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Abstract

Recommender systems (RSs) are susceptible to Interaction-level
Membership Inference Attacks (IMIAs), which aim to determine
whether specific user-item interactions are present in the training
data of the target RS. However, existing IMIAs struggle with in-
ferring the membership of tail interactions, i.e., the interactions
involving tail items, due to the limited information available about
these items. This paper introduces MINER, a new IMIA designed to
enhance attack performance against RSs with long-tailed item distri-
bution. To address the scarcity issue of tail items, first, MINER lever-
ages the Knowledge Graphs (KGs) to obtain the auxiliary knowledge
of tail items. Second, MINER leverages a Bilateral-Branch Network
(BBN) to initially learn from the head interactions and gradually
shift attention to tail interactions. The BBN trains two branches
independently, with one branch trained on interaction samples with
the original long-tailed item distribution and the other on interac-
tion samples with a more balanced item distribution. The outputs
of the two branches are aggregated using a cumulative learning
component. Our experimental results demonstrate that MINER
significantly enhances the attack accuracy of IMIA, especially for
tail interactions. Beyond attack design, we design a defense mecha-
nism named RGL to defend against MINER. Empirical evaluations
demonstrate that RGL effectively mitigates the privacy risks posed
by MINER while preserving recommendation accuracy. Our code
is available at https://github.com/dzhong2/MINER.
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1 Introduction

Recommender systems (RSs) suggest new items to users by learning
user preferences from historical interactions [36]. Recently, RSs
have been widely used across various domains such as finance,
healthcare, and education.

Despite their effectiveness, RSs are vulnerable to the Membership
Inference Attacks (MIAs) [37]. The existing MIAs on RSs fall into
two categories: (i) User-level MIA (UMIA) infers whether the inter-
actions of a specific user were used by the target RS for training
[41, 46]; (ii) Interaction-level MIA (IMIA) [44] infers if a specific
user-item interaction was present in the training data.

This paper primarily focuses on IMIA. Specifically, we follow [46]
and consider an adversary who has black-box access to the target
RS, i.e., he can access the top-k items recommended to the users.
However, the adversary does not know the respective preference
scores. The adversary’s goal is to infer if the interaction between
a specific user u and a particular item i exists in the training data
of the target RS system, based on u’s top-k recommendations. The
user-item pair (u, i) is called a member if it exists in the training
data and a non-member otherwise.

Although the existing IMIA [44] has demonstrated its effective-
ness, it suffers from two significant drawbacks: (i) It relies on the
impractical assumption that the adversary possesses white-box
access to the target RS (i.e., the adversary can access the model
parameters); (ii) As will be shown in our empirical study (Sec. 5),
it exhibits poor performance on the inference of tail interactions,
i.e., the interactions involving tail items (e.g., unpopular or new
products). However, the tail interaction can unveil more sensitive
information than the head ones. For example, consider a healthcare
recommender system. Determining whether a patient has been
treated (“interacted”) with HIV (a rare disease) carries greater sensi-
tivity than discerning whether the user has been treated with flu, a
common disease. Given the prevalence of long-tailed distributions
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Table 1: Comparison between the existing MIA attacks
against recommender systems and our work.

Work Adversary KG L‘()ng‘-taqed MIA
access distribution
[41,46] | Black-box X X User-level
[44] White-box | X X
MINER Black-box v % Interaction-level
(Ours)

in recommender systems [34, 43], it is crucial to understand the
privacy vulnerabilities of tail interactions against IMIAs.

Attack design. We introduce MINER, a new Interaction-level
Membership INferencE Attack tailored for Recommender Systems
with long-tail item distribution. Table 1 summarizes the key differ-
ence between MINER and the prior works. Intuitively, it is challeng-
ing to infer the membership of tail interactions due to their scarcity
in the data. To tackle the scarcity issue, first, MINER leverages
Knowledge Graphs (KGs), which can be publicly accessible,! as ex-
ternal sources to harness auxiliary information of items, especially
the tail ones. Second, MINER includes an attack model that utilizes a
Bilateral-Branch Network (BBN) [50] comprising two branches: the
“main branch” and the “regularizer branch”, for membership infer-
ence. The two branches are trained with the samples whose attack
features are derived from the head and tail interactions, respec-
tively. Specifically, the samples for the main branch were obtained
by employing a uniform sampler over the original long-tailed distri-
bution, while the samples for the regularizer branch were obtained
by utilizing a re-balanced sampler from a more balanced item dis-
tribution. The bilateral branches are trained independently. Their
outputs are aggregated using a cumulative learning model with
an adaptive parameter that controls the attack model to initially
learn from the head interactions and gradually shift attention to
tail interactions.

Attack evaluation. We conduct an extensive set of experiments
to evaluate the performance of MINER on three mainstream KG-
based RSs and three real-world RS datasets. The empirical evalu-
ation demonstrates the effectiveness of MINER, achieving a con-
sistent attack accuracy of around 0.8. Notably, the attack accuracy
of head and tail interactions can be as high as 0.852 and 0.779, re-
spectively, demonstrating a remarkable increase of 35.5% in overall
attack accuracy and a 44.4% improvement in the inference accuracy
of tail interactions compared with the existing attacks [44, 46].

