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Abstract. We study the degree of an L-Lipschitz map between Riemannian manifolds,
proving new upper bounds and constructing new examples. For instance, if Xk is the
connected sum of k copies of CP 2 for k ≥ 4, then we prove that the maximum degree
of an L-Lipschitz self-map of Xk is between C1L

4(logL)−4 and C2L
4(logL)−1/2. More

generally, we divide simply connected manifolds into three topological types with three
different behaviors. Each type is defined by purely topological criteria. For scalable simply
connected n-manifolds, the maximal degree is ∼ Ln. For formal but non-scalable simply
connected n-manifolds, the maximal degree grows roughly like Ln(logL)−θ(1). And for
non-formal simply connected n-manifolds, the maximal degree is bounded by Lα for some
α < n.

1. Introduction

1.1. Background. Given an oriented Riemannian manifold M , how does the Lipschitz con-
stant of a mapM →M control its degree? In all cases, ifM is an n-manifold, an L-Lipschitz
map M → M multiplies n-dimensional volumes by at most Ln, and so its degree is at most
Ln. In [15, Ch. 2], Gromov studied the extent to which this estimate is sharp. For example,
he showed that if M admits a sequence of self-maps fk with

deg(fk) ≥ (1− o(1)) Lip(fk)n,
then M must be flat [15, 2.32]. He also asked: for what M are there fk with unbounded
degree such that the ratio Lip(fk)

n/ deg(fk) is bounded [15, 2.40(c)]? The answer to this
modified question only depends on the topology of M . Gromov constructed such maps when
M is a sphere or a product of spheres. He singled out (S2×S2)#(S2×S2) as a case in which
he did not know whether such maps exist.

We now know that the answer for connected sums of copies of S2×S2 or of CP 2 is rather
subtle. (The behavior is similar for both families.) Consider the manifold Xk = #kCP 2.
Volume considerations show that an L-Lipschitz self-map of any 4-manifold has degree at
most L4. It’s not difficult to construct an L-Lipschitz self-map of CP 2 with degree ∼ L4.
When k = 2 or 3, then [3] shows that there are also L-Lipschitz self-maps of Xk with degree
∼ L4. But when k ≥ 4, [3] shows that every L-Lipschitz self-map of Xk has degree o(L4).
Before this paper, the most efficient known maps had degree ∼ L3.

One of our goals in this paper is to give sharper quantitative estimates for the case k ≥ 4.
We will show that the maximal degree p lies in the range

L4(logL)−4 ≲ p ≲ L4(logL)−1/2.

This phase transition between k = 3 and k = 4 is an example of a broader phenomenon.
Our second goal in the paper is to develop the general theory of this phenomenon.

For a given M , the maximally efficient relationship Lip f ∼ (deg f)1/n may not be achiev-
able for several reasons. For example, M may be inflexible, meaning that it does not have
self-maps of degree > 1. (Examples of inflexible simply connected manifolds are given in
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[2, 10, 9, 1].) Or it may be the case that any self-map of M of degree D multiplies some

k-dimensional homology class by a factor greater than Dk/n, giving a stronger bound on the
Lipschitz constant.

A compact manifold M is formal if it has a self-map M → M which, for some p, induces
multiplication by pk on Hk(M ;R), for every k ≥ 1. This notion, first defined by Sullivan and
coauthors in terms of rational homotopy theory, has played a role in many other geometric
applications, starting with [11]. If M is a formal n-manifold, then obstructions to obtaining
an L-Lipschitz map M → M of degree Ln cannot come from measuring volumes of cycles.
However, in [3] it was shown that more subtle obstructions may exist. This motivates the
definition of a scalable manifold to be one which has O(L)-Lipschitz self-maps of degree
Ln. The paper [3] shows that scalability is equivalent to several other conditions; most
importantly, a manifold M (perhaps with boundary) is scalable if and only if there is a ring
homomorphism H∗(M ;R) → Ω∗(M) which realizes cohomology classes as differential forms
representing them.

1.2. Main results. For non-scalable formal spaces, [3] proves that any L-Lipschitz self-map
has degree o(Ln). Before this paper, the examples that had been constructed had degree
O(Ln−1). In this paper, we gain a sharper quantitative understanding:

Theorem A. Let M be a formal, simply connected closed n-manifold which is not scalable.
Then the maximal degree p of an L-Lipschitz map M →M satisfies

Ln(logL)−β(M) ≲ p ≲ Ln(logL)−α(M),

where β(M) ≥ α(M) > 0 are constants depending only on the real cohomology ring of M .

For example, in the case of M = #kCP 2, β(M) = 4 and α(M) = 1/2.
The lower bound of Theorem A generalizes to compact manifolds with boundary with a

slightly more complicated statement (see Theorem 3.1).
We obtain a similar result for sizes of nullhomotopies of L-Lipschitz maps to a non-scalable

formal space:

Theorem B. Let Y be a formal, simply connected compact Riemannian n-manifold (perhaps
with boundary). Then for any finite simplicial complex X, any nullhomotopic L-Lipschitz map
f : X → Y is O(L(logL)n−2)-Lipschitz nullhomotopic.

For scalable spaces, a linear bound was proved in [3]; thus this result is interesting mainly
for non-scalable formal spaces. In contrast, in non-formal spaces it is often impossible to do
better than a bound of the form Lα for some α > 1.

One of the main theorems of [3] says that a manifold Y is scalable if and only if there
is a ring homomorphism from H∗(Y ;R) to Ω∗(Y ) which takes each cohomology class to a
differential form in that class. Because Ω∗(Y ) is infinite-dimensional, this condition is not so
easy to check. We verify the conjecture given in [3] which states that scalability is equivalent
to a simple homological criterion:

Theorem C. Let Y be a formal, simply connected compact Riemannian n-manifold (perhaps
with boundary). Then Y is scalable if and only if there is an injective ring homomorphism

h : H∗(Y ;R)→
N⨁︂
i=1

Λ∗Rni

for some integers n1, . . . , nN . In particular, if Y is a closed manifold, then it is scalable if
and only if there is an injective ring homomorphism H∗(Y ;R)→ Λ∗Rn.
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In particular, scalability is an invariant not only of rational, but of real homotopy type.

Example 1.1. If M is an (n − 1)-connected 2n-manifold, then its real cohomology ring is
completely described by the signature (k, ℓ) of the bilinear form

⌣: Hn(M ;R)×Hn(M ;R)→ H2n(M ;R).

Then M is scalable if and only if k and ℓ are both at most
(︁
2n
n

)︁
/2.

Theorem C is closely related to another idea studied by Gromov in [15, 2.41]. For a closed
n-manifold M , say a map f : Rn →M has positive asymptotic degree if

lim sup
R→∞

∫︁
BR(0) f

∗d volM

Rn
= δ > 0.

Given an efficient self-map M → M of high degree, you can zoom in and find a map of
positive asymptotic degree on a large ball. If M is formal, then the converse also holds:

Theorem C′. Let M be a formal, simply connected closed n-manifold. Then a 1-Lipschitz
map f : Rn →M of positive asymptotic degree exists if and only if M is scalable.

Remark 1.2. Gromov refers to manifolds with this property as elliptic, suggesting a connec-
tion with the notion of elliptic spaces from rational homotopy theory. However, this notion
is not closely connected to scalability.

Question 1.3. Can a non-formal simply connected manifold be Gromov-elliptic?

Finally, we explore the behavior of non-formal manifolds:

Theorem D. Let M be a closed simply connected n-manifold which is not formal. Then
eitherM is inflexible (has no self-maps of degree > 1) or the maximal degree of an L-Lipschitz
map M →M is bounded by Lα for some real number α < n.

To see how the latter situation arises, consider the simplest example of a non-formal
simply connected manifold, given in [13, p. 94]. This is the total space M of a fiber bundle
S3 → M → S2 × S2 obtained by pulling back the Hopf fibration S3 → S7 → S4 along the
degree 1 map S2 × S2 → S4.

A self-map ofM is determined by its action onH2(M) ∼= Z2. This is because the generators
ofH5(M) can be obtained from the generators ofH2(M) by taking Massey products (a higher
cohomology operation) of order 3. An L-Lipschitz self-map takes the generators of H5(M) to
vectors of length O(L5), and therefore it takes the generators of H2(M) to vectors of length

O(L5/3). This means the degree of such a map is O(L20/3) ≺ L7.
Something similar happens for any non-formal space: an alternate definition of formality

is that a formal space has no nontrivial higher-order rational cohomology operations.

1.3. Proof ideas. The key idea behind Theorem A is that efficient self-maps of a formal but
non-scalable space must behave nontrivially on many scales. We explain the intuition here.

In [3], the o(Ln) upper bound for the degree of an L-Lipschitz map M → M is obtained
by looking at the induced pullbacks of differential forms representing cohomology classes of
M and taking flat limits. To get the sharper upper bound of Theorem A, we analyze the
same pullback forms using Fourier analysis, namely Littlewood–Paley theory. These pullback
forms can be decomposed into summands concentrated in different frequency ranges.

To start to get an idea how the proof works, first imagine that all the pullback forms are
concentrated in a single frequency range. If the frequency range is high, then we got a lot of
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Figure 1. Rescaling the “layers” of the iterated map.

cancellation when we integrate the forms, leading to a non-trivial bound for the degree. If the
frequency range is low, then we use the fact that M is not scalable to get a non-trivial bound
for the degree—roughly speaking, if all the relevant forms were large and low frequency, we
could use them to build a ring homomorphism from H∗(M ;R) to Ω∗(M).

In general, the pullback forms have contributions from many frequency ranges. We care-
fully break up the integral for the degree into pieces involving different frequency ranges, and
we use the two ideas above to bound the pieces. It turns out that the interaction of different
frequency ranges is important in this estimate. In the worst case, the forms have roughly
equal contributions in every frequency range. Indeed, a self-map of M which comes close to
the upper bound must have pieces in a wide range of frequencies (see Proposition 2.16 for a
precise statement).

Let’s see what such a self-map might look like in the case of M = #kCP 2. We think
of M as a CW complex with one 0-cell, k 2-cells, and one 4-cell. We construct self-maps
rℓ : M → M which have degree 24ℓ on the top cell. We would like to arrange that rℓ has
Lipschitz constant at most Cℓ · 2ℓ. A naive way to build a map rℓ of the right degree is to
start with some r1 and iterate it ℓ times to get rℓ. In this case, Lip(rℓ) ≤ Lip(r1)

ℓ. However,
Lip(r1) is strictly bigger than 2 (by [15, 2.32], the Lipschitz constant could only be 2 if
M = #kCP 2 had a flat metric). Therefore, the bound Lip(r1)

ℓ is too big. By performing
some optimization each time we iterate, we can bring Lip(rℓ) down to the target value.

We may build r1, which has degree 16, as follows: the top cell e4 contains 16 cubical regions
that each map homeomorphically, even homothetically, to the whole cell, whereas the area
outside those cubical regions maps to the 2-skeleton. To try to make this map efficient, we
can arrange the cubical regions in a 2× 2× 2× 2 grid. But when we iterate this map many
times, the regions that map homothetically to the 4-cell become tiny, and most of the 4-cell
maps to the 2-skeleton.

The main idea of the construction is that we can actually expand the homothetic regions
so that they take up a much larger part of the cell, while compressing the parts that map to
the 2-skeleton to a thin layer. This has to do with the fact that self-maps of S2 of high degree
are easy to produce and modify. In the end, each of the ℓ iterations contributes a layer of
roughly the same thickness, leading to an estimate of O(ℓ · 2ℓ) for the Lipschitz constant, or

O(d1/4 log d) in terms of the degree d = 24ℓ. See Figure 1 for a rough illustration.
The proof of the lower bound of Theorem A is a straightforward generalization of this idea.
To end this introduction, we consider the Littlewood–Paley pieces of the differential forms

from this map and from other maps we have discussed. For simplicity, let us first discuss a
self-map S2 → S2 with degree 22p and Lipschitz constant 2p. The pullback of the volume
form is very repetitive, so that after averaging on scale 2−p it becomes essentially constant.
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Therefore, the Littlewood–Paley pieces of the pullback are large at the highest frequency
scale 2p and at frequency 1, but they can be very small at all the in-between frequencies.

The maps between scalable spaces constructed in [3] have a similar Littlewood–Paley pro-
file. These maps are highly regular “rescalings”. In fact, we prove Theorem C by building
maps which are modeled on constant forms—the lowest possible frequency. Such maps are
built on each cell and patched together using previous results from quantitative homotopy
theory. The patching introduces high frequency pieces, but there don’t need to be any con-
tributions from the intermediate frequencies.

The Littlewood–Paley decomposition for the self-map of #kCP 2 sketched above is very
different. The outermost layer is dominated by very low-frequency terms (at scale around
the diameter of the space) and very high-frequency terms (at scale ∼ 2−ℓ). Similarly, the kth
layer, which looks like the outermost layer but on a different scale, is dominated by terms at
scale 2−k and 2−ℓ. Overall, the map has pieces at every frequency range, as suggested by its
fractal-like self-similarity.

1.4. Structure of the paper. Section 2 contains the Fourier-analytic proof of the upper
bound of Theorem A; it is independent of the remainder of the paper. Section 3 discusses
the corresponding lower bound, and is likewise largely self-contained. Section 4 introduces
some necessary results from rational and quantitative homotopy theory. In Section 5, we use
this machinery to prove Theorems C and C′, and in Section 6, we use it to prove Theorem
B. Finally, in Section 7, we discuss what our techniques can say about non-formal spaces,
proving Theorem D as well as some complementary bounds.

2. Upper bounds on degree using Fourier analysis

In this section, we show the upper bound of Theorem A. To introduce the method, we first
handle the case of a connected sum of CP 2s:

Theorem 2.1. Let Xk = #kCP 2. Fix a metric g on Xk. Suppose that f : Xk → Xk is
L-Lipschitz. If k ≥ 4, then

deg(f) ≤ C(k, g)L4(logL)−1/2.

We then use the same method to prove the general result:

Theorem 2.2. Suppose thatM is a closed connected oriented n-manifold such that H∗(M ;R)
does not embed into Λ∗Rn, and N is any closed oriented n-manifold. Then there is an
α(M) > 0 so that for any metric g on M and g′ on N and any L-Lipschitz map f : N →M ,

deg(f) ≤ C(M, g,N, g′)Ln(logL)−α(M).

Note that by Theorem C, proved later in the paper, if M is simply connected and formal,
then this condition holds if and only if M is not scalable. However, the theorem also holds
for non-formal manifolds as well as those with nontrivial fundamental group.

A similar result also holds for many non-closed domain manifolds. We give the proof for
a unit ball, although it extends easily to any compact manifold with boundary:

Theorem 2.3. Suppose thatM is a closed connected oriented n-manifold such that H∗(M ;R)
does not embed into Λ∗Rn, and let α(M) > 0 be as in the statement of Theorem 2.2. Let
Bn ⊆ Rn be the unit ball. Then for any metric g onM and any L-Lipschitz map f : Bn →M ,∫︂

Bn

f∗d volM ≤ C(M, g)Ln(logL)−α(M).
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As discussed in the introduction, we prove these results by using Littlewood–Paley theory
to divide the forms into pieces at different frequency ranges. In the first subsection, we review
the tools from Littlewood–Paley theory that we need. In the second part, we prove Theorem
2.1. In the third part, we introduce the modifications needed to prove the more general
estimate in Theorem 2.2.

2.1. Littlewood–Paley theory. If a denotes a differential form on Rd, then we can define
its Fourier transform term by term. In other words, if I is a multi-index and a =

∑︁
I aI(x)dx

I ,
then

â :=
∑︂
I

âIdx
I .

To set up Littlewood–Paley theory, pick a partition of unity on Fourier space:∑︂
k∈Z

ηk(ξ) := 1,

where ηk is supported in the annulus Annk := {ξ : 2k−1 ≤ |ξ| ≤ 2k+1}. We can also arrange
that 0 ≤ ηk ≤ 1, and that ηk are smooth with appropriate bounds on their derivatives.

Then define
Pka := (ηkâ)

∨,

where ∨ denotes the inverse Fourier transform. We have a =
∑︁

k∈Z Pka, and we know thatˆ︃Pka = ηkâ is supported in Annk.
We also write P≤ka =

∑︁
k′≤k Pk′a, and η≤k =

∑︁
k′≤k ηk, so P≤ka = (η≤kâ)

∨.

We say that a form a =
∑︁

I aI(x)dx
I is Schwartz if each function aI(x) is Schwartz. A

form a is Schwartz if and only if â is Schwartz. Therefore, if a is Schwartz, then Pka and
P≤ka are also Schwartz.

In this section, we review some estimates related to the Pka. These results are proven
using some inequalities about the inverse Fourier transform of smooth bump functions.

Lemma 2.4. Suppose that η(ω) is a smooth function supported on a ball B ⊂ Rd of radius 1
such that

• |η(ω)| ≤ A for all ω.
• |∂Jη(ω)| ≤ AN for all multi-indices J with |J | ≤ N .

Then

|η∨(x)| ≲d A for every x ∈ Rd.

|η∨(x)| ≲d AN |x|−N for every x ∈ Rd.
Therefore, if N > d,

∥η∨∥L1 ≲d A+AN .

Proof. For the first bound, we write

|η∨(x)| = |
∫︁
η(ω)e2πiωxdω| ≤

∫︁
|η| ≤ |B|A.

For the second bound, we integrate by parts N times. For a given x ∈ Rd, we choose a
multi-index J with |J | = N and |x|N ∼ xJ . Then

|η∨(x)| =
⃓⃓∫︁
η(ω)e2πiωxdω

⃓⃓
=

⃓⃓∫︁
∂Jη(2πi)

−Nx−Je2πiωxdω
⃓⃓
≲ |x|−N

∫︁
|∂Jη| ≤ |x|−N |B|AN .

To bound
∫︁
|η∨(x)|dx, we use the first bound when |x| ≤ 1 and the second bound when

|x| ≥ 1. □
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Lemma 2.5. Suppose that η(ω) is a smooth function supported on a ball B ⊂ Rd of radius
R such that

• |η(ω)| ≤ A for all ω.

• |∂Jη(ω)| ≤ ANR−|J | for all multi-indices J with |J | ≤ N .

Then

|η∨(x)| ≲d AR
d for every x ∈ Rd.

|η∨(x)| ≲d ANR
d|Rx|−N for every x ∈ Rd.

Therefore, if N > d,

∥η∨∥L1 ≲d A+AN .

Proof. The first two bounds follow from Lemma 2.4 by a change of variables. Alternatively,
one can use the same method as in Lemma 2.4.

To bound
∫︁
|η∨(x)|dx, we use the first bound when |x| ≤ 1/R and the second bound when

|x| ≥ 1/R. □

Lemma 2.6. Suppose that η(ω) is a smooth function supported on a ball B ⊂ Rd of radius
R such that

• |η(ω)| ≤ A for all ω.

• |∂Jη(ω)| ≤ ANR−|J | for all multi-indices J with |J | ≤ N .

Write Mf =
(︁
ηf̂

)︁∨
. Then if N > d,

∥Mf∥Lp ≲d (A+AN )∥f∥Lp for every 1 ≤ p ≤ ∞.

Proof. We have Mf = f ∗ η∨. So ∥Mf∥Lp ≤ ∥f∥Lp∥η∨∥L1 . Now apply the bound for ∥η∨∥L1

from Lemma 2.5. □

We apply these bounds to study the Littlewood–Paley projections Pk.

