

merge trees [53] in this work. At the test stage, we obtain a predicted
similarity score by feeding the learned model with any pair of unseen
merge trees.

To effectively learn both the structural and topological information
of merge trees, we need to design the neural network architecture
carefully. Traditional GNNs only encode structural information of
graphs, not merge trees. We introduce two key strategies to address
this gap: firstly, we employ the graph isomorphism network (GIN)
as our encoder, which excels in identifying structural distinctions in
merge trees due to its design for graph isomorphism tasks. Secondly,
we develop an innovative topological attention mechanism designed
to identify and highlight important nodes within a merge tree. This
mechanism re-weights nodes based on their ground truth MT distance
and nodes’ topological significance (persistence).

We conduct our experiments on five datasets: a synthetic point cloud,
two datasets from time-varying flow simulations, one from a repeating
pattern flow simulation, and one of 3D shapes. On all datasets, MTNN
significantly enhances efficiency, accelerating the runtime by over 100
times while maintaining a low error rate when compared to a target MT
similarity metric [53].

Our contributions can be summarized as follows:

• The first neural network model for merge tree similarity (MTNN);

• A novel topological-based attention mechanism for GNNs;

• An evaluation that shows MTNN’s extremely precise(< 0.1%
mean squared error) and fast (> 100× speedup) similarity mea-
sures;

• An evaluation of the generalizability of trained models; and

• An open-source implementation for reproducibility.1

The paper is organized as follows: Section 2 discusses related work,
focusing on the computation of distance between merge trees and the
application of learning methods for graph similarity. Section 3 provides
the necessary preliminary background. In Section 4, we examine the
using GNNs for merge trees. Our proposed model, MTNN, is detailed
in Section 5. Section 6 presents our results, and Section 7 concludes.

2 RELATED WORK

Our approach is informed by two main areas of research: (1) the
computation of distances between merge trees and (2) learning graph
similarity using graph neural networks (GNNs). This section discusses
the related works on merge tree distance and learning graph similarity
using GNNs. For the definitions of merge trees, their distances, and
GNNs, please refer to Section 3.

2.1 Merge Trees Distance

Many distances on merge trees exist: the interleaving distance [20, 33],
the edit distance [7, 16], the functional distortion distance [8], and the
universal distance [6]. While these distances are valuable for their
stability and discriminatory capabilities, computing these distances
often becomes impractical due to their NP-hard nature [1, 10].

Recent efforts aim to define more computationally feasible distances
for merge trees. For instance, the edit distance on merge trees, as
discussed in [46, 47], identifies the optimal edit operations between
merge trees and has been experimentally shown to be more discrimi-
native than both the bottleneck and one-Wasserstein [17] distances. In
the [47], they introduced the local merge tree edit distance, specifically
designed to analyze local similarities within merge trees. Despite the
work in [49] demonstrating greater discriminative power than the pre-
viously proposed edit distances for merge trees, by employing a new
set of improved edit operations, the computational cost is significantly
higher, which hinders their practical application.

The interleaving distance requires an initial labeling of the merge
trees, followed by the identification of the optimal matching between
the labeled merge trees. This process, which establishes a computable
metric known as the labeled interleaving distance, is introduced in [20].
Yan et al. [54] adapted this distance for practical use and incorporated
geometric information in the labeling strategy in [53]. Similarly, Curry

1https://osf.io/2n8dy

et al. [15] employed the Gromov–Wasserstein distance to label merge
trees and compute the labeled interleaving distance.

Branch decomposition trees (BDTs) represent another method that
first converts merge trees into BDTs (i.e., transferring edges of merge
trees as nodes in a new tree), and then finds pairwise matching between
these transformed trees [8, 36, 37, 42, 43, 50]. This process adds extra
computational steps, further increasing complexity.

Applications utilizing merge trees distances, such as sketching [29]
or encoding merge trees [36, 37], primarily operate in the original
space, necessitating optimal matching between merge trees or their
BDT variants. Machine learning has been used for merge trees in the
work of Pont et al. [36], who applied neural networks to merge trees
for compression and dimensionality reduction. Our work focuses on
fast comparison. The previous work also uses a novel but classic auto-
encoder with merge trees and BDTs as input, requiring a transformation
step. In addition, their model is not designed to be generalizable
across datasets, and their use of Wasserstein distance in training is
computationally more intensive than our approach.