Defense. We design RGL to mitigate the privacy risk of MINER.
RGL incorporates a regularizer term, which penalizes the target
model’s loss with the attack model’s ability to distinguish between
member and non-member interactions, with the loss function of
the target model. As RGL does not have access to the attack model,
it trains a surrogate attack model to mimic MINER’s attack behav-
iors. The empirical evaluation demonstrates that RGL is effective
in protecting the recommender systems against MINER while pre-
serving the recommendation accuracy, even when the surrogate
attack model has a different architecture from that of MINER.

!Many large knowledge graphs, e.g., DBpedia, Wikidata, WordNet, and Geonames,
are openly available.
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2 Preliminaries

Consider U and I as the sets of users and items, respectively.
The user-item interactions are represented as a binary matrix I €
RIUIXITI where I,; = 1 indicates user u being interacted with
item i, and I, ; = 0 otherwise. Recommender systems (RSs) aim to
recommend items to each user based on their interactions. In the
following discussions, we use 7 to denote the user u’s recommen-
dations.

Interaction graph. The historical user-item interactions take
the form of an interaction graph (denoted as 7 G), in which each
node corresponds to either a user or an item, and each edge corre-
sponds to a historical user-item interaction.

Knowledge graph. Knowledge graphs (KGs) represent entities
as nodes and relations between entities as edges [5, 16, 42, 45]. AKG
with an entity set & and a relation set R can be formally defined as
KG ={(h,r,t)|ht € Er € R}, where each triple (h,r,t) denotes
a fact of the relation r between the entities h and ¢.

Head and tail interactions. In many real-world recommender
systems, user-item interactions typically follow a long-tailed distri-
bution, wherein a small fraction of items (head items) are popular
and attract the majority of user interactions. Meanwhile, the remain-
ing items (tail items) are seldom interacted with by users [34, 43, 48].
The itemset 7 can be partitioned into the head H and the tail T
by selecting a cutting point { [34]. In this paper, we adhere to the
convention in the literature [34, 43] and choose { = 20%, mean-
ing that 20% of items with the highest frequency constitute head
items, while the remaining 80% are considered tail items. An inter-
action that involves a head item is referred to as a head interaction;
otherwise, it is a tail interaction.

3 Problem Formulation

Adversary knowledge. Following the prior work [46], we assume
that the adversary possesses restricted black-box access to the target
model M by which the adversary can access the top-k items 7
recommended to the target user u by M. We consider two scenarios
regarding 7y (1) with ranking, where the adversary is aware of the
ranking of the items in #; and (2) without ranking, wherein the
adversary only possesses a list of recommended items but lacks
knowledge of their ranking. In both scenarios, the adversary cannot
access the preference scores of any recommended items, which
aligns with real-world RSs such as Amazon and Netflix [46].

Besides access to the top-k recommendations, we assume that
the adversary possesses knowledge of a shadow knowledge graph
(denoted as 7(@5), from which the adversary can extract side infor-
mation (such as features) of items. The adversary can obtain KG°
through the public repositories of knowledge graphs? or by crawl-
ing on open platforms which are provided by many real-world RSs
(e.g., Amazon and Netflix). KGS may belong to different domains
and exhibit different distributions compared to the knowledge graph
K G used by the target model.

In addition to the shadow knowledge graph, the adversary may
have access to a shadow interaction graph (denoted as I G°), which
comprises a collection of user-item interactions®. 7 G5 and 7@

2As mentioned in Note 1.
3Many data repositories for recommender systems are available online (e.g.,
https://github.com/caserec/Datasets-for-Recommender-Systems).
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Figure 1: The framework of MINER.

can originate from distinct domains and distributions and do not
necessarily share nodes and edges.

Problem definition. Given a knowledge graph KG, an inter-
action graph J G and its corresponding interactin matrix I, and a
target RS M (referred to as the target model) trained on both KG
and 7 G, the adversary seeks to infer whether there is an interaction
between a user u and an item i in 7 G based on u’s recommenda-
tions 7, and the adversary knowledge which consists of the shadow
knowledge graph K G" and the shadow interaction graph T G°. The
problem can be formulated as the design of a binary classifier A
that predicts the membership label y,

A ui i, 16%,KG° =y,
where y = 1 if A predicts I,,; = 1, and y = 0 otherwise.

4 MINER: Our Attack

In this section, we present the details of MINER. Figure 1 illus-
trates the framework of MINER. It consists of four components: (1)
training of knowledge-enhanced shadow target models; (2) derivation
of attack features; (3) training of the attack model; and (4) attack
inference. Specifically, our attack model consists of two branches:
the “main branch” and the main branch “regularizer branch”. The
main branch is trained on the samples with the original long-tailed
item distributions. In contrast, the regularizer branch is trained on
samples derived from a relatively balanced item distribution. Each
branch undergoes independent classifier training, enabling each to
learn the unique knowledge of inferring head and tail interactions,
respectively. Additionally, MINER incorporates a “cumulative learn-
ing” component to aggregate the predicted outputs of the bilateral
branches using an “a-adaptor” to control the attack classifier to em-
phasize learning from the head interactions initially and gradually
shift focus to the tail interactions. Next, we provide the details of
these components.