Lemma 2.7. ∥η∨k ∥L1 ≲ 1 uniformly in k. ∥dη∨k ∥L1 ≲ 2k uniformly in k.

Proof. We can first arrange that ηk(ω) = η0(2
−kω). Then the function ηk obeys the hypothe-

ses of Lemma 2.5 with R = 2k, with bounds that are uniform in k. Then Lemma 2.5 gives
the estimate ∥η∨k ∥L1 ≲d 1.

Next, we will show that ∥∂jη∨k ∥L1 ≲d 2
k. This will imply ∥dη∨k ∥L1 ≲d 2

k as desired.

The Fourier transform of ∂jη
∨
k is 2πiωjηk(ω). Notice that |ωj | ≲ 2k on Annk. We write

2πiωjηk = 2k · 2πiωj
2k
ηk⏞ ⏟⏟ ⏞

ψ

.

The function ψ obeys the hypotheses of Lemma 2.5. Therefore, ∥ψ∨∥L1 ≲d 1. And so

∥∂jη∨k ∥L1 = 2k∥ψ∨∥L1 ≲ 2k. □

Lemma 2.8. ∥Pka∥Lp ≤ C∥a∥Lp, for all k and all 1 ≤ p ≤ ∞ with a uniform constant C.

Proof. ∥Pka∥Lp = ∥η∨k ∗ a∥Lp ≤ ∥η∨k ∥L1∥a∥Lp . Now ∥η∨k ∥L1 is bounded uniformly in k by
Lemma 2.7. □

Lemma 2.9. The projection operator Pk commutes with the exterior derivative d:

d(Pka) = Pk(da).
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Proof. We can see this by taking the Fourier transform on both sides. The exterior derivative
d becomes pointwise multiplication by a matrix on the Fourier side. The projection operator
Pk becomes pointwise multiplication by the scalar ηk. These commute. □

Lemma 2.10. Suppose that a is a Schwartz form on Rd with da = 0 and with â is supported
in Annk := {ξ : 2k−1 ≤ |ξ| ≤ 2k+1}. Then a has a primitive, which we denote Prim(a), so
that

• dPrim(a) = a. (This is what the word ‘primitive’ means.)
• Prim(a) is a Schwartz form.
• ∥Prim(a)∥Lp ≤ C2−k∥a∥Lp for all 1 ≤ p ≤ ∞, with a uniform constant C.

This is really the key property of frequency localized forms. The intuition is that Prim(a)
is defined by integrating a, and the integral cancels at length scales larger than 2−k.

Before starting the proof, we make a quick remark about top-dimensional forms. If a is
a d-form on Rd, then the condition da = 0 is automatic. In order for a to have a Schwartz
primitive, we need to know that

∫︁
Rd a = 0. This fact is implied by our assumption that â is

supported in Annk, because
∫︁
Rd a = â(0) = 0.

Proof. First cover Annk with ∼ 1 balls B so that the radius of each ball is ∼ 2k and the
distance from each ball to the origin is also ∼ 2k. Let ψB be a partition of unity:

∑︁
B ψB = 1

on Annk and ψB is supported in B. Decompose a =
∑︁

B aB where

âB = ψB â.

The form âB is smooth and supported in Annk ∪Annk−1 ∪Annk+1. Just as in the proof of
Lemma 2.9, it follows that daB = 0. Using Lemma 2.6, ∥aB∥Lp ≤ C∥a∥Lp for all 1 ≤ p ≤ ∞.

We will construct a primitive Prim(aB) for each form aB such that

• dPrim(aB) = aB.
• Prim(aB) is a Schwartz form.
• ∥Prim(aB)∥Lp ≤ C2−k∥aB∥Lp for all 1 ≤ p ≤ ∞, with a uniform constant C.

Finally, we define Prim(a) =
∑︁

B Prim(aB). Since Prim(aB) has the desired properties, it
follows that Prim(a) does also.

Now we have to construct Prim(aB). For ease of notation, we will abbreviate aB by a. We
know that â is supported on B. We can choose coordinates so that ω1 ∼ 2k on B.

We write the form a as∑︂
I

aI(x)dxI =
∑︂
I=1∪J

aI(x)dx1 ∧ dxJ +
∑︂
1/∈I

aIdxI .

We define the antiderivative
∫︁
aIdx1 via the Fourier transform by the formula:

(1) ˆ︂∫︁ aIdx1(ω) = 1

2πiω1
âI(ω).

Since ω1 > 0 on B, and âI(ω) is supported in B, the right-hand side is a smooth compactly
supported function on Fourier space. Therefore,

∫︁
aIdx1 is a Schwartz function on Rd. From

(1), we can also check that
∂

∂x1

(︁∫︁
aIdx1

)︁
= aI .

(We can also define
∫︁
aIdx1 using definite integrals:∫︂
aIdx1(x1, x2, ..., xd) =

∫︂ x1

−∞
aI(x̃1, x2, ..., xd)dx̃1.
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This definite integral formula is equivalent to (1). From the definite integral formula, it takes
a little work to check that

∫︁
aIdx1 is in fact a Schwartz function on Rd, although it’s not

that difficult. In our proof we will only need (1).)
We now define

Prim(a) =
∑︂
I=1∪J

(
∫︁
aIdx1)dxJ .

This is a standard construction for primitives of forms which appears in the proof of the
Poincaré lemma, cf. [6, p. 38]. We will check that dPrim(a) = a, following the same general
method as in [6].

We first compute d(
∫︁
aIdx1):

d(
∫︁
aIdx1) = ∂1(

∫︁
aIdx1)dx1 +

d∑︂
j=2

∂j(
∫︁
aIdx1)dxj = aIdx1 +

d∑︂
j=2

∫︁
∂jaIdx1.

Now

dPrim(a) =
∑︂
I=1∪J

d(
∫︁
aIdx1)dxJ =

∑︂
I=1∪J

aIdx1 ∧ dxJ +
∑︂
I=1∪J

d∑︂
j=2

(
∫︁
∂jaIdx1)dxj ∧ dxJ .

The first term is
∑︁

I=1∪J aIdxI . So we have to check that the second term is the rest of a.
In other words, we want to show that

(2)
∑︂
I=1∪J

d∑︂
j=2

(
∫︁
∂jaIdx1)dxj ∧ dxJ =

∑︂
1/∈I′

aI′dxI′ .

Since both forms are Schwartz, it suffices to check that ∂1 of both sides are equal:

(3)
∑︂
I=1∪J

d∑︂
j=2

∂jaIdxj ∧ dxJ =
∑︂
1/∈I′

∂1aI′dxI′ .

Since there is no 1 in J or j or I ′, it suffices to check that dx1 wedged with both sides are
equal:

(4)
∑︂
I=1∪J

d∑︂
j=2

∂jaIdx1 ∧ dxj ∧ dxJ =
∑︂
1/∈I′

∂1aI′dx1 ∧ dxI′ .

This in turn follows from da = 0.
To bound Prim(a), the main point is that | 1

2πiω1
| ∼ 2−k on the ball B. Define ηB = 1

on B, and 0 ≤ ηB ≤ 1 and with ηB supported in a slightly larger ball B̃ = 1.01B. We can
assume that ω1 ∼ 2k on B̃. Then

1

2πiω1
âI(ω) = 2−k

1

2πi

2k

ω1
ηB⏞ ⏟⏟ ⏞

η̃B

âI(ω).

The function η̃B is supported on B̃, and it obeys the bounds from Lemma 2.6. The lemma
tells us that

∥
∫︁
aIdx1∥Lp = 2−k∥(η̃B âI)

∨∥Lp ≤ C2−k∥aI∥Lp .

Therefore ∥Prim(a)∥Lp ≤ C2−k∥a∥Lp as desired. □
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Lemma 2.11. For any function f ,∑︂
k∈Z
∥Pkf∥2L2 ∼ ∥f∥2L2 .

Similarly, for any form a, ∑︂
k∈Z
∥Pka∥2L2 ∼ ∥a∥2L2 .

Proof. By the Plancherel theorem,∑︂
k∈Z
∥Pkf∥2L2 =

∑︂
k∈Z

∫︂
Rd

⃓⃓ˆ︃Pkf ⃓⃓2= ∑︂
k∈Z

∫︂
Rd

|ηk(ω)|2|f̂(ω)|2dω.

Now for every ω, (1/10) ≤
∑︁

k∈Z ηk(ω)
2 ≤ 1. This holds because

∑︁
k∈Z ηk(ω) = 1 and each

ηk(ω) ≥ 0, and each ω lies in the support of ηk for at most 5 values of k. Therefore,∑︂
k∈Z
∥Pkf∥2L2 =

∫︂
Rd

(︃∑︂
k∈Z

ηk(ω)
2

)︃
|f̂(ω)|2dω ∼

∫︂
Rd

|f̂(ω)|2dω =

∫︂
Rd

|f(x)|2dx.

For a form a =
∑︁

I aI(x)dxI , Pk(a) =
∑︁

I PkaI(x)dxI and ∥a∥2L2 :=
∑︁

I

∫︁
|aI(x)|2dx. So the

case of forms follows from the case of functions. □

Lemma 2.12. The Fourier support of P≤ka1 ∧ P≤ka2 is contained in the ball of radius 2k+2

around 0. Therefore,

P≤k+3 (P≤ka1 ∧ P≤ka2) = P≤ka1 ∧ P≤ka2.

Proof. The Fourier support of P≤ka is contained in the ball B(2k+1, 0). For any functions f
and g, the Fourier transform of fg is given by

ˆ︂fg(ω) = f̂ ∗ ĝ(ω) =
∫︂
f̂(ω̃)ĝ(ω − ω̃)dω̃.

If f̂ and ĝ are supported in B(2k+1, 0), then ˆ︂fg is supported in B(2 · 2k+1, 0).
This argument also applies to wedge products of forms instead of products of functions,

just by writing out the components of the forms. This shows that the Fourier transform of
P≤ka1 ∧P≤ka2 is supported in B(2k+2, 0). Now η≤k+3(ω) is identically 1 on this ball, and so

P≤k+3 (P≤ka1 ∧ P≤ka2) = P≤ka1 ∧ P≤ka2. □

2.2. Bounds for connected sums of CP 2s.

2.2.1. Setup. In this section, we will prove Theorem 2.1. We recall the statement.

Theorem. Let Xk = (CP 2)#k. Fix a metric g on Xk. Suppose that f : Xk → Xk is
L-Lipschitz. If k ≥ 4, then

deg(f) ≤ C(k, g)L4(logL)−1/2.

Proof. Let ui ∈ H2(Xk;R) be a cohomology class dual to the ith copy of CP 1 in Xk, for
i = 1, . . . , k. Let αi be a 2-form in the cohomology class ui. We can assume that the αi have
disjoint supports. For any i, we can write

(5) deg(f) =

∫︂
Xk

f∗αi ∧ f∗αi.
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We will use Littlewood–Paley theory to estimate the right-hand side. Because Littlewood–
Paley theory is by far nicest on Rd, we first switch to charts. Fix an atlas of charts for Xk:
suppose that Xk = ∪U ′, and ϕU : U → U ′ are parametrizations. Suppose that

∑︁
U ′ ψU ′ = 1

is a partition of unity on Xk subordinate to these charts. Define ψU : R4 → R by

ψU (x) =

{︄
ϕ∗ψU ′(x) x ∈ U
0 x /∈ U.

Now we can extend ϕU |supp(U) to a smooth map ϕ̃U : R4 → Xk, and we can do it so that ϕ̃U
sends the complement of a compact set to a single point. Then define differential forms ai
on R4 by

(6) ai = ϕ̃
∗
Uf

∗αi.

(The forms ai also implicitly depend on U .) Plugging this definition into (5), we get

(7) deg(f) =
∑︂
U

∫︂
R4

ψUai ∧ ai.

We will bound each of these integrals.
Before going on, we discuss properties of the ai. We made sure these forms are defined

on all of R4 so that we can apply Littlewood–Paley theory. We have ∥ai∥L∞ ≲ L2. We also
know that dai = 0. The form ai is supported on a fixed ball, and so for every 1 ≤ p ≤ ∞, we
also have ∥ai∥Lp ≲ ∥ai∥L∞ ≲ L2.

2.2.2. Using that k is large. In this section, we prove a lemma that takes advantage of the
fact that k ≥ 4. This lemma is similar to a lemma in [3].

Lemma 2.13. Suppose that k ≥ 4 and that b1, . . . , bk are 2-forms on R4. Then at each point
x, we have

|b1 ∧ b1(x)| ≤ C
∑︂
i ̸=j
|bi ∧ bi − bj ∧ bj |+ |bi ∧ bj |.

Proof. Suppose not. By scaling, we can assume that b1 ∧ b1(x) = dx1 ∧ · · · ∧ dx4. Then we
must have bj ∧ bj(x) is almost dx1 ∧ · · · ∧ dx4 for every j and bi ∧ bj(x) is almost zero for
every i ̸= j. Next we will get a contradiction by considering the wedge product.

Let W : Λ2R4 × Λ2R4 → Λ4R4 be the quadratic form given by the wedge product. It has
signature (3,3). Now let B ⊂ Λ2R4 be the subspace spanned by b1, . . . , bk. When we restrict
W to the subspace B, we will check that it has signature (k, 0). Since k ≥ 4, this gives the
desired contradiction.

It remains to compute the signature of the quadratic form W restricted to B. This is
isomorphic to the quadratic form (c1, . . . , ck) ↦→ (

∑︁
cibi(x)) ∧ (

∑︁
cibi(x)). Expanding out

the right-hand side, we get ∑︂
i,j

cicjbi ∧ bj .

Since bi ∧ bj is almost 0 for every i ̸= j and bi ∧ bi is almost dx1 ∧ · · · ∧ dx4 for every i, we see
that this form is almost

(c1, . . . , ck) ↦→ (c21 + · · ·+ c2k)dx1 ∧ · · · ∧ dx4.

In particular, the form has signature (k, 0). □
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2.2.3. Relations in cohomology and low-frequency bounds. Let ui ∈ H2(Xk;R) be a cohomol-
ogy class dual to the ith copy of CP 1 in Xk, for i = 1, . . . , k. Let αi be a 2-form in the
cohomology class ui.

We know that ui ⌣ ui − uj ⌣ uj = 0 in H4(Xk;R). Therefore, the corresponding
differential forms αi ∧ αi − αj ∧ αj are exact. Similarly, for i ̸= j, ui ⌣ uj = 0, and so the

forms αi∧αj are exact. Let γr be primitives for these forms. We have 2
(︁
k
2

)︁
exact forms total,

and so r goes from 1 to 2
(︁
k
2

)︁
.

Define gr = ϕ∗f∗γr. Since γr is a 3-form,

(8) ∥gr∥L∞ ≲ L3.

Depending on r, we have dgr = ai ∧ ai − aj ∧ aj or dgr = ai ∧ aj with i ̸= j.
The bound ∥gr∥L∞ ≲ L3 gives extra information about ai ∧ aj . In particular, we get

bounds on the low frequency parts of ai ∧ aj .

Lemma 2.14. If i ̸= j, then

∥Pk(ai ∧ aj)∥L∞ ≲ 2kL3

∥Pk(ai ∧ ai − aj ∧ aj)∥L∞ ≲ 2kL3.

The same bounds hold with P≤k in place of Pk.

Notice that ∥ai∥L∞ ≲ L2, and so we have ∥ai ∧ aj∥L∞ ≲ L4. But the low frequency part
of ai ∧ aj obeys a much stronger bound.

Proof. We write

|Pk(ai ∧ aj)(x)| =
⃓⃓⃓⃓∫︂

η∨k (y)ai ∧ aj(x− y)dy
⃓⃓⃓⃓
.

We now substitute in ai ∧ aj = dgr and then integrate by parts:⃓⃓⃓⃓∫︂
η∨k (y)dgr(x− y)dy

⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂
dη∨k (y)gr(x− y)dy

⃓⃓⃓⃓
.

Since ∥gr∥L∞ ≲ L3, and
∫︁
|dη∨k | ≲ 2k by Lemma 2.7, our expression is bounded by

≲ L3

∫︂
|dη∨k | ≲ 2kL3.

The same proof applies to ∥Pk(ai ∧ ai − aj ∧ aj)∥L∞ and with P≤k in place of Pk. □

2.2.4. Toy case: all forms are low frequency. To illustrate how the tools we have developed
work together, we now do a toy case of our main theorem: the case where all forms have low
frequency.

Suppose that the forms ai are all low-frequency: P≤1ai = ai for every i. It follows that the
wedge products are also fairly low frequency: P≤2(ai ∧ aj) = ai ∧ aj for every i, j.

We can now bound
∫︁
ψUa1∧a1 using the tools we have developed. First, Lemma 2.13 tells

us that ∫︂
ψUa1 ∧ a1 ≤

∫︂
ψU |a1 ∧ a1| ≤

∑︂
i ̸=j

∫︂
ψU |ai ∧ aj |+

∫︂
ψU |ai ∧ ai − aj ∧ aj |.

We are discussing the low frequency special case, where |ai ∧ aj | = |P≤2(ai ∧ aj)|. By
Lemma 2.14, we have

|ai ∧ aj | = |P≤2(ai ∧ aj)| ≲ L3.
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Similarly,

|ai ∧ ai − aj ∧ aj | = |P≤2(ai ∧ ai − aj ∧ aj)| ≲ L3.

Therefore,
∫︁
ψUa1 ∧ a1 ≲ L3, and so finally we have deg f ≲ L3.

If we have a weaker low frequency assumption that P≤ℓ̄ai = ai for every i, then the same

argument shows that deg f ≲ 2ℓ̄L3. As long as the frequency range 2ℓ̄ is significantly less

than L, then we get a strong estimate. For instance, if 2ℓ̄ = L.9, then deg f ≤ L3.9.

2.2.5. Bounding high-frequency contributions. We use the Littlewood–Paley decomposition
to write ∫︂

Rd

ψUai ∧ ai =
∫︂
Rd

ψU
∑︂
k∈Z

Pkai ∧
∑︂
ℓ∈Z

Pℓai.

We can bound each term on the right-hand side by using our primitive estimate, Lemma
2.10, and integration by parts:⃓⃓⃓⃓∫︂

Rd

ψUPkai ∧ Pℓai
⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂
Rd

ψUPkai ∧ d(Prim(Pℓai))

⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂
dψU ∧ Pkai ∧ Prim(Pℓai)

⃓⃓⃓⃓
≤

∫︂
|dψU ||Pkai||Prim(Pℓai)|.

Now dψU is a fixed C∞
comp form, and we have |Pkai| ≲ L2 and |PrimPℓ(ai)| ≲ 2−ℓL2. All

together, we get the bound

(9)

⃓⃓⃓⃓∫︂
Rd

ψUPkai ∧ Pℓai
⃓⃓⃓⃓
≲ 2−ℓL4.

This shows that the high-frequency parts of ai contribute little to the integral for the
degree. By summing this geometric series of error terms, we see that

Lemma 2.15. For any frequency cutoff ℓ̄,⃓⃓⃓⃓∫︂
Rd

ψUai ∧ ai
⃓⃓⃓⃓
≲

⃓⃓⃓⃓∫︂
ψUP≤ℓ̄ai ∧ P≤ℓ̄ai

⃓⃓⃓⃓
+O(2−ℓ̄L4).