In summary, existing work either proposes a rigorous definition of
distance with theoretical guarantees but with NP-hard computation
or describes a similarity measure with practical applications that still
require optimal matching between merge trees. No existing work
focuses on mapping merge trees to vector space for efficient comparison.
The closest approach is the work of Qin et al. [40], who map topological
persistence diagrams to a hash for fast comparison. Merge trees are a
more expressive and more complex topological abstraction than these
diagrams. In our work, we utilize GNNs to map the merge trees to a
vector space and re-frame merge tree comparison as a learning task.

2.2 Learning Graph Similarity and Dissimilarity

Graph (dis)similarity computation is a fundamental problem in graph
theory. The graph edit distance (GED) [19] is a widely recognized met-
ric between graphs, defining the minimum number of edit operations
required to transform one graph into another. Despite its popularity,
GED is known to be an NP-hard problem [56].

With the advancements in graph neural networks (GNNs), it is now
possible to encode graphs into vector spaces effectively [24, 27, 52].
This capability allows GNNs to compute a similarity or dissimilarity
score quickly. These methods employ an end-to-end framework to learn
the graph representation that can, after training, map pairs of graphs to
a similarity score.

A common approach in this area is the use of a Siamese neural
network architecture [14], which processes each graph independently,
but in parallel, to aggregate information. A feature fusion mechanism
then captures the inter-graph similarities, and a multi-layer perceptron
(MLP) is applied for regression analysis. This method is typically
trained in a supervised manner using the mean squared error (MSE)
loss against a ground truth similarity scores.

Many GNN-based approaches for learning graph similarity have
great promise due to the competitive performance in both efficiency
and efficacy [4, 5, 30, 39]. For example, the graph matching network
(GMN) [30] is the first deep graph similarity model, which computes
the similarity between two given graphs by a cross-graph attention
mechanism. SimGNN [4] turned the graph similarity task into a regres-
sion task, and leveraged the graph convolutional network (GCN) [27]
layers with self-attention-based mechanism on the model.

However, despite the growing popularity of GNN-based methods for
graph similarity, their application to topological descriptors like merge
trees has not been explored. Topological deep learning is a rapidly
evolving field, although it primarily focuses on using topological fea-
tures to enhance deep learning models [25, 34, 57]. Our perspective
focuses on the inverse: designing deep learning models specifically for
topological descriptors. Our research establishes the initial connection
between GNNs and merge trees, potentially laying the groundwork for
future developments in machine learning and TDA.

3 PRELIMINARIES

In this section, we outline the foundational concepts of this work,
beginning with merge trees induced by scalar fields and the common

a

b

f

e
d

c

f

a

b

c

e

Scalar Function Merge Tree

d

Fig. 2: An illustration of merge tree. On the left, a scalar function
is represented by an orange line, highlighting the critical points, and
showcasing how these points merge and connect topologically. On the
right, the corresponding merge tree of sub-level set filtration.

distances used for topological comparisons. Then, we describe graph
neural networks (GNNs), which serves as the core architecture for
encoding merge trees for topological comparison.

3.1 Scalar Fields and Merge Trees

Consider a dataset represented as (X, f), where X denotes a topological
space, and f : X→ R denotes a scalar function, which is a continuous
real-valued function. This function f assigns a real number to each
point in X, reflecting a characteristic of interest within the dataset. This
is often referred to as a scalar field.

An equivalence relation ∼ f is defined on X, where x ∼ f y if both x
and y belong to the same connected component of the sub-level set Xa

for a threshold value a in f . Consequently, two points are equivalent
under ∼ f if they exhibit a shared characteristic under the threshold a.

This leads to the definition of T
−
f := (Xa, f) as the join tree for

the dataset (X, f). The join tree encapsulates how dataset compo-
nents merge as the threshold a varies. The split tree T

+
f := (Xa, f) is

similarly constructed using super-level set to depict component splits
with changing thresholds. Each of these two trees is called a merge
tree T f := (Xa, f), illustrating the evolution of topological features in
relation to f . In this work, we use join trees to capture the connectiv-
ity of sub-level sets, with the global maximum being the tree’s root.
Example merge tree for a 1D function is shown in Fig. 2.

