible. Predicting the dataset analysts

might use apriori so as to clean such data as a pre-analysis step

is often not feasible (e.g., when a common analysis operation con-

sists of adhoc queries on the data) [14]. In such situations, the only

recourse is to support data cleaning with query processing.

Query-time data cleaning opens new challenges, the prominent

of which is to minimize cleaning performed during query process-

ing to reduce latency. This paper develops ZIP, a laZy Imputation

query Processing approach that exploits query semantics to reduce

the cleaning overhead. When processing records with missing val-

ues, ZIP may delay imputations until later - such a lazy approach

to imputing can be beneficial if the record with the missing value

get eliminated in the query tree, thus, avoiding imputatons unnec-

essary for answering the query. Delaying imputations, comes at

a increase in processing cost, if imputation could not be avoided.

ZIP, given a query plan for an SQL query, develops an execution

strategy that minimizes the overall (joint) cost of imputing missing

data and executing the query. We illustrate the key intuition behind

ZIP through an example below.

1.1 A Case for Lazy Imputation
Consider a real camera-based localization application in Donald

Bren Hall building, UCI, which is instrumented with camera used

to locate people. A tuple in Camera-Snapshots (Table 1) stores

1
This is based on a 16 core 2.50GHz Intel Xeon CPU, 64GB RAM, and 1TB SSD.
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Table 1: Camera-Snapshots (C)

sid faceID Time location

1 20 12pm 2206

2 41 2pm NULL (𝑁1 = 3001)

3 20 1pm NULL (𝑁2 = 2206)

4 35 3pm NULL (𝑁3 = 2099)

5 NULL (𝑁4 = 26) 1pm 3119

6 NULL (𝑁5 = 55) 2pm 2214

Table 2: User (U)

Name Type faceID

Mike faculty NULL (𝑁6 =20)

Robert graduate 65

John faculty NULL (𝑁7 =55)

Table 3: Space (S)

Room Building

2214 NULL (𝑁8 =DBH)

2206 DBH

2011 DBH

3119 NULL (𝑁9 =ICS)

2065 NULL (𝑁10 =DBH)

⋈C.faceID=U.faceID

Πsid

C

σlocation=′￼2099′￼

U

a) Plan 1 c) ZIP plan

σU.type=graduate
̂⋈ C.faceID=U.faceID

̂Π sid

C

̂σ location=′￼2099′￼

U

̂σU.type=graduate

ρ

⋈C.faceID=U.faceID

Πsid

C

σlocation=′￼2099′￼

U
b) Plan 2

σU.type=graduate

Figure 1: Imputation in Different Query Plans.

the location (i.e., room) of a person (i.e., faceID determined using

face recognition) at a given time (i.e., the timestamp). The faceID

of a person could be determined by matching camera data with

picture(s) of a person stored in the database or through a model

trained using such pictures. User (Table 2) and Space (Table 3)

tables store the metadata about registered users and space. There

are 10 missing values (shown as NULL) in the 3 tables, and we also

display the corresponding imputed values (shown as blue color in

the bracket). Let us consider a simple query, find all snapshots (sid)

for graduate students in room 2099. Such a query joins Camera-
Snapshotswith theUser table, after selecting tuples matching query

predicates on each table as shown in Fig 1.

Let us consider various possible query-time imputation strategies

in different query plans. Fig 1-a) is the plan where all selections are

pushed down. In such a plan, all the missing values under 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

column (i.e., 𝑁1, 𝑁2, 𝑁3) must be imputed since the selection opera-

tor 𝜎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛=′2099′ require missing values to be imputed prior to

execution. After imputations, only one tuple with sid 4 satisfies the

selection condition, and will thus be passed onto the join operator.

Since the faceID of this tuple (i.e., 35) does not match any faceID in

Table 2, the query execution will terminate.

One may be tempted to consider the additional imputation over-

head (i.e., 𝑁1, 𝑁2, 𝑁3 ) of Plan 1 to be a result of pushing selections

to the leaf level. This raises an issue whether the savings resulting

from modifying the operators could be achieved simply by mak-

ing the optimizer aware of expensive nature of imputations which

may, then, consider imputation required by the selection operator

𝜎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛=′2099′ as expensive (as in [26]) resulting in the operator

to be pulled above the join condition, such as the Plan 2 in Fig 1-b).

Even such a plan would still require 2 imputations for 𝑁4, 𝑁5. Fur-

thermore, such a plan would incur significant execution overhead

for tuples for which attribute values are not missing, since the input

size to join from table 𝐶 will be the cardinality of 𝐶 table without

any filtering. Thus, the benefits that can be achieved by modify-

ing the operator implementation cannot simply be mimicked by

changing the optimizer.

Now let us now consider the strategy illustrated in Fig 1-c)

wherein each operator 𝑜 is replaced by a corresponding "imputation

aware" operator 𝑜̂ . A modified operator 𝑜̂ behaves exactly the same

as the original operator 𝑜 for tuples that do not contain missing

values. For instance, for tuples with sid 1, 5, 6 for which location at-

tribute is not missing, 𝜎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛=′2099′ evaluates the predicate right

away (and drops the tuples since they do not match the predicate).

For tuples with missing values (i.e., tuples with sid 2, 3, and 4), the

modified operator 𝜎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛=′2099′ may decide to either impute the

missing value and compute the predicate, or delay the imputation

for the downstream operator to perform. Delaying imputation can

prevent unnecessary imputations, if such a tuple (whose imputa-

tions are delayed) does not satisfy predicates associated with the

downstream operators. In our example, if 𝜎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛=′2099′ forwards

the tuples with sid 2, 3, 4 in Table 1 to the downstream join without

imputing 𝑁1, 𝑁2, 𝑁3, it would have resulted in the savings of all the

three imputations since the tuples do not meet the join condition

(the only graduate student in theUser table has a faceID of 65 which

does not match the faceID of tuples with sid 2,3, and 4)!

Such a lazy strategy would possibly minimize the imputation

costs without sacrificing quality of result. In the example above,

saving two or three imputations may appear to be of little benefit

compared to the additional complexities that could arise in main-

taining state and modifying operators, in practice, when tables are

large and imputation costs are relatively expensive such savings

quickly add up. For instance, even for the simple query discussed

above if Camera-Snapshots contains millions of rows, imputing all

the missing locations would be very expensive.

1.2 Challenges in Supporting Laziness
First, while supporting laziness, it is not trivial to ensure the cor-

rectness of query answers returned by ZIP, i.e., the query answers

returned by ZIP is same as the approach that first imputes all miss-

ing values on the entire datasets and then run query processing.

To this end, we carefully design the mechanism of the “imputation-

aware” modified operator to delay missing values based on outer

join strategy and reconstruct the query answers correctly using the

replay algorithm. Second, how to adaptively co-optimize the impu-

tation cost and query processing overhead remains a challenging

task. In ZIP, we design the decision function to automatically make

the decision on whether to delay imputation or impute missing val-

ues right away in each operator based on the estimated expectation

cost of imputation and query processing. Third, it is critical and

non-trivial to perform the laziness in ZIP in an efficient way. We

developed techniques to improve the efficiency of ZIP. We exploit

the opportunities to remove redundant imputations by leveraging

the upstream and downstream predicates using the filter and verify

step in the modified operator. What’s more, the bloom filter is used

to ensure the replay algorithm can be performed efficiently.

1.3 Contributions
The paper introduces a ZIP framework to answer SQL queries over

data that may contain missing values. The primary contributions
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include (a) simple modification to the logic of relational opera-

tors that empowers operators to choose to either impute or delay

missing values, (b) a decision-function logic to enable operators to

determine whether the imputation should be performed right away

or delayed based on a cost-based analysis of tradeoffs between the

two choices, (c) efficient mechanisms to maintain state of the execu-

tion and the modified query processing logic to continue execution

over imputed values so as to generate the right query results. ZIP

designs modified operator logic for a wide range of operators, such

as selection, join, projection, aggregate-group by, union, set minus

and can handle a large class of queries of significant complexity

including nested query. ZIP provides orders of magnitude savings -

E.g., using ZIP based query processing over ImputeDB query plans

can result in savings from 10 to 25 times depending upon the query

and data sets. It provides order-of-magnitudes improvement over

offline approach (i.e., imputing all missing values in data set and

then running query) up to 19607 times in a real data set.

2 RELATEDWORK
Missing Value Imputation. As in [17], we view imputation ap-

proaches as blocking or non-blocking in terms of query processing.

A blocking strategy reads the whole data to learn a model for impu-

tation (before it imputes any missing value), while a non-blocking

strategy can impute missing values independently reading only

a (subset of related) tuples. Imputation approaches can roughly

be characterized as statistics based, rule based, master data based,

time-series based, or learning based approaches [36]. Of these, other

than the learning based approaches, many techniques could be used

in a non-blocking setting. For instance, ImputeDB [17] used a non-

blocking statistics-basedmean-valuemethod that replaces amissing

value with the mean of the available values in the same column

using histograms. Since histograms are often maintained for query

optimization and approximate processing [28, 44] such a technique

is non-blocking. Strategies that use master data [20, 41, 45, 46]

are also non-blocking since they look up a knowledge base and

crowd source the imputations one tuple (or a set of tuples) at a time.