In particular, Lemma 2.15 allows us to resolve another toy case of our problem. If every
form ai is purely high-frequency, in the sense that P≤ℓ̄ai = 0, then Lemma 2.15 gives the

bound deg f ≲ 2−ℓ̄L4. For instance, if 2ℓ̄ is at least L1/10, then we get a strong estimate:
deg f ≲ L3.9.

We now have strong bounds in two toy cases: the pure low frequency case and the pure
high frequency case. We will prove bounds in the general case by combining these tools.

However, combining the tools is not completely straightforward. Based on the discussion
above, it initially sounds like we might get a bound of the form deg f ≲ L4−β for some β > 0.
But there are maps f with Lipschitz constant L and degree at least L4(logL)−C for some
constant C. The forms coming from these maps crucially have signifinant contributions at
all frequency levels.
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2.2.6. Bounds in the general case. We begin by applying Lemma 2.15. For any frequency
cutoff ℓ̄, the lemma tells us that

(10)

⃓⃓⃓⃓∫︂
Rd

ψUa1 ∧ a1
⃓⃓⃓⃓
≲

∫︂
ψU

⃓⃓
P≤ℓ̄a1 ∧ P≤ℓ̄a1

⃓⃓
+ 2−ℓ̄L4.

We will choose ℓ̄ later, in the range 2ℓ̄ ≥ L1/10. This guarantees that the last term is ≲ L3.9,
which is much smaller than our goal.

To control the first term, we apply Lemma 2.13 with bi = P≤ℓ̄ai(x) at each point x. Lemma
2.13 tells us that at each point⃓⃓

P≤ℓ̄a1 ∧ P≤ℓ̄a1
⃓⃓
≲

∑︂
i ̸=j

⃓⃓
P≤ℓ̄ai ∧ P≤ℓ̄aj

⃓⃓
+

⃓⃓
P≤ℓ̄ai ∧ P≤ℓ̄ai − P≤ℓ̄aj ∧ P≤ℓ̄aj

⃓⃓
.

Plugging into the integral, we get∫︂
ψU |P≤ℓ̄a1 ∧ P≤ℓ̄a1| ≲

∑︂
i ̸=j

∫︂
ψU |P≤ℓ̄ai ∧ P≤ℓ̄aj |⏞ ⏟⏟ ⏞

I

+

∫︂
ψU |P≤ℓ̄ai ∧ P≤ℓ̄ai − P≤ℓ̄aj ∧ P≤ℓ̄aj |⏞ ⏟⏟ ⏞

II

.

The two terms are similar to each other. We focus on the terms of type I first. The same
arguments apply to type II.

The form P≤ℓ̄ai∧P≤ℓ̄aj looks a little bit like P≤ℓ̄(ai∧aj), which has strong bounds coming
from Lemma 2.14. However, these forms are not equal to each other. We will examine the
situation more carefully and find that

(11) P≤ℓ̄ai ∧ P≤ℓ̄aj = P≤ℓ̄+3(ai ∧ aj) + additional terms.

The additional terms are crucial to our story—they actually make the largest contribution
in our bound for the degree of f .

To work out the details of (11), we begin by doing the Littlewood–Paley expansion of ai
and aj :

ai ∧ aj =
∑︂

k1,k2∈Z
Pk1ai ∧ Pk2aj .

Grouping the terms according to whether k1 or k2 is bigger, we get

(12) ai ∧ aj = P≤ℓ̄ai ∧ P≤ℓ̄aj +
∞∑︂

k1=ℓ̄+1

Pk1ai ∧ P≤k1aj +

∞∑︂
k2=ℓ̄+1

P<k2ai ∧ Pk2aj .

Note that the Fourier transform of P≤ℓ̄ai ∧ P≤ℓ̄aj is supported in |ω| ≤ 4 · 2ℓ̄ (cf. Lemma
2.12). Therefore

P≤ℓ̄+3(P≤ℓ̄ai ∧ P≤ℓ̄aj) = P≤ℓ̄ai ∧ P≤ℓ̄aj .

We apply P≤ℓ̄+3 to both sides of (12) to get

(13)

P≤ℓ̄+3(ai ∧ aj) = P≤ℓ̄ai ∧ P≤ℓ̄aj

+

∞∑︂
k1=ℓ̄+1

P≤ℓ̄+3(Pk1ai ∧ P≤k1aj) +

∞∑︂
k2=ℓ̄+1

P≤ℓ̄+3(P<k2ai ∧ Pk2aj).
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This gives us our fleshed out version of (11):

(14)

P≤ℓ̄ai ∧ P≤ℓ̄aj = P≤ℓ̄+3(ai ∧ aj)⏞ ⏟⏟ ⏞
Term 1

−
∞∑︂

k1=ℓ̄+1

P≤ℓ̄+3(Pk1ai ∧ P≤k1aj)⏞ ⏟⏟ ⏞
Term 2.1

−
∞∑︂

k2=ℓ̄+1

P≤ℓ̄+3(P<k2ai ∧ Pk2aj)⏞ ⏟⏟ ⏞
Term 2.2

.

We want to bound
∫︁
ψU |P≤ℓ̄ai ∧ P≤ℓ̄aj |. We plug in (14), and then we have to bound the

contributions of term 1, term 2.1 and term 2.2. The contribution of Term 1 is bounded using
Lemma 2.14:

(15)

∫︂
ψU |P≤ℓ̄+3(ai ∧ aj)| ≲ 2ℓ̄L3.

We will choose ℓ̄ in the range 2ℓ̄ ≤ L9/10, and so the right-hand side is ≲ L3.9, much smaller
than our goal.

Terms 2.1 and 2.2 are similar, so we just explain Term 2.1. The contribution of Term 2.1
is at most

(16)
∞∑︂

k1=ℓ̄+1

∫︂
ψU |P≤ℓ̄+3(Pk1ai ∧ P≤k1aj)| ≤

∞∑︂
k1=ℓ̄+1

∥P≤ℓ̄+3(Pk1ai ∧ P≤k1aj)∥L1 .

We start with a direct bound for this L1 norm. Lemma 2.8 gives

∥P≤ℓ̄+3(Pk1ai ∧ P≤k1aj)∥L1 ≲ ∥Pk1ai ∧ P≤k1aj∥L1 ≤ ∥Pk1ai∥L1∥P≤k1aj∥L∞ .

Now Lemma 2.8 again gives ∥P≤k1aj∥L∞ ≲ ∥aj∥L∞ ≲ L2. All together this gives

(17) ∥P≤ℓ̄+3(Pk1ai ∧ P≤k1aj)∥L1 ≲ L2∥Pk1ai∥L1 .

If k1 = ℓ̄, this is the best bound we know. But if k1 is much larger than ℓ̄, then we can get
a better estimate by using the primitive of Pk1ai and integrating by parts.

P≤ℓ̄+3(Pk1ai ∧ P≤k1aj) = η∨≤ℓ̄+3 ∗ [dPrim(Pk1ai)P≤k1aj ] .

Writing out what this means and integrating by parts, we get:⃓⃓
P≤ℓ̄+3(Pk1ai ∧ P≤k1aj)(x)

⃓⃓
=

⃓⃓⃓⃓∫︂
η∨≤ℓ̄+3(y)(dPrim(Pk1ai))(x− y) ∧ P≤k1aj(x− y)dy

⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂
dη∨≤ℓ̄+3(y)(Prim(Pk1ai))(x− y) ∧ P≤k1aj(x− y)dy

⃓⃓⃓⃓
.

Therefore, we have a pointwise bound⃓⃓
P≤ℓ̄+3(Pk1ai ∧ P≤k1aj)

⃓⃓
≤

⃓⃓
dη≤ℓ̄+3 ∗ [Prim(Pk1ai) · Pk1aj ]

⃓⃓
.

Taking L1 norms, we get

∥P≤ℓ̄+3(Pk1aiP≤k1aj)∥L1 ≤ ∥dη≤ℓ̄+3∥L1∥PrimPk1ai∥L1∥Pk1aj∥L∞ .

Now Lemma 2.7 gives ∥dη≤ℓ̄+3∥L1 ≲ 2ℓ̄ and Lemma 2.10 gives

∥PrimPk1ai∥L1 ≲ 2−k1∥Pk1ai∥L1 .



16 ALEKSANDR BERDNIKOV, LARRY GUTH, AND FEDOR MANIN

We also know by Lemma 2.8 that ∥Pk1aj∥L∞ ≲ ∥aj∥L∞ ≲ L2. Putting these bounds together,
we see that

(18) ∥P≤ℓ̄+3(Pk1ai ∧ P≤k1aj)∥L1 ≲ 2ℓ̄−k1L2∥Pk1ai∥L1 .

Returning to the contribution of Term 2.1 in (16), we have the bound

(19)
∞∑︂

k1=ℓ̄+1

∫︂
ψU |P≤ℓ̄+3(Pk1ai ∧ P≤k1aj)| ≤

∞∑︂
k1=ℓ̄+1

2ℓ̄−k1L2∥Pk1ai∥L1 .

Putting together our bounds for all the different terms, we get the following estimate for
any choice of scale ℓ̄:

(20)

⃓⃓⃓⃓∫︂
Rd

ψUa1 ∧ a1
⃓⃓⃓⃓
≲ 2−ℓ̄L4 + 2ℓ̄L3 +

∞∑︂
k1=ℓ̄+1

2ℓ̄−k1L2∥Pk1ai∥L1 .

(On the right-hand side, the first term comes from high frequency pieces, the next term comes
from Term 1 and is bounded using the low frequency method, and the final term comes from
Terms 2.1 and 2.2. The fact that k ≥ 4 is used in the bound for Term 1.)

Let us pause to digest this bound. To begin, note that the first two terms, 2−ℓ̄L4 + 2ℓ̄L3,

can be made much smaller than L4. For instance, we can choose ℓ̄ so that 2ℓ̄ = L1/2, and
then these first two terms give L3.5. The final term is often the most important.

Now let us try to get some intuition about the last term. Because of the exponentially

decaying factor 2ℓ̄−k1 , the final term comes mainly from k1 close to ℓ̄. If ∥Pk1ai∥L1 is very
small for a range of k1, then it is strategic for us to choose ℓ̄ at the start of this range. This
scenario could lead to a bound which is much stronger than L4(logL)−1/2 – see Proposition
2.16 below. On the other hand, it may happen that ∥Pk1ai∥L1 are all roughly equal. This
is actually the worst scenario from the point of view of Theorem 2.1. In this case we can
improve on the bound ∥Pk1ai∥L1 ≲ ∥ai∥L1 = L2 by using the orthogonality of the Pk1ai. By
Cauchy–Schwarz, ∥Pk1ai∥L1 ≲ ∥Pk1ai∥L2 , and

∑︁
k1
∥Pk1ai∥2L2 ≲ ∥ai∥2L2 ≲ L4. If ∥Pk1ai∥L1

are all equal, then we can compute ∥Pk1ai∥L1 ≲ L2(logL)−1/2. Plugging this into the last

term, and summing the geometric series, the last term contributes L4(logL)−1/2.
We now finish the formal proof of Theorem 2.1. We apply our estimates for those ℓ̄

satisfying L1/10 ≤ 2ℓ̄ ≤ L9/10. The number of different ℓ̄ in this range is ∼ logL. For each ℓ̄
in this range, (20) gives:⃓⃓⃓⃓∫︂

Rd

ψUa1 ∧ a1
⃓⃓⃓⃓
≲ L3.9 +

∞∑︂
k1=ℓ̄+1

2ℓ̄−k1L2∥Pk1ai∥L1 .

Summing the formula over all the ℓ̄ in this range, we get

(21) logL

⃓⃓⃓⃓∫︂
Rd

ψUa1 ∧ a1
⃓⃓⃓⃓
≲ L3.91 +

∑︂
L1/10≤2ℓ̄≤L9/10

∞∑︂
k1=ℓ̄+1

2ℓ̄−k1L2∥Pk1ai∥L1 .

In this sum, the terms with 2k1 > L can be bounded by L3.9 and absorbed into the first term.
The remaining terms are∑︂

L1/10≤2k1≤L

∑︂
L1/10≤2ℓ̄≤2k1−1

2ℓ̄−k1L2∥Pk1ai∥L1 ≲
∑︂

L1/10≤2k1≤L

L2∥Pk1ai∥L1 .
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Next we want to use orthogonality from Lemma 2.11: ∥ai∥2L2 ∼
∑︁

k ∥Pkai∥2L2 . To get these

L2 norms into play we apply Cauchy–Schwarz. Since the ai are supported in a fixed ball, and
since the Pk1ai are rapidly decaying away from that ball, we have ∥Pk1ai∥L1 ≲ ∥Pk1ai∥L2 .

Since there are ∼ logL values of k1 in the range L1/10 ≤ 2k1 ≤ L, we have

∑︂
L1/10≤2k1≤L

L2∥Pk1ai∥L1 ≲ (logL)1/2L2

⎛⎝ ∑︂
L1/10≤2k1≤L

∥Pk1ai∥2L2

⎞⎠1/2

≲ (logL)1/2L2∥ai∥L2 ≲ (logL)1/2L4.

Plugging this back into (21), we see that

logL

⃓⃓⃓⃓∫︂
Rd

ψUa1 ∧ a1
⃓⃓⃓⃓
≲ L3.91 + (logL)1/2L4

and so ⃓⃓⃓⃓∫︂
Rd

ψUa1 ∧ a1
⃓⃓⃓⃓
≲ (logL)−1/2L4.

But the degree of f is given by (7):

deg(f) =
∑︂
U

∫︂
ψUa1 ∧ a1 ≲ (logL)−1/2L4.

This finishes the proof of Theorem 2.1. □

The bound (20) contains somewhat more information than Theorem 2.1. It also tells us

that if the degree of f is close to L4(logL)−1/2, then the forms ai must have contributions
from essentially all frequency ranges. We make this precise in the following proposition.

Proposition 2.16. Suppose that k ≥ 4. Suppose f : Xk → Xk is L-Lipschitz. Let the forms
ai be as in (6), and fix 0 < β1 < β2 < 1.

Suppose that for every chart and every i, and every k1 in the range Lβ1 < 2k1 < Lβ2,

(22) ∥Pk1ai∥L1 ≤ L2−γ .

Then the degree of f is bounded by C(g)L4−η, where

η = min(β1, β2 − β1, γ).

Proof. Recall that ∥Pk1ai∥L1 ≲ ∥ai∥L1 ≲ L2. The hypothesis (22) says that we have a
stronger bound on ∥Pk1ai∥L1 when 2k1 lies in the range [Lβ1 , Lβ2 ].

To prove the bound, we plug all our hypotheses into the bound (20). That shows that the
degree is bounded by

L4−β1 + L3+β1 +
∑︂

Lβ1≤2k1≤Lβ2

Lβ12−k1L2L2−γ +
∑︂

2k1≥Lβ2

Lβ12−k1L4.

Carrying out the geometric series and grouping terms finishes the proof. □
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2.3. General estimate. In this section, we prove theorem 2.2. We recall the statement.

Theorem. Suppose that M is a closed connected oriented n-manifold such that H∗(M ;R)
does not embed into Λ∗Rn, and N is any closed oriented n-manifold. Then there exists
α(M) > 0 so that for any metric g on M and g′ on N and any map f : N → M with
Lip(f) = L,

deg(f) ≤ C(M, g,N, g′)Ln(logL)−α(M).

Remark 2.17. The constant α(M) depends only on the real cohomology algebra of M ,
H∗(M ;R).

Remark 2.18. Because the constant C(M, g) depends on g, it suffices to prove the estimate
for any one metric g.

The main difference between the general situation in Theorem 2.2 and the special case
Xk = (CP 2)#k in Theorem 2.1 is to find the right analogue of Lemma 2.13. Lemma 2.13
takes advantage of the hypothesis that k ≥ 4 for Xk. Similarly, the following lemma takes
advantage of the hypothesis that H∗(M ;R) does not embed into Λ∗Rn.

Lemma 2.19. Suppose thatM is a closed connected oriented n-manifold such that H∗(M ;R)
does not embed into Λ∗Rn. Then there exists an integer m(M) so that the following holds.

Let uj ∈ Hdj (M ;R) be a set of generators for the cohomology algebra of M , including a
generator utop ∈ Hn(M ;R). Suppose that the relations of the cohomology algebra are given
by Rr(u1, . . . , uJ) = 0.

Fix βj ∈ ΛdjRn for each j = 1, . . . , J such that |βj | ≤ 1 for each j and |Rr(β⃗)| ≤ ϵ for

each r. Then |βtop| ≤ CM ϵ
1

2m .

Proof. The tuple (β1, . . . , βJ) belongs to the space
∏︁J
j=1 Λ

djRn, which is isomorphic to RN .
We can think of (each component of) βj as a coordinate on this space, and we can think

of Rr as a polynomial on this space. We let V (R1, . . . , Rk) be the set of β⃗ where all the
polynomials Rr vanish.

Each (β1, . . . , βJ) ∈ V (R1, . . . , Rk) corresponds to a homomorphism ϕ : H∗(M ;R)→ Λ∗Rn
with βj = ϕ(uj). By hypothesis, each such homomorphism is non-injective. By Poincaré
duality, we have that each such homomorphism sends utop to 0. Therefore, βtop = 0 on
V (R1, . . . , Rk).

For any set X ⊂ RN , we let I(X) denote the ideal of polynomials f ∈ R[β] that vanish on
X. So we see that βtop ∈ I(V (R1, . . . , Rk)). The structure of I(V (R1, . . . , Rk)) is described
by the real Nullstellensatz—cf. [20, §2.3]:

Theorem 2.20 (Real Nullstellensatz). A polynomial f ∈ R[β] lies in I(V (R1, . . . , Rk)) if
and only if there is an integer m ≥ 1 and polynomials gi, hr ∈ R[β] so that

f2m + g21 + . . .+ g2s =
k∑︂
r=1

hrRr.

By the real Nullstellensatz, we see that there is some integer m such that

β2mtop + g1(β)
2 + . . .+ gs(β)

2 =
∑︂
r

hr(β)Rr(β).

If we also know that |βj | ≤ 1 for every j and |Rr(β)| ≤ ϵ for every r, then we see that

β2mtop ≤ CM ϵ.
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Therefore, |βtop| ≤ CM ϵ
1

2m . □

With this lemma, we can start the proof of the theorem. The ideas are the same. We just
have to carry them out in a more general situation, with a little more notation.

Recall that uj ∈ Hdj (M ;R) is a set of generators for the cohomology of M , with utop the
generator of Hn(M ;R). Suppose that the relations of the cohomology algebra are given by
Rr(u1, . . . , uJ) = 0.

Choose αj to be a closed form on M in the cohomology class uj . The cohomology class of
Rr(α⃗) is zero, so Rr(α⃗) is exact. Choose a primitive:

dγr = Rr(α⃗).

Next suppose that f : N → M is an L-Lipschitz map. Cover N with charts U ′, and
let 1 =

∑︁
U ′ ψU ′ be a partition of unity subordinate to the cover. Let ϕ : U → U ′ be a

parametrization of U ′, where U ⊂ Rn, which extends to a smooth map ϕ : Rn →M sending
the complement of a large ball in Rn to a single point in M . Define a smooth compactly
supported function

ψU (x) =

{︄
ϕ∗ψU ′(x) x ∈ U
0 x /∈ U.

Define forms on Rn which correspond to the αj as follows:

aj :=
1

Ldj
ϕ∗f∗αj .