Persistence Persistence is a quantity derived from persistent ho-
mology [17] that tracks the lifetime of a topological feature. This is
often important in analysis. For instance, low persistence features are
often deemed to be noise, while high persistence features are considered
to encode important topological properties. In the context of our work,
persistence is used to track the evolution of connected components of a
sub-level set of a scalar function. A persistence pair (b,d) represents a
topological feature that is born in the sub-level set Xb and dies going
into the sub-level set Xd . b and d correspond to the critical points m
and s where b = f (m) and d = f (s). In our join trees, a feature is born
at a minimum and dies when it merges with an older, in terms of f ,
feature. The persistence of such a pair is defined as the difference in
function value at the two critical points, d −b.

3.2 Distance on Merge Trees and Graphs

Below, we first define graph edit distance, which GCNs primarily focus
on reproducing. We then describe how edit distance on merge trees
differs. Finally, we describe the distance we use as our ground truth,
the interleaving distance.

Graph Edit Distance The graph edit distance (GED) [19] between
two graphs G1 = (V1,E1) and G2 = (V2,E2) is the minimum cost of
transforming G1 into G2 using node and edge insertions, deletions, and
substitutions. It’s defined as:

De(G1,G2) := min
S∈O

{

∑
op∈S

δ (op)

}

,

where O represents the set of all valid sequences of graph edit oper-
ations that transform G1 into G2, S is a specific sequence of graph

edit operations from O, and δ (op) is the cost function that assigns a
non-negative real number to each edit operation op in the sequence S.
This operation could be the insertion, deletion, or substitution of a node
or an edge.

Each operation op has an associated cost, and ∑op∈S δ (op), the
total cost of a sequence S, is the sum of the costs of its individual
operations. The GED is then determined by finding the sequence S
with the minimum total cost that transforms G1 into G2.

Edit Distance on Merge Trees The edit distance between merge
trees builds on tree edit distance, which is a specific case of GED where
the cost operation is only on nodes. Given two merge trees, denoted
as T1 and T2, it is defined as [46]:

De(T1,T2) := min
S∈O

{δ (S)},

where O represents the set of valid tree edit operations, and S represents
a sequence of these tree edit operations that transform T1 into T2.
The cost function δ assigns a non-negative real number to each edit
operation, which is defined as [46]:

δ (m → s) = min

{

max(|bm −bs|, |dm −ds|),
(|dm−bm|+|ds−bs|)

2

}

δ (m → λ) =
|dm−bm|

2

δ (λ → s) =
|ds−bs|

2

where λ denotes the empty set and m and s are nodes in T1 and T2,
respectively. The first cost is for a node relabel operation from m to s.
Next is deleting a node m. The last cost is adding a node s.

This is similar to GED, but the cost is formulated to account for
topological persistence. Consider nodes m ∈ T1 and s ∈ T2, each node
encodes a topological feature, (bm,dm) and (bs,ds). In particular, bm is
the function value where m is born. dm is the function value where m
dies. For sublevel sets, bm < dm. This distance computation is shown
in Fig. 3.

Interleaving Distance on Merge Trees To compute the interleav-
ing distance on merge trees, the trees need to be labeled first. A labeled
merge tree, denoted as T = (T ,π), including a merge tree T with a
labeling π : [a]→VT where [a] is the set of labels, {1, ...,a}, and VT

is the set of merge tree vertices [20]. π only needs to be surjective since
a vertex can have multiple labels. The interleaving distance on labeled
merge trees is calculated based on the induced matrix TM(T ,π). This
matrix also can be referred to as the least common ancestor (LCA)
matrix and defined as:

TM(i, j) = f (LCA(π(i),π(j)),

where f (LCA(·)) denotes the function value of LCA of a pair of vertices
with labels i and j, 1 ≤ i, j ≤ a. Given two labeled merge trees T1 =
(T1,π1) and T2 = (T2,π2) that share the same set of labels, [a], the
interleaving distance between labeled merge trees is defined as:

Di(T1,T2) = ‖T 1
M −T 2

M‖∞,

where ‖TM‖ = maxi j |TMi j| is the L∞ norm. In [53], they proposed
geometry-aware labeling strategies and, for brevity, we refer the reader
to their paper for those details. But, at a high level, their labeling
minimizes a cost function that accounts for the geometric structure of
the tree along with the function value differences between nodes in
the tree. In this way, topological persistence is encoded in the labeling
strategy. The interleaving distance is used as the ground truth merge
tree distance in our training.

