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Abstract—This paper presents a computational method, called
Bootstrapped Koopman Direct Encoding (B-KDE) that allows
us to approximate the Koopman operator with high accuracy
by combining Koopman Direct Encoding (KDE) with a deep
neural network. Deep learning has been applied to the Koopman
operator method for finding an effective set of observable func-
tions. Training the network, however, inevitably faces difficulties
such as local minima, unless enormous computational efforts are
made. Incorporating KDE can solve or alleviate this problem,
producing an order of magnitude more accurate prediction.
KDE converts the state transition function of a nonlinear system
to a linear model in the lifted space of observables that are
generated by deep learning. The combined KDE-deep model
achieves higher accuracy than that of the deep learning alone. In
B-KDE, the combined model is further trained until it reaches a
plateau, and this computation is alternated between the neural
network learning and the KDE computation. The result of the
MSE loss implies that the neural network may get rid of local
minima or at least find a smaller local minimum, and further
improve the prediction accuracy. The KDE computation however,
entails an effective algorithm for computing the inner products
of observables and the nonlinear functions of the governing
dynamics. Here, a computational method based on the Quasi-
Monte Carlo integration is presented. The method is applied to
a three-cable suspension robot, which exhibits complex switched
nonlinear dynamics due to slack in each cable. The prediction
accuracy is compared against its traditional counterparts.

Index Terms—Dynamics, Deep Learning Methods, Koopman
Direct Encoding

I. INTRODUCTION

THE Koopman operator allows us to linearize nonlinear
dynamics while retaining the properties of the original

nonlinear dynamical systems [1]. In the past decade, the Koop-
man operator theory has been extensively studied by diverse
communities, including fluid mechanics, nonlinear dynamics,
and system dynamics and control, and has been applied to
broad areas. In robotics, the Koopman lifting linearization
has made significant impacts in the modeling and control
of soft robotic systems [2], [3], active learning of mobile
robots [4], and dynamic modeling of switched dynamical
systems [5], to name just a few. However, the prediction
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accuracy of Koopman lifting linearization is still limited, even
for autonomous nonlinear systems. Finding an effective set
of observable functions remains a challenge despite recent
breakthroughs. Dynamic Mode Decomposition (DMD) and the
related methods such as Extended DMD (EDMD) based on
least squares estimate produce biased estimates in approxi-
mating the Koopman operator. The goal of the current work
is to establish an alternative approach that can supplement the
existing method and significantly improve prediction accuracy.

Neural networks have been used to find effective observable
functions. To the authors’ knowledge, Li, Dietrich, Bollt
and Kevrekidis first introduced deep learning for finding
observable functions [6]. Lusch, Kutz and Brunton used a
fully-connected autoencoder for obtaining a linear dynamics
and provided a procedure for determining observables based
on deep neural networks [7]. Extending the network they
proposed, several neural network architectures and/or algo-
rithms have been proposed to obtain the linear dynamics
and/or the control matrix [8]–[12]. The neural network-based
approaches to finding observables are now widely used and are
known to be effective to represent a nonlinear system with a
smaller number of observables. However, the approximation
accuracy is still not satisfactory in many applications, and
various network architectures are being explored [8]–[12].
Additionally, neural network training, in general, faces a
number of challenges, including local minima and over-fitting,
although many techniques have been developed to alleviate the
difficulties.

Koopman Direct Encoding (KDE) converts nonlinear dy-
namic equations governing a nonlinear system directly to a
linear dynamic equation [13]. KDE can be combined with
the deep learning method. Using the observables generated
through the deep learning, we can construct a linear model
based on KDE. The final layer of the deep neural network
is a linear layer, the weights of which can be replaced by
the ones obtained from KDE. In deep learning, the linear
final layer is trained together with the hidden layers based
on gradient descent, whereas the one derived from KDE is
fundamentally different - computations of inner products. It
can be expected that combining these two distinct methods
may produce synergistic effects.

In the current work, we aim to establish a hybrid method
where KDE and deep learning are integrated into simultaneous
optimization of both observable functions and the linear state
transition matrix. While the learning based on the gradient
descent and error backpropagation alone may get stuck at
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a local minimum, the proposed method may get rid of the
local minima or at least find a smaller local minimum during
the learning process, according to the significant reduction
prediction error in simulation experiments. KDE and error
backpropagation complement each other in seeking effective
observables and the Koopman linear model.