With this normalization, ∥aj∥L∞ ≲ 1 and the aj are smooth compactly supported differential
forms. Then

(23) deg(f) = Ln
∑︂
U

∫︂
Rn

ψUatop.

Define forms on Rn which correspond to the γr as follows. If γr ∈ Hdr(M ;R), then

gr :=
1

Ld(γr)+1
ϕ∗f∗γr.

The forms gr are also smooth compactly supported differential forms. The power of L is
chosen so that

dgr = Rr(aj).

The power of L works out to make the forms gr very small:

∥gr∥L∞ ≲ L−1.

This allows us to show that the low-frequency parts of the forms Rr(a) are small.

Lemma 2.21. ∥P≤kRr(a)∥L∞ ≲ 2kL−1.

Proof. We start by computing

P≤kRr(a)(x) =

∫︂
Rn

η∨k (y)Rr(a)(x− y)dy =

∫︂
Rn

η∨k (y)dgr(x− y)dy.

Now we can integrate by parts to get∫︂
Rn

η∨k (y)dgr(x− y)dy =

∫︂
Rn

dη∨k (y)gr(x− y)dy.
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Taking norms and using ∥gr∥L∞ ≲ L−1, we see that

|P≤kRr(a)(x)| ≲ L−1

∫︂
|dη∨k | ≲ 2kL−1. □

We want to bound
∫︁
ψUatop. We break this up into a low frequency and high frequency

part at a frequency cutoff k which we will choose later. (Eventually we will average over
many k.)

(24)

∫︂
ψUatop =

∫︂
ψUP≤katop⏞ ⏟⏟ ⏞

low

+
∑︂
ℓ>k

∫︂
ψUPℓatop⏞ ⏟⏟ ⏞
high

.

For the high frequency pieces in (24), we will find a small primitive and then integrate by
parts. Lemma 2.10 tells us that Pℓatop has a primitive with

∥Prim(Pℓatop)∥L∞ ≲ 2−ℓ∥Pℓatop∥L∞ ≲ 2−ℓ∥atop∥L∞ ≲ 2−ℓ.

Then we can bound
∫︁
ψUPℓatop by∫︂

ψUPℓatop =

∫︂
dψU Prim(Pℓatop) ≲ 2−ℓ.

We will choose k with 2k ≥ L1/10, and so the contribution of all the high frequency parts is
bounded by L−1/10, which is much smaller than the bound we are aiming for.

For the low-frequency piece in (24)), we apply Lemma 2.19 to the forms P≤kaj . Since all
these forms have norm ≲ 1 pointwise, the lemma gives us a pointwise bound

|P≤katop(x)| ≲
∑︂
r

|Rr(P≤ka)|
1

2m .

Integrating and using the Hölder inequality, we get the bound

(25)

∫︂
ψUP≤katop ≤

∑︂
r

∫︂
ψU |Rr(P≤ka)|

1
2m ≲

∑︂
r

(︃∫︂
ψU |Rr(P≤ka)|

)︃ 1
2m

.

In the Hölder step, in detail we wrote∫︂
ψU |Rr(P≤ka)|

1
2m =

∫︂
ψ

2m−1
2m

U · ψ
1

2m
U |Rr(P≤ka)|

1
2m

≤
(︃∫︂

ψU

)︃ 2m−1
2m

⏞ ⏟⏟ ⏞
≲1

(︃∫︂
ψU |Rr(P≤ka)|

)︃ 1
2m

.

Now we have to bound each integral
∫︁
ψU |Rr(P≤ka)|. Since ∥a∥L∞ ≲ 1, we get a bound∫︁

ψU |Rr(P≤ka)| ≲ 1, and to prove our theorem we need to beat this bound by a power of
logL, at least for some choice of k. The key input is the bound on the low freq part of Rr(a):
Lemma 2.21 tells us that ∥P≤kRr(a)∥L∞ ≤ 2kL−1. Next we have to relate Rr(P≤ka) with
P≤kRr(a).

Remember that each Rr is a polynomial in the aj . Each Rr(aj) is a sum of terms of the
form caj1 ∧ · · · ∧ ajP . If we do a Littlewood–Paley decomposition of each aj , we see that

(26) aj1 ∧ · · · ∧ ajP =
∑︂

k1,...,kP

Pk1aj1 ∧ · · · ∧ PkP ajP .
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For each choice of k1, . . . , kP , we write kmax = maxp kp. We let pmax be the value of p that
maximizes kp. If there is a tie, we let pmax be the smallest p so that kp = kmax. We can now
organize the sum on the right-hand side of (26) according to the value of kmax and pmax:

∑︂
k1,...,kP

Pk1aj1 ∧ · · · ∧ PkP ajP =
∑︂
kmax

P∑︂
pmax=1

P<kmaxaj1 ∧ · · · ∧

∧ P<kmaxajpmax−1 ∧ Pkmaxajpmax
∧ P≤kmaxajpmax+1 ∧ · · · ∧ P≤kmaxajP .

Similarly,

P≤kaj1 ∧ · · · ∧ P≤kajP =
∑︂

kmax≤k

P∑︂
pmax=1

P<kmaxaj1 ∧ · · · ∧ Pkmaxajpmax
∧ · · · ∧ P≤kmaxajP .

Therefore,

P≤kaj1 ∧ · · · ∧ P≤kajP

= aj1 ∧ · · · ∧ ajP −
∑︂

kmax>k

P∑︂
pmax=1

P<kmaxaj1 ∧ · · · ∧ Pkmaxajpmax
∧ · · · ∧ P≤kmaxajP .

This discussion applies to each monomial of Rr. Therefore, Rr(a) is equal to Rr(P≤ka)
plus a finite linear combination of terms of the form

(27)
∑︂

kmax>k

P∑︂
pmax=1

P<kmaxaj1 ∧ · · · ∧ Pkmaxajpmax
∧ · · · ∧ P≤kmaxajP .

Now for a large constant c, we have P≤k+cRr(P≤kaj) = Rr(P≤kaj). Therefore, Rr(P≤ka)
is equal to P≤k+cRr(a) plus a finite linear combination of terms of the form

(28)
∑︂

kmax>k

P∑︂
pmax=1

P≤k+c
(︁
P<kmaxaj1 ∧ · · · ∧ Pkmaxajpmax

∧ · · · ∧ P≤kmaxajP
)︁
.

In summary,

(29) Rr(P≤ka) = P≤k+cRr(a) + terms of the form (28).

The first term in (29) is controlled by Lemma 2.21: ∥P≤k+cRr(a)∥L∞ ≲ 2k+cL−1 ≲ 2kL−1.

We will choose k so that 2k ≤ L9/10, so this term is bounded by L−1/10, which is much smaller
than our goal.

For each remaining term of type (28), we will again take a primitive and integrate by
parts. We apply Lemma 2.10 to get a good primitive: Pkmaxajpmax

= dPrim(Pkmaxajpmax
),

where ∥Prim(Pkmaxajpmax
)∥Lp ≲ 2−kmax∥Pkmaxajpmax

∥Lp for every 1 ≤ p ≤ ∞. For each fixed
choice of kmax and pmax, we write

P≤k+c
(︁
P<kmaxaj1 ∧ · · · ∧ Pkmaxajpmax

∧ · · · ∧ P≤kmaxajP
)︁

= η∨≤k+c ∗
(︁
P<kmaxaj1 ∧ · · · ∧ dPrim(Pkmaxajpmax

) ∧ · · · ∧ P≤kmaxajP
)︁

= dη∨≤k+c ∗
(︁
P<kmaxaj1 ∧ · · · ∧ Prim(Pkmaxajpmax

) ∧ · · · ∧ P≤kmaxajP
)︁
.
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We now take the L1 norm of our term. Since ∥aj∥L∞ and ∥P<kmaxaj∥L∞ are all ≲ 1, we see
that⃦⃦

dη∨≤k+c ∗
(︁
P<kmaxaj1 ∧ · · · ∧ Prim(Pkmaxajpmax

) ∧ · · · ∧ P≤kmaxajP
)︁⃦⃦
L1

≲
⃦⃦
dη∨≤k+c

⃦⃦
L1

⃦⃦
Prim(Pkmaxajpmax

)
⃦⃦
L1 ≲ 2k+c2−kmax

⃦⃦
Pkmaxa

⃦⃦
L1 .

To summarize, we have proved the following bound on each summand of (28):

(30) ∥P≤k+c
(︁
P<kmaxaj1 ∧ · · · ∧ Pkmaxajpmax

∧ · · · ∧ P≤kmaxajP
)︁
∥L1 ≲ 2k+c2−kmax∥Pkmaxa∥L1 .

Now the L1 norm of each term of form (28) is bounded as follows:⃦⃦⃦⃦ ∑︂
kmax>k

P∑︂
pmax=1

P≤k+c
(︁
P<kmaxaj1 ∧ · · · ∧ Pkmaxajpmax

∧ · · · ∧ P≤kmaxajP
)︁⃦⃦⃦⃦
L1

≲
∑︂

kmax>k

2k−kmax∥Pkmaxa∥L1 .

We now have our bounds on all the terms and we just have to put them together. Recall
(25) tells us that

(31)
(︂∫︂

ψUP≤katop

)︂2m
≲

∑︂
r

∫︂
ψU |Rr(P≤ka)|.

By (29), we can break up Rr(P≤ka) into pieces:

Rr(P≤ka) = P≤k+cRr(a) + terms of the form (28).

We have now bounded each term on the right-hand side. Combining our bounds, we see that(︂∫︂
ψUP≤katop

)︂2m
≲

∑︂
r

∫︂
ψU |Rr(P≤ka)| ≲ 2kL−1 +

∑︂
kmax>k

2k−kmax∥Pkmaxa∥L1 .

Let us pause to digest this bound. The first term 2kL−1 is very small as long as 2k ≤ L9/10.
In the second term, there is exponential decay for kmax > k. Therefore, the main contribution
on the right hand side is when kmax = k, which gives ∥Pka∥L1 . For comparison, it would
be straightforward to get an upper bound of ∥a∥L1 ≲ 1. The upper bound ∥Pka∥L1 is an
improvement because it includes only one Littlewood–Paley piece of a. We can take advantage
of this improvement by averaging over k and using orthogonality:

∑︁
k ∥Pka∥2L2 ∼ ∥a∥2L2 . Now

we turn to the details of this estimate. then We will sum over k in the range L1/10 ≤ 2k ≤
L9/10. There are ∼ logL different k in this range.∑︂
L1/10≤2k≤L9/10

(︂∫︂
ψUP≤katop

)︂2m
≲ L−1/10 +

∑︂
L1/10≤2k≤L9/10

∑︂
2k<2kmax<L

2k−kmax∥Pkmaxa∥L1 .

(Here, terms with 2kmax > L are bounded by the L−1/10 term). Now the last term is bounded
by ∑︂

L1/10≤2k≤L9/10

∑︂
2k<2kmax<L

2k−kmax∥Pkmaxa∥L1 ≲
∑︂

L1/10≤kmax≤L

∥Pkmaxa∥L1 .
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The number of terms in this last sum is ∼ logL. Therefore, we can use the Cauchy–Schwarz
inequality to get∑︂

L1/10≤kmax≤L

∥Pkmaxa∥L1 ≤ (logL)1/2
(︃ ∑︂
L1/10≤2kmax≤L

∥Pkmaxa∥2L1

)︃1/2

.

Since a is supported on a fixed compact set, and Pkmaxa is essentially supported on that set,
Cauchy–Schwarz gives ∥Pkmaxa∥L1 ≲ ∥Pkmaxa∥L2 . Plugging this into the last term above gives

(logL)1/2
(︃ ∑︂
L1/10≤2kmax≤L

∥Pkmaxa∥2L2

)︃1/2

≲ (logL)1/2∥a∥L2 .

All together, we now have∑︂
L1/10≤2k≤L9/10

(︂∫︂
ψUP≤katop

)︂2m
≲ (logL)1/2∥a∥L2 .

Since there are ∼ logL terms on the left-hand side, we can find one small term, that is we
can choose k in the range L1/10 ≤ 2k ≤ L9/10 so thatthen(︂∫︂

ψUP≤katop

)︂2m
≲ (logL)−1/2∥a∥L2 ≲ (logL)−1/2.

Taking roots, we get
∫︁
ψUP≤katop ≲ (logL)−

1
4m .

Recall that we broke up
∫︁
ψUatop into low frequency and high frequency pieces in (24):∫︂

ψUatop =

∫︂
ψUP≤katop⏞ ⏟⏟ ⏞

low

+
∑︂
ℓ>k

∫︂
ψUPℓatop⏞ ⏟⏟ ⏞
high

.

We showed that the high frequency pieces are bounded by ≲ 2−k. We just found k with

L1/10 ≤ 2k ≤ L9/10 where the low frequency piece has the bound ≲ (logL)−
1

4m . Therefore,
the total is bounded: ∫︂

ψUatop ≲ (logL)−
1

4m .

Recall from (23) that deg f = Ln
∑︁

U

∫︁
ψUatop, and so

deg f ≲ Ln(logL)−
1

4m .

This proves the theorem, with α(m) = 1
4m . The integer m came from the real Nullstellensatz,

and it depended only on the cohomology ring H∗(M ;R).

2.3.1. Proof of Theorem 2.3. Finally, we describe the modifications needed to prove the result
on the ball, which we restate here:

Theorem. Suppose that M is a closed connected oriented n-manifold such that H∗(M ;R)
does not embed into Λ∗Rn, and let α(M) > 0 be as in the statement of Theorem 2.2. Let
Bn ⊆ Rn be the unit ball. Then for any metric g onM and any L-Lipschitz map f : Bn →M ,∫︂

Bn

f∗d volM ≤ C(M, g)Ln(logL)−α(M).
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Proof. Our argument above already studies forms defined on a ball. The only difference is
that above we study

∫︁
Bn ψf

∗d volM , where ψ : Bn → M is some function which decays to 0
at the boundary, whereas we now want to understand

∫︁
Bn f

∗d volM . To bridge the gap, we

expand the domain. Define a function f̃ : B2(0)→M on the ball of radius 2 by

f̃(x) =

{︄
f(x) ∥x∥ ≤ 1

f(x/∥x∥) ∥x∥ > 1.

If f is L-Lipschitz, this function is 2L-Lipschitz. Moreover, since f̃ has rank n − 1 outside

the ball of radius 1, f̃
∗
d volM = 0 outside that ball. Therefore, for any ψ : Rn → R such that

ψ|Bn ≡ 1, we have ∫︂
B2(0)

ψf̃
∗
d volM =

∫︂
Bn

f∗d volM .

The argument in the proof of Theorem 2.2 bounds the left side as desired. □

3. Explicit construction of efficient self-maps

In this section, we discuss the lower bound of Theorem A, which follows from the following
result:

Theorem 3.1. Let Y be a formal compact Riemannian manifold such that Hn(Y ;Q) is
nonzero for d different values of n > 0. Then there are integers a > 0, p > 1 such that for
every ℓ ∈ N and q = apℓ, there is an O(ℓd−1pℓ)-Lipschitz map rq : Y → Y which induces
multiplication by qn on Hn(Y ;Q).

For the purpose of this section, a simply connected finite CW complex Y is formal if and
only if for some q > 1, there is a map rq : Y → Y which induces multiplication by qn on

Hn(Y ;Q) for every n. Clearly, if such a map exists for some q, then it exists for qℓ for
every ℓ. This is not the original definition of formality due to Sullivan, which is based on the
rationalization of Y [11, 23]; the equivalence of our definition in the case of finite complexes
was first stated by [22].

To see that Theorem 3.1 indeed implies the lower bound of Theorem A, suppose that Y
is an n-manifold. Let K(ℓ) be the Lipschitz constant of rapℓ : Y → Y , and notice that for
ℓ ≥ 2,

K(ℓ)/K(ℓ− 1) = p · ℓd−1

(ℓ− 1)d−1
≤ 2p.

Then for L >> 0, somewhere between L/2p and L is a value of K(ℓ) for some ℓ. This means
that for q = apℓ,

L/2p = O(q(log q)d−1)

and therefore there is an O(L)-Lipschitz map f : Y → Y such that

deg f = qn = Ω(Ln(logL)−n(d−1)).

3.1. Warmup example. We start by proving Theorem 3.1 in the simple case of connected
sums of CP 2, before moving on to the general case.

Theorem 3.2. Let M = #kCP 2. Then there is a constant C such that for each ℓ > 0, there
is a self-map r2ℓ :M →M of degree 24ℓ and Lipschitz constant bounded by Cℓ · 2ℓ.
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As discussed in the introduction, the strategy is to build r2ℓ inductively by gluing together
several copies of r2ℓ−1 without adding too much stuff in between. Before giving the detailed
proof, we start with a lemma about self-maps of spheres which will also be useful for the
general case of Theorem 3.1.

Lemma 3.3. For every d, there is a map fd : S
n → Sn of degree dn whose Lipschitz constant

is C1(n)d. Moreover, for each p > 1 there is a C2(n)pd-Lipschitz homotopy Hp : S
n× [0, 1]→

Sn between fpd and fd ◦ fp.

Proof. Give Sn the metric of ∂[0, 1]n+1, which is C0-bilipschitz to the round metric, and
divide the face [0, 1]n × {0} into dn identical sub-cubes, d to a side. We map all other faces
to a base point, and the sub-cubes to the sphere by a rescaling of a degree 1 map

g : ([0, 1]n, ∂[0, 1]n)→ (∂[0, 1]n+1, pt)

whose restriction to g−1([0, 1]n × {0}) is homothetic to the identity map. The resulting map
has degree dn and its Lipschitz constant in the round metric is bounded by C2

0 (Lip g)d.
Now consider the map fd ◦ fp. Like fpd, it consists of (pd)n cubical preimages of Sn, with

the rest of the sphere mapped to the basepoint. However, instead of one cluster of preimages
filling a whole face of ∂[0, 1]n+1, there are pn clusters of slightly smaller preimages. We
homotope fd ◦ fp to fpd by linearly expanding these preimages to fill the whole face. The
Lipschitz constant of this homotopy is bounded by Lip fd · Lip fp = C4

0 (Lip g)
2pd. □

Proof of Theorem 3.2. We fix a cell structure for M = #kCP 2 consisting of one 0-cell, k
2-cells, and a 4-cell. Let ι : [0, 1]4 →M be the inclusion map of the 4-cell, and let

∂ = ι|∂[0,1]4 : S3 →M (2) =

k⋁︂
i=1

S2

be its attaching map. The projection of ∂ to each S2 summand has Hopf invariant one.

Notice that a map
⋁︁k
i=1 S

2 →
⋁︁k
i=1 S

2 which sends each S2 to itself with degree d extends to
a map M →M of degree d2.