3.3 Graph Neural Networks (GNNs)

Given a graph G = (V,E) with nodes V and edges E, where each

node v ∈ V has an initial feature vector h
(0)
v , GNNs update the fea-

ture representation of each node by leveraging the structural context
provided by the graph [24]. In particular, each node aggregates fea-
tures from its neighbors (Message Function), updates its own features
(Update Function), and finally produces an embedding (Embedding)
that represents either the node’s or the entire graph’s comprehensive
features. As Fig. 4 shows, the message function is responsible for ag-
gregating information from a node’s neighbors, which is then integrated
into the node’s feature vectors through the update function.

f

a

b
c

e

Merge Tree

d

1

6

8

10

11

15
0 0 0 9 10 14

0 0 0 0 5 9

0 0 0 2 3 7

9 0 2 0 1 5

10 5 3 1 0 4

14 9 7 5 4 0

a b c d e f

a

b

c

d

e

f

PersistencF�Xeighted Adjacency Matrix

Fig. 7: An example of our persistence-weighted adjacency matrix. Each
entry in the matrix represents the function value difference between
connected nodes in the merge tree. Values highlighted in red denote
entries for nodes that are not directly connected in the merge tree but
are included to capture the persistence pairs. This enhancement allows
for the inclusion of broader topological connections, ensuring the full
topological characteristics of the merge tree are represented.

We have previously incorporated the function value for the nodes in
a merge tree and applied a GIN to emphasize the node differences
across merge trees. However, we have not yet addressed the inclusion
of another important topological measure: the persistence of features
in merge trees. To integrate persistence, we use a persistence-weighted
adjacency matrix for tree embedding, which we detail in Section 5.1.
Following that, in Section 5.2, we describe how to apply this weighted
matrix in our model effectively, and we outline the learning process in
Section 5.3. An overview of the model is provided in Fig. 6.

5.1 From Persistence to Edge Features

In the context of a merge tree, T , each edge connecting nodes s and m
represents the merging of critical points as the scalar value increases,
denoted as (f (s), f (m)), which we utilize as an edge feature in our
model. This approach, while useful, captures only incomplete topolog-
ical information, as certain topological features span across multiple
edges forming a path in the merge tree, For example, a persistence
pair (b,d) represents the function values at the birth (b) and death (d)
of a feature, where b is the function value at the local minimum and d
is the function value at the saddle point where this feature merges
with another.

To summarize the full topological characteristics of a merge tree, we
introduce a persistence-weighted edge adjacency matrix Ê. This matrix
is constructed by considering the function value differences between
connected nodes and their connections to neighboring nodes. Specifi-
cally, each entry in the matrix represents the function value difference
between nodes, recording all paths. This enhancement allows us to
extend our analysis from direct pairs like (f (s), f (m)) to broader con-
nections, capturing (f (s), f (D(m))∪ f (m)), which includes node m
and its descendants, D(m). Therefore, the complete topological in-
formation is encoded, as the persistence pair has been added. Fig. 7
illustrates how we accomplish this construction.

To integrate this persistence-weighted matrix, we tested two methods:
(1) Incorporating it into GNN architectures like GIN or GCN; (2)
Utilizing it in an attention-based aggregation to map node embeddings
to tree embeddings.

Option (1) introduces modified edges (referred to as "pseudo" edges)
to include persistence information. Consequently, this approach up-
dates node features by utilizing neighbor features via the adjacency
matrix. However, this modification changes the original merge tree
structure in the message updates function of GNNs due to the introduc-
tion of pseudo edges.

To preserve the original merge tree structure while incorporating per-
sistence information, we choose method (2). This approach leverages
the persistence-weighted matrix in an attention-based aggregation pro-
cess, mapping node embeddings to tree embeddings (Sec. 5.2). Here,
node re-weighting is informed by their persistence, but not exclusively
so. We train the weight matrix to consider both the persistence informa-
tion and the overall merge tree distance (Sec. 5.3), ensuring a balanced

integration of topological features.