Imputation strategies in time series data [15, 30, 37] are often per-

formed by learning patterns over historical data to forecast current

missing values or using the correlation across the time series. An

example is LOCATER [37] that imputes each missing location of a

user at one time stamp by learning user’s pattern from historical

data. Such methods also clean one tuple at a time and are, hence,

non-blocking. Rule based imputation methods based on differential

dependency [43] or editing rules [22] often impute missing values

by replacing them with corresponding value of similar objects.

In non-blocking strategies the overall cost of imputation is pro-

portional to the number of tuples imputed and hence, ZIP, which is

designed to exploit query semantics to reduce number of imputa-

tions performed, can bring significant improvements.

In contrast to the above, learning-based approaches [18, 38, 40]

are often blocking. ZIP helps learning-based approach by reducing

the number of tuples to be imputed (and thus reducing inference

time), and ZIP can bring significant improvement when inference

time is not negligible, such as KNNImpute
2
which takes 9.73 sec-

onds to impute 1k missing values.

2
A standard library to impute missing values in scikit-learn in python [8]

ZIP also helps reduce training time since ZIP only learns the

model on the columns required by the query. For instance, consider

AdventureWork dataset [6] which contains more than 200 columns

with missing values. Instead of learning models for all such columns

as the offline approach does, ZIP only needs to learn models for

only a few columns required by the query. Note that the learned

models can be reused and thus save training time for later queries

that requires imputations on the same columns.

Additionally, given the significant training overhead of learning

based approaches, several prior works have explored reducing the

training time of learning-based methods by using sampling [40]

or histograms [4]. In this situation, when learning-costs can be

brought down to make blocking strategies practical in online set-

tings, ZIP can bring further improvements by reducing redundant

imputations.

In summary, ZIP provides a framework for lazy imputations

during query processing where any imputation approach could

be properly used in ZIP. ZIP will adaptively adjust its behaviors

(impute now or delay imputations) when using imputations with

various complexity, and it will provide the most advantages when

the imputation cost is significant and data is large. When cheap

imputations are used, ZIP will not be any worse compared to the

offline approaches since ZIP does not repeatedly clean - it does so

only once and then subsequently remembers the imputed values.

Note that ZIP does not require an analyst to pre-decide what type

of imputation functions to use (cheap, expensive, or in-between)

in advance, since ZIP will adaptively adjust its behaviors (impute

now or delay imputations) by estimating the imputation cost and

query processing cost.

Query-Time Data Cleaning. Query-time strategy has been ex-

plored in several data cleaning problems. [24] explores analysis-

aware conflicting values detection and repair in database. Specifi-

cally, their approach performs repair of denial constraint [19] vi-

olations on-demand to integrate data cleaning into the analysis

by relaxing query results. QDA [12, 13] develops query-driven ap-

proach for entity resolution problem with the goal of reducing the

number of cleaning steps that are necessary to exactly answer se-

lection queries. ImputeDB [17] explores a dynamic optimization

strategy to design query plans for queries over relations with miss-

ing data. In particular, ImputeDB introduces 2 new operators - drop

and impute. For any predicate where the condition being evaluated

is over an attribute that may contain missing values, ImputeDB

introduces one of these two operators. For any tuple that passes

through the impute operator, ImputeDB will call the corresponding

imputation function to resolve the tuple prior to passing it to the

predicate in the original operator in the query tree. In contrast, for

a drop operator it will simply drop the tuples whose corresponding

attribute contains a missing value. The placement of impute/drop

operators explores a trade-off between the accuracy of results and

the corresponding overheads, specially when imputations can be

expensive and dominate the query evaluation cost. While Imput-

eDB explores such a trade-off to generate a query plan with drop

and impute operators, ZIP explores a complementary execution

strategy by modifying query processing by changing how tuples

with missing values are processed by relational operators in order

to reduce the need to impute data. In particular, in ZIP, relational

operators may delay imputing missing values in the hope that such
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a) Original Query Plan Tree b) ZIP Query Plan Tree 

Loc = {2065, 2011,2082,2206}

(2, 41, 2pm, N1)

1

(NULL, NULL, 2, 41, 2pm, N1)

(4, 35, 3pm, N3)

U.faceID are imputed 

t1

t2

t3

Loc = {2065, 2011,2082,2206}

Figure 2: ZIP query plan.
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Figure 3: Modified Operators.

SELECT C.sid FROM C, U, S
WHERE C.faceID = U.faceID AND
C.location = S.room AND S.building = ‘DBH’ AND
C.location in {2065, 2011, 2082, 2206}

Figure 4: Query
tuples are eliminated by downstream operators preventing the need

to impute the missing values. ImputeDB and ZIP can be used in

isolation or together since the approaches are complementary. In-

deed, in Section 8, we show improvements due to ZIP over query

plans already optimized using ImputeDB optimizer to highlight

additional advantages that result from ZIP.

3 ZIP OVERVIEW
This section provides an overview of how ZIP achieves delayed

imputation by appropriately modifying the relational operators.

We will use the query shown in Fig 4 to illustrate ZIP. We shift to

this query instead of a simpler query we used which will no longer

suffice to illustrate all the cases ZIP needs to handle to ensure correct

execution. The Fig 2-a) shows the query tree generated by a third-

party optimizer, (e.g., PostgreSQL). ZIP modifies such a plan by

replacing operators by their modified versions and by adding a new

operator 𝜌 at the top of the tree as shown in Fig 2-b) that imputes

missing values whose imputation has been delayed by previous

operators. ZIP has been implemented in the context of pipeline

query execution using an Iterator Interface. The execution starts

from the root of query tree by calling a root.getNext() that retrieve

tuples from the child nodes that satisfy the associated conditions.

Child nodes, in turn, recursively call getNext() operator on their

children. ZIP modifies the relational operators to process incoming

tuples that contain missing values differently. Other tuples (that do

not contain missing values) are processed exactly as they would

be by the original operator. In particular, ZIP does not change the

underlying operator implementation - for instance, the relational

operator can continue to use hash/sort/nested loop/index-based

operator implementations supported in the underlying database

without change. ZIP simply routes tuples containing missing values

through a sequence of steps (i.e., filter, verify, decision function,

generate). Thus, besides code to implement such steps, ZIP only

changes the routing logic of operators which requires a very small

amount of new code (approx. 500+ lines) while preserving the

existing code of the database.

Missing Value Representation: Before we discuss how modi-

fied operators are implemented in ZIP, we first specify how ZIP

represents missing attribute values. In ZIP missing values are rep-

resented using NULLs. However, to differentiate between a value

of an attribute being NULL or missing, the relational schema is ex-

tended with an additional attribute that contains a bit per attribute

of the relation. If the value of attribute 𝑎 in a tuple 𝑡 is missing, its

value is NULL and its corresponding bit is set to 1. If attribute 𝑎 is

NULL but its bit is 0, then 𝑎 is not missing, instead it is NULL.

Routing logic of modified operator. Fig 3 shows the modified

logic of the unary and binary operators. The tuple incoming to the

operator first pass through a filter step (the purpose of which will

become clear momentarily). It is then checked to determine if the

attribute value (on which the operator is defined) is missing (by

checking for the appropriate bit in the additional attribute stored

in the tuple). If the value is not missing, the tuple is directed to

the I-operation, i.e., 𝐼𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛-𝑎𝑤𝑎𝑟𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, which, for such

tuples, implements the exact same logic as the original operator. If

value is missing, the tuple is diverted through a decision function

(DF ) which may decide to either impute or delay imputation of the

missing value. If imputation is delayed, the tuple again is routed to

the I-operation which, in turn, forwards the tuple to downstream

operators with missing value preserved without checking the asso-

ciated predicate, if any, with the operator. For unary operators (e.g.,

selection), the tuple is forwarded as is, and for binary operators (e.g.,

join) the tuples are forwarded to the next operator in the pipeline

in a way similar to the way they are in an outer-join as illustrated

in the example below. For projection operators, ZIP preserves all

attributes in a tuple that contain missing values and that may be

imputed later. Tuples that DF decides to impute are first routed to

verify and generate steps. The goal of the verify step is to determine

if the imputed value satisfies all the predicates associated with the

previous operators (and hence the tuple would have made it to the

current operator). If a tuple 𝑡 passes the verify step, the generate step

is invoked on 𝑡 . This step generates all additional tuples that would

have resulted by executing the logic of upstream operators had 𝑡

been imputed at the very beginning of query execution. The gener-

ated tuples, now with missing value imputed, are passed through

the operator logic and processed just the same way the original

unmodified operator would have processed tuples. The imputed

value of an attribute 𝑎 in a tuple 𝑡 may also be present in other

tuples in multi-join queries. When 𝑎 is imputed, all the tuples with

the imputed values will be forwarded to generate step in order to

generate all the results as we discussed in Section 5.

We next explain the roles verify, filter, generate and decision

function (DF) play in the implementation of the modified operator.

Verify: The verify operator is invoked whenever a missing value

is imputed in the current operator to check if, had it been imputed

earlier, it would have caused the tuple to be eliminated by a prior

upstream operator. In such a case, the tuple can be dropped since

such a tuple would not have passed the logic of a prior operator

and would, thus, have not reached the current operator.
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Filter: Filter operator in ZIP works in a manner dual to verify -

while verify is used to check if a tuple whose missing value imputa-

tion was delayed in a prior (upstream) operator can be pruned after

imputation since it would have failed predicates in prior operators,

the filter test is used to prune tuples based on predicates associated

with future downstream operators that the tuple will not satisfy.