We prove the theorem by induction on ℓ. For the base of the induction we take r1 :M →M
to be any map whose restriction to each 2-cell is the map f2 : S

2 → S2 from Lemma 3.3.
For the inductive step, assume that we have constructed a C(ℓ − 1) · 2ℓ−1-Lipschitz map

r2ℓ−1 :M →M whose restriction to each 2-cell is f2ℓ−1 . To build r2ℓ , we take a 2× 2× 2× 2
grid of sub-cubes inside [0, 1]4, each of side length 1

2 ·
ℓ−1
ℓ , and send each of them to M via a

homothetic rescaling of r2ℓ−1 ◦ ι. Then the Lipschitz constant on each sub-cube is Cℓ · 2ℓ.
We must now extend the map to the rest of [0, 1]4, filling the space in between with the

same Lipschitz constant. These gaps have width on the order of 1/ℓ.
First, we fix some notation. Let A ⊆ [0, 1]4 be the complement of the 16 open subcubes

Kā = (a1, a2, a3, a4) + (1/8, 3/8)4, for each ā = (a1, a2, a3, a4), ai ∈ {0, 1/2},

and fix a Lipschitz map g : A→M (2) which restricts to a map homothetic to ∂ on each ∂Kā

and to f2 ◦ ∂ on ∂[0, 1]4. Here we write fd :
⋁︁k
i=1 S

2 →
⋁︁k
i=1 S

2 for the map which induces
the map from Lemma 3.3 on each wedge summand.

Now we construct r2ℓ as follows:

• In [0, 1]4 but outside of ( 1
8ℓ , 1−

1
8ℓ)

4, the map is a homotopy from f2ℓ ◦∂ to f2ℓ−1 ◦f2◦∂.
Such a homotopy with domain S3 × [0, 1] can be made C2 · 2ℓ-Lipschitz by Lemma
3.3, so this map is C3ℓ · 2ℓ-Lipschitz for some fixed constant C3.
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r2ℓ−1

r2ℓ−1

r2ℓ−1

r2ℓ−1

[0, 1]4

Kā

Kā

Kā

Kā

A

f2ℓ−1 ◦ gsℓ

Figure 2. Inductively assembling the map r2ℓ . The light gray regions map
to M (2) and the dark gray regions map to the 4-cell. Some regions are labeled
with the restriction of r2ℓ to that region.

• In [ 18ℓ , 1−
1
8ℓ ]

4 but outside of the 16 sub-cubes of width 2 ℓ−1
ℓ , the map is f2ℓ−1 ◦ g ◦ sℓ,

where sℓ is a 2ℓ-Lipschitz piecewise linear map that sends the domain to A, as shown
in Figure 2.

Then we have

Lip r2ℓ = max{C2ℓ · 2ℓ, C1 · 2ℓ−1 · Lip g · 2ℓ, 2ℓ

ℓ− 1
Lip r2ℓ−1}.

By induction, the theorem is proven with C = max{C2, 2C1 Lip g,Lip r1}. □

3.2. Building efficient self-maps. We give a mostly elementary proof of Theorem 3.1,
building maps rq “by hand”. The definition of formality gives us a self-map rp : Y → Y of

degree pn; the proof consists of homotoping the iterates (rp)
ℓ to maps rpℓ with a controlled

Lipschitz constant. Although we have no control over the Lipschitz constant of the original
rp, this only affects the multiplicative constant.

First, we assume that Y is a finite CW complex of a particular form. We construct rpℓ
by induction on skeleta, extending along one cell at a time. Each n-cell maps to itself with
degree pℓn, and contains a grid of homeomorphic preimages of its interior, pℓ to a side. The
tricky part, and the source of the polylog factor, is filling in the area between these preimages.
This is done by induction on ℓ: we take pn copies of rpℓ−1 , arranged in a grid, and glue them
together using a homotopy built in the course of the (n− 1)-dimensional construction. The
Lipschitz constant of this homotopy is proportional to the Lipschitz constant obtained for
self-maps of Y (n−1); since there are log ℓ nested layers, we gain a factor of log ℓ in moving
from Y (n−1) to Y (n).

In passing from self-maps of the CW complex to those of our original manifold, we gain
an additional factor of a for the degree.

We now give the details of this argument. This is the heart of the proof of Theorem 3.1,
although it only covers a special case. The remainder of the section after this proof is devoted
to showing that this is sufficient to prove the general case.

Lemma 3.4. Let Z be a simply connected finite CW complex with the following properties:

• H i(Z) is nontrivial in d different dimensions (not including i = 0).
• The cellular chain complex has zero differential. (In other words, the cells are in
bijection with a basis for H∗(Z).)
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• The attaching maps of Z are Lipschitz maps Dn → Z(n−1).

Let rp : Z → Z be a map which induces multiplication by pi on H i(Z;Q) for every i > 0. Then

there is a metric on Z such that every iterate (rp)
ℓ of rp is homotopic to a C(rp, Z)ℓ

d−1pℓ-

Lipschitz map rpℓ : Z → Z. Moreover, rpℓ is homotopic to rpℓ−1 ◦ rp via a C ′(rp, Z)ℓ
d−1pℓ-

Lipschitz homotopy Hℓ : Z × [0, 1]→ Z.

The homotopy Hℓ is needed for the inductive step, in order to prove the lemma one
dimension higher.

Proof. First suppose that d = 1, and let n = dimZ. Then Z is a wedge of n-spheres, so the
base of the induction is provided by Lemma 3.3.

Now suppose that we have proved the lemma for spaces with cells in d− 1 dimensions, in
particular for Z(n−1) where dimZ = n ≥ 3. We start by building a metric on Z as follows.
First, homothetically shrink Z(n−1) until the attaching maps of n-cells can be given by 1-
Lipschitz maps from ∂[0, 1]n. Then give Z the nearly Euclidean metric (as defined further
down in §3.3) derived from attaching cells isometric to [0, 1]n.

By Proposition 3.6, proved further down, we can also assume that rp : Z → Z is cellular
and Lipschitz. By applying a homotopy which is constant on the (n − 1)-skeleton, we can
also ensure that rp has the following property:

For every open n-cell e of Z, r−1
p (e) is a disjoint union of pn subcubes of

(0, 1)n, arranged in a grid inside e, whose interiors map homothetically to e.

Such a homotopy can be performed in several steps. First, ensure that rp is smooth on
the preimages of the “middle halves” of n-cells, and that the centers of the cells are regular
values. Then, by composing with a homotopy that expands a small neighborhood of the
center to cover the whole cell, ensure that the preimage of each open n-cell is a disjoint union
of homeomorphic copies. Then, since Z is simply connected and n ≥ 3, it is possible to cancel
out copies of opposite orientations. The details of this purely topological argument can be
found, for example, in [14, Lemma 5.3] or [24]. Finally, we can deform this map to obtain
the desired geometry.

We now construct rpℓ and Hℓ by induction on ℓ. Suppose we have constructed a map rpℓ−1

that is C(rp, Z)(ℓ− 1)d−1pℓ−1-Lipschitz and is an extension of r
(n−1)

pℓ−1 to the n-cells of Z. We

will homotope rpℓ−1 ◦ rp to the desired C(rp, Z)ℓ
d−1pℓ-Lipschitz map rpℓ .

We first apply the homotopy H
(n−1)
ℓ to Z(n−1). We extend this homotopy to a n-cell e as

follows. Equip e with polar coordinates (s, θ), with θ ∈ Sn−1 and s ∈ [0, 1), and denote the

attaching map of e by ∂e : S
n−1 → Z(n−1). We define a homotopy H̃ : e× [0, 1]→ Z(n−1) by

H̃(s, θ, t) =

{︄
H

(n−1)
ℓ (∂e(θ), t+ 2(s− 1)), s ≥ 1− t/2,

rpℓ−1 ◦ rp(θ, (1− t/2)−1s), s ≤ 1− t/2.

From this formula we see that:

• When s = 1, H̃(s, θ, t) agrees with H
(n−1)
ℓ .

• At s = 1− t/2, H̃ is continuous since

H
(n−1)
ℓ (∂e(θ), t+ 2(s− 1)) = H

(n−1)
ℓ (∂e(θ), 0) = rpℓ−1 ◦ rp(θ, 1).

At this point, H̃|e×{1} has different Lipschitz constants on different regions of e, which we
bound by induction on ℓ and d:
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rpl-1

rpl-1

rpl-1

rpl-1

(a) H̃|t=0 = rpℓ−1 ◦ rp

L1L2

L3

Hl-1
(n-1)

(b) H̃|t=1: Li’s differ (c) J |t=1: Li’s equalized

Figure 3. Stages of the homotopy Hℓ, the concatenation of H̃ and J .

(i) On the outer half of the disk, the Lipschitz constant is

L1 = 2LipH
(n−1)
ℓ ≤ 2C ′(rp, Z

(n−1))ℓd−2pℓ.

(ii) On the inner half, but outside 1
2r

−1
p (e) (here 1

2 refers to the homothety (s, θ) ↦→ ( s2 , θ)),
the Lipschitz constant is

L2 = 2Lip
(︁
rpℓ−1 ◦ rp

)︁
≤ Lip(rp) · 2C(rp, Z(n−1))(ℓ− 1)d−2pℓ−1.

This bound holds because on this subdomain, the image of rp(θ, s/2) lies in Z
(n−1).

(iii) In 1
2r

−1
p (e), the Lipschitz constant is

L3 = D−1 Lip rpℓ−1 ≤ D−1C(rp, Z)(ℓ− 1)d−1pℓ−1,

where D is the side length of one of the subcubes comprising 1
2r

−1
p (e).

In the second stage J : Z × [0, 1] → Z of the homotopy, which is constant on Z(n−1), we
expand and shrink these three regions via a product of piecewise linear homotopies of [0, 1]
so as to equalize the Lipschitz constants. At time 1, e is nearly covered by a p× · · · × p grid
of subcubes which each map to Z via rpℓ−1 |e composed with a homothety; the outer half of

H̃|e×{1} is relegated to a thin shell on the outside of the cube. We can imagine expanding
every part of the domain until the Lipschitz constant is 1 on each relevant subinterval, and
then shrinking the whole domain proportionally. This shows that the resulting map J |t=1

has Lipschitz constant bounded above by

pDL3 +

(︃
1

2
− pD

)︃
L2 +

1

2
L1

≤ pC(rp, Z)(ℓ− 1)d−1pℓ−1 + Lip(rp)C(rp, Z
(n−1))(ℓ− 1)d−2pℓ−1 + C ′(rp, Z

(n−1))ℓd−2pℓ

≤ C(rp, Z)ℓd−1pℓ,

where the second inequality holds as long as

C(rp, Z) ≥ p−1 Lip(rp)C(rp, Z
(n−1)) + C ′(rp, Z

(n−1)).

Then we set rpℓ = J |t=1 and Hℓ to be the concatenation of H̃ and J . By computing

derivatives of H̃ and J in the space and time directions, we see that

Lip(Hℓ) = max{L1, L2, L3},
and therefore we can set C ′(rp, Z) ≤ max{2, (pD)−1}C(rp, Z). □
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3.3. Lipschitz homotopy equivalence. To show that Lemma 3.4 implies Theorem 3.1,
we need to introduce some geometric and topological facts. We start with the geometry,
discussing metrics on CW complexes: we would like to show that the “special” metric we
imposed on the complex Z in Lemma 3.4 is not too special to be useful.

The relevant ideas date back to Gromov, see e.g. [15, §7.20], and are developed more
systematically in [17]. The basic idea is that if two homotopy equivalent metric spaces are
compact and sufficiently locally nice, then they are Lipschitz homotopy equivalent (in the
obvious sense).

The importance of this is that asymptotic results about Lipschitz constants are preserved
under Lipschitz homotopy equivalence. That is, for metric spaces X and Y , define the
Lipschitz norm of a homotopy class α ∈ [X,Y ] to be

∥α∥Lip = min{Lip(f) : f ∈ α}.
Suppose now that f : X ′ → X and g : Y → Y ′ are Lipschitz homotopy equivalences. Then
there are constants C,K > 0 depending on f and g (but not α) such that

1

C
∥α∥Lip −K ≤ ∥g ◦ α ◦ f∥Lip ≤ C∥α∥Lip +K.

Therefore, asymptotics such as those in Theorem A are invariant under Lipschitz homotopy
equivalence.

Definition. A nearly Euclidean CW complex is a CW complex X equipped with a metric
constructed inductively as follows. The 1-skeleton is a metric graph. Once we have con-
structed a metric on X(n−1), we also fix a metric di on D

n for every n-cell ei, such that di
is bilipschitz to the standard Euclidean metric and the attaching map fi : S

n−1 → X(n−1) is
Lipschitz with respect to the induced metric on Sn−1 = ∂Dn. Then the metric on X(n) is
the quotient metric with respect to this gluing.

In particular, notice that if L = maxi Lip(fi), then for points x, y ∈ X(n−1),

1

L
dX(n−1)(x, y) ≤ dX(n)(x, y) ≤ dX(n−1)(x, y).

For example, every compact Riemannian manifold is smoothly triangulable; with any such
triangulation it is a nearly Euclidean CW complex. More generally, every simplicial complex
with a simplexwise Riemannian metric is an example.

Proposition 3.5. Suppose that X and Y are homotopy equivalent nearly Euclidean finite
CW complexes. Then they are Lipschitz homotopy equivalent.

In particular, the metric we constructed on Z in the proof of Lemma 3.4 is nearly Euclidean,
and so Z is Lipschitz homotopy equivalent to, for example, any homotopy equivalent compact
Riemannian manifold.

This follows immediately from the following more general statement:

Proposition 3.6. Let X and Y be nearly Euclidean finite CW complexes, and A ⊂ X a
subcomplex. Let f : X → Y be a map such that f |A is Lipschitz. Then f is homotopic rel A
to a Lipschitz map. Moreover, if the original map is cellular, then so is the new map.

There is another useful consequence of this fact:

Corollary 3.7. Given a finite CW complex X, we can always find a homotopy equivalent
complex with a nearly Euclidean metric.
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Proof. We use induction on skeleta. Suppose we have constructed a complex Y (k) with a
nearly Euclidean metric and a homotopy equivalence f : X(k) → Y (k). Then for every
(k + 1)-cell of X with attaching map g : Sk → X(k), f ◦ g is homotopic to a Lipschitz map

g̃ : Sk → Y (k). Then we can attach a (k + 1)-cell along g̃ and extend f to the (k + 1)-cell by
combining g̃ and the homotopy. □

Proof of Prop. 3.6. We start by proving a lemma:

Lemma 3.8. Y is locally Lipschitz contractible, that is, for every y ∈ Y , there is a neigh-
borhood Ny ∋ y which admits a Lipschitz deformation retraction to a point. In particular,
for every n, every Lipschitz map Sn → Ny extends to Dn+1 (as a Lipschitz map).

Proof. We build such a neighborhood by induction on skeleta, using the standard construction
for a contractible neighborhood inside a CW complex. Let y ∈ Y , and let k be such that
y is contained in an open k-cell. Then we can take a ball in that k-cell which is Lipschitz
contractible in Y (k). Now suppose we have constructed a contractible neighborhood N(n) of

y in Y (n), and consider an (n+1)-cell with attaching map f : Sn → Y . Then, thinking of the
cell as the cone on Sn, we can add f−1(N(n)) × [0, ε) to our neighborhood. Doing this for

every cell gives us a neighborhood in Y (n+1) with an obvious deformation retraction to N(n),
which is Lipschitz since the metric on the cell is bilipschitz to the Euclidean metric. □

We now make f Lipschitz, also by induction on skeleta. Clearly f |X(0) is Lipschitz to begin
with. Now suppose that f |X(k) is Lipschitz (notice that this is true with respect to the metric

induced from X(k+1) as well as that on X(k)) and consider a (k + 1)-cell not in A with an
inclusion map e : Dk+1 → X. Now take a triangulation of Dk+1 at a small enough scale that
f ◦ e takes every simplex into a Lipschitz contractible neighborhood. By induction on the
skeleta of this triangulation, we deform f ◦ e to a Lipschitz map, while leaving it constant on
∂Dk+1.

If f is cellular, then we can construct the (k + 1)st stage of the homotopy as a map to

Y (k+1), rather than to Y . Then the resulting map is still cellular. □

3.4. Properties of formal spaces. Finally, we need to show that the topological properties
of Z are also not too special to be useful. This requires some discussion of properties of formal
spaces.

One property, which follows from [21, Proposition 3.1], is that a map between formal spaces
which induces isomorphisms on rational cohomology is rationally invertible:

Proposition 3.9. If Y is formal and f : Z → Y is a map between simply connected complexes
which induces an isomorphism on rational cohomology, then Z is formal, and there is a map
g : Y → Z such that g ◦ f induces multiplication by qn on Hn(Y ;Q), for some q.

Now, given Y , we build a rationally equivalent Z which satisfies the topological hypotheses
of Lemma 3.4:

Proposition 3.10. Let Y be a simply connected space with finite-dimensional rational ho-
mology, and fix a basis for Hn(Y ;Q) for every n. Then there is a CW complex Z and a map
f : Z → Y which induces isomorphisms on rational cohomology such that:

(i) The rational cellular chain complex of Z has zero differential; that is, rational cellular
chains on Z are in bijection with H∗(Z;Q).

(ii) The induced isomorphism f∗ : Hn(Z;Q)→ Hn(Y ;Q) maps each cell to a multiple of
a basis element.
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Proof. We construct Z and f by induction on skeleta. We set Z(0) = Z(1) = ∗. Now suppose
we have built Z(n) and a map fn : Z(n) → Y which induces an isomorphism on Hk(−;Q),
k ≤ n. By the rational relative Hurewicz theorem, the Hurewicz map induces an isomorphism

πn+1(Y,Z
(n))⊗Q→ Hn+1(Y, Z

(n);Q) ∼= Hn+1(Y ;Q).

So choose elements α1, . . . , αr ∈ πn+1(Y,Z
(n)) forming a basis for πn+1(Y,Z

(n)) ⊗ Q. We

build Z(n+1) by attaching an (n + 1)-cell ei along each ∂αi, i = 1, . . . , r, and extend fn to

fn+1 : Z
(n+1) → Y by mapping each ei to Y via a representative of αi.

Since (fn)∗ : Hn(Z
(n);Q) → Hn(Y ;Q) is an isomorphism, by the long exact sequence of

that pair, the Hurewicz image of each ∂αi is zero. Therefore the map

Hn+1(Z
(n+1);Q)→ Hn+1(Z

(n+1), Z(n);Q)

is an isomorphism; in other words, the cells of Z(n+1) form a basis for Hn+1(Z
(n+1);Q).

Moreover, by the definition of the extension fn+1, the map

(fn+1)∗ : πn+1(Z
(n+1), Z(n))⊗Q→ πn+1(Y, Z

(n))⊗Q

is an isomorphism. But these groups are naturally isomorphic to Hn+1(Z
(n+1);Q) and

Hn+1(Y ;Q), respectively. This shows that fn+1 induces a bijection on Hn+1(−;Q) as well.
Once we have done this in every dimension in which H∗(Y ;Q) ̸= 0, we have constructed

the desired Z. To satisfy condition (ii), notice that we can always pick the αi to be integer
multiples of the elements of our chosen basis. □

Now we conclude the section:

Proof of Theorem 3.1. Let Y be a simply connected formal compact Riemannian manifold.
Using Proposition 3.10, we can find a complex Z such that the cellular chain complex of Z
has zero differential and a rational equivalence g : Z → Y . Moreover, by Proposition 3.9,
there is a rational equivalence f : Y → Z such that f ◦ g induces multiplication by an on
Hn(Y ;Q), for some a > 0.

By Corollary 3.7, we can put a nearly Euclidean metric on Z, and by Proposition 3.5 we
can assume f and g are Lipschitz.