5.2 Topological Attention

This section outlines the design of topological attention, leveraging the
persistence-weighted adjacency matrix Ê.

Building on the attention-based aggregation discussed in Sec-
tion 4.1’s Tree Embedding, we reformulate the global context vector c,
replacing Eq.1. We integrate the topological information as:

Norm =
|V |

∑
k=1

∑
l∈N (k)

êkl ,

c = tanh

(

1

|V |

|V |

∑
n=1

(

∑u∈N (n) êun

Norm

)

hnWc

)

,

where u ∈ N (n) is a neighbor node of n, êun ∈ Ê is the persistence-
weighted edge feature of u and n, hn is the embedding of n-th node, |V |
is the number of nodes, and Wc is a learnable weight matrix . To further
break down the the formula above, we have the local weighting factor
for each node v, the sum ∑u∈N (v) êuv computes the total edge weight

connected to v. By dividing this sum by the normalization term Norm,
we normalize the local weighting with respect to the total edge weights
in the tree, ensuring the scale of the features remains consistent. Then,
we use the same calculation as the previous attention-based aggregation.
Note that c is used to compute h∗ which in turn is used to compute the
term, H∗, used in training.

5.3 MTNN Learning

Training of the MTNN uses a Siamese network architecture, utilizing
GINs as encoders to transform input merge trees into node embeddings.
We generate joint embeddings by combining node and tree embeddings,
where the tree embedding is derived using a topological attention-
based aggregation. This aggregation reweights nodes according to
their topological features. Subsequently, we employ an MLP-based
regression network to map the joint embedding to the ground truth
similarity score between the merge trees. The model is trained to
minimize the Mean Squared Error (MSE) loss, defined as:

L =
1

D
∑

i, j∈D

(MLP(H∗
i j)− si j)

2

Here, MLP denotes the MLP-based regression network, and D is the
set of all training merge trees pairs, H∗

i j is the joint embedding and si j

is the ground truth MT distance.

Table 1: Number of merge trees (MTs), the simplification threshold, τ,
employed (same as used in previous work), and their range in node
counts after simplification.

Dataset # of MTs τ # of Nodes

MT2k 2000 0.1 [8,191]
Corner Flow 1500 0.2 [24,30]
Heated Flow 2000 0.06 [12,27]
Vortex Street 1000 0.05 [56,62]
TOSCA 400 0.01 [12,78]

6 RESULTS

While our proposed approach can be generalized to different merge tree
distances, we have chosen the state-of-the-art distance metric from [53]
as our ground truth. This metric is noted for its efficient computation
and is accompanied by an accessible open-source implementation. As
mentioned, this distance is normalized to fall within the [0,1] range to
coincide with a similarity score. To compare the quality of our MTNN
similarity in reproducing [53], we use Mean Squared Error (MSE) as
our evaluation metric.

6.1 Datasets

We evaluate MTNN on five datasets: MT2k, Corner Flow, Heated
Flow, Vortex Street, and TOSCA. All datasets, except MT2k, were
chosen because they have previously been used in merge tree distance
research [46, 53]. Interestingly enough, three [53] are from a similar

REFERENCES

[1] P. K. Agarwal, K. Fox, A. Nath, A. Sidiropoulos, and Y. Wang. Computing

the gromov-hausdorff distance for metric trees. ACM Transactions on

Algorithms (TALG), 14(2):1–20, 2018. doi: 10.1145/3185466 1, 2

[2] K. Almgren, M. Kim, and J. Lee. Extracting knowledge from the geometric

shape of social network data using topological data analysis. Entropy,

19(7):360, 2017. doi: 10.3390/e19070360 1

[3] I. Baeza Rojo and T. Günther. Vector field topology of time-dependent

flows in a steady reference frame. IEEE Transactions on Visualization and

Computer Graphics (Proc. IEEE Scientific Visualization), 2019. doi: 10.