Filter test associated with an operator 𝑜 can, thus, result in early

pruning of tuples saving imputations.

Generate: In operator 𝑜 , generate step is responsible to generate

possible tuples that satisfy all the previous upstream predicates

of 𝑜 . If the imputation of 𝑁1 is delayed by the join operator until

later (say, until 𝜌 executes), necessary joining tuples that could

have resulted from 𝑡1 will need to be generated. To this end, ZIP

maintains state of all tuples that flow through the join operator

and uses the state to support a carefully designed mechanism that

ensures correct query answer even when imputations are delayed.

Decision function: ZIP creates a decision function associated with
each operator to determine whether to impute the missing values

or delay imputation. Intuitively, it is tempting to delay imputing in

operator 𝑜 if imputations are expensive and the downstream opera-

tors of 𝑜 are selective. If the tuple is eliminated by a downstream

operator, imputation required to execute 𝑜 would be saved. On the

other hand, if ZIP decides to impute missing values right away, the

imputed tuple will have a chance to be eliminated by the current

operator saving execution cost. Decision function is a cost-based

solution to estimate the expected execution cost of imputing right

away versus delaying the imputation, and chooses the option with

lower cost. We discuss decision function in Section 7.

𝜌 Operator: ZIP adds a new operator 𝜌 at the top of the tree which

imputes all missing values in the attributes associated with query

predicates that have not been imputed so far. The structure of the 𝜌

operator is same as that of unary operator with the difference that

for 𝜌 the DF is always set to impute
3
. Like other unary operators,

once a tuple is imputed in the 𝜌 operator, it goes through the verify

step, and if passing verification, goes through the generate step.

Since 𝜌 is the final operator, the way 𝜌 executes the generate differs

slightly compared with other operators as will be discussed in

Section 6. We note that 𝜌 will impute any missing values in the

projected attributes if any and removes all attributes in the imputed

tuples that were not part of the projection in the query.
4

We use a complete example in Figure 2 to illustrate ZIP. Con-

sider a tuple 𝑡1 = (2,41,2pm,𝑁1) in table 𝐶 with a missing value

in the location field for a query in Fig 2-b. Assume that selection

operator delays imputation. Thus, 𝑡1 is passed to the join opera-

tor as it is. The modified join operator, which is also defined on

the location field, will decide whether to impute the missing lo-

cation field or to delay its imputation further. If join decides to

delay, it preserves the missing value in location in a way similar

to the way outer joins preserve tuples. In particular, it generates

a tuple 𝑡2 = (NULL,NULL,2,41,2pm,𝑁1) where 𝑁1 is the preserved

missing value and the NULLs represent that the values of those

fields are NULL. Here we denote 𝑁𝑖 by missing values and the

3
We could alternatively, also consider drop operator, similar in spirit to ImputeDB,

which will allow our technique to explore the cost-quality tradeoff as well.

4
When a tuple with multiple missing values reaches 𝜌 , ZIP simply prefers imputing

attributes in selection conditions. Alternative strategy can be first imputing the missing

value with lowest estimated imputation cost.

̂σ S.building=′ DBH′ 

Verify Set: {}
Filter Set:  {S.room=C.location, S.room in Loc}

Verify Set: {}
Filter Set:  {C.faceID =U.faceID}

Verify Set: {C.location in Loc}
Filter Set:  {C.faceID =U.faceID}

Verify Set: {}
Filter Set:  {}

Verify Set: {all predicates}
Filter Set:  {} ρ Verify Set: {all predicates}

Filter Set:  {}
̂Π sid

̂⋈ C.faceID=U.faceID

̂⋈ S.room=C.location

Figure 5: Verify Set and Filter Set.

associated value of NULL for null values. Consider the missing

value 𝑁1, and assume decision function decides to further delay its

imputation in 𝜎𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐿𝑜𝑐 . If this value is imputed later during

query processing (e.g., in operator 𝜌), ( 2 in Fig 2), the imputed

value must satisfy every predicate that applies to the imputed value

in the upstream operators prior to 𝜌 . Now consider how filter step

works. Assume that the decision function associated with the join

operator ⊲̂⊳𝐶.𝑓 𝑎𝑐𝑒𝐼𝐷=𝑈 .𝑓 𝑎𝑐𝑒𝐼𝐷 decides to impute all missing values

of 𝑈 .𝑓 𝑎𝑐𝑒𝐼𝐷 , and ⊲̂⊳𝐶.𝑓 𝑎𝑐𝑒𝐼𝐷=𝑈 .𝑓 𝑎𝑐𝑒𝐼𝐷 is implemented as a hash

join with 𝑈 being the build table used in the hash join. Then all

possible values𝑈 .𝑓 𝑎𝑐𝑒𝐼𝐷 (i.e., {20, 65, 55}) could take would have

been determined early in the pipeline query processing as soon as

the build phase of the hash join is complete. Now consider tuple 𝑡3
passing through 𝜎𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐿𝑜𝑐 . 𝑡3 will be pruned since its faceID

35 is not in {20, 65, 55}, and thus not be part of the answer.

Roadmap: In the reminder of the paper, we first describe the im-

plementation of the verify and filter operators in Section 4. The

imputation-aware operations (i.e., I-operation) and answer gener-

ation (i.e., generate step) are described in Section 5 and Section 6

respectively. Finally we show the design of decision function (i.e.,

DF step) in Section 7. We restrict the discussion to the modified ver-

sions of the select, project, and join operators and illustrate query

processing in ZIP through the SPJ queries. Extensions to other

operators other unary and binary operators (aggregation, group-by,

union, intersection, set difference) are relatively straightforward

and described in the longer version of this paper [11].

4 VERIFY & FILTER STEPS
Data Structures. Implementation of Verify and Filter steps of

an operator 𝑜 requires ZIP to maintain several data structures.

Verify Set. Verify set for operator 𝑜 consists of all the predicates

over the attribute 𝐴𝑜 which are associated with all the upstream

operators (i.e., those that appear below 𝑜 in the query tree) , where

𝐴𝑜 are the attributes associated with the predicate in 𝑜 . Fig 5 shows

the verify sets for all operators in query tree in Fig 2.

Filter Set. A filter set for an operator 𝑜 consists of predicates defined

over attributes associated with the tuples that are input to 𝑜 . These

predicates correspond to conditions associated with operators that

are downstream to 𝑜 (i.e., are higher up in the query tree) and are

defined over attributes other than 𝐴𝑜 on which 𝑜 is defined. As

an example, consider selection operator 𝑜 = 𝜎𝑆.𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔=′𝐷𝐵𝐻 ′ in

Fig 2-b) where 𝐴𝑜 = {𝑆.𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔}. We add the predicate {𝑆.𝑟𝑜𝑜𝑚 =

𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛} from the downstream join operator to the filter set

since it is defined on the attribute 𝑆.𝑟𝑜𝑜𝑚 which is different from
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the attribute 𝑆.𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 on which the selection operator is defined.

The filter set for 𝑜 = 𝜎𝑆.𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔=′𝐷𝐵𝐻 ′ can be expanded further by

additional predicates which can be inferred from the current filter

set. In the example, the predicate {𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐿𝑜𝑐} coupled the fil-
ter {𝑆.𝑟𝑜𝑜𝑚 = 𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛} enable filter set of 𝑜 = 𝜎𝑆.𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔=′𝐷𝐵𝐻 ′

to be expanded to {𝑆.𝑟𝑜𝑜𝑚 = 𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑆 .𝑅𝑜𝑜𝑚 𝑖𝑛 𝐿𝑜𝑐}. The con-
ditions in the filter set are used in ZIP to eliminate tuples earlier

thereby saving unnecessary imputations.

Bloom Filters. ZIP constructs a bloom filter [5] for each join attribute

in the equi-join operator. Such a bloom filter, 𝐵𝐹 (𝑎) for the attribute
𝑎 is constructed incrementally as the tuples are processed by the

modified join operator. When the modified operator processes a

(non-missing) attribute value, it stores the value into the bloom

filter 𝐵𝐹 (𝑎). Likewise, whenever a missing value in a tuple for a

join attribute is imputed (either as part of the join or a further

downstream operator) and passes the verification test, it is added

into the corresponding bloom filter. The bloom filters help prune/-

filter tuples early in upstream operators based on downstream join

conditions. For instance, in the example above, using the bloom

filter, the operator 𝜎𝑆.𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔=′𝐷𝐵𝐻 ′ could use the join condition

in its filter set (e.g., {𝑆.𝑟𝑜𝑜𝑚 = 𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛} to check if the 𝑟𝑜𝑜𝑚

associated with the current tuple matches any 𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 using the

bloom filter 𝐵𝐹 (𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛). In addition to helping implement the

filter step, ZIP uses bloom filter in the modified join will also be

used to support the modified join operator (in Section 5).

Bloom Filter Completeness. A bloom filter 𝐵𝐹 (𝑎) for a join attribute

𝑎 in a query 𝑄 is said to be complete with respect to 𝑄 if 𝐵𝐹 (𝑎)
contains all values of 𝑎 that could result in tuples in the answer set

of 𝑄 . Note that the completeness condition does not require all

values of 𝑎 to be in 𝐵𝐹 (𝑎). Tuples that are filtered away by the

selection/join operators (and hence do not contribute to the query

answers) may not be in 𝐵𝐹 (𝑎) for it to be considered complete.