Now let rp : Z → Z be a map that induces multiplication by pn on Hn(Z;Q). By Lemma
3.4 and Proposition 3.5, for any nearly Euclidean metric on Z, and for every ℓ, there are
O(pℓℓd−1)-Lipschitz maps rpℓ homotopic to rℓp. Then the maps f ◦rpℓ ◦g are again O(pℓℓd−1)-

Lipschitz and induce multiplication by (apℓ)n on Hn(Y ;R). □

4. Rational homotopy theory

The remainder of the paper will require machinery from rational homotopy theory. We
will give a very brief review of Sullivan’s theory of minimal models, referring the reader to
[14, 12] for more details on the general background and [18, 3] for treatments geared towards
quantitative topology.

Rational homotopy theory provides a way of translating the topology of simply connected
spaces into algebraic language. There are several equivalent such languages, but the main
one we will use is that of differential graded algebras, as developed by Sullivan.

A (commutative) differential graded algebra, or DGA, is a cochain complex over a field,
typically Q or R, with a graded-commutative multiplication satisfying the graded Leibniz
rule. The prototypical examples are:
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• The smooth forms Ω∗(X) on a smooth manifold X, or the simplexwise smooth forms
on a simplicial complex.
• Sullivan’s minimal DGA M∗

Y (F) for a simply connected space Y , which is a free
graded commutative algebra generated in degree n by a vector space of indecomposable
elements Vn = Hom(πn(Y );F) and with a differential which takes elements of Vn to
elements of Λn−1

k=2Vk and is dual to the k-invariants in the Postnikov tower of Y ,
kn ∈ Hn+1(Yn−1;πn(Y )). We will write

M∗
Y =M∗

Y (R) ∼= Λ∞
n=2Vn,

noting that this isomorphism is non-canonical. We also write

M∗
Y (n) = Λnk=2Vk;

this is the minimal DGA of the nth Postnikov stage of Y .

There is an algebraic notion of homotopy between morphisms of DGAs which will not figure
explicitly in this paper. A quasi-isomorphism between DGAs is a map inducing an isomor-
phism on cohomology. The existence of such a map between A and B is not an equivalence
relation; therefore we say that two DGAs are quasi-isomorphic if they are connected by a
zig-zag of one or more quasi-isomorphisms

A ← C1 → · · · ← Ck → B.

If Y is a smooth manifold or simplicial complex, then it has a (non-unique) minimal model,
that is, a quasi-isomorphismmY :M∗

Y → Ω∗(Y ) realizing the generators of the minimal DGA
as differential forms. The codomain of the minimal model may also be the algebra Ω∗

♭ (Y ) of
flat forms in the sense of Whitney, which are a completion of the smooth forms with respect
to the L∞ norm; see [3, §2 and 6.1] and [25, Ch. IX]. When we want to be noncommittal
about whether we are using smooth or flat forms, we write Ω∗

(♭)(Y ).

We will frequently leave the map mY implicit when we speak of the rationalization of a
map f : Y → Z, which is a map ρ which completes the commutative square

MZ
ρ
→→

mZ

↓↓

MY

mY

↓↓

Ω∗
(♭)Z

f∗
→→ Ω∗

(♭)Y

up to homotopy. Such a map ρ always exists and is unique up to homotopy of DGA homo-
morphisms.

In the rest of this section, we introduce some prior results in quantitative homotopy theory
as well as some information about formal spaces.

4.1. The shadowing principle. The main technical result of [18] shows a kind of coarse
density of genuine maps in the space of “formal” rational-homotopic maps between spaces X
and Y . That is, given a homomorphismM∗

Y → Ω∗
(♭)(X), one can produce a nearby genuine

mapX → Y whose Lipschitz constant depends on geometric properties of the homomorphism.
To state this precisely, we first introduce some definitions. Let X and Y be finite simplicial

complexes or compact Riemannian manifolds such that Y is simply connected and has a
minimal model mY :M∗

Y → Ω∗
♭Y . Fix norms on the finite-dimensional vector spaces Vk of
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degree k indecomposables ofM∗
Y ; then for homomorphisms φ :M∗

Y → Ω∗
♭ (X) we define the

formal dilatation
Dil(φ) = max

2≤k≤dimX
∥φ|Vk∥

1/k
op ,

where we use the L∞ norm on Ω∗
♭ (X). Notice that if f : X → Y is an L-Lipschitz map, then

Dil(f∗mY ) ≤ CL, where the exact constant depends on the dimension of X, the minimal
model on Y , and the norms. Thus the dilatation is an algebraic analogue of the Lipschitz
constant.

Given a formal homotopy
Φ :M∗

Y → Ω∗
♭ (X × [0, T ]),

we can define the dilatation DilT (Φ) in a similar way. The subscript indicates that we can
always rescale Φ to spread over a smaller or larger interval, changing the dilatation; this is
a formal analogue of defining separate Lipschitz constants in the time and space direction,
although in the DGA world they are not so easily separable.

Now we can state some results from [18]. They are stated in that paper in terms of smooth
forms; for the argument that they can be adapted to flat forms, see [3, §6].

Theorem 4.1 (A special case of the shadowing principle, [18, Thm. 4–1]). Let X be a
Riemannian manifold or simplicial complex of locally bounded geometry, and let Y be a simply
connected compact Riemmanian manifold or simplicial complex. Let φ :M∗

Y → Ω∗
(♭)(X) be a

homomorphism with Dil(φ) ≤ L which is formally homotopic to f∗mY for some f : X → Y .
Then f is homotopic to a g : X → Y which is C(X,Y )(L+1)-Lipschitz and such that g∗mY

is homotopic to φ via a homotopy Φ with Dil1/L(Φ) ≤ C(X,Y )(L+ 1).

In other words, one can produce a genuine map by a small formal deformation of φ. Note
that in the above result, X does not have to be compact. In fact, the constants depend only
on the bounds on the local geometry of X.

We also present one relative version of this result:

Theorem 4.2 (Cf. [18, Thm. 5–7]). Let X and Y be finite simplicial complexes or compact
Riemannian manifolds, with Y simply connected. Let f, g : X → Y be two nullhomotopic
L-Lipschitz maps and suppose that f∗mY and g∗mY are formally homotopic via a homotopy
Φ : M∗

Y → Ω∗
(♭)(X × [0, T ]) with DilT (Φ) ≤ L. Then there is a C(X,Y )(L + 1)-Lipschitz

homotopy F : X × [0, T ]→ Y between f and g.

It is important for this result that the maps be nullhomotopic, rather than just in the same
homotopy class. This is because we did not require our formal homotopy to be in the relative
homotopy class of a genuine homotopy. In the zero homotopy class, one can always remedy
this by a small modification, but in general the minimal size of the modification may depend
in an opaque way on the homotopy class.

4.2. Formal spaces, again. In §3.4, we introduced formal spaces as spaces which admit
self-maps of a certain type. However, the original definition comes from rational homotopy
theory, and there are a number of other equivalent definitions. As we will use several of
these definitions, we collect a number here, most found in the work of Sullivan [23, §12] and
Halperin and Stasheff [16, §3].

For any simply connected space Y , fix an isomorphism

M∗
Y
∼= Λ∞

n=2Vn.

Now we can state some equivalent definitions of formality of Y :
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Proposition 4.3. The following are equivalent for a simply connected space Y .

(i) The algebra of forms Ω∗Y is quasi-isomorphic to H∗(Y ;R).
(ii) There is a quasi-isomorphismM∗

Y → H∗(Y ;R).
(iii) The cohomology ofM∗

Y is a quotient of the subalgebra W0 ⊆M∗
Y generated by inde-

composables with zero differential. (In other words, a minimal DGA is non-formal if
and only if it has a cohomology class which has no representative in W0.)

(iv) There is a (non-canonical) second gradingM∗
Y =

⨁︁
iWi such that H∗(Y ;R) lives in

W0 and the differential with respect to the second grading has degree −1. That is:
• H∗(Y ;R) ∼=W0/dW1.
• If a ∈Wi and b ∈Wj, then ab ∈Wi+j.
• If a ∈Wi, then da ∈Wi−1.

(v) The grading automorphism ρt : H
∗(Y ;R) → H∗(Y ;R) sending every α ∈ Hn(Y ;R)

to tnα is induced by an automorphism ρ̂t :M∗
Y →M∗

Y .

The arguments proving the equivalence of (ii)–(v) do not depend on the ground field used
for the DGAs. Moreover, Sullivan [23, Thm. 12.1] shows that the definitions of formality
with respect to any ground field F ⊇ Q are equivalent. More generally, without reference to
spaces, we can say a DGA is formal if it is quasi-isomorphic to its cohomology ring.

Proof sketch and remarks. (i) ⇐⇒ (ii). Since the minimal model M∗
Y → Ω∗(Y ) is a quasi-

isomorphism, one is quasi-isomorphic to H∗(Y ;R) if and only if the other is. Moreover, it is
a property of minimal DGAs that ifM∗

Y is quasi-isomorphic to another DGA A, then there
is in fact a quasi-isomorphismM∗

Y → A.
It follows from (ii) that, while many rational homotopy types may have the same cohomol-

ogy ring, exactly one of these is formal, and its minimal DGA can be constructed “formally”
from the cohomology ring: at stage k, one adds indecomposables in degree k that kill the
relative (k + 1)st cohomology of the map µk−1 :M∗

Y (k − 1) → H∗(Y ;R) and extends µk−1

to a map µk :M∗
Y (k)→ H∗(Y ;R). This is the genesis of the term “formal”.

Using this construction, one inductively proves that (ii)⇒(iii), by showing that for each
M∗

Y (k) W0 contains cycles representing the cohomology through dimension k. For M∗
Y (2)

this is clearly true since M∗
Y (2) ⊆ W0. Now suppose we have a map µk−1 :M∗

Y (k − 1) →
H∗(Y ;R). By induction, the map

(µk−1)∗ : H
k+1(M∗

Y (k − 1))→ Hk+1(Y ;R)

has image in the subring generated by H≤k−1(Y ;R), and therefore we can pick preimages in
W0. The rest of Hk+1(M∗

Y (k − 1)) is killed by differentials of elements of Vk. On the other
hand, the cokernel of

(µk−1)∗ : H
k(M∗

Y (k − 1))→ Hk(Y ;R) ∼= Hk(M∗
Y (k))

is spanned by elements of Vk with zero differential, which are also in W0. Together, these
span Hk(M∗

Y ).
(iii)⇒(iv) is also proved by induction on dimension of indecomposables. Suppose that

we have defined the bigrading on M∗
Y (k − 1). By induction, the space of (k + 1)-cycles in

M∗
Y (k− 1) splits as a direct sum of subspaces Zi ⊆Wi, since differentials of terms in Wi can

only cancel out with those of others in Wi. Moreover, all of
⨁︁

i≥1 Zi must be in the image of
the differential on Vk. This allows us to split Vk as a direct sum of elements of various Wi,
i ≥ 0, so as to ensure dWi ⊆Wi−1. We assign ker d ⊆ Vk to W0.

(iv)⇒(ii). If a bigrading as in (iv) exists, thenM∗
Y →W0/dW1 is a quotient map of DGAs.
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(iv)⇒(v). We can define ρ̂t(a) = tn+ia for every a ∈Wi ∩ Vn.
(v)⇒(iv) (see also [23, Thm. 12.7]). This argument requires some information about the

automorphism group ofM∗
Y , which is a linear algebraic subgroup of the group

⨁︁
nAut(Vn).

Taking the “diagonal part” in the Iwasawa decomposition of ρ̂t, we get another automorphism,
also inducing the map ρt on cohomology, which has a basis of eigenvectors in each of the Vn.
An inductive argument then shows that these eigenvalues are of the form tn+i, and setting
Wi ∩ Vn to be the eigenspace for the eigenvalue tn+i gives a bigrading as in (iv). □

Now we connect these definitions to that in the previous section. If Y is a finite complex
and (v) is satisfied with Q coefficients, then any family of lifts ρ̂t can be realized by genuine
maps:

Theorem 4.4 ([19, Theorem A]). Let Y be a formal, simply connected finite CW complex
and let ρ̂t :MY →MY be the map

ρ̂t(w) = tn+iw, w ∈Wi ∩ Vn,
for some bigradingMY =

⨁︁
iWi. Then there is an integer t0 ≥ 1 such that for every z ∈ Z,

there is a genuine map rz : Y → Y whose rationalization is ρ̂zt0.

The same paper also gives a stronger version of Proposition 3.9:

Theorem 4.5 ([19, Theorem B]). Let Y be a formal, simply connected finite CW complex
and let ρ̂t :MY →MY be the map

ρ̂t(w) = tn+iw, w ∈Wi ∩ Vn,
for some bigrading MY =

⨁︁
iWi. Suppose that Z is another simply connected complex and

f : Z → Y is a map inducing an isomorphism on rational cohomology. Then for some p,
there is a map g : Y → Z such that the rationalization of f ◦ g is ρ̂p.

We then get the following upgraded statement of Theorem 3.1:

Theorem 4.6. Let Y be a formal, simply connected finite CW complex whose rational ho-
mology is nontrivial in d positive degrees, and let ρ̂t :MY →MY be the map

ρ̂t(w) = tn+iw, w ∈Wi ∩ Vn,
for some bigrading MY =

⨁︁
iWi. Then there is a constant C > 0, depending on the choice

of ρ̂t as well as Y , such that for every homotopy class in [Y, Y ] whose rationalization is ρ̂t
there is a (Ct(log t)d−1 + C)-Lipschitz representative f : Y → Y .

Proof. Using Theorems 4.4 and 4.5, we obtain topological control over the maps f , g, and rp
used in the proof of Theorem 3.1. Then we see that there are a and p such that for every
q = apℓ there is a C0(q(log q)

d−1 + 1)-Lipschitz map fq : Y → Y whose rationalization is ρ̂q,
where C0 depends on the family ρ̂t.

Now suppose that rt : Y → Y is a map whose rationalization is ρ̂t, and let mY :MY →
Ω∗Y be a minimal model of Y . Let q = apℓ satisfy apℓ−1 ≤ t < apℓ. Then the map

f∗qmY ρ̂t/q :MY → Ω∗Y

is algebraically homotopic to r∗tmY . Notice also that, with an appropriate norm on indecom-
posables, the operator norm of ρ̂t/q is t/q. Therefore, by the shadowing principle, there is an

C1(Y )((t/q) Lip fq+1)-Lipschitz map in the homotopy class of rt. Then we are done because

Lip fq ≤ C0(pt log(pt)
d−1 + 1). □
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5. A finite criterion for scalability

In this section we prove Theorems C and C′. In [3], it was shown that the following
conditions are equivalent for a finite simplicial complex or compact manifold Y which is
formal and simply connected:

(i) There is a homomorphism H∗(Y )→ Ω∗
♭Y of differential graded algebras which sends

each cohomology class to a representative of that class. Here Ω∗
♭Y denotes the flat

forms, an algebra of not-necessarily-smooth differential forms studied by Whitney.
(ii) There is a constant C(Y ) such that for infinitely many p ∈ N there is a C(Y )(p+1)-

Lipschitz self-map which induces multiplication by pn on Hn(Y ;R).
(iii) For all finite simplicial complexes X, nullhomotopic L-Lipschitz maps X → Y have

C(X,Y )(L+ 1)-Lipschitz nullhomotopies.
(iv) For all n < dimY , homotopic L-Lipschitz maps Sn → Y have C(Y )(L+1)-Lipschitz

homotopies.

Spaces satisfying these conditions are called scalable. Now we will show:

Theorem 5.1. The following condition is also equivalent to those above:

(v) For some n1, . . . , nN , there is an injective R-algebra homomorphism

h : H∗(Y ;R)→
N⨁︂
i=1

Λ∗Rni .

If Y is a closed n-manifold (or, more generally, satisfies Poincaré duality over the reals), the
following conditions are also equivalent to those above:

(v′) There is an injective R-algebra homomorphism h : H∗(Y ;R)→ Λ∗Rn.
(vi) There is a 1-Lipschitz map f : Rn →M of positive asymptotic degree.

Remark 5.2. Condition (v′) can also be thought of as saying that there is an injective
homomorphism H∗(Y ;R)→ H∗(Tn;R). When is this homomorphism induced by a genuine
map Tn → Y of positive degree? A necessary condition is that the homomorphism can also
be realized over the rationals. In fact, this condition is also sufficient. A homomorphism
H∗(Y ;Q)→ H∗(Tn;Q) lifts (non-uniquely) to a homomorphism of minimal models. By [21,
Proposition 3.1], after composing with a self-map MY → MY that induces multiplication
by pn on Hn(Y ;Q) for some p, this homomorphism becomes the rationalization of a genuine
map Tn → Y .

This does not always happen. For example, take the real Poincaré duality space

Y = (S2 × S2)/(x, ∗) ∼ (∗, x) # 2CP 2 # 3CP 2,

where ∗ is a basepoint. The cup product H2(Y ) × H2(Y ) → H4(Y ) is the quadratic form
⟨2, 1, 1,−1,−1,−1⟩, which has discriminant −2, and therefore is not rationally equivalent to
the quadratic form induced by the cup product H2(T 4)×H2(T 4)→ H4(T 4). However, Y is
scalable, since over the reals, the two quadratic forms are equivalent.

To get a manifold counterexample, embed Y in R10 and let M be the boundary of a
thickening W of this embedding. Using Alexander duality and the Mayer–Vietoris sequence,
we see that the injection M →W induces an isomorphism

H∗(Y ) ∼= H∗(W )
≃−→ H≤4(M),

and the classes in H≥5(M) are Poincaré duals of those coming from W . This determines
the rational and hence the real cohomology ring: H∗(M ;R) ∼= H∗(Y ;R) × R⟨h5⟩, where h5
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is Poincaré dual to the fundamental class of Y . Clearly this embeds in Λ∗R9. A somewhat
more subtle argument shows:

Proposition 5.3. M is formal.

Proof. We will show that the minimal model of M satisfies condition (iii) of Proposition 4.3.
As an algebra, H∗(M ;R) is generated by six 2-dimensional classes and the 5-dimensional class
h5. It suffices to show that these classes lie in W0. To do this, we show that the Hurewicz
map πk(M)⊗Q→ Hk(M ;Q) is surjective for k = 2 and 5. After dualizing, this means that
all elements of Hk(M ;Q) are represented by indecomposables in Vk.

For k = 2, this is true by the Hurewicz theorem. For k = 5, we apply the relative Hurewicz
theorem for the pair (W,M). By the long exact sequence of a pair, Hi(W,M) ∼= 0 for i ≤ 5,
and so H6(W,M) ∼= π6(W,M). Then from the commutative diagram of exact sequences

π6(W,M) →→

∼=
↓↓

π5(M) →→

↓↓

π5(W )

↓↓

H6(W,M) →→ →→ H5(M) →→ 0,

it is evident that the Hurewicz map π5(M)→ H5(M) is surjective. □

Therefore M is scalable. On the other hand, an injection H∗(M ;Q) → H∗(T 9;Q), if it
existed, would induce an injection H∗(Y ) → H∗(T 4;Q), which we already showed cannot
exist.

Thus one can distinguish a class of “rationally scalable” manifolds within the larger class
of scalable spaces. It would be interesting to know what other properties distinguish these
two classes.

Proof of Theorem 5.1. We will prove that (i) implies (v) for all simply connected finite com-
plexes (which is straightforward) and that (v) implies (ii) for all simply connected finite
complexes (which is an application of the shadowing principle). We will also show that for
scalable closed n-manifolds, (v) implies (v′); the converse is obvious. Then we will show
that scalable closed n-manifolds satisfy (vi) and, conversely, (vi) implies (v′) for any closed
n-manifold.