1109/tvcg.2019.2934375 7

[4] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang. Simgnn: A neural

network approach to fast graph similarity computation. In Proceedings

of the Twelfth ACM International Conference on Web Search and Data

Mining, pp. 384–392, 2019. doi: 10.1145/3289600.3290967 2, 4, 5, 8

[5] Y. Bai, H. Ding, K. Gu, Y. Sun, and W. Wang. Learning-based efficient

graph similarity computation via multi-scale convolutional set matching.

In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,

pp. 3219–3226, 2020. doi: 10.1609/aaai.v34i04.5720 2

[6] U. Bauer, X. Ge, and Y. Wang. Measuring distance between Reeb graphs.

In Proceedings of the Thirtieth Annual Symposium on Computational

Geometry, pp. 464–473, 2014. doi: 10.1145/2582112.2582169 2

[7] U. Bauer, C. Landi, and F. Mémoli. The Reeb graph edit distance is

universal. Foundations of Computational Mathematics, pp. 1–24, 2021. 2

[8] K. Beketayev, D. Yeliussizov, D. Morozov, G. H. Weber, and B. Hamann.

Measuring the distance between merge trees. Springer, 2014. doi: 10.

1007/978-3-319-04099-8_10 1, 2

[9] H. Bhatia, A. G. Gyulassy, V. Lordi, J. E. Pask, V. Pascucci, and P.-T.

Bremer. Topoms: Comprehensive topological exploration for molecular

and condensed-matter systems. Journal of Computational Chemistry,

39(16):936–952, 2018. doi: 10.1002/jcc.25181 1

[10] B. Bollen, P. Tennakoon, and J. A. Levine. Computing a stable distance on

merge trees. IEEE Transactions on Visualization and Computer Graphics,

29(1):1168–1177, 2022. doi: 10.1109/tvcg.2022.3209395 1, 2

[11] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell. Inter-

active exploration and analysis of large-scale simulations using topology-

based data segmentation. IEEE Transactions on Visualization and Com-

puter Graphics, 17(9):1307–1324, 2010. doi: 10.1109/tvcg.2010.253 1

[12] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Numerical Geometry

of Non-Rigid Shapes. Springer Science & Business Media, 2008. doi: 10.

1007/978-0-387-73301-2_12 7

[13] J. D. Carroll and P. Arabie. Multidimensional scaling. Measurement,

Judgment and Decision Making, pp. 179–250, 1998. doi: 10.1016/b978

-012099975-0.50005-1 9

[14] D. Chicco. Siamese neural networks: An overview. Artificial Neural

Networks, pp. 73–94, 2021. doi: 10.1007/978-1-0716-0826-5_3 2

[15] J. Curry, H. Hang, W. Mio, T. Needham, and O. B. Okutan. Decorated

merge trees for persistent topology. Journal of Applied and Computational

Topology, 6(3):371–428, 2022. doi: 10.1007/s41468-022-00089-3 2

[16] B. Di Fabio and C. Landi. The edit distance for Reeb graphs of surfaces.

Discrete & Computational Geometry, 55:423–461, 2016. doi: 10.1007/

s00454-016-9758-6 2

[17] H. Edelsbrunner and J. Harer. Computational Topology: An Introduction.

American Mathematical Soc., 2010. doi: 10.1090/mbk/069 1, 2, 3, 7

[18] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch

Geometric. arXiv preprint arXiv:1903.02428, 2019. 8

[19] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance.

Pattern Analysis and Applications, 13:113–129, 2010. doi: 10.1007/s10044

-008-0141-y 2, 3

[20] E. Gasparovic, E. Munch, S. Oudot, K. Turner, B. Wang, and

Y. Wang. Intrinsic interleaving distance for merge trees. arXiv preprint

arXiv:1908.00063, 2019. 1, 2, 3

[21] D. Günther, R. A. Boto, J. Contreras-Garcia, J.-P. Piquemal, and J. Tierny.

Characterizing molecular interactions in chemical systems. IEEE Transac-

tions on Visualization and Computer Graphics, 20(12):2476–2485, 2014.

doi: 10.1109/tvcg.2014.2346403 1

[22] T. Günther, M. Gross, and H. Theisel. Generic objective vortices for

flow visualization. ACM Transactions on Graphics (Proc. SIGGRAPH),

36(4):141:1–141:11, 2017. doi: 10.1145/3072959.3073684 7

[23] A. Gyulassy, P.-T. Bremer, R. Grout, H. Kolla, J. Chen, and V. Pascucci.