4.1 Training Knowledge-enhanced Shadow
Target Model

Inspired by the existing MIAs against RSs [44, 46], MINER relies
on the similarity between the embeddings of interacted items and
recommended ones for inference. As these item embeddings are
not available to the adversary who only has black-box access to the
target RS, we adopt the shadow model approach used in prior MIA

research [37, 46] to learn item embeddings. As the embeddings of
tail items generated by the shadow model may be of poor quality
due to the information scarcity of these items, we leverage knowl-
edge graphs as external sources to harness auxiliary information
and enhance the quality of item embeddings, particularly for tail
items.

Specifically, the adversary first constructs a shadow training
graph Gghadow, Which includes three components: (1) the shadow
knowledge graph KG°, (2) the shadow interaction graph 7 G°,
and (3) the recommendations R made by the target RS M obtained
through black-box access to M. Including the shadow knowledge
graph %G in Gshadow €nhances the generated item embeddings
by aggregating items and their features in KG°, while including R
in Gghadow ensures that M emulates the behaviors of M. Next, the
adversary trains a shadow model M5 on Ggp,dow. The architecture
of M3 can differ from that of M. Finally, the adversary uses the
item embeddings generated by M5, referred to as surrogate item
embeddings, to derive the attack features of MINER.

4.2 Deriving Attack Features

In general, recommender systems recommend items similar to those
that users have interacted with in the past. MINER exploits this
fact to derive the attack features from the similarity between the
interacted items and the recommended ones. Specifically, let
be the top-k recommendations of a given user u. We consider two
scenarios of 7:

e Case 1. Recommendations with ranking: All items in #, are
ranked by their preference scores.

e Case 2. Recommendations without ranking: The items in
Py are not ranked.

For Case 1, we compute the discounted similarity (denoted as
DS(i,i")) between a given item i and any item i’ € 7:

d(ej,ep)

DS(i, Y — Bk S
(.7) loga(rir + 1)

1)
where d() is a distance function, e; and e;» are the embeddings of i
and i’, respectively, and ry is the ranking of i’ in 7. Here the em-
beddings of i and i’ are the surrogate embeddings generated by the
shadow target model MS. The rationale behind using 1092(++1)
as a weight which is logarithmically inversely proportional to its
ranking, is rooted in the intuition that higher-ranked items hold
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more significance than lower-ranked ones. Therefore, assigning
greater weight to the similarity with items of higher ranking under-
scores their increased importance in the inference. The DS metric
can be readily adapted to Case 2 where the ranking of items in 7y,
is not available by assigning all items with the same ranking as 1,
leading to m =1 for all items.

To capture different aspects of item similarity and provide a com-
prehensive evaluation of item similarity for inference, we consider
multiple distance functions dj (), . .., d;() for Eqn. (1). Specifically,
we consider four distance functions (¢t = 4): the L1 distance, L2
distance, Cosine distance, and Bray-Curtis distance [7]. This will
lead to t similarity values for each item pair (i, i"). We concatenate
these ¢ values and form the similarity vector s;  of (i, i") as follows:

si,iw =< DS1(i, )] [IDS¢ (i, i) > @

where DS;(i,i’) is the discounted similarity of i and i’ (Eqn. (1))
measured by the j-th similarity function.

Based on the similarity vector, given a user-item pair (4, i), its
attack feature (denoted as x) of (u, i) is derived as follows:

X=Viep,llsiw (3)

The length of the feature x is t Xk, where ¢ is the number of similarity
functions, and k is the number of recommendations in 7.

4.3 Training Bilateral Branches

To address the scarcity issue of tail items at the sample level, we
design MINER as a bilateral branch network that consists of two
branches: A main branch trained on the long-tailed distribution, and
a regularizer branch trained on a relatively balanced distribution.
Next, we explain the details of the bilateral-branch structure.

Sub-network structure. Each branch trains a sub-network in-
dependently. In this paper, we use Multi-Layer Perceptron (MLP)
for both sub-networks. Both sub-networks share the same MLP
architecture, including the number of layers and the number of neu-
rons per layer. However, they do not share the parameters such as
weights and biases. This design choice allows the two branches to
learn distinct knowledge for head and tail interactions respectively.

Data samplers. Both branches perform their training on differ-
ent samples respectively. Specifically, the main branch utilizes a
uniform sampler that retains the long-tailed item distribution (de-
noted as Q,), while the regularizer branch employs a re-balanced
sampler to generate a set of interactions with a relatively balanced
item distribution (denoted as Q). Qp, emphasizes the head inter-
actions by following the original long-tailed distribution. Q,, on
the other hand, allocates more attention to the tail interactions by
down-sampling the head interactions.

Concretely, the uniform sampler draws a sample with an equal
probability P = 1/N, where N is the number of interactions in
the training set. For the re-balanced sampler, we categorize the
interactions into two classes (K = 2): the head interaction class and
the tail-interaction class. The re-balanced draws a sample from the

class j with a probability P; computed as follows:
wj N 1

Pj= ——, wj=(—=)7,

Zj:l wj J

4)

where f adjusts the reversed distribution of tail interactions, Nj is
the sample size of class j, and Npqx is the maximum sample size
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for all the classes. As the data follows the long-tailed distribution,
Npax = Ny (i.e., the number of head interactions), and thus wg = 1.
As [ increases, the re-balancing effect increases. We choose f to be
sufficiently large so that wr ~ wy.