Let 𝑄 be a query over relations 𝑅1, 𝑅2, . . . , 𝑅𝑛 . W.L.O.G, let 𝑎 be an

attribute in 𝑅1 that participates in a join predicate in 𝑄 . The bloom

filter 𝐵𝐹 (𝑎) is said to be complete w.r.t. 𝑄 if for all tuples 𝑡1 ∈ 𝑅1,
such that there exists tuples 𝑡2, 𝑡3, . . . , 𝑡𝑛 in 𝑅2, 𝑅3, . . . , 𝑅𝑛 that along

with 𝑡1 produce a tuple in the answer set, 𝐵𝐹 (𝑎) contains 𝑡 .𝑎.
We denote the event during query processing that causes the

bloom filter 𝐵𝐹 (𝑎) to become complete as 𝐵𝐹𝐶 (𝑎) and we refer to

it as completeness event for 𝐵𝐹 (𝑎). For 𝐵𝐹𝐶 (𝑎) to be reached, two

conditions should be held. First, all the tuples with missing values in

𝑎 should have been imputed or eliminated and there is no missing

values. To test such a condition, for a query 𝑄 , ZIP maintains a

missing value counter𝑀𝐶 (𝑎) that records the number of missing

values for each attribute 𝑎 in 𝑄 . Such an array is initialized using

the metadata or statistics maintained by in database. Whenever a

missing value in attribute 𝑎 is imputed or dropped, (e.g., as a result

of a filter operator), ZIP reduce the count of𝑀𝐶 (𝑎) appropriately.
Second, reaching 𝐵𝐹𝐶 (𝑎) further depends upon the specific join

algorithm used to compute a join. Consider a join 𝑅𝐿 .𝑎 ⊲⊳ 𝑅𝑅 .𝑏,

where 𝑅𝐿 and 𝑅𝑅 are the left and right relations respectively, and 𝑎

and 𝑏 are join attributes. If no ambiguity, we will refer to 𝑅𝐿 and 𝑅𝑅

simply as 𝐿 and 𝑅. If 𝐿.𝑎 ⊲⊳ 𝑅.𝑏 is implemented using nested loop,

for inner relation 𝑅, bloom filter 𝐵𝐹 (𝑅.𝑏) contains all values in 𝑅.𝑏

(i.e., 𝐵𝐹𝐶 (𝑅.𝑏) is reached) when there are no more missing values

of 𝑅.𝑏 and the first pass of relation 𝑅 has been processed. For outer

relation 𝐿, such a condition becomes true only when all tuples have

been processed through the join operator. For hash joins, the bloom

filter contains all values as soon as the hash table based on build

relation has been built and for outer relation such a condition is

reached when all tuples have been processed. For sort merge, or

multi-pass hash join, the bloom filters for both relations 𝐿 and 𝑅

contains all values when the sort or hash table build is finished. ZIP

maintains for each attribute 𝑎 in a join a boolean, entitled 𝐽𝐶 (𝑎)
that becomes true when all the values in 𝑎 have been processed. ZIP

modifies the scan operator to detect and set 𝐽𝐶 conditions when

all tuples in a relation have been consumed.

Thus to determine 𝐵𝐹𝐶 (𝑎) ZIP simply needs to check when both

𝑀𝐶 (𝑎) = 0 and 𝐽𝐶 (𝑎) = 𝑡𝑟𝑢𝑒 has been reached.

Verify and Filter Implementation. To implement verify and

filter operation, for incoming tuples, ZIP only needs to check con-

ditions stored in verify and filter set to determine if the tuples

satisfy them or not. If the conditions are selections, tuples can be

evaluated right away. For join conditions, we check if the bloom

filters of the join attributes are complete or not. If they are com-

plete in pipeline query processing, we use the bloom filter to test

if the tuple satisfy this join condition. For instance, consider op-

erator 𝜎𝑆.𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔=′𝐷𝐵𝐻 ′ whose filter set contains a join condition

𝑆.𝑟𝑜𝑜𝑚 = 𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 in Fig 5. For tuple 𝑡 received by𝜎𝑆.𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔=′𝐷𝐵𝐻 ′ ,

if 𝑆.𝑟𝑜𝑜𝑚 is not missing, and the bloom filter 𝐵𝐹 (𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) is com-

plete, ZIP uses 𝐵𝐹 (𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) to check if 𝑆.𝑟𝑜𝑜𝑚 has any matched

values in 𝐵𝐹 (𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛). If 𝐵𝐹 (𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) returns false, we drop
tuple 𝑡 . This check operation is safe because bloom filter does not

have false negative. Else, we do nothing and let 𝑡 pass.

5 IMPUTE-AWARE OPERATORS
In this section we describe the impute-aware operation, i.e., I-

operation in Fig 3, for selection, projection, join and 𝜌 operators.

UnaryOperators: I-operation for the select, project and 𝜌 opera-
tors are straightforward. For selection, I-operation simply evaluates

the selection predicate if the corresponding attribute value is not

missing. Else, it forwards the tuple to the next operator. I-operation

for the projection operator, besides forwarding attributes in the

projection, also preserves values associated with attributes in query

predicates for tuples that have missing values in those attributes.

The I-operation for the 𝜌 operator at the top of tree returns the

tuples after projecting to the attributes in the final results. We il-

lustrate the execution using an example in Fig 6. Fig 6-a) is the

ZIP query plan for query in Fig 4, and the decisions taken by the

decision functions in each operator are marked. In Fig 6-b) to g), the

numbered red circle represents the tuples returned by𝑔𝑒𝑡𝑁𝑒𝑥𝑡 () for
each operator. Assume ZIP decides to delay imputations in two se-

lection operators 𝜎𝑆.𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔=′𝐷𝐵𝐻 ′ and 𝜎𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐿𝑜𝑐 , and their

getNext() tuples are shown in Fig 6-b) and Fig 6-c), respectively.

The projection operator Π̂𝑠𝑖𝑑 returns tuples in Fig 6-f), it not only

projected 𝑠𝑖𝑑 , but also all the attributes in query predicates.

Join Operator: The I-operation for the join operator is more

complex. Consider modified join operation ⊲̂⊳𝐿.𝑎=𝑅.𝑏 , and a tuple 𝑡

that reaches I-operation of the join in either relation 𝐿 or 𝑅. Note

that such a tuple 𝑡 has passed through the filter, decision function,

verify and generate steps in Fig 3. W.L.O.G, let 𝑡 belongs to relation

𝐿. First, if the attribute value 𝑎 in 𝑡 , 𝑡 .𝑎, is not missing, ZIP adds
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Figure 7: Example of Missing Value Duplication.

𝑡 .𝑎 into the bloom filter 𝐵𝐹 (𝑎) and simply uses the original join

implementation to join 𝑡 with tuples in 𝑅 whose 𝑏 values are not

missing. For instance, if the query plan specified a hash (or a index,

or nested-loop) join, ZIP simply continues to use the original code

for such joins that were part of the database prior to modifying

the operators to be impute-aware. If 𝑡 .𝑎 is missing, however, ZIP

bypasses the original join code and instead generates a new output

tuple that contains all the attribute values of 𝑡 including the missing

value, and NULL values for all the attributes of the other relation

(i.e., ZIP preserves themissing value of 𝑡 .𝑎 for later query processing

by creating a tuple similar to the tuple created by the left-outer

join). Likewise, if 𝑡 ∈ 𝑅, then ZIP creates a corresponding tuple by

concatenating NULLs for the attributes in 𝐿 (i.e., creating a tuple

as would be created by the right-outer join).

In addition, for one of the two inputs (i.e., 𝐿 or 𝑅) for the join

operator 𝑜 = ⊲̂⊳𝐿.𝑎=𝑅.𝑏 , ZIP maintains a list of tuple identifiers of the

base relations from which the missing value of 𝐿.𝑎 or 𝑅.𝑏 originated.

These lists are denoted byL(𝑜, 𝑎) andL(𝑜, 𝑏) respectively. ZIP only
populates one of L(𝑜, 𝑎) and L(𝑜, 𝑏) leaving the other empty. ZIP

chooses the list that is expected to be smaller (e.g., with lesser

number of missing values in the corresponding base relation) to

reduce overhead. Thus, if either of the two inputs do not contain

missing values, ZIP will choose that attribute, and hence both lists

would be empty. These lists, as we will see in Section 6, are required

to ensure result tuples are generated only once with no duplicates.

To illustrate the modified join operator, consider join operator

⊲̂⊳𝑆.𝑟𝑜𝑜𝑚=𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 in Fig 6-d), where only 𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 has missing

values. We assume decision function decides to delay imputation

in this join operator. The tuple 1 in Fig 6-d), is a joined tuple from

tuple 1 in 𝑆 relation in Fig 6-b) and tuple 1 in 𝐶 relation in Fig 6-

c). All the other tuples, i.e., tuples 2 - 4 in Fig 6-e), are the right

outer join results of 𝑆 and 𝐶 where the missing values 𝑁1, 𝑁2, 𝑁3

are preserved with NULLs in columns in 𝑆 side.