KDE entails computations of inner products in the space
of independent state variables. There are two approaches
to the computation of the inner products. One is the case
where explicit nonlinear dynamic equations are not available.
Ng and Asada [13], [14] developed a data-driven algorithm
for computing the inner products from data. Assuming the
integrand of the inner product is Riemann integrable, the
authors calculate multi-dimensional volumes for the Riemann
sum based on Delaunay triangulation. This calculation allows
us to compute KDE in the data-driven manner, but it is not
applicable to high-dimensional nonlinear systems because the
computational complexity O(N⌊d/2⌋) exponentially increases
depending on the system dimension d and the number of
sampling points N. The other approach is to exploit a given
set of nonlinear dynamic equations, which is the method
used in the current work. The algorithm of Quasi-Monte
Carlo (QMC) integration will be used for the inner product
computation, which is applicable to higher-order nonlinear
dynamical systems than that of Delaunay triangulation.

II. PRELIMINARIES

In this subsection, we briefly introduce the Koopman Direct
Encoding method for representing a nonlinear, autonomous
system as a linear state equation in discrete time. First,
consider a discrete-time dynamical system given by

xt+1 = F(xt) (1)

where x ∈X⊂Rd denotes a d-dimensional state vector, which
is involved in a dynamic range of the considered system, X.
The index t means the discrete time, t = 0,1, · · · . F : X→ X
is a nonlinear self-map, called a state transition function.

Let H be a Hilbert space and let us introduce a function
g(x) ∈ H : X → R, that maps the state variable x to a real
number, called an observable. Let g1,g2, · · · be an independent
and complete set of observable functions spanning H, and
define an infinite dimensional column vectors z(xt) as follows.

zt = z(xt) = [g1(xt),g2(xt), · · · ]T (2)

From Eq.(1), the infinite dimensional vector at time t + 1,
z(xt+1) can be written as

zt+1 = z(xt+1) = [g1(F(xt)),g2(F(xt)), · · · ]T (3)

Underpinned by the Koopman Operator theory, the time
evolution of the infinite dimensional vector z(xt) is expressed
as a linear state transition:

zt+1 = Azt (4)

where zt is treated as a new state vector in the lifted space.
In this paper, we adopt the inner-product formulation of the

above state transition matrix A, referred to as Koopman Direct
Encoding (KDE) [13]. Post-multiplying z(xt)

T to both sides of

Eq. (4) and integrating it over the dynamic range of the system
X, we can obtain the following relations:∫

X
z(xt+1)z(xt)

T dx = A
∫
X

z(xt)z(xt)
T dx (5)

Note that each element involved in the integrals represents
the inner product of two functions. Denoting these by infinite-
dimensional matrices, R and Q,

Q = AR (6)

R =

⟨g1,g1⟩ ⟨g1,g2⟩ · · ·
⟨g2,g1⟩ ⟨g2,g2⟩ · · ·

...
...

. . .

 (7)

Q =

⟨g1 ◦F,g1⟩ ⟨g1 ◦F,g2⟩ · · ·
⟨g2 ◦F,g1⟩ ⟨g2 ◦F,g2⟩ · · ·

...
...

. . .

 (8)

where ⟨,⟩ : H×H→ R is an inner product expressed as:

⟨ f1, f2⟩=
∫
X

f1(x) f2(x)dx (9)

where f1, f2 ∈H. The important point is that we can compute
A = QR−1 directly because R is a non-singular matrix. We
can confirm R’s non-singularity by noting that g1,g2, · · · are
independent in the inner-product space, by their definition.

Practically, we also need to truncate the number of observ-
ables to a finite number that is sufficient to linearize the given
nonlinear dynamics. This may cause the matrix R to be ill-
conditioned. As such, the pseudo-inverse can be used in lieu
of R−1, or the matrix A can be determined by solving a least
squares estimate problem associated with Q = AR.

III. KOOPMAN DIRECT ENCODING USING QUASI-MONTE
CARLO INTEGRATION

Although the KDE has been analytically formulated in the
previous section, the practical problem of KDE is how to
numerically compute the inner products of observables and
how to use it to linearize high-dimensional systems. To relax
this practical limitation for the computational complexity, we
introduce the Quasi-Monte Carlo (QMC) integration for the
inner-product computation in this section.

Monte Carlo (MC) integration is the numerical method for
stochastic-integral computation based on a uniform distribu-
tion and is one of the common methods for solving multivari-
ate integration while avoiding the curse of dimensionality. Let
f (·) :Rd →R be an integrand and x = [x(1)n x(2)n · · ·x(d)n ]∈Rd be
a n-th order random-variable vector sampled from a uniform
distribution. Then the MC integration I can be described as

I ≈

(
d

∏
p=1

(
x(p)

max − x(p)
min

))( 1
N

N

∑
n=1

f
(

x(1)n ,x(2)n , · · · ,x(d)n

))
(10)

where x(p)
max − x(p)

min denotes the integration interval for the
p-th element. Note that MC integration makes it possible
to perform multivariable integration without computing d-
dimensional volumes, which are required for the Riemann
sum, so that it can avoid the heavy computation. Because
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the error convergence of the MC integration is proportional
to 1/

√
N, the integration asymptotically approaches the true

value given that there are a sufficient number of sampling
points. It is possible to improve upon this convergence rate by
using pseudo-random variables which are generated based on
low-discrepancy sequences [15]. This numerical integration is
called QMC integration and the error convergence is known to
be proportional to 1/N, because the sequence gives sampling
points that distribute more uniformly over the range than the
one obtained by random sampling from a uniform distribution.
In other words, it can inhibit a temporary bias or sampling
to nearly identical points. There are several low-discrepancy
sequences used for QMC integration, and we adopted the
Halton sequence [16] in this paper.