Training data for each branch. First, we sample two sets of
interactions, denoted as I;;; and I, from the shadow interaction
graph 7 G° by employing the uniform sampler and the re-balanced
sampler, respectively. Then we feed I, and I, to the shadow RS
M and obtain the surrogate item embeddings (denoted as S, and
Sr), respectively. Next, from I,,, we sample a set of user-item pairs
{u, i}, with 50% of them being interacted (members) in I, and the
remaining 50% not interacted (non-members). For each sampled
user-item pair, we generate a corresponding sample (x, y) where x
is derived from S, by following Eqn. (3), and y is the membership
label (0/1) of (u, i) in I,;,. We use these samples to train the sub-
network of the main branch. Similarly, we generate the training
dataset from I, and use it to train the sub-network of the regularizer
branch. The two sub-networks thus are trained simultaneously on
two different datasets.

4.4 Cumulative Learning

To bridge the gap between head and tail interactions, we fuse the
decoupled information from both branches through a cumulative
learning component that utilizes a a-adapter. By adjusting the
hyperparameter « in the adapter, we can shift the training attention
from head interactions to tail interactions in a soft and flexible way.

Specifically, let f,, and f, be the feature vectors of the two sub-
networks, and W, and W, be the weights of the sub-networks
respectively. We integrate the two branches by controlling the
weights for f,, and f, with an adaptive trade-off parameter a. The
predicted logits are formulated as follows:

2= Wi f, + (1- W £, 6

where « is a y-adaptor, which is a function of the training epoch ¢:
Ry
=1- 6
* ( y X T) (©)

Here y > 1 is the regularizer rate, and T is the total number of
training epochs. Thus a will gradually decrease as the training
progresses. With a decreasing, MINER turns the emphasis from the
main branch to the regularizer branch, and thus shifts the attention
from head interactions to tail interactions.

With the logits z calculated by Eqn. (5), we calculate the probabil-
ity that the user-item pair (u, i) is a member/non-member through
a softmax function:

. e
p(y_yj)_zl'(_ 7N forj=1,2 7)
j=1
where y1=1 (member) and y2=2 (non-member).

Finally, we formalize the loss function as the aggregation over

the loss of the two branches:

Liotar = aL(Pym) + (1 = ) L(P, yr), ®)

where £ denotes the cross-entropy loss, p is the output probability
distribution (Eqn. (7)), and y,, and y, denote the ground-truth
membership labels of the samples in I;, and I, respectively.
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Table 2: Description of the three datasets.

Statistics Book LastFM Yelp
Interaction # of users 70,679 23,566 45,919
# of items 24,915 48,123 45,538
Graph - -
# of interactions 742,730 1,474,722 | 1,059,575
# of entities 88,572 58,266 90,961
Knowledge -
# of relations 39 9 42
Graph -
# of triplets 2,557,746 464,567 1,853,704

4.5 Inference

During the inference phase, MINER feeds the target user-item pair
to the trained attack classifier for inference. In particular, the target
user-item pair is fed into both branches of the attack classifier. As
both branches are equally important during testing, we simply
fix a to 0.5 in the test phase. Then, the features are fed to their
corresponding branches to obtain the prediction logits. Finally, the
logits are aggregated using equal weights to obtain the membership
inference result of the target user-item pair.

5 Evaluation

This section presents the results of our empirical evaluation ad-
dressing three research questions:

e RQ;: How effective is MINER against the representative RSs?

o RQ2:How do various factors influence the performance of MINER.
RQ3: Do the different components of MINER necessarily boost
the effectiveness of MINER?

5.1 Experimental Setup

All the experiments are performed on a server with eight NVIDIA
A100 GPUs. The algorithms are implemented in Python. Each ex-
periment is repeated five times and the average results are reported.

Target recommender systems and datasets. We employ three
representative KG-based recommender systems, namely KGAT [40],
CKE [45], and ECFKG [5]. We set the embedding length as 64. We
use a 3-layer KGAT model, with 64, 32, and 16 nodes at Layer 1,
2, and 3 respectively. We follow the same parameter settings of
CKE and ECFKG as in [45] and [5], respectively. We conducted
experiments on three real-world datasets: Amazon Book dataset
(Book) [1], LastFM dataset (LastFM) [2], and Yelp18 dataset (Yelp)
[3]. Table 2 summarizes the details of the three datasets.

Attack training and testing data. The attack training dataset
consists of all the interactions in the shadow training graph as
members. We also randomly sample a number of non-interacted
user-item pairs from the shadow training graph, and include them
in the attack training dataset as non-members. Regarding the at-
tack testing data, we randomly sample 10% of interactions from the
target graph as the members and a set of non-interacted user-item
pairs in the target graph as the non-members. Both training and test-
ing datasets are balanced between the members and non-members
as well as between head and tail interactions. The head and tail
interactions are evenly split between members and non-members.