Note that a missing value may appear in multiple tuples if one

tuple 𝑡 matches multiple tuples in join operation. In Fig 7, in the

join operation ⊲̂⊳𝐶.𝑓 𝑎𝑐𝑒𝐼𝐷=𝑈 .𝑓 𝑎𝑐𝑒𝐼𝐷 , 𝑁1 appears more than once in

the join result. To prevent having to impute the same missing value

more than once, when a missing value is imputed, references to the

value in all tuples are replaced at the same time. For this purpose,

we maintain a link from the missing values to all tuples in which

they appear. When a missing value is imputed, all of these tuples

will (with the missing attribute imputed) will be passed on to the

generate step to compute the corresponding results.

6 THE GENERATE STEP
This section describes how ZIP generates tuples when a tuple with

an attribute (whose imputation had been delayed by a previous

operator) is imputed as part of a downstream operator (e.g., another

relational operator or the 𝜌 operator). Let generate step be invoked

when a missing value in attribute 𝑎 of a tuple 𝑡 is imputed and

passes the verify step for an operator 𝑜 . Generate reconstructs all

the tuples that would be present in the output of 𝑜 to which 𝑡 .𝑎

would have contributed, had 𝑡 .𝑎 been imputed earlier. The essential

idea in the generate step is to replay the joins on tuple 𝑡 contributed

by the imputation of 𝑡 .𝑎, as shown in Algorithm 1.

Given operator 𝑜 , let 𝑈 𝐽 (𝑜, 𝑎) be the set of predicates associated
with join operators upstream of 𝑜 whose associated predicate con-

tains attribute 𝑎.𝑈 𝐽 (𝑜, 𝑎) can be identified from the join predicates

in the verify set of 𝑜 . For instance,𝑈 𝐽 (𝜌,𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) = {𝑆.𝑟𝑜𝑜𝑚 =

𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛}. Note that𝑈 𝐽 (𝜌,𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) does not contain join con-

dition 𝐶.𝑓 𝑎𝑐𝑒𝐼𝐷 = 𝑈 .𝑓 𝑎𝑐𝑒𝐼𝐷 even though it is also an upstream

join of 𝜌 since it does not contains 𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. If𝑈 𝐽 (𝑜, 𝑎) is empty,

then tuple 𝑡 is forwarded to the I-operation in 𝑜 . (Ln.8) Else, for

each predicate 𝑝 in 𝑈 𝐽 (𝑜, 𝑎), the generate step first checks if the

attribute (other than 𝑎) in 𝑝 has reached its bloom filter complete-

ness (i.e., 𝐵𝐹𝐶 (𝑏) is true, where 𝑏 is an attribute in 𝑝 , and 𝑏 ≠ 𝑎)

by calling Check_Replay_Ready_(𝑜, 𝑎). In such a case it generates

all the tuples that would have resulted from the imputed value of

𝑎 in 𝑡 by replaying the joins (Ln.3-7). Note that if any attribute

present in predicates in𝑈 𝐽 (𝑜, 𝑎) (other than 𝑎) is not bloom filter

complete, the join processing for the tuple containing the imputed

value cannot be processed fully right now. Hence, the original gen-

erate step after imputation would simply forward the tuple to the

I-operation of 𝑜 which will forward it to downstream operators

for future processing similar to the way I-operators pass tuples

containing missing values (Ln.8). If 𝑜 is the 𝜌 operator (and, thus,

there is no further downstream operator for 𝑜 to push the tuple

whose join processing is not complete), ZIP banks such tuples whose

Check_Replay_Ready_(𝑜, 𝑎) fails until the time the condition be-

comes true. Once the condition becomes true, the tuple is rerouted

to generate all the relevant results using the replay function. For

tuples not delayed by 𝜌 , all the generated answers are returned as

output by passing the tuples to the corresponding I-operation of 𝜌 .
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Algorithm 1: generate step in operator 𝑜

Input: 𝑜, 𝑡, 𝑎
1 T ← {𝑡 }
2 if Check_Replay_Ready_(𝑜, 𝑎) then
3 𝑛𝑒𝑤_T ← ∅
4 for 𝑜 𝑗 ∈ 𝑈 𝐽 (𝑜, 𝑎) do
5 for 𝑡𝑖 ∈ T do
6 𝑛𝑒𝑤_T ← 𝑛𝑒𝑤_T∪ Replay(𝑡𝑖 , 𝑜 𝑗 , 𝑎)

7 T ← 𝑛𝑒𝑤_T

8 return T to the I-operation of 𝑜

Note that for all tuples delayed in the 𝜌 operator, eventually

the Check_Replay_Ready_(𝑜, 𝑎) will become true, which requires

that the 𝐵𝐹𝐶 (𝑏) be true for any attribute 𝑏 that is an attribute in

any predicate 𝑝 in𝑈 𝐽 (𝑜, 𝑎) other than 𝑎. Reaching 𝐵𝐹𝐶 (𝑏) requires
𝑀𝐶 (𝑏) = 0 and 𝐽𝐶 (𝑏) = 𝑡𝑟𝑢𝑒 . The condition 𝐽𝐶 (𝑏), as discussed in

Section 4, is a property of the join algorithm used andwill eventually

always be met for all attributes as the scan for the base relation

containing 𝑏 has processed all the tuples that satisfy the predicates

(if any) associated with the scan. The condition 𝑀𝐶 (𝑏) will also
be eventually reached as the 𝜌 operator continues to impute the

remaining missing values.

Replay Function: We now explain the Replay function in Algo-

rithm 2. Consider executing replay function for a tuple 𝑡 in operator

𝑜 , and assume the join condition is 𝑎 = 𝑏. ZIP first checks if the

imputed value 𝑡 .𝑎 is in the bloom filter of attribute 𝑏, i.e., 𝐵𝐹 (𝑏). If a
matched value is not found, then the tuple 𝑡 will not join with any

tuple in current join operator 𝑜 and thus an empty set is returned.

(Ln.2-3) Else, if the bloom filter matches the imputed value of 𝑎,

ZIP first retrieves all the tuples in the relation that match with 𝑡 on

the join attribute 𝑎 using the index built on 𝑎 (Ln.4), and remove

the tuples stored in the L(𝑜, 𝑏) to prevent from generating possible

duplicated join answers. Its correctness will be clear in later discus-

sion part in this section. ZIP then updates each such matched tuple

to 𝑡 and returns the results by using the merge function. (Ln.7-8)
5

As an example in Fig 6. consider the generate step in 𝜌 oper-

ator in Fig 6-g. When the input tuple to 𝜌 (tuple 2 in Fig 6-f),

𝑡 = {𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿, 3, 20, 𝑁2, 20} with missing C.location 𝑁2 is im-

puted as 2206, ZIP generates the answers resulting from this impu-

tation for all the join conditions containing C.location in the tree.

In this query tree, ⊲̂⊳𝑆.𝑅𝑜𝑜𝑚=𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is the only upstream join op-

erator of 𝜌 that is applicable to 𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. We further assume that

the bloom filter of 𝑆.𝑟𝑜𝑜𝑚 is complete (e.g., 𝑆.𝑟𝑜𝑜𝑚 does not have

missing values and is the build side of join.). When ZIP replays

𝑡 = {𝑁𝑈𝐿𝐿, 𝑁𝑈𝐿𝐿, 3, 20, 𝑁2, 20} using join condition 𝑆.𝑅𝑜𝑜𝑚 =

𝐶.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, ZIP checks 𝐵𝐹 (𝑆.𝑟𝑜𝑜𝑚) = {2206, 2011, 2065} and the im-

puted value 2206 is found. ZIP then retrieves thematched tuple in re-

lation 𝑆 which is {2206, 𝐷𝐵𝐻 }, and update 𝑡 to {2206, 𝐷𝐵𝐻, 3, 20, 2206,

20}, as the tuple 2 in Fig 6-g. Note that such update can be easily

achieved since the schema of each (composite) tuple is maintained

in each operator and we could project the matched tuples into

corresponding fields in 𝑡 by aligning their schema.

Discussion: The correctness of ZIP requires 1) soundness: the tu-

ples returned by ZIP would have been returned had we imputed

5
ZIP requires indices on all join attributes. If such an index does not exist, ZIP will

create a hash index as part of the execution of the join operator.