In the following, we explain how QMC integration is used
for inner-product calculations for KDE. First, the pseudo-
random variables from the Halton sequence are generated and
scaled to fit the dynamic range of the system D. While the
defined domain for D is not necessary in the mathematical de-
scription in the original theory [13], which can handle infinite
spaces, the practical numerical treatment requires limiting the
state space to a user-defined range. This is because the dataset
needs to satisfy the condition that xt+1 = F(xt) ∈ D if xt ∈ D
for KDE computation, and this precondition is necessary to
generate pseudo-random variables that are enclosed in D.

To ensure that the variables are closed in D, we adopt a
maximum total energy constraint. Suppose that we have a
priori knowledge of the dynamical system we consider, then
we can easily obtain the Hamiltonian H of the system. If we
set the maximum value of H, we will be able to collect the
sample points from the subspace where H ≤ Hmax is satisfied.
Note that Hmax is a hyperparameter that can be determined
according to the region of the subspace we would like to
consider.

Based on the above, we will explain an example to illustrate
the sampling method using the Halton sequence with the
energy constraint. Suppose we consider the example of a single
rigid-rod pendulum. The equation of motion is described as
follows:

mLθ̈ =−mgsinθ (11)

where θ , m, g and L denote angle of the pendulum, mass,
acceleration of gravity, and a rigid cable length, respectively.
The Hamiltonian of the system in the case of m = 1 and L = 1
is described as:

Hpend =
θ̇ 2

2
+g(1− cosθ) (12)

If we set the maximum total energy of the system we consider
to be obtained at θ = 3.1 and θ̇ = 0, then Hpend,max ≈ 19.6.
Then, the quasi-random points generated from the Halton
sequence are sampled from the region where Hpend(θ , θ̇) ≤
Hpend,max is satisfied. Fig. 1 shows the 2D histogram of the
system mentioned above. As can be seen, the quasi-random
points are distributed through the region inside the isoenergetic
surface of Hpend,max. Note that this sampling method can only
be applied to stable or marginally stable systems because the
precondition no longer holds if a current state xt is mapped
outside of D by F(·).

Fig. 1. The example of the 2D histogram of the sampling points. (N=25,788,
bin=50×50) The color bar denotes the frequency.

On the basis of the sampling method mentioned above, we
can rewrite the inner-product calculation for KDE as follows:

⟨g j,gi⟩ ≈

(
d

∏
p=1

(
x(p)

max − x(p)
min

))( 1
N

N

∑
n=1

g j(xn)gi(xn)

)
(13)

⟨g j ◦F,gi⟩ ≈

(
d

∏
p=1

(
x(p)

max − x(p)
min

))( 1
N

N

∑
n=1

g j (F(xn))gi(xn)

)
(14)

where xn is a pseudo-random variable generated from the
Halton sequence. Here, the key point is that the limitation
on the number of system dimensions is relaxed by computing
KDE using QMC integration.

IV. HYBRID KDE-DEEP LEARNING METHOD

This section presents the architecture of neural networks to
compute a Koopman operator called Bootstrapped Koopman
Direct Encoding (B-KDE). The framework of this computation
is composed of two processes: (a) Pretraining and (b) Training.
The details of the computation are shown in Algorithm 1.
In the pretraining process, the deep encoder network for
obtaining the Koopman operator is trained as shown in Fig.
2. This network is a fully-connected encoder network with an
additional linear layer. This network also corresponds to the
encoder and the linear layer in [7]. The weight matrix of this
final layer at the end of the pretraining process corresponds to
the initial estimate of the Koopman matrix: Apre.

The input dataset for this network are the state variables
xt ∈ Rd . In this study, a self regularized non-monotonic
activation function (Mish) [17] is employed as the activation
function for the hidden layers (HL). The intermediate outputs
that pass through the first HL to the k-th HL are observables,
g(xt) ∈ Rm, and zt = [xt ,g(xt)]

T are input to the linear layer.
The linear layer’s outputs are linearly combined and fed into
the output layer without a bias term. The activation function
of the output layer is simply an identity function. With respect
to the outputs, the following Mean Squared Error (MSE) loss
function is minimized based on error backpropagation, and it
allows the network to estimate ẑt+1 ∈ Rd+m from zt ∈ Rd+m.