To see that (i) implies (v), choose a basis u1, . . . , uN for H∗(Y ;Q) and let ω1, . . . , ωN be
the corresponding flat differential forms. Then for each i, there is a set of positive measure on
which ωi ̸= 0. Since the homomorphismH∗(Y )→ Ω∗

♭ (Y ) is multiplicative almost everywhere,
we can choose a point xi ∈ Y such that uifj ↦→ ωj |xi is a homomorphism hi : H

∗(Y ;R) →
Λ∗Rni such that hi(ui) ̸= 0. Then we can take

h = (h1, . . . , hN ) : H
∗(Y ;R)→

N⨁︂
i=1

Λ∗Rni .

If Poincaré duality is satisfied, then (v) implies (v′) since we can project h to some Λ∗Rni

under which the image of the fundamental class is nonzero. This projection is still injective.
Now we prove that if Y is a closed n-manifold, then (v′) implies (vi), in part as a warmup for

the more elaborate proof that (v) implies (ii). Since Y is formal, there is a quasi-isomorphism
φ : M∗

Y → H∗(Y ;R). Composing this with the homomorphism h : H∗(Y ;R) → Λ∗Rn, we
get a homomorphism

η :M∗
Y → Ω∗Rn, η|x = h ◦ φ for all x ∈ Rn,
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whose image consists of constant forms, and such that the image of the fundamental class
ω[Y ] is (perhaps after rescaling) the volume form. Since Rn is contractible and has locally
bounded geometry, we can apply the shadowing principle to η to produce a Lipschitz map
f : Rn → Y which is related to η by a formal homotopy

Φ :M∗
Y → Ω∗(Rn × [0, 1])

such that Dil(Φ) <∞.
The pullback map on forms induced by f should be thought of as looking on average

like η. Geometrically, f can be built so that Rn is tiled (periodically or aperiodically) by
homeomorphic preimages of an open dense subset of Y . From a Fourier point of view, f has a
large constant term and the rest of the nonzero terms are at very high frequency. Intuitively,
such a map must have positive asymptotic degree. To show this formally, we apply Stokes’
theorem to the form Φ(ω[Y ]) on BR(0)× [0, 1], getting∫︂

BR(0)
f∗d vol =

∫︂
BR(0)

η(ω[Y ])−
∫︂
∂BR(0)×[0,1]

Φ(ω[Y ]) = vol(BR(0)) +O(Rn−1).

We can turn f into a 1-Lipschitz map of positive asymptotic degree by rescaling.
Now we will prove that (v) implies (ii). We prove this by constructing maps skeleton-by-

skeleton. When we extend to n-cells, we do it by piecing together “almost constant” maps
from Rn, like the map f in the previous two paragraphs.

Suppose Y satisfies (v) (and therefore so does any complex in its rational homotopy class).
By Proposition 3.10 we may replace Y with a rationally equivalent complex Z whose rational
cellular chain complex has zero differential; in other words, the cells of Z form a basis for
H∗(Z;R). We equip Z with a nearly Euclidean metric. Theorem 4.5 implies that to show
that Y satisfies (ii), it suffices to show that Z does.

Fix a second gradingM∗
Z
∼=

⨁︁
iWi as in Proposition 4.3(iv). We get a quasi-isomorphism

φ :M∗
Z → H∗(Z;R) by projecting to W0/dW1, and an automorphism ρt :M∗

Z →M∗
Z which

takes w ∈Wi ∩ Vn to tn+iw; then φ ◦ ρt = tdegφ. Moreover, by Theorem 4.4, for some p > 1
there is a genuine self-map rp : Z → Z whose rationalization is ρp, and in particular induces
multiplication by pn on Hn(Z;R).

We will show that Z satisfies (ii) by induction on skeleta. From (i), it follows that skeleta
of scalable spaces are scalable. Conversely, we will show that if Z is an n-complex satisfying
(v) and Z(n−1) is scalable, then so is Z. We first show that if Z(n−1) is scalable, then for
every ℓ > 0, the iterate (rp)

ℓ|Z(n−1) is homotopic to an O(pℓ)-Lipschitz map. Moreover, for

each n-cell, condition (v) lets us build an O(pℓ)-Lipschitz map from [0, 1]n to Z whose degree
over that cell is pℓn. We construct self-maps of Z satisfying (ii) by patching these together;
this shows that Z is also scalable.

Now we give the details. Let Z and its submanifold Z(n−1) be compact Riemannian man-
ifolds with boundary homotopy equivalent to Z and Z(n−1). Let φ :M∗

Z → H∗(Z;R) be a

quasi-isomorphism, which exists since Z is formal, and let in−1 : Z
(n−1) → Z be the inclusion

map.
Suppose, by induction, that Z(n−1) is scalable. By condition (i), there is an injective

homomorphism H∗(Z(n−1);R) → Ω∗
♭ (Z

(n−1)) which sends each class to a representative;

composing with i∗n−1φ gives a mapM∗
Z → Ω∗

♭ (Z
(n−1)), and by a Poincaré lemma argument

this extends to a minimal model mZ :M∗
Z → Ω∗

♭ (Z) whose projection to Ω∗
♭ (Z

(n−1)) factors

through φ. Then (rℓp)
∗mZ is formally homotopic to mZρ

ℓ
p. By the shadowing principle 4.1
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and the Lipschitz homotopy equivalence between Z and Z, this lets us homotope rℓp to a map

rpℓ,n−1 : Z → Z which is O(pℓ)-Lipschitz on Z(n−1).
Now we explain how to extend this map to the n-cells. Let ι1, . . . , ιr : [0, 1]n → Z be

the inclusion maps of the n-cells of Z, and let a1, . . . , ar ∈ Hn(Z) be the corresponding
homology classes. Recall that we are assuming that there is an injective homomorphism
h : H∗(Z;R) →

⨁︁N
i=1 Λ

∗Rni . Since for every i, ΛnRni is spanned by simple tensors, we can
choose n-dimensional subspaces

V1 ⊆ Rni1 , . . . , Vr ⊂ Rnir

such that the projections
hj = h|Vj : H∗(Z;R)→ Λ∗Vj

collectively distinguish all elements of Hn(Z;R). Each hj |Hn(Z;R) ∈ Hom(Hn(Z;R),R) can
be identified with a bj ∈ Hn(Z;R), and we can find coefficients xij such that

ai =

r∑︂
j=1

xijbj .

For each j = 1, . . . , r and c ∈ R, consider the map ηc,j :M∗
Z → Ω∗([0, 1]n) where, for every

x ∈ [0, 1]n,

ηc,j(a)|TxIn = ckhj ◦ φ(a), a ∈Mk
Z .

Applying the shadowing principle, we get an O(c)-Lipschitz map fc,j : [0, 1]
n → Z such that

f∗c,jφ is related to ηc,j by a formal homotopy

Φ :M∗
Z → Ω∗([0, 1]n × [0, c−1])

satisfying Dil(Φ) = O(c). We can moreover assume without loss of generality that fc,j sends

∂[0, 1]n to Z(n−1). If fc,j does not have this property, it has a short homotopy to a map that
does, by the following lemma:

Lemma 5.4. Let L ≥ 1 and let f : [0, L]n → X be an 1-Lipschitz map to an n-dimensional
CW complex X with a nearly Euclidean metric. Then there is a C(X)-Lipschitz homotopy

H : [0, L]n × [0, 1]→ X

between f and a map which sends ∂[0, L]n to X(n−1).

Applying the lemma to fc,j , we get a map with the desired property. We modify Φ by
appending the pullback map induced by the homotopy given by the lemma.

Proof. Note first that it suffices to construct the homotopy on ∂[0, L]n × [0, 1]. Then it can
be extended to [0, L]n × [0, 1] by pulling back along a projection map

[0, L]n × [0, 1]→ ∂[0, L]n × [0, 1] ∪ [0, L]n × {0}.
Recall that we can write X = X(n−1) ∪∂i

⋃︁
iD

n where ∂i : S
n
i → X(n−1) are Lipschitz

attaching maps, and the metric on X is the quotient metric under this identification.
The homotopy ∂[0, L]n × [0, 1] → X will have two steps. In the first step we homotope

f |∂[0,L]n into a collar neighborhood of Z(n−1), namely

X(n−1) ∪∂i
⋃︂
i

Dn \B1/2(0),

while keeping the map C(X)-Lipschitz. In the second step we retract from this collar down

into Z(n−1) via a straight-line homotopy, which is C(X)-Lipschitz by definition.
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To perform the first step, we first fix a C(n)-Lipschitz embedding of ∆n in B1(0) such
that the interior of the image contains B1/2(0). This induces an embedding ιi : ∆

n → Z for
every n-cell. Now we triangulate ∂[0, L]n using simplices uniformly bilipschitz to the standard
simplex such that the diameter of each simplex is at most 1/8. Then we choose the homotopy
in the first step as follows:

• Vertices whose image lies in B5/8(0) inside the ith cell are homotoped linearly to
the nearest vertex of ιi(∆

n). This homotopy extends on the subcomplex spanned
by these vertices (which was originally mapped to B3/4(0) inside the ith n-cell) to a
linear homotopy to a simplicial map to ιi(∆

n).
• The homotopy is constant on the subcomplex spanned by vertices whose image lies
outside

⋃︁
iB5/8(0). Note that the image of this subcomplex lies outside

⋃︁
iB1/2(0).

• On simplices that include vertices from both subcomplexes, we extend the homotopy
by interpolating linearly on the join.

This homotopy is again C(X)-Lipschitz. □

Since fc,j maps the boundary of the cube to Z(n−1), it makes sense to discuss the homology
class of fc,j in Z, which we write a(fc,j) ∈ Hn(Z;R). By Stokes’ theorem, for any cohomology
class u ∈ Hn(Z;R),

u(a(fc,j)) =

∫︂
[0,1]n×{0}

Φ(u) +

∫︂
∂[0,1]n×[0,c−1]

Φ(u) = cnhj(u) +O(cn−1).

In other words, a(fc,j) = cnbj +O(cn−1), and therefore

pℓnai =

r∑︂
j=1

a(f
pℓx

1/n
ij ,j

).

We will construct an extension of rpℓ,n−1 to the ith cell by patching together f
pℓx

1/n
ij ,j

for

each j together with an “error-correcting” map which gets rid of the O(cn−1) error term in
the homology class and a homotopy which connects the map on the boundary of the cube to
rpℓ,n−1 ◦ ιi.

We first build the error-correcting map. For each i = 1, . . . , r, fix a map

gi : ([0, 1]
n, ∂[0, 1]n)→ (Z,Z(n−1))

which maps to the ith n-cell with degree 1 and sends all but one of the faces of [0, 1]n to a
basepoint p0. Splitting [0, 1]n−1 × [0, p−ℓ] into an (n − 1)-dimensional grid of subdomains,
O(pℓ) to a side, we build an O(pℓ)-Lipschitz map

ferror : [0, 1]
n−1 × [0, p−ℓ]→ Z

by mapping each subdomain to Z via the appropriate gi (and mapping any leftover subdo-
mains via a constant map to p0) so that the induced homology class is the sum of the error
terms of each f

pℓx
1/n
ij ,j

.

Now let g : [0, 1]n →
⋁︁
r+1[0, 1]

n be an const(r)-Lipschitz map whose relative degree over
each cube is 1. Then the map

f̃ = (f
pℓx

1/n
i1 ,1

∨ · · · ∨ f
pℓx

1/n
ir ,r

∨ ferror) ◦ g : [0, 1]n → Z.

is in the homotopy class of pℓn[ιi] ∈ πn(Z,Z(n−1)). Since f̃ and rpℓ,n−1◦ιi are in the same class

in πn(Z,Z
(n−1)), their restrictions to the boundary are in the same class in πn−1(Z

(n−1)).
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Therefore, since Z(n−1) is scalable, using condition (iii) we can construct an O(pℓ)-Lipschitz

homotopy in Z(n−1) between f̃ |∂[0,1]n and rpℓ,n−1 ◦ ιi|∂[0,1]n . We then extend rpℓ,n−1|Z(n−1) to

our n-cell in an O(pℓ)-Lipschitz way using this homotopy on the outer part of the cell and f̃
on the inner part.

After we do this for every n-cell, we get an O(pℓ)-Lipschitz map Z → Z that induces the
right action on homology. Although this map may not be homotopic to rℓp|Z , this is sufficient
to prove condition (ii) and therefore the inductive step.

Now we argue that (vi) implies (v′). One way to see this is by a direct application of
Theorem 2.3, which shows that (vi) implies (v′) for any closed n-manifold, as well as giving
a quantitative result describing how fast the degree goes to 0 asymptotically if (v′) is not
satisfied.

We can also use a softer, less technical argument related to Lemma 2.19. Suppose there is
a 1-Lipschitz map f : Rn → Y of positive asymptotic degree. Let uj ∈ Hdj (Y ;R) be a set of
generators for the cohomology algebra of Y . Suppose that the relations of the cohomology
algebra are given by Rr(u1, . . . , uJ) = 0, where Rr is a homogeneous polynomial of graded
degree Dr in the free exterior algebra Λ(u1, . . . , uJ). Define forms ωj ∈ Ωdj (Y ) representing
the uj and αr ∈ ΩDr−1(Y ) such that dαr = Rr(ω1, . . . , ωJ).

For every t > 0 define ft(x) = f(tx); this is a t-Lipschitz map. Now we consider forms

ωj,t =
f∗t ωj

tdj
, αr,t =

f∗t αr
tDr

.

Since pulling back along a t-Lipschitz map multiplies the infinity-norm of a k-form by at most
tk, we have

∥ωj,t∥∞ ≤ 1, ∥αr,t∥∞ ≤ 1/t.

By definition of positive asymptotic degree, there is an ε > 0 and a sequence of t→∞ such
that

∫︁
B1(Rn) f

∗
t d volM ≥ ε. By the Arzelà–Ascoli theorem, this sequence has a subsequence

t1, t2, . . .→∞ for which the ωj,tk converge in the flat norm; we have

lim
k→∞

ωj,tk = ωj,∞ ∈ Ω
dj
♭ (Rn), lim

k→∞
αr,tk = 0.

This means that the ring homomorphism Λ(u1, . . . , uJ) → Ω∗
♭ (R

n) defined by wuj ↦→ ωj,∞
passes to a well-defined map on the quotient ring by the relations Rr, giving a ring homo-
morphism

φ∞ : H∗(M ;R)→ Ω∗
♭ (R

n).

Moreover, flat convergence implies that∫︂
B1(Rn)

φ∞(d volM ) ≥ ε.

In particular, φ∞(d volM ) is nonzero on some set of positive measure. While flat forms
are not well-defined pointwise, they are well-defined up to a measure zero set, so we can
choose representatives and then choose a point in this set of positive measure where these
representatives actually restrict to a ring homomorphism

H∗(M ;R)→ Λ∗Rn.

This homomorphism sends the fundamental class to a nonzero element, so by Poincaré duality
it is injective. □
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6. Efficient nullhomotopies

Now we prove Theorem B, which we restate here:

Theorem 6.1. Let Y be a finite formal CW complex with a piecewise Riemannian metric
and Lipschitz attaching maps such that Hn(Y ;Q) is nonzero for d different values of n > 0.
Then for any finite simplicial complex X, any nullhomotopic L-Lipschitz map f : X → Y is
O(L(logL)d−1)-Lipschitz nullhomotopic.

We will use Theorem 3.1 to prove Theorem 6.1. The argument is similar to the proof of
(ii)⇒(iii) of the main theorem of [3].

Proof. Let X be a finite simplicial complex and f : X → Y a nullhomotopic L-Lipschitz map.
Fix a minimal model mY : MY → Ω∗Y and a family of automorphisms ρt : MY → MY

which induce the grading automorphisms on cohomology sending a class z ∈ Hn(Y ;R) to
tnz. By Theorem 4.4, there is a p > 1 and a self-map rp : Y → Y whose rationalization is ρp.

Moreover, by Theorem 4.6, there is a sequence of O(ℓd−1pℓ)-Lipschitz maps rpℓ homotopic to

the ℓth iterate rℓp.
We will define a nullhomotopy of f by homotoping through a series of maps which are

more and more “locally organized”. Specifically, for 1 ≤ ℓ ≤ s = ⌈logp L⌉, we look at the

map ρp−ℓ which multiplies each degree d generator by p−ℓk where k ≥ d. Thus applying the
shadowing principle 4.1 to the map

f∗mY ρp−ℓ :M∗
Y → Ω∗X

gives a C(X,Y )(L/pℓ + 1)-Lipschitz map fℓ : X → Y . Similarly, we get a C(Y )(sd−1pℓ + 1)-
Lipschitz self-map gℓ : Y → Y homotopic to rpℓ by applying the shadowing principle to the
map

r∗psρpℓ−s :M∗
Y → Ω∗Y.

We will build a nullhomotopy of f through the sequence of maps

f g1 ◦ f1 g2 ◦ f2 . . . rps ◦ fs const.

rp ◦ f1 g1 ◦ rp ◦ f2 . . . gs−1 ◦ rp ◦ fs

As we go right, the length (Lipschitz constant in the time direction) of the ℓth intermediate
homotopy increases—it is O(sd−1pℓ)—while the thickness (Lipschitz constant in the space
direction) stays a constant O(sd−1L). Thus all together, these homotopies can be glued into
an O(sd−1ps)-Lipschitz nullhomotopy of f .

Informally, the intermediate maps gℓ ◦ fℓ look at scale pℓ/L like thickness-pℓ “bundles” or
“cables” of identical standard maps at scale 1/L. This structure makes them essentially as
easy to nullhomotope as L/pℓ-Lipschitz maps.

We now build the aforementioned homotopies:

Lemma 6.2. There is a homotopy Gℓ : Y × [0, 1] → Y between gℓ and gℓ−1 ◦ rp which has

constant length and thickness O(sd−1pℓ).

Note that the conclusion of Lemma 6.2 is similar to that of Lemma 3.4, but applies to a
larger class of spaces.
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Lemma 6.3. There is a homotopy Fℓ : X × [0, 1] → Y between fℓ and rp ◦ fℓ+1 which has

constant length and thickness O(pℓ).

This induces homotopies of thickness O(sd−1ps) and length O(sd−1pℓ):

• Gℓ ◦ (fℓ × id) from gℓ−1 ◦ rp ◦ fℓ to gℓ ◦ fℓ of thickness O(sd−1ps) and length O(pℓ);

• gℓ ◦ Fℓ from gℓ ◦ fℓ to gℓ ◦ rp ◦ fℓ+1 of thickness O(sd−1ps) and length O(sd−1pℓ).

It remains to build a homotopy from rp to the C(Y )(sd−1p + 1)-Lipschitz map g1. By [18,

Theorem 5–6], such a homotopy G̃ : Y × [0, 1]→ Y can be chosen to have thickness O(sd−1)

and length O(sd(d−1)). Thus the homotopy G̃ ◦ (f1 × id) has thickness O(sd−1ps) and length

O(sd(d−1)).
Finally, the map fs is C(X,Y )-Lipschitz and therefore has a short homotopy to one of a

finite set of nullhomotopic simplicial mapsX → Y . For each map in this finite set, we can pick
a fixed nullhomotopy, giving a constant bound for the Lipschitz constant of a nullhomotopy
of fs and therefore a linear one for rps ◦ fs.