Algorithm 2: Replay
Input: 𝑡, 𝑜, 𝑎

1 𝑏 : the join attribute in 𝑜 other than attribute 𝑎

2 if 𝑡 .𝑎 not in 𝐵𝐹 (𝑏 ) then
3 return ∅
4 else
5 𝑇𝑚𝑎𝑡𝑐ℎ𝑒𝑑 ← 𝑙𝑜𝑜𝑘_𝑢𝑝 (𝑡 .𝑎)
6 𝑇𝑚𝑎𝑡𝑐ℎ𝑒𝑑 ← 𝑇𝑚𝑎𝑡𝑐ℎ𝑒𝑑 \ L(𝑜,𝑏 )
7 𝐴𝑛𝑠 ← ∅
8 for 𝑡𝑖 ∈ 𝑇𝑚𝑎𝑡𝑐ℎ𝑒𝑑 do
9 𝐴𝑛𝑠 ← 𝐴𝑛𝑠 ∪𝑚𝑒𝑟𝑔𝑒 (𝑡, 𝑡𝑖 )

10 return 𝐴𝑛𝑠

in the base relations prior to executing the query; 2) completeness:

ZIP will not miss a result; 3) non-duplicates: ZIP will not generate

duplicated results. We focus on joins execution since proving the

correctness of other (unary) operators is simpler. Consider join

operation 𝐿.𝑎 = 𝑅.𝑏, let T𝐿
𝑑

(T𝐿
𝑐 ) be the tuples in 𝐿 that pass filter

and verify steps and have (do not have) missing values in 𝐿.𝑎. Like-

wise, T𝑅
𝑑

and T𝑅
𝑐 are similarly defined. 𝐿.𝑎 ⊲⊳ 𝑅.𝑏 can be rewritten

as (T𝐿
𝑐 ∪ T𝐿

𝑑
) ⊲⊳ (T𝑅

𝑐 ∪ T𝑅
𝑑
). In join operator 𝑜 =⊲⊳𝐿.𝑎=𝑅.𝑏 , the

I-operation of 𝑜 will implement T𝐿
𝑐 ⊲⊳ T𝑅

𝑐 as normal join. Tuples in

T𝐿
𝑑

and T𝑅
𝑑

will be pushed to the downstream operators by append-

ing NULLs for the attributes in the other relation. In later query

processing, when the bloom filter of 𝑅.𝑏 is complete, T𝐿
𝑑

⊲⊳ 𝑅.𝑏 will

be computed by the generate step. Similarly, when 𝐿.𝑎 reaches its

bloom filter completeness condition, 𝐿.𝑎 ⊲⊳ T𝑅
𝑑

will be generated.

Note that this may result in the duplicated results for T𝐿
𝑑

⊲⊳ T𝑅
𝑑
.

Recall that ZIP maintains a list L(𝑜, 𝑎) (or L(𝑜, 𝑏)) in every join

operator 𝑜 to prevent the generation of such duplicated tuples.

7 DECISION FUNCTION
In the decision function in ZIP, the decision of whether a missing

attribute value should be imputed prior to the execution of the

operator or should imputation be delayed depends upon whether

the imputation method is non-blocking or blocking. We focus on

an adaptive cost-based solution for non-blocking imputations, de-

noted by ZIP-adaptive. For blocking imputations such as learning

approaches, we use a lazy strategy, denoted by ZIP-lazy, which al-

ways delays imputing until the tuple with the missing value reaches

the imputation operator 𝜌 . When learning based approach is used,

ZIP uses the same training data as the offline approach to guarantee

that the query answers returned by ZIP is same as the one returned

by the offline approach. Although this might increase latency to

ZIP if the size of training data is large, there are several practical

strategies to mitigate this problem. Once a model is learned, it can

be reused to impute missing data in later queries. We thus can

employ a warm-up phase to first run a small amount of queries

where the models learned for those frequently-queried columns are

reused and save learning time for later queries. ZIP-lazy is detailed

in the long version of the paper in [11].

Obligated Attributes Non-blocking imputations in ZIP can be

placed anywhere in the query tree since ZIP, through operator mod-

ification, decouples imputation from the operator implementation.

To guide the actions of each operator, we first define a concept of
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Definition 7.1. (ObligatedAttributes)Given the set of attributes
in predicate set of a query 𝑄 (denoted by 𝐴𝑄 ), an attribute 𝑎 in re-

lation 𝑅 is said to be obligated if

• attribute 𝑎 appears in a predicate in 𝑄 , i.e., 𝑎 ∈ 𝐴𝑄 , or 𝑎 is

one of the attributes listed in a projection operator; and

• all attributes of 𝑅 (other than attribute 𝑎) do not appear in

any predicate in 𝑄 . That is, ∀𝑎′ ∈ 𝑅 − 𝑎, 𝑎′ ∉ 𝐴𝑄 .

If an attribute 𝑎 ∈ 𝑅 is neither in the projection list nor in

𝐴𝑄 , imputing its missing values will not be required to answer

𝑄 and hence 𝑎 would not be obligated. Likewise, if a predicate

in 𝐴𝑄 contains an attribute 𝑏 which is also in 𝑅, it is possible

that such a predicate may result in the tuple of 𝑅 to be eliminated

thereby making imputation of the corresponding 𝑎 value (in case

it was missing) unnecessary, which would prevent 𝑎 from being

classified as obligated. U.faceID in Table 2 is a obligated attribute

for query 𝑄 in Fig 4 because other attributes U.name and U.type
are not in any predicate of query𝑄 and U.faceID is in join predicate

U.faceID=T.faceID. Sincemissing values of obligated attributesmust

always be imputed, there is no benefit in delaying their imputations.

In contrast, imputing could potentially reduce number of tuples

during query processing. For the remaining attributes, ZIP performs

a cost-benefit analysis to decide whether to impute.

Decision function For each operator 𝑜 in query tree, ZIP asso-

ciates a decision function 𝑑 𝑓 (𝑎, 𝑜) for all attribute 𝑎 that appears in

the predicate associated with 𝑜 . Decision to delay/impute missing

values has implications on both imputation and query processing

costs. Consider a tuple 𝑡 in relation 𝑅 = (𝑎, 𝑏, 𝑐, 𝑑) and a query tree

in Fig 8-a). Say 𝑡1 = (𝑁1, 1, 2, 3) (𝑁 represents missing value), if

we delay imputing 𝑡1 .𝑎, and 𝑡1 .𝑏 does not join with any tuples in

the other relation, we can avoid imputing 𝑡1 .𝑎. On the other hand,

imputing 𝑡2 .𝑎 for 𝑡2 = (𝑁1, 𝑁2, 2, 3), could prevent imputation of

𝑡2 .𝑏, if the imputed value of 𝑡2 .𝑎 is filtered in the selection operator.

Imputing 𝑡2 .𝑎 may also reduce query processing time since it does

not require the operator on attribute 𝑏 to be executed.

Since decisions on whether to impute/delay are made per tuple

containing missing values locally by the operator, the decision func-

tion must not incur significant overhead. In making a decision for

operator 𝑜1 over attribute value 𝑡 .𝑎 of a tuple 𝑡 , ZIP assumes if 𝑡

contains other missing values in attributes, say 𝑡 .𝑏 (on which predi-

cates are defined in downstream operators), say 𝑜2, those operators

will decide to impute 𝑡 .𝑏 if (and when) the tuple 𝑡 reaches those op-

erators. For instance, in query tree in Fig 8-a), in making a decision

for imputing /delaying 𝑡 .𝑎, i.e., 𝑁1, in developing a cost model we

assume that the missing value 𝑁2 (𝑡 .𝑐) will be imputed right away.

This prevents, ZIP to have to recursively consider a larger search

space that enumerates (potentially exponential number of other

possibilities wherein downstream operators may delay/impute.)

We build a cost model below to estimate impact of delay/impute

decision on both the imputation cost and the query processing cost

based onwhich the operators make decisions in ZIP. To compute the

imputation and query processing costs associated of the decision

for an operator, ZIP maintains the following statistics:

• 𝑖𝑚𝑝𝑢𝑡𝑒 (𝑎): Cost of imputing a missing value of attribute 𝑎, com-

puted as an average over all imputations performed so far for miss-

ing values of 𝑎.

• Selectivity of selection operator 𝑜𝑖 , 𝑆𝑖 =
|𝑇𝑠 |
|𝑇𝑐 | , where 𝑇𝑐 (𝑇𝑠 ) are
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Figure 8: Decision Function Example.

tuples that are processed (satisfy) the predicate associated with 𝑖 .

• Selectivity of join operator between relation 𝐿 and 𝑅 computed

as 𝑆𝑜𝑖 =
|𝑇𝑠 |
|𝑇𝐿 | |𝑇𝑅 | , where 𝑇𝐿 (𝑇𝑅 ) are tuples in relation 𝐿 (𝑅) and 𝑇𝑠

are tuples that satisfy 𝑜𝑖
6

• 𝑇𝑇 𝐽𝑜𝑖𝑛𝑜 : the average time to join tuples in (join) operator 𝑜 ; 7

• T𝑜 : the average number of evaluation tests to perform per tuple

in operator 𝑜 for tuples without missing values in the attribute to

be evaluate in 𝑜 . 8 If 𝑜 is join operator, evaluation tests refer to join

tests. Else, if 𝑜 is selection operator, we set T𝑜 = 1.

To bootstrap the process of statistics collection, ZIP initially

delays all imputations forcing tuples to rise up to the top of the tree

(or be dropped if they fail some predicates en-route). During this

process, ZIP collects imputed tuple samples to compute 𝑖𝑚𝑝𝑢𝑡𝑒 (𝑎)
and to determine other statistics such as T (𝑜), join cost 𝑇𝑇 𝐽𝑜𝑖𝑛𝑜
and selectivity 𝑆𝑜𝑖 . These statistics are then adaptively updated

during query processing.

Cost Model for Imputations. We illustrate how to estimate the

imputation cost using an example, and include the mathematical

model for imputations and query processing in [11].

Consider a query tree in Fig 8-a), and a tuple 𝑡 =(𝑁1, 2, 𝑁2, 3).