Evaluation metrics. We consider two types of metrics to eval-
uate attack performance: (1) Attack accuracy (ACC) is measured as
the fraction of samples in the attack testing data that are correctly
inferred (either as members or non-members): (2) True Positive Rate

CIKM 24, October 21-25, 2024, Boise, ID, USA

Table 3: Attack accuracy of MINER and baselines under the
non-transfer setting (Book dataset, y=2). The highest attack
accuracy is marked with

ACC TPR@5%FPR
All | Head | Tail || All | Head | Tail
MINER | 0.82 0.85 0.78 0.15 0.18 0.14
CKE MIARS | 0.70 0.86 0.54 0.10 0.18 0.01
WBI 0.61 0.64 0.57 0.07 0.07 0.05

MINER [ 0.82 | 0.87 | 0.76 (| 0.16 | 0.18 [ 0.15

Model | Attack

KGAT | MIARS | 0.70 | 0.88 | 0.52 || 0.10 | 0.19 | 0.02
WBI 0.65 | 0.66 | 0.63 [| 0.05 | 0.07 | 0.03

MINER | 0.81 | 0.85 | 0.76 || 0.17 | 0.19 [ 0.14

ECFKG | MIARS | 0.75 | 0.88 | 0.61 || 0.09 | 0.20 | 0.02

WBI 0.63 | 0.63 0.62 || 0.06 | 0.09 | 0.04

at Low False Positive Rate (TPR@FPR) [8]: we measure TPR@5%FPR
in this paper. Regarding target model accuracy, we measure the hit
ratio of the top-k recommendations[14, 24, 42] (HR@XK), i.e., the
percentage of the ground-truth items that are included in the top-k
recommendations.

Baselines. We compare MINER with two existing attacks:

e MIARS [46]: As MIARS is a user-level MIA, we modified its
attack features for interaction-level inference. Specifically, the
attack features of MIARS were derived from the similarity be-
tween the embeddings of the top-k recommended items (instead
of all the recommended items by MIARS) and the target item.
We use the same MLP architecture outlined in [46] for the attack
model.

WBI [44]: WBI is a white-box IMIA that leverages the item
embeddings generated by the target model for attack inference.
Unlike MINER, WBI utilizes white-box access to the target RS.
Furthermore, it utilizes neither a shadow knowledge graph nor
a shadow interaction graph. Instead, it initially hypothesizes
an interaction graph (a shadow training dataset) by randomly
linking items with the target user. Subsequently, it leverages
the similarity between the item embeddings generated from the
original graph and those from the shadow training dataset to
assess the correctness of the inferred interactions.

5.2 Performance Evaluation (RQ;)

In this section, we present the performance of MINER under two
settings: (1) Non-transfer setting where the shadow graph and
the target graph are sampled from the same datasets; (2) transfer
setting where the shadow graph and the target graph are sampled
from different domains as well as different distributions.
Non-transfer setting. Table 3 reports the attack accuracy (ACC)
and TPR@5%FPR under the non-transfer setting. Overall, MINER
exhibits high effectiveness in all the settings, with the overall attack
ACC no less than 0.81, and the ACC for head interactions and tail
interactions as high as 0.87 and 0.78, respectively. Furthermore,
MINER consistently outperforms both baselines in terms of both
the overall ACC and the attack ACC of tail interactions. For in-
stance, when CKE is the target model, MINER surpasses MIARS by
17.1% and 44.4% in the overall attack ACC and for tail interactions,
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Figure 3: Impact of various factors on the performance of MINER (CKE Model, Book dataset)

respectively. Moreover, MINER outperforms WBI by 34.4% and
36.8% in terms of the overall attack ACC and for tail interactions,
respectively, even though WBI is a white-box attack. We believe
this is attributed to the fact that the embeddings of the tail items
generated by the target model (and used by WBI) do not encode
sufficient information for the attack due to their scarcity in the
training data. We have similar observations for TPR@5%FPR re-
sults and thus omitted the discussion due to limited space. These
observations demonstrate MINER’s effectiveness in improving at-
tack accuracy on tail interactions while maintaining competitive
performance on head interactions.

Transfer setting. Figure 2 presents the attack ACC of MINER
under the transfer setting, using the CKE model for both the target
and shadow models. Overall, as presented in Figure 2 (a), MINER
maintains high attack accuracy even when the shadow and target
graphs originate from different datasets. For instance, when the
shadow graph is sampled from the LastFM dataset and the target
graph sampled from the Book dataset, MINER can still achieve an
attack accuracy as high as 0.809. Second, as presented in Figure 2
(b) & (c), MINER maintains effectiveness for both head and tail
interactions under the transfer setting, with accuracy no lower than
0.785 and 0.685 respectively. These results demonstrate MINER’s
ability to transfer the knowledge, i.e., the fact that the interacted
items (members) are more similar to the recommended items than
the non-members, across different datasets.