L = ||ẑt+1 − zt+1||22 = ||Aprezt − zt+1||22 (15)
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Fig. 2. The neural network architecture of the Bootstrapped Koopman Direct
Encoding.

where zt+1 can be found by feeding xt+1 into the network and
extracting the output from the linear layer. Note that we only
know the ground truths of the state variables, and there is no
exact information of ground truths for the observables. In other
words, g(xt) is only a function estimated based on the training
of the network, and there is no a priori information about
the best set of functions for the given system. However, this
loss function enforces the observables to enforce linearity by
penalizing deviation from the linear relationship in predicting
the one-step-ahead transition of the observables as shown
in Eq. (15). This treatment is practically useful when using
deep learning to find appropriate observables to linearize a
given nonlinear dynamics. However, this loss function enforces
the observables to guarantee linearity to some extent by
considering the linearity of the observables at one step ahead
as shown in Eq. (15). This treatment is practically useful when
using deep learning to find appropriate observables to linearize
a given nonlinear dynamics. As pointed out in [7], it is also
possible to extract xt from g(xt) by implementing a decoder
network, but in the case of this network, the result from
the output layer contains the state variables, so the decoder
architecture is unnecessary.

In the training phase, the weight matrix of the linear layer
is replaced with the Koopman matrix calculated based on
KDE with the QMC integration, AKDE as shown in Fig. 2.
The reason why we performed the pretraining is that it is
necessary to obtain a suitable set of observables to linearize
the dynamics to some extent for computing KDE. Using a
network that has not been pre-trained at all may cause the
computation of Eq. (6) to diverge. The KDE computation is
shown to allow us to obtain a more accurate prediction of ẑt+1
than the one computed by EDMD with the same observables
[14]. However, there is room to finely optimize observables
for KDE because it only calculates a Koopman matrix once.
B-KDE makes it possible to tune both a Koopman matrix
and observables based on KDE. As shown in Fig. 2, B-KDE
can iteratively compute the Koopman matrix by KDE with
the QMC integration and optimize the observable selection
in order to obtain a Koopman matrix with better estimation
accuracy. Let this optimized Koopman matrix be AB-KDE for
convenience. In the training process, the loss function is the
same as Eq. (15) except for using AKDE instead of Apre. In
the next section, we will report the details about the result by
showing two illustrative examples.

Algorithm 1 Bootstrapped Koopman Direct Encoding.
Input: xt , xt+1
Output: AB-KDE , g(·)

Initialization
1: set the neural network shown in Fig. 2

PRETRAINING PROCESS
2: for each pretraining epoch do
3: calculate gt = g(xt) & gt+1 = g(xt+1)
4: calculate zt = [xt ,g(xt)]

T & zt+1 = [xt+1,g(xt+1)]
T

5: calculate ẑt+1 = Aprezt
6: calculate MSE = ||ẑt+1 − zt+1||22
7: optimize weight matrices based on backpropagation
8: if epoch == end of pretraining then
9: compute AKDE based on Eq. (13) and Eq. (14)

10: replace a weight matrix of LL with AKDE
11: Break
12: end if
13: end for

TRAINING PROCESS
14: for each training epoch do
15: calculate gt = g(xt) & gt+1 = g(xt+1)
16: calculate zt = [xt ,g(xt)]

T & zt+1 = [xt+1,g(xt+1)]
T

17: calculate ẑt+1 = AKDEzt
18: calculate MSE = ||ẑt+1 − zt+1||22
19: optimize weight matrices based on backpropagation
20: if epoch == user-defined epoch then
21: recalculate AKDE
22: replace AKDE with new AKDE
23: Break
24: end if
25: end for
26: extract AB-KDE from the weight matrix of LL
27: return AB-KDE , g(·)

V. RESULTS AND DISCUSSION

A. Pendulum with a Damping Component

First, we checked the effectiveness of B-KDE by demon-
strating lifting linearization for a single pendulum with a
damping component. The equation of motion is described as
follows:

mLθ̈ =−mgsinθ −bθ̇ (16)

where θ denotes angle of the pendulum. In this example,
m = 1, L = 1 and b = 0.3 are used as the model parameters.
As seen from Eq. (16), this system can be described by
θ and θ̇ , and all the trajectories finally converged to an
equilibrium point at θ = 0 and θ̇ = 0 because of the damping
component. The training data was collected based on the
sampling method we previously explained. In this case, the
maximum total energy constraint was the same as the example
of the simple pendulum because the difference between the
equations are only a dissipation function with respect to the
total energy. Under the above condition, xt and xt+1 = F(xt)
with N=51,558 different initial conditions were computed
based on Eq. (16). Additionally, 259 trajectories with different
initial conditions were also simulated for