To decide whether to impute or delay missing value 𝑡 .𝑎 (𝑁1), ZIP

estimates the total imputation cost in case it chooses to impute or

to delay imputing 𝑡 .𝑎. The set of possible executions that may result

for either of the decisions are illustrated in the decision tree shown

in Fig 8-b). Each path of the tree corresponds to a possible outcome

based on the decision to impute/delay imputing 𝑡 .𝑎. For instance,

in path 𝑝5, 𝑡 .𝑎 is imputed but fails the predicate in 𝑜1, while in

path 𝑝3, 𝑡 .𝑎 is delayed and 𝑡 passes the predicates associated with

𝑜2 and 𝑜3, and reaches the imputation operator 𝜌 , where 𝑡 .𝑎 is

imputed and evaluated in 𝜌 using predicate associate with 𝑜1. The

estimated imputation cost in the case of imputing (delaying) 𝑡 .𝑎, is

the summation of the expected imputation cost of all paths in the left

(right) side of tree, i.e., 𝑝1, 𝑝2, 𝑝5, 𝑝6. (𝑝3, 𝑝4, 𝑝7, 𝑝8). The expected

costs of various paths (shown in Fig 8-c) are computed as a weighted

sum of imputations along the path, where the weight corresponds

to the probability of execution of that imputation. For instance, for

path 𝑝1, we impute 𝑡 .𝑎 with the probability of 1, and, subsequently

6
We exclude those tuples containing missing values from𝑇𝑠 ,𝑇𝑐 ,𝑇𝐿 and𝑇𝑅 .

7
We also use the notation𝑇𝑇 𝑗𝑜𝑖𝑛𝑜 for selection operator, in this case,𝑇𝑇 𝑗𝑜𝑖𝑛𝑜 = 0.

8
A tuple with missing value in the attribute that passes through 𝑜 will be pushed to

the above operator without evaluation immediately, and thus T𝑜 for such tuple is 1.
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impute 𝑡 .𝑐 with the probability of 𝑆𝑜1𝑆𝑜2 . Thus, the cost of path 𝑝1
is 𝑖𝑚𝑝𝑢𝑡𝑒 (𝑎) + 𝑆𝑜1𝑆𝑜2𝑖𝑚𝑝𝑢𝑡𝑒 (𝑐).
Cost Model for Query Processing. Since join costs dominate

query execution, ZIP estimates query processing costs by the cor-

responding join costs. Consider the same decision tree in Fig 8-b).

The expected query processing cost if we impute (delay) 𝑡 .𝑎 is the

sum of the expected query processing costs for all the paths in the

left (right) side of the tree. Fig 8-d) lists the probability of each path,

and also, its query processing cost. The probability is estimated

based on selectivity of the predicates along the path, and the cost

is estimated by summing execution cost of execution of operators

along the path incurred in processing tuple(s) that are generated

as a result of processing 𝑡 . Take 𝑝6 as an example. Its correspond-

ing probability is 𝑆𝑜1 (1 − 𝑆𝑜2 ) since 𝑡 passes 𝑜1 but fails 𝑜2. The

estimated cost for processing 𝑡 (shown in Fig 8-a) in operator 𝑜1,

denoted by 𝑄𝑃 (𝑜1), is T𝑜1 ∗ 𝑇𝑇 𝐽𝑜𝑖𝑛𝑜1 which is 0 in this example

since 𝑜1 is a selection operator for which T𝑜 is 1 and 𝑇𝑇 𝐽𝑜𝑖𝑛𝑜1 = 0.

The cost 𝑄𝑃 (𝑜2) = T𝑜1T𝑜2 ∗ 𝑇𝑇 𝐽𝑜𝑖𝑛𝑜2 since 𝑜2 is a join operator

and T𝑜1T𝑜2 is the estimated number of join tests to perform in 𝑜2.

Decision function will decide to impute missing values if the esti-

mated cost of imputation is lower. Otherwise, if the estimated cost

of query processing is lower, the imputation will be delayed.

8 EVALUATION
In this section we evaluate ZIP over two real data sets and one

synthetic data set. We implemented ZIP on top of a database proto-

type system, SimpleDB [3]
9
. Note that the ImputeDB optimizer is

also implemented in SimpleDB. We did so, so that we can directly

measure the improvements due to ZIP on ImputeDB query plans.

8.1 Data & Query sets
WiFi. The first data set consists one week of WiFi connectivity

events at Donald Bren Hall Building in UCI. WiFi based occupancy

determination has recently received a lot of attention due to the

pandemic with several companies offering related products [7, 9, 10]

and research projects [33, 35, 37]. The database consists of three

tables, users, wifi and occupancy with 4018, 240, 065 and 194, 172

number of tuples, and totally 383, 676 missing values respectively.

WiFi records the continuous connectivity data of devices - i.e.,

which device is at which location in which time interval. occupancy

records the number of people at different locations over time.

CDC NHANES. We use the subset of 2013–2014 National Health

and Nutrition Examination Survey (NHANES) data collected by U.S.

Centers for Disease Control and Prevention (CDC) [1].
10 CDC data

set has three tables, demo, exams and labs, which are extracted from
a larger complete CDC data set. demo, exams and labs have 10175,
9813, 9813 tuples, respectively, and all of them have 10 attributes.

Among them, there are totally 24 attributes that contain missing

values, whose missing rate ranges from 0.04% to 97.67%, with total

81, 714 missing values.

Smart Campus. Smart-campus data set consisting of 3 synthetic
sensor tables,WiFi, Bluetooth, Camera, a space table (that connects
sensors to locations) user table (that connects a user to a device

mac-address). In addition, two additional tables are derived from the

9
SimpleDB, developed at MIT has been used for research purposes at several universi-

ties including MIT, University of Washington, and Northwestern University.

10
We thank ImputeDB [17] for providing this data set whose link can be found in [2].

Table 4: ZIP VS QTC-Eager.
Time(secs) # of Imp (∗103)

Data Sets Imputation QTC-Eager ZIP-lazy ZIP-adaptive QTC-Eager ZIP-lazy ZIP-adaptive

WiFi

Mean 1.6 2.3 1.6 79 3.2 74

LOC 393.4 19.1 19.2 78 3.4 3.6

KNN 769.2 30.6 - 79 3.3 -

XGboost 144.7 126.2 - 79 3.2 -

CDC

Mean 0.12 0.12 0.12 12.1 1.3 10.7

KNN 9.63 1.02 - 12 1.3 -

XGboost 42.5 37.8 - 11.9 1.3 -

Smart

Campus

Mean 3.8 9.6 3.8 16 4.7 15.9

LOC 97.8 32.5 27.2 16 4.7 4.8

KNN 157.1 44.3 - 16 4.6 -

XGboost 101.8 72.6 - 16 4.7 -

sensor data. The first table location consists of location of user over

time and the second table occupancy consists number of people

at a given location over time. smart-campus data set has totally
1,892,500 tuples and 1,634,720 missing in occupancy and location
and occupancy tables.

Query SetWe create three query workloads to evaluate ZIP, ran-

dom (with random selectivity), low-selectivity and high-selectivity.

In each query workload, the majority of queries are SPJ-aggregate

queries that contains select, project, join, aggregate (group by) oper-

ations. SP queries are also included. Each query workload contains

20 queries, and we describe the query samples as well as the above

three data sets in more detail in the long version of ZIP [11].

8.2 Imputation Methods
Note that any imputation approach could be approapiately used in

ZIP, and we choose several popular and easily used methods, which

could be called in standard Python library or be well-packaged in

Git-hub. For the CDC NHANES dataset we use three imputation

approaches, Top-k nearest neighbor [8] (KNN), XGBoost [4, 18],

and histogram-based mean value imputation [17]. Of these, the first

two are blocking while the third is non-blocking. KNN, XGBoost

and mean value imputations are widely used and their implemen-

tations are available in standard Python packages, such as sklearn
or xgboost. For the WiFi and Smart Campus data set to impute

location and occupancy values, in addition to using the above three

approaches, we further use a proprietary non-blocking imputation

method LOCATER [37] (LOC in short). The complexity of each

imputation method is described in the long version of ZIP [11].

8.3 Strategies Compared
We evaluate the two versions of ZIP - ZIP-lazy and ZIP-adaptive as

defined in Section 7 with a baseline query-time strategy, QTC-Eager,

that imputes missing values eagerly without delay during query

execution as soon as the imputed value is required during query

processing. Comparing ZIP to QTC-Eager will show benefits of

the lazy imputation strategy. We also compare against the offline

approach that first imputes all missing data and then run queries.

In Experiment 1 to 5 below, we use the query plan generated by

PostgreSQL as the input for ZIP to execute.
11

In Experiment 6, we

incorporate ZIP with query plans generated from ImputeDB and

explore the performance of the combination.

8.4 Results
Experiment 1: ZIP VS Offline. To show the needs of query-time

imputation (i.e., ZIP) by comparing with the offline approach, we

collected a larger real data setWiFi-large by extending theWiFi data

set from one building to 40+ buildings over campus, and we report

the runtime of ZIP and the offline approach in Table 5 and Figure 9.

In Figure 9, the offline approach takes 6.4 hours in WiFi data set

11
We implement an API in simpleDB that could read and translate the PostgreSQL

plan to be executed in its executor.
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Figure 9: ZIP VS Offline.
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Figure 10: ZIP VS QTC-Eager.

Table 5: ZIP VS Offline.

(Seconds) Min Max Avg Avg Speed Up

WiFi 3.9 46.3 19.2 1200X

WiFi-Large 6.2 74.5 33.6 19607X

and estimated 183 hours in WiFi-large 12
data set, respectively.