5.3 Factor Analysis (RQ>)

In this section, we study the impact of three factors: (1) the param-
eter y (Eqn. (6)), (2) the number k of recommended items available
to the adversary, and (3) the size of the shadow knowledge graph,
on the attack performance of MINER. Due to the space limit, we
only present the results of the setting where the CKE model is the
target model and the Book dataset is the training graph.
Parameter y. We vary y from 2 to 10 and report the attack accu-
racy results of MINER in Figure 3 (a). We observe that increasing
y results in an improvement in the attack accuracy for head in-
teractions. However, a contrasting pattern emerged in the overall
accuracy and accuracy of tail interactions. This behavior can be
explained by considering the relationship between y and a (Eqn.
(6)). A higher y corresponds to an increased «, directing MINER to
predominantly learn from the main branch while diminishing the
contribution of the regularizer branch. As a higher y reduces the
regularizer branch’s learning capacity, the attack accuracy for tail
interactions experiences a decline, while an increase is observed for
head interactions. This phenomenon emphasizes the importance
of carefully selecting the y value to strike a balance in achieving
optimal attack accuracy across head and tail interactions.
Number of top-k recommendations. We vary k from 20 to 100
and report the attack accuracy in Figure 3 (b). MINER demonstrates
effective inference — its accuracy is consistently high (at least 0.75)
even when the number of recommended items is as small as 20.
Furthermore, while MINER shows an increase in attack accuracy



Interaction-level Membership Inference Attack against
Recommender Systems with Long-tailed Distribution

Table 4: Ablation study (CKE model, Book dataset)

Method Overall | Head | Tail

Base (MINER) 0.82 085 | 0.78

w/o ranking-based weight 0.79 0.84 | 0.74
w/0 main branch 0.67 0.69 | 0.64

w/o regularizer branch 0.70 0.86 | 0.54

for both head and tail interactions as k increases, it demonstrates a
slightly higher improvement for head interactions (9%) compared
to tail interactions (7%).

Size of shadow knowledge graph. Figure 3 (c) reports the
attack accuracy of MINER for the shadow knowledge graph of
various sizes. Notably, MINER maintains high effectiveness, with
an overall attack accuracy of no less than 0.8 in all settings even
when the shadow knowledge graph is as small as 20% of the target
knowledge graph K'G. Furthermore, the attack accuracy of MINER
grows with the increase in the size of the shadow knowledge graph.
In particular, MINER’s overall attack accuracy rises from 0.79 to 0.82,
while the attack accuracy of head interactions increases from 0.82
to 0.86, and the attack accuracy of tail interactions improves from
0.77 to 0.79, respectively, when the size of the shadow knowledge
graph grows from 20% to 180% of KG.

5.4 Ablation Study (RQs)

In this section, we conduct an ablation study by systematically
removing individual components of MINER to assess their impact
on the attack performance. The evaluated components include: (i)
the ranking-based weights in the similarity function (Eqn. (1)) and
(ii) each branch of the Bilateral-Branch Network (BBN).

Table 4 presents the results of the ablation study for the attack
accuracy (ACC) of MINER using the CKE model as the target RS
and the Book dataset as the training graph. The findings reveal
that the removal of any of these components leads to a reduction
in attack accuracy, demonstrating the positive impact of the three
components of MINER, especially the main branch and the regular-
izer branch, in maintaining the effectiveness of MINER. Specifically,
first, eliminating the ranking-based weights from the attack fea-
tures results in a 3% decrease in overall accuracy, accompanied by a
1% drop in the accuracy of head interactions and a more substantial
5% drop for tail interactions. This implies that the ranking-based
weights have a minor impact on improving the performance of
MINER. Second, when the main branch is removed, a more sig-
nificant accuracy drop (around 18%) is observed in overall attack
accuracy as well as the attack accuracy of head tail interactions.
Conversely, removing the regularizer branch results in a milder
accuracy drop (14%) in overall accuracy compared to removing the
main branch. This implies that the main branch is more important
to MINER than the regularizer branch. We believe this is because
the main branch is impacted less by the shift in item distribution
than the regularizer branch.

6 Defense

In this section, we present our defense mechanisms against MINER.
We consider the party who is responsible for training the target RS
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as the defender. Thus, the defender possesses full access to both the
target RS and its training data. We also assume the defender pos-
sesses some partial information about the attack model. Specifically,
the defender is aware that the attack model is designed as a binary
classifier. However, he has no knowledge of the model architecture
of the binary classifier. Therefore, he trains a binary classifier as
the surrogate attack model. The architecture of the surrogate attack
model can differ fundamentally from that of MINER.

6.1 Details of the Defense Mechanism

We adapt the regularization-based defense technique [27] to our set-
ting. In general, we introduce a regularization term to the training
loss function. The regularization term quantifies the (estimated) at-
tack’s power to distinguish between members and non-members. In
this paper, we estimate the attack’s power of distinguishing between
members and non-members as the distance between the probability
vector distributions of members and non-members determined by
the attack. Formally, let X = x1,...,xp, and Y = y1,...,y, denote
the sets of random variables drawn from distributions £ and Q,
respectively. The distance between X and Y is measured by the
KL-divergence between these two distributions:

. N X
Dis(X,Y) = KL(X||Y) = )" P(x;) log()) )
j=1 Yj
In our context, each x;(y;) is the softmax output of the member
(non-member) classes by the attack. Intuitively, the smaller the
distance value is, the closer the distribution of label confidence for
members and non-members is.