Stability of dissipation elements: A case study in combustion. Computer

Graphics Forum, 33(3):51–60, 2014. doi: 10.1111/cgf.12361 1

[24] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning

on large graphs. Advances in Neural Information Processing Systems, 30,

2017. 2, 3

[25] F. Hensel, M. Moor, and B. Rieck. A survey of topological machine

learning methods. Frontiers in Artificial Intelligence, 4:681108, 2021. doi:

10.3389/frai.2021.681108 2

[26] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In

Third International Conference on Learning Representation, 2015. 8

[27] T. N. Kipf and M. Welling. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907, 2016. 2, 4

[28] P. Lawson, A. B. Sholl, J. Q. Brown, B. T. Fasy, and C. Wenk. Persis-

tent homology for the quantitative evaluation of architectural features in

prostate cancer histology. Scientific Reports, 9(1):1–15, 2019. doi: 10.

1038/s41598-018-36798-y 1

[29] M. Li, S. Palande, L. Yan, and B. Wang. Sketching merge trees for

scientific visualization. In 2023 Topological Data Analysis and Visualiza-

tion (TopoInVis), pp. 61–71. IEEE, 2023. doi: 10.1109/topoinvis60193.2023.

00013 2

[30] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli. Graph matching

networks for learning the similarity of graph structured objects. In Inter-

national Conference on Machine Learning, pp. 3835–3845. PMLR, 2019.

2

[31] D. Maljovec, B. Wang, P. Rosen, A. Alfonsi, G. Pastore, C. Rabiti, and

V. Pascucci. Rethinking sensitivity analysis of nuclear simulations with

topology. In 2016 IEEE Pacific Visualization Symposium (PacificVis).

IEEE, Apr. 2016. doi: 10.1109/pacificvis.2016.7465252 1

[32] Z. Meng, D. V. Anand, Y. Lu, J. Wu, and K. Xia. Weighted persistent

homology for biomolecular data analysis. Scientific Reports, 10(1):1–15,

2020. doi: 10.1038/s41598-019-55660-3 1

[33] D. Morozov, K. Beketayev, and G. Weber. Interleaving distance between

merge trees. Discrete and Computational Geometry, 49(22-45):52, 2013.

1, 2

[34] T. Papamarkou, T. Birdal, M. M. Bronstein, G. E. Carlsson, J. Curry,

Y. Gao, M. Hajij, R. Kwitt, P. Lio, P. Di Lorenzo, et al. Position: Topolog-

ical deep learning is the new frontier for relational learning. In Forty-First

International Conference on Machine Learning, 2024. 2

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, et al. PyTorch: An imperative style,

high-performance deep learning library. Advances in Neural Information

Processing Systems, 32, 2019. 8

[36] M. Pont and J. Tierny. Wasserstein auto-encoders of merge trees (and

persistence diagrams). IEEE Transactions on Visualization and Computer

Graphics, 2023. doi: 10.1109/tvcg.2023.3334755 2

[37] M. Pont, J. Vidal, and J. Tierny. Principal geodesic analysis of merge

trees (and persistence diagrams). IEEE Transactions on Visualization

and Computer Graphics, 29(2):1573–1589, 2022. doi: 10.1109/tvcg.2022.

3215001 2

[38] S. Popinet. Free computational fluid dynamics. ClusterWorld, 2(6), 2004.

7

[39] C. Qin, H. Zhao, L. Wang, H. Wang, Y. Zhang, and Y. Fu. Slow learning

and fast inference: Efficient graph similarity computation via knowl-

edge distillation. Advances in Neural Information Processing Systems,

34:14110–14121, 2021. 2

[40] Y. Qin, B. T. Fasy, C. Wenk, and B. Summa. A domain-oblivious approach

for learning concise representations of filtered topological spaces for

clustering. IEEE Transactions on Visualization and Computer Graphics,

28(1):302–312, 2021. doi: 10.1109/TVCG.2021.3114872 2

[41] Y. Qin, G. Johnson, and B. Summa. Topological guided detection of ex-

treme wind phenomena: Implications for wind energy. In 2023 Workshop

on Energy Data Visualization (EnergyVis), pp. 16–20. IEEE, 2023. doi: 10

.1109/energyvis60781.2023.00010 1

[42] H. Saikia, H.-P. Seidel, and T. Weinkauf. Extended branch decomposition

graphs: Structural comparison of scalar data. In Computer Graphics

Forum, vol. 33, pp. 41–50. Wiley Online Library, 2014. doi: 10.1111/cgf.