The lengths of these homotopies are bounded above by a geometric series which sums to
O(L(logL)d), completing the proof of the theorem modulo the two lemmas above. □

Proof of Lemma 6.2. We use the fact that the maps gℓ were built using the shadowing princi-
ple. Thus, there are formal homotopies Ψi of length C(X,Y ) between r∗psmY ρps−i and g∗imY .
There is also a formal homotopy Υ between r∗pmY and mY ρp. This allows us to construct
the following formal homotopies:

• Ψℓ, time-reversed, between g∗ℓmY and r∗psmY ρps−ℓ , of length C(Y );
• Ψℓ−1ρp between r∗psmY ρps−ℓ and g∗ℓ−1mY ρp, of length C(Y )p;
• and (g∗ℓ−1 ⊗ id)Υ between g∗ℓ−1mY ρp and g∗ℓ−1r

∗
pmY , of length C(Y ).

Concatenating these three homotopies and applying the relative shadowing principle 4.2 to
the resulting mapM∗

Y → Ω∗(Y × [0, 1]) rel ends, we get a linear thickness homotopy of length
O(p) between the two maps. □

Proof of Lemma 6.3. We use the fact that the maps fℓ and fℓ+1 were built using the shad-
owing principle. Thus there are formal homotopies Φi of length C(X,Y ) between f∗mY ρp−i

and fi. This allows us to construct the following formal homotopies:

• Φℓ, time-reversed, between fℓ and f
∗mY ρp−ℓ , of length C(X,Y );

• Φℓ+1ρp between f∗mY ρp−ℓ and f∗ℓ+1mY ρp, of length C(X,Y )p;
• and (f∗ℓ+1 ⊗ id)Υ between f∗ℓ+1mY ρp and f∗ℓ+1r

∗
pmY , of length C(X,Y ).

Concatenating these three homotopies and applying the relative shadowing principle 4.2 to
the resulting mapM∗

Y → Ω∗(X×[0, 1]) rel ends, we get a linear thickness homotopy of length
O(p) between the two maps. □

7. Non-formal spaces

In this section, we discuss the relationship between the degree and Lipschitz constants of
self-maps of non-formal manifolds.

First, we note that such manifolds may have no self-maps of degree > 1 at all. Such man-
ifolds are called inflexible; examples of this phenomenon are given in [2, 10, 9, 1]. Manifolds
which have self-maps of high degree are called flexible.

Among flexible manifolds, a distinguished class are those with positive weights. A space
Y has positive weights if its minimal model MY has a one-parameter family of “rescaling”
automorphisms, i.e. there is a basis {vi} for the indecomposables and integers ni such that
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the map λt :MY →MY sending vi ↦→ tnivi is a DGA automorphism for any t ∈ (0,∞). This
can be thought of as a generalization of formality: formal spaces are distinguished by the fact
that one can define rescaling automorphisms that send every cohomology class z ↦→ tdim zz,
see §4.2.

Example 7.1. One non-formal manifold with positive weights is the example given in the
introduction, the total space M of the bundle S3 →M → S2 × S2 obtained by pulling back
the Hopf fibration along a degree 1 map S2× S2 → S4. According to [13, p. 95], its minimal
model is given by

MM =
(︁
Λ(a

(2)
1 , a

(2)
2 , b

(3)
11 , b

(3)
12 , b

(3)
22 ) | dai = 0, dbij = aiaj

)︁
and therefore, for any t, it has an automorphism which takes ai ↦→ tai and bij ↦→ t2bij . Now,

H5(M ;Q) ∼= ⟨b11a2 − a1b12, b12a2 − a1b22⟩
H7(M ;Q) ∼= ⟨b11a22 − a1a2b12 ∼ a21b22 − a1a2b12⟩,

and therefore this automorphism multiplies elements of H5(M ;Q) by t3 and elements of
H7(M ;Q) by t4.

A priori, automorphisms of the minimal model need not be realized by genuine maps
of finite complexes. But manifolds with positive weights have self-maps of arbitrarily high
degree [8, Theorem 3.2]. In fact, for any family of scaling automorphisms λt, there is some
t0 > 0 such that for every z ∈ Z, λzt0 is the rationalization of a genuine map Y → Y [19,
Theorem A].

Of course, not every flexible manifold has positive weights. For example, if M is inflexible
and N has positive weights, then M ×N is flexible, but does not have positive weights.

7.1. Upper bounds on degree. Having introduced the main actors, we prove Theorem D,
which we restate here for convenience:

Theorem. Let M be a closed simply connected n-manifold which is not formal. Then either
M is inflexible (has no self-maps of degree > 1) or the maximal degree of an L-Lipschitz map
M →M is bounded by Lα for some rational α < n.

Example 7.2. As stated in the introduction, for the 7-manifold M described in Example
7.1, we get α = 20/3 < 7. To see this, consider an automorphism ρ : MM → MM of the
minimal model of M . Such an automorphism is determined by the images

ρ(a1) = t11a1 + t12a2

ρ(a2) = t21a1 + t22a2.

Then a computation determines that

deg ρ = ρ([M ]) = (detT )2[M ]

where T =

(︃
t11 t12
t21 t22

)︃
, and the action of ρ on H5(M ;R) with respect to the given basis has

matrix (detT )T . Let λ1, λ2 be the eigenvalues of T with |λ1| ≤ |λ2|. Then by Lemma 7.3
below, for any self-map f :M →M whose rationalization is ρ,

Lip f ≥ |λ1λ22|1/5 ≥ |detT |3/10 = |deg f |3/20.
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Proof of Theorem D. We prove the contrapositive. Suppose that there is a sequence of maps
fi : M → M with strictly increasing degrees such that for every α < n, deg fi eventually
grows faster than (Lip fi)

α. We will show that M must be formal.
This requires a lemma:

Lemma 7.3. Let f : M → M , and suppose the induced map f∗ : Hk(M ;C) → Hk(M ;C)
has an eigenvalue λ. Then

Lip f ≥ |λ|1/k.

Proof. The eigenvalue λ is either real or one of a conjugate pair of complex eigenvalues. If it is
real, choose a ∥·∥∞-minimizing form ω ∈ Ωk♭ (M) among those which represent an eigenvector

a ∈ Hk(M ;R). Then
|λ| · ∥ω∥∞ ≤ ∥f∗ω∥∞ ≤ (Lip f)k∥ω∥∞.

If λ is not real, choose an invariant two-dimensional subspace of Hk(M ;R) whose complexi-
fication contains eigenvectors for λ and λ, and within this, an f∗/|λ|-invariant ellipse E. Let
ω ∈ Ωk♭ (M) be a ∥·∥∞-minimizing form among those representing elements of E. Then once
again

|λ| · ∥ω∥∞ ≤ ∥f∗ω∥∞ ≤ (Lip f)k∥ω∥∞. □

Now suppose f : M → M is of degree d and f∗ : Hk(M ;C) → Hk(M ;C) has some

eigenvalue λ such that |λ| ≠ dk/n. Then either |λ| > dk/n, or by Poincaré duality the induced

map on Hn−k(M ;C) has an eigenvalue µ with |µ| > d
n−k
n . Therefore, by our hypotheses and

Lemma 7.3, as i → ∞, the absolute values of eigenvalues of (fi)∗ : Hk(M ;C) → Hk(M ;C)
uniformly approach (deg fi)

k/n. That is, for any such eigenvalue λ,

k/n− Ci ≤ logdeg fi |λ| ≤ k/n+ Ci, where lim
i→∞

Ci = 0.

Now consider the automorphisms φi : LM (C) → LM (C) induced by the fi. Here LM (C)
is the complexified Lie minimal model of M , a free differential graded Lie algebra whose
indecomposables in degree k are Lk ∼= Hk(M ;C), and φi|Lk

= (fi)∗. The Lie minimal model
is in many ways dual to the Sullivan minimal model; see [12, Part IV] for the detailed theory.
The endomorphisms of LM form an affine variety in the vector space of graded linear maps
H∗(M ;C) → H∗(M ;C), and the automorphisms Aut(LM (C)) form a linear algebraic group
which is Zariski open inside that variety. Moreover, the Zariski closure of Aut(LM (C)), which
is the same as its metric closure, is contained in the endomorphism variety.

We now apply the theory of linear algebraic groups, see e.g. [5, §III.10 and IV.11]. (A
similar argument is applied to rational homotopy theory in [4, §2].) Choose a Borel subgroup
G ⊆ Aut(LM (C)); by the Lie–Kolchin theorem [5, Ch. III, Theorem 10.5], this is the subgroup
of matrices which are upper triangular with respect to some basis B of H∗(M ;C). Moreover,
since elements of Aut(LM (C)) preserve the grading of H∗(M ;C), we can assume that B is a
graded basis. By [5, Ch. IV, Theorem 11.10], every φi is conjugate to some φ′

i ∈ G. Moreover,
by [5, Ch. III, Theorem 10.6], for every φ′

i, G also contains the diagonal matrix φ′′
i obtained

by zeroing out the off-diagonal entries of φ′
i.

As a vector space, LM (C) is spanned by iterated Lie brackets of elements of B. Therefore,
each φ′′

i is diagonal on all of LM (C) with respect to a basis of iterated brackets of elements
of B. Moreover, if a ∈ Lk is an eigenvector of φ′′

i , then ∂a is also an eigenvector with the
same eigenvalue. Therefore, there are well-defined automorphisms

ψi = (φ′′
i )

logdeg fi
2n : LM (C)→ LM (C).



46 ALEKSANDR BERDNIKOV, LARRY GUTH, AND FEDOR MANIN

The sequence {ψi} lies in a compact set of automorphisms and therefore has a subsequence
which converges to some ψ∞ : LM (C)→ LM (C). This ψ∞ is also diagonal with respect to B
and its eigenvalues on Lk have absolute value 2k.

As with the φ′′
i , ψ∞ is also diagonalizable as a linear automorphism of LM (C), and if

a ∈ Lk is an eigenvector of ψ∞, then so is ∂a ∈ LM (C)k−1. Therefore, if we replace each
eigenvalue of ψ∞ with its absolute value, then the resulting linear map, which sends every
element a ∈ Lk to 2ka, is still an automorphism of LM (C). This automorphism descends to
LM (Q). Since the automorphisms of a rational minimal model are the same as those of the
rationalized space M(0), this shows that M is formal. □

7.2. Lower bounds on degree. Using the techniques of §3, we can give lower bounds
on the maximal degree of an L-Lipschitz self-map of a manifold with positive weights that
complement the upper bound of Theorem D:

Theorem 7.4. Let Y be a compact manifold with positive weights and ρt : MY → MY

a scaling automorphism of its minimal model. Let {zi} be a graded basis for the rational
homology of Y such that ρt induces the map zi ↦→ tnizi, and let

γn = max{ni/n | dim zi = n}
αn = max

k≤n
γn

α = αdimY

d = #{n | γn = α}.

Then there are integers a > 0 and p > 1 such that for every q = apℓ there is an O(qα(log q)d−1)-
Lipschitz map whose rationalization is ρq.

Example 7.5. In particular, this shows that the 7-manifoldM described in Example 7.1 has
L-Lipschitz self-maps of degree ∼ L20/3: the bound of Theorem D is asymptotically sharp in
this case.

This is because for the automorphism ρt :MM →MM defined by

ai ↦→ tai, bij ↦→ t2bij ,

we get ni/ dim zi = 1/2 when zi is any 2-cycle, 3/5 when zi is any 5-cycle, and 4/7 when zi is
any 7-cycle. Thus the maximum is only attained in dimension 5, and therefore the number
d defined in the statement of Theorem 7.4 is 1 in this case. For a map f : M → M whose
rationalization is ρt, we have deg f = t4; by Theorem 7.4, there are such maps which are
O(t3/5)-Lipschitz.

Proof of Theorem 7.4. The proof is almost identical to that of Theorem 3.1, so we give an
outline and indicate the main differences.

As with Theorem 3.1, we first reduce to the case of a nearly Euclidean cell complex Z
whose cells are in bijection with the basis for H∗(Z;Q) ∼= H∗(Y ;Q) specified in the positive
weight decomposition. Such a complex exists by Proposition 3.10. The reduction is exactly
the same as before, but requires a generalization of Proposition 3.9:

Proposition 7.6 ([19, Thm. B]; see also the slightly weaker [7, Thm. 3.4]). Let Y be a space
with positive weights, and let ρt :MY →MY be a one-parameter family of automorphisms.
If f : Z → Y is a map between simply connected complexes inducing an isomorphism on
rational cohomology, then it is a rational equivalence, and there is a map g : Y → Z and a
t ∈ Z such that the rationalization of f ◦ g is ρt.
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Now, by [19, Theorem A], there is a p > 1 and a map rp : Z → Z whose rationalization

is ρp. As in Lemma 3.4, we construct maps rpℓ homotopic to the iterates rℓp, bounding the
Lipschitz constant by induction on both ℓ and the dimension. We also construct controlled
homotopies Hℓ from rpℓ−1 ◦ rp to rpℓ . There are two main points on which the proof differs
from that of Lemma 3.4.

First, as in Lemma 3.4, we assume that rp has a nice geometric form. Specifically, we

assume that for every n-cell ei, r
−1
p (ei) is a grid inside e of homothetic preimages of e.

Rather than p to a side, this grid has pni/n subcubes to a side, where ni is the “weight” of
the homology class [ei]. For this to make sense, pni/ dim zi must be an integer; we can make
sure this is true for every i by iterating rp at most (dimZ)! times.

The other main difference is in the Lipschitz constant estimate. As before, we set

L1 = 2Lip(Hℓ|Z(n−1))

L2 = 2Lip(rp) Lip(rpℓ−1 |Z(n−1))

L3 = D−1 Lip(rpℓ−1),

where D is the side length of a subcube. Then the Lipschitz constant of rpℓ on a cell ei is
bounded by

pni/nDL3 +

(︃
1

2
− pαnD

)︃
L2 +

1

2
L1.

Now the proof splits into cases. Suppose, by induction, that

Lip(rpℓ |Z(n−1)) ≤ C(n− 1)ℓdn−1pαn−1ℓ

Lip(Hℓ|Z(n−1)) ≤ C ′(n− 1)ℓdn−1pαn−1ℓ.

If αn−1 = ni/n, then the proof is exactly as before and

Lip(rpℓ |e) ≤ C(n)ℓdn−1+1pαn−1ℓ

Lip(Hℓ|e) ≤ C ′(n)ℓdn−1+1pαn−1ℓ

for sufficiently large C(n) and C ′(n) depending on Z and rp.
If αn−1 < ni/n, then the estimate for the Lipschitz constant is dominated by the L3 term.

After substituting the expression for the bound on Lip(rpℓ−1) and summing a geometric series,
we see that

Lip(rpℓ |e) ≤ C(n)p(ni/n)ℓ

for sufficiently large C(n).
Finally, if αn−1 > ni/n, then the estimate for the Lipschitz constant is dominated by the

L1 and L2 terms, and therefore, for sufficiently large C(n),

Lip(rpℓ |e) ≤ C(n)ℓdn−1pαn−1ℓ.

Similar estimates hold for the Lipschitz constant of Hℓ.
This gives the estimate in the theorem: the polynomial power in the Lipschitz constant is

governed by the largest possible value of ni/n, and the power of the polylogarithm is governed
by the number of n for which that value is attained. □

Remark 7.7. The methods of this theorem do not extend to manifolds without positive
weights because Proposition 7.6 fails. For example, suppose that M is rationally equivalent
to N = P × Q, where P has positive weights and Q does not. Then if f : P → P is a map
of degree > 1, so is f × idQ : N → N , and Theorem 7.4 lets us find efficient maps homotopic
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to f ℓ for ℓ ≥ 1. However, this does not automatically tell us whether M has self-maps of
positive degree or, if it does, anything about the Lipschitz constants of these maps. It would
be interesting to either show that these properties are rationally invariant or to find examples
in which they are not.

Acknowledgements. We are grateful to an anonymous referee for a number of comments,
including one catching a significant error. The second author is supported by a Simons
Investigator Award. The third author was partially supported by NSF individual grant
DMS-2001042 and a Sloan Fellowship.

References

1. M. Amann, Degrees of self-maps of simply connected manifolds, Int. Math. Res. Not. IMRN (2015), no. 18,
8545–8589.

2. M. Arkowitz and G. Lupton, Rational obstruction theory and rational homotopy sets, Math. Z. 235 (2000),
no. 3, 525–539.

3. A. Berdnikov and F. Manin, Scalable spaces, Invent. Math. 229 (2022), no. 3, 1055–1100.
4. R. Body, M. Mimura, H. Shiga, and D. Sullivan, p-universal spaces and rational homotopy types, Comment.

Math. Helv. 73 (1998), no. 3, 427–442.
5. A. Borel, Linear algebraic groups, second ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag,

New York, 1991.
6. R. Bott and L. W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82,

Springer-Verlag, New York-Berlin, 1982.
7. U. Buijs, F. Cantero Morán, and J. Cirici, Weight decompositions of Thom spaces of vector bundles in

rational homotopy, J. Homotopy Relat. Struct. 15 (2020), no. 1, 1–26.
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152, Birkhäuser Boston, Inc., Boston, MA, 1999, with appendices by M. Katz, P. Pansu and S. Semmes,
translated from the French by Sean Michael Bates.

16. S. Halperin and J. Stasheff, Obstructions to homotopy equivalences, Adv. in Math. 32 (1979), no. 3,
233–279.

17. L. Liu, H. Yu, and Y. Liu, Converting uniform homotopies into Lipschitz homotopies via moduli of conti-
nuity, Topology Appl. 285 (2020), art. 107377 (16 pp.).

18. F. Manin, Plato’s cave and differential forms, Geom. Topol. 23 (2019), no. 6, 3141–3202.
19. , Positive weights and self-maps, Proc. Amer. Math. Soc. 150 (2022), no. 10, 4557–4566.
20. M. Marshall, Positive polynomials and sums of squares, Mathematical Surveys and Monographs, vol. 146,

American Mathematical Society, Providence, RI, 2008.
21. S, . Papadima, The rational homotopy of Thom spaces and the smoothing of homology classes, Comment.

Math. Helv. 60 (1985), no. 4, 601–614.
22. H. Shiga, Rational homotopy type and self-maps, J. Math. Soc. Japan 31 (1979), no. 3, 427–434.

23. D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. (1977), no. 47,
269–331 (1978).



DEGREES OF MAPS AND MULTISCALE GEOMETRY 49

24. B. White, Mappings that minimize area in their homotopy classes, J. Differential Geom. 20 (1984), no. 2,
433–446.

25. H. Whitney, Geometric integration theory, Princeton University Press, Princeton, NJ, 1957.


	1. Introduction
	1.1. Background
	1.2. Main results
	1.3. Proof ideas
	1.4. Structure of the paper

	2. Upper bounds on degree using Fourier analysis
	2.1. Littlewood–Paley theory
	2.2. Bounds for connected sums of CP2s
	2.3. General estimate

	3. Explicit construction of efficient self-maps
	3.1. Warmup example
	3.2. Building efficient self-maps
	3.3. Lipschitz homotopy equivalence
	3.4. Properties of formal spaces

	4. Rational homotopy theory
	4.1. The shadowing principle
	4.2. Formal spaces, again

	5. A finite criterion for scalability
	6. Efficient nullhomotopies
	7. Non-formal spaces
	7.1. Upper bounds on degree
	7.2. Lower bounds on degree
	Acknowledgements

	References