Based on the KL-divergence, RGL adds a penalty term to the loss

function of the target RS as follows:
Liotal = Lree +).DiS(P+,P7), (10)

where £7¢€ is the loss of the target RS, P* and P~ are the attack’s
inference probability distribution of member and non-members,
and A controls the amount of regularization applied to the model.
Intuitively, RGL penalizes the settings where the members and
non-members have significantly different distributions.

As the defender lacks access to the attack model, he will employ
the surrogate attack model to derive P* and P~. Concretely, the de-
fender generates the training data RGL7#" in which member/non-
member samples are randomly drawn from the training and testing
data of the target RS. Next, he trains a binary classifier on RGLT™",
The architecture of the classifier and the features in RGLT"%" can
differ from those of MINER. For instance, the surrogate attack
model might adopt a linear regression model and utilize the attack
features derived from item similarity measured by a single simi-
larity function (as opposed to multiple similarity functions as by
MINER). We will demonstrate that RGL remains effective across
various types of surrogate attack models (Sec. 6.2).

6.2 Evaluation

6.2.1 Setup. We use the same datasets and RSs as those for the
attack evaluation (Sec. 5).

Evaluation metrics. In terms of the effectiveness of the de-
fense mechanisms, we measure the downgrade in attack accuracy
after the defense. Formally, defense effectiveness is evaluated as:
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the attack accuracy before and after defense mechanisms. A higher
value indicates greater defense effectiveness. Concerning the im-
pact of defenses on the target model accuracy, we measure the
model accuracy loss because of defenses. Formally, it is calculated

, where Acco and Accp denote

as: Model accuracy loss = %. where HRp and HRp denote
the hit ratio of the target model before and after defenses. A lower
value indicates less model accuracy loss.

Baselines. We consider three methods for comparison with
RGL:

e Noisy embedding (NE) [49]: it introduces noise to the item em-

beddings. The noise follows the Laplace distribution with prob-
le—pl
B, where p

ability density function Pr(Lap(f) = x) = #e_
denotes the mean of the distribution, and f is the scale parame-
ter. A higher f results in larger amounts of noise, enhancing the
defense. We experiment with f = 1,2, 3,4,5.

e Embedding-based regularizer (ER) [44]: it introduces a regu-
larizer term, which measures the difference between the item
embeddings in consecutive epochs, to the loss function of the
target RS: £ = £7¢¢ + A||V;—; — V;|| (where V;, and V, repre-
sent the item embeddings in the previous and current epochs,
respectively). We use the same A values for both ER and RGL.

¢ Differential privacy (DP-SGD): We equip the target model
with differential privacy [11], a de facto privacy standard, by
adapting the DP-SGD method [4] to the target model. DP-SGD
adds Gaussian noise to the stochastic gradient descent (SGD)
during training of the target model. We use the privacy pa-
rameter € = 0.1,0.5,1.0,3.0,5.0 in the experiments. Note that,
although CKE is not a deep learning model, it still employs an
SGD algorithm to update the model parameters.

6.2.2  Performance of Defense. In this section, we evaluate the per-
formance of RGL in terms of its defense effectiveness, model ac-
curacy loss, and the trade-off between defense effectiveness and
model accuracy loss.

Defense effectiveness. Figure 4 (a) showcases the effectiveness
of RGL when the CKE model trained on the Book dataset is the
target model. We vary the parameter A = {0.1,0.2,0.3,0.4,0.5} (Eqn.
(10)) in our experiments. Notably, RGL proves effective in protecting
the target RS against MINER. Its defense effectiveness grows with
the increase of A, evidenced by the increase in defense effectiveness
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Table 5: Performance of RGL with various surrogate attack
models (CKE model, Book dataset, A = 0.4).

Surrogate Attack Defense | Accuracy
attack model features eff. loss
MLP 35.6% 12.5%
LR Same as MINER 31.4% 11.5%
SVM 32.7% 11.9%
MLP 31.7% 11.5%
LR A subset of MINER 29.4% 10.9%
SVM 30.4% 11.6%
MINER 37.9% 12.7%

to be as high as 37% when A = 0.5. Moreover, RGL provides effective
defense for both head and tail interactions across all the settings,
with the defense effectiveness on the head interactions consistently
higher than that on the tail interactions. Additionally, while both
head and tail interactions witness increases in defense effectiveness
when A increases, such an increase is more significant for head
interactions than tail interactions. This demonstrates that RGL is
more effective on head interactions than tail ones.

Model accuracy loss. Figure 4 (b) exhibits the results of model
accuracy loss by RGL. Overall, RGL does not result in significant
accuracy loss (at most a 13% decrease). Furthermore, the head in-
teractions experience a higher accuracy loss (15%) compared to
that of the tail ones (11%). Additionally, the model accuracy loss
consistently increases when the value of A grows. Together with
the results of defense effectiveness (Figure 4 (a)), these demonstrate
that stronger defense requires more sacrifice on model accuracy.

Defense-accuracy trade-off. Since RGL and the baselines uti-
lize different privacy parameters, direct comparisons of their de-
fense capabilities would be unfair. Therefore, we compare these
methods in terms of the trade-off between their defense effective-
ness and target model accuracy. To visualize this trade-off, we
construct a defense-accuracy curve that illustrates pairs of values
representing defense effectiveness and model accuracy loss. This
curve is generated by varying the privacy parameters of RGL and
the two baselines while measuring the corresponding defense ef-
fectiveness and model accuracy loss for each parameter value.