In contrast, in Table 5, ZIP has only 19.2 and 33.6 seconds of run

time inWiFi andWiFi-large data sets, and it speeds up the offline

approach by 1200X and 19607X inWiFi andWiFi-large data sets.
Experiment 2: ZIP VS QTC-Eager. In Table 4 we report the

runtime (in seconds) and number of imputations, i.e., the number of

missing values imputed for QTC-Eager, ZIP-lazy and ZIP-adaptive

approaches using the random query set. Note that LOC is applied on

WiFi and Smart-Campus since it is not applicable on CDC data set.

In Fig 10, we compare the performance of QTC-Eager with ZIP-lazy

and ZIP-adaptive. We show the percentage of run time and number

of imputations performed by ZIP-lazy and ZIP-adaptive compared

to QTC-Eager. time ratio is the run time of ZIP-lazy (or ZIP-adaptive)

divided by the time of QTC-Eager times 100 (percentage). Similarly,

# Imp ratio is the percentage of imputation numbers.

We make several observations. First, ZIP-lazy and ZIP-adaptive

perform similarly and they both outperform QTC-Eager by around

20x when expensive imputations are used, which demonstrate that

delaying imputations significantly improves performance when

imputations are expensive. Second, when cheap imputations are

used such as Mean imputation, ZIP-adaptive tends to impute data

first since doing so will potentially save the query processing time

by reducing temporary tuples, and thus has similar imputations as

QTC-Eager. This shows that the decision function in ZIP-adaptive

works correctly and is able to actively adjust its decision based

on the cost of imputations. Third, ZIP-lazy requires slightly less

imputations than ZIP-adaptive since it always delays imputation

to the end of processing, while ZIP-adaptive performs similarly as

ZIP-lazy inWiFi and CDC and ZIP-adaptive slightly outperforms

ZIP-lazy in Smart Campus due to the more complex join work-

load (higher join selectivity). Fourth, as expected, when learning

approaches are used whose training time dominates the inference

costs (e.g., as in XGboost), reducing number of imputation will not

offer a big improvements. For instance, ZIP-lazy imputes 11.6% of

imputations needed for QTC-Eager, but it takes 89% run time of

QTC-Eager (i.e., saving only 11%).

Experiment 3: Quality of Query Answer. Quality of query an-

swer depend upon the imputation method used and the query itself.

Figure 11 plots the accuracy of imputation methods (𝐴𝑐𝑐𝐼 ) and that

12
We stop cleaning at 10 hours and the offline approach only imputes around 5%

missing data.
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Figure 11: Accuracy of Imputations and Query Answer

of the corresponding query answers (𝐴𝑐𝑐𝑄 ). 𝐴𝑐𝑐𝐼 is the percentage

of correctly imputed values. For aggregate queries, 𝐴𝑐𝑐𝑄 is mea-

sured as | AT−AAT |, whereA
T
is the true answer andA is the answer

returned using an imputation method. For set based queries𝐴𝑐𝑐𝑄 is

measured using Jaccard similarity. Using different imputations with

different accuracy, the accuracy of query answers is also different.

The experiment above highlights the impact of choice of imputa-

tion method on query answer quality. To measure the difference

between answers returned by ZIP and the offline approach, we use

Symmetric-Mean-Absolute-Percentage-Error (SMAPE) [39] (also

used by ImputeDB [17]). SMAPE is computed as a tuple-wise abso-

lute percentage deviation between ZIP & offline approach. Since

ZIP-lazy and ZIP-adaptive all return exactly the same answers as

offline, the SMAPE value for all is 0.

Experiment 4: Query Selectivity Effects. We use the query tem-

plate below to generate low-selectivity and high-selectivity query

workloads: SELECT a, AVG(b) FROM 𝑅1, ..., 𝑅𝑛 WHERE [𝑃𝑟𝑒𝑑 𝐽 ]
[𝑃𝑟𝑒𝑑𝑆 ] GROUP BY a., where 𝑃𝑟𝑒𝑑 𝐽 and 𝑃𝑟𝑒𝑑𝑆 are join and selec-

tion predicates. We varied the selectivity of each selection predicate

as 0, 0.2, 0.4, 0.6, 0.8, 1, and the selectivity of join predicate is set

to be low and high by modifying the matching numbers of joined

attribute values. KNN is applied in CDC data set, while in WiFi
and Smart-Campus data set, LOC is used to impute location and

occupancy, and Mean-value is used to impute other missing values.

In CDC andWiFi data set, we report the effect from selectivity of

selection predicates in Fig 12, and the effects from both join and

selection selectivity are evaluated in synthetic data set in Fig 13. In

this and later experiments, if no ambiguity, we call ZIP as the hybrid

of ZIP-lazy and ZIP-adaptive – ZIP always uses ZIP-adaptive for

non-blocking imputations and ZIP-lazy for blocking imputations.

Number of imputations and running time increases for both QTC-

Eager and ZIP when selectivity of predicates increases, though ZIP

has considerably lower overhead and running time at all selectivity

levels. InCDC, since KNN is costly and join operations are selective,

ZIP delays imputations in selection operators. Join predicates help

eliminate tuples reducing imputations needed thus reducing cost.
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Figure 12: Selectivity Effects on Real Data Set.
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Figure 13: Selectivity Effects on Synthetic Data Set.
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Figure 15: ZIP + ImputeDB.

InWiFi where join attributes (e.g., location) have missing values,

instead of paying expensive imputations (e.g., LOC) to impute all

missing values in join attributes as QTC-Eager, ZIP delays the im-

putations of the missing values in join and allow the downstream

operators to wisely choose cheap imputations (e.g., Mean) for miss-

ing values that are not in join attributes to help eliminate tuples

if the corresponding predicates are selective. In synthetic data set,

when the join operators are highly selective, (i.e., selectivity is low)

as in Fig 13(a), ZIP delays imputing missing values in selection

operators to exploit join operators to help eliminate most tuples

and thus save most imputations. When join is less selective (i.e.,

more result tuples in Fig 13(b)) but the selection predicates are

selective, ZIP might choose to partially delay the imputations in

join attributes and the downstream operators (could be selective

due to other selections) to help remove tuples to avoid expensive

imputations in join attributes (e.g., location). However, when the

selection predicates are also less selective and query processing

overhead is higher than imputation costs, ZIP prefers imputing

missing values immediately same as QTC-Eager.

Experiment 5: The effect of Missing Rates. Figure 14 shows
how missing rates affect the query performance. With the increas-

ing missing rates, the runtime and imputation times taken by ZIP

slightly increase and tend to converge, since the amount of imputa-

tions needed to answer a given query depends on the selectivity

of the query. For the set of queries with fixed selectivities, their

performance will not be dramatically affected by the number of

missing data in the data, which demonstrates the robustness of ZIP.

Experiment 6: ZIP with ImputeDB plans.We investigate ZIP

using ImputeDB-generated query plans. ImputeDB [17] adds impute

and drop operators to a query plan based on a parameter 𝛼 (0 ≤
𝛼 ≤ 1) that balances efficiency and quality (see Section 2). Higher

the value of 𝛼 , more drop operators are used causing more tuples

with missing value to be dropped. To incorporate ImputeDB plans

in ZIP, we added the drop operators that mirror the drop operator

in ImputeDB. Given a ImputeDB plan, impute operators are treated

as regular ZIP impute operator that could be evaluated lazily based

on decision function but drop operator checks if a tuple contains

missing values in the appropriate attribute and, if so, drops the

tuple. We generated several plans based on varying 𝛼 from 0 to

1 and execute the plan both in ImputeDB and in ZIP modified as

above to support ImputeDB plans with drop operator.

Fig 15 shows the average quality (1-SMAPE) versus runtime of

queries for the CDC and WiFi data using the KNN imputation ap-

proach on random query sets for ImputeDB plans with and without

ZIP optimization. Each line plot shows 6 points corresponding to

𝛼 = 1, 0.8, 0.6, 0.4, 0.2, and 0 from left to right. The improvements

are 10x to 25x when 𝛼 = 0 (i.e, when ImputeDB plan optimizes for

quality, choosing impute over drop). When 𝛼 increases, the relative

improvements due to ZIP optimization reduces. This is expected

since ZIP optimization only applies to tuples that are imputed. With

increasing 𝛼 more tuples are dropped reducing the need for ZIP op-

timization. When the cost-quality tradeoff across ImputeDB plans

with and without ZIP optimization, to achieve the same level of

quality, plans with ZIP optimization require significantly less time.

Furthermore, ImputeDB plans when executed with ZIP optimiza-

tion achieve significantly higher quality in the same amount of

time spent in query processing. Thus, execution of ImputeDB plans

with ZIP significantly dominates the ImputeDB plans without ZIP.

The experiment clearly establishes that even in use cases where we

explore cost-quality tradeoffs, ZIP-optimization can help improve

systems such as ImputeDB that explore such tradeoffs, and ZIP and

ImputeDB are complementary approaches integration of which

provides a powerful query time imputation approach.

9 CONCLUSION
This paper studies query-driven missing value imputation and pro-

poses ZIP, a technique to intermix query processing and missing

value imputation to minimize query overhead. Specifically, ZIP

co-optimizes imputation and query processing cost, and proposes a

new implementation based on outer join to preserve missing values.

Real experiments shows that ZIP combined with the state-of-the-art

technique has 10x to 25x improvement, and ZIP outperforms the

offline approach by up to 19607x in the real data set.
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