12360 1, 2

[43] H. Saikia and T. Weinkauf. Global feature tracking and similarity estima-

tion in time-dependent scalar fields. In Computer Graphics Forum, vol. 36,

pp. 1–11. Wiley Online Library, 2017. doi: 10.1111/cgf.13163 2

[44] R. Socher, D. Chen, C. D. Manning, and A. Ng. Reasoning with neural

tensor networks for knowledge base completion. Advances in Neural

Information Processing Systems, 26, 2013. 5

[45] A. H. Squillacote, J. Ahrens, C. Law, B. Geveci, K. Moreland, and B. King.

The Paraview Guide, vol. 366. Kitware Clifton Park, NY, 2007. 8

[46] R. Sridharamurthy, T. B. Masood, A. Kamakshidasan, and V. Natarajan.

Edit distance between merge trees. IEEE Transactions on Visualization

and Computer Graphics, 26(3):1518–1531, 2018. doi: 10.1109/tvcg.2018.

2873612 1, 2, 3, 6, 7

[47] R. Sridharamurthy and V. Natarajan. Comparative analysis of merge

trees using local tree edit distance. IEEE Transactions on Visualization

and Computer Graphics, 29(2):1518–1530, 2021. doi: 10.1109/tvcg.2021.

3122176 2

[48] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux. The

topology toolkit. IEEE Transactions on Visualization and Computer

Graphics, 24(1):832–842, 2017. doi: 10.1109/TVCG.2017.2743938 8

[49] F. Wetzels, M. Anders, and C. Garth. Taming horizontal instability

in merge trees: On the computation of a comprehensive deformation-

based edit distance. In 2023 Topological Data Analysis and Visualiza-

tion (TopoInVis), pp. 82–92. IEEE, 2023. doi: 10.1109/topoinvis60193.2023.

00015 2

[50] F. Wetzels, H. Leitte, and C. Garth. Branch decomposition-independent

edit distances for merge trees. In Computer Graphics Forum, vol. 41, pp.

367–378. Wiley Online Library, 2022. doi: 10.1111/cgf.14547 2

[51] K. Xia and G.-W. Wei. Persistent homology analysis of protein structure,

flexibility, and folding. International Journal for Numerical Methods in

Biomedical Engineering, 30(8):814–844, 2014. doi: 10.1002/cnm.2655 1

[52] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural

networks? arXiv preprint arXiv:1810.00826, 2018. 2, 5, 8

[53] L. Yan, T. B. Masood, F. Rasheed, I. Hotz, and B. Wang. Geometry aware

merge tree comparisons for time-varying data with interleaving distances.

IEEE Transactions on Visualization and Computer Graphics, 2022. doi:

10.1109/tvcg.2022.3163349 2, 3, 6, 7, 8, 9

[54] L. Yan, Y. Wang, E. Munch, E. Gasparovic, and B. Wang. A structural

average of labeled merge trees for uncertainty visualization. IEEE Trans-

actions on Visualization and Computer Graphics, 26(1):832–842, 2019.

doi: 10.1109/tvcg.2019.2934242 2

[55] G. Yehudai, E. Fetaya, E. Meirom, G. Chechik, and H. Maron. From local

structures to size generalization in graph neural networks. In International

Conference on Machine Learning, pp. 11975–11986. PMLR, 2021. 4

[56] Z. Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou. Comparing stars: On

approximating graph edit distance. Proceedings of the VLDB Endowment,

2(1):25–36, 2009. doi: 10.14778/1687627.1687631 2

[57] A. Zia, A. Khamis, J. Nichols, U. B. Tayab, Z. Hayder, V. Rolland,

E. Stone, and L. Petersson. Topological deep learning: A review of

an emerging paradigm. Artificial Intelligence Review, 57(4):77, 2024. doi:

10.1007/s10462-024-10710-9 2