Figure 5 visualizes the defense-utility curve of RGL and the three
baselines when CKE model is the target model. RGL demonstrates
a superior trade-off between defense effectiveness and model ac-
curacy loss compared to the baselines. In particular, RGL achieves
higher defense effectiveness than the baselines under equivalent
model accuracy loss. Meanwhile, it suffers from substantially fewer
model accuracy loss than the baselines when they present similar
defense effectiveness. For instance, when the Book dataset is used
as the training data (Figure 5 (a)), RGL experiences 14% accuracy
loss when the defense effectiveness reaches 40%, while NE and
DP-SGD incur 58% and 92% of accuracy loss, respectively, under
the same defense effectiveness. This signifies the effectiveness of
RGL in balancing defense strength and maintaining utility.

Varying surrogate attack models. The surrogate attack model
of RGL may not have the same attack ability as MINER, especially
when it has a different architecture and/or features from that of
MINER. Thus we assess the defense effectiveness of RGL whose
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Figure 5: Trade-off between defense and target model performance (CKE model) of RGL and three baselines. The defense with
higher defense effectiveness and lower model accuracy loss has a better trade-off.

surrogate attack models have different architectures from MINER.
We consider three types of surrogate attack models: (1) a Multi-
layer Perception (MLP) neural network comprising 2 layers and
128 neurons per layer; (2) a linear regression (LR) model; and (3)
a Support Vector Machine (SVM). These three models use either
the same features as MINER (Eqn. (3)) or a subset of MINER’s fea-
tures. Specifically, among the four similarity functions that MINER
employ, we choose Cosine similarity and L2 similarity, and concate-
nate these two types of similarity values (Eqn. (2)) to derive the
attack features of the surrogate attack model.

Table 5 presents the results of defense effectiveness and model
accuracy loss for RGL using seven surrogate attack models. Overall,
the defense effectiveness of RGL is only slightly lower (by 6% to
22%) compared to using MINER as the attack model, even when
employing a simple linear regression model as the surrogate attack
model and utilizing only a subset of attack features. Furthermore,
the model accuracy loss by RGL is (marginally) better than that of
using MINER as the attack model, showing the trade-off between
defense power and target model accuracy.

7 Related Work

Membership inference attacks (MIAs). Homer et al. [21] first
introduced the concept of MIAs for genomics data analytics. Shokri
et al. [37] proposed the first MIA framework in the context of
machine learning. Recent years have witnessed active research
efforts in the MIA encompassing a variety of machine learning
models including federated learning [30], generative models [15],
language models [38], recommender systems [41, 44, 46], and graph
neural networks [19, 32]. We refer the readers to [22, 23] for some
excellent surveys on MIA and its defenses.

Privacy inference attacks against RSs. Recently, various types
of inference attacks, including attribute inference attacks [13, 47]
and membership inference attacks [41, 44, 46], have been developed
to attack RSs. Zhang et al. [46] introduced the first user-level MIA
(UMIA) against RSs to infer the inclusion of a user’s interactions in
the training data of the given RS. Wang et al. [41] also considered
UMIA and proposed a defense mechanism based on disentangled
representations. Yuan et al. [44] developed the first interaction-level
MIA (IMIA). They focused on Federated recommender systems. In
their approach, the adversary performs the attack by leveraging
white-box access to the item embeddings generated by the target
RS. In contrast to [44], we consider the black-box access to the

target RS, and utilize the shadow model to generate the surrogate
item embeddings for the attack inference.

Recommendations over long-tail data. Long-tail data has
been identified as a major challenge for recommender systems [26].
The existing techniques on long-tail recommendations can be broadly
categorized into three classes: pre-processing methods, in-processing
methods, and post-processing methods. The pre-processing tech-
niques modify the input graph through re-sampling [10], injecting
noise to the input graph [6], and injecting additional item-to-item
edges for tail items [29]. In-processing methods modify the model
by either decoupling the learning process of memorization and
generalization [48] or incorporating preference mechanisms for
long-tail items [28]. The post-processing methods modify the rec-
ommendations by re-ranking [33, 35], amplifying the exposure
of long-tail items [39], and substituting popular items with less
popular ones [25].

8 Conclusion

In this paper, we introduce MINER, a new IMIA tailored for rec-
ommender systems with long-tail item distribution. The key com-
ponent of MINER is a Bilateral-Branch Network (BBN) that aggre-
gates the knowledge learned from both head and tail interactions.
Our empirical evaluation demonstrates the effectiveness of MINER.
Furthermore, we design a novel defense mechanism named RGL
to mitigate the privacy risks posed by MINER, and demonstrate
that RGL can effectively defend against MINER while maintaining
recommendation accuracy.

We outline potential avenues for future research. One avenue
involves exploring whether the privacy risks associated with mem-
bership inference attacks extend to other forms of recommender
systems that do not leverage knowledge graphs [17, 18]. Another di-
rection is to investigate the susceptibility of recommender systems
to different types of privacy inference attacks, such as attribute
inference attacks [9, 31] and model inversion attacks [12, 20].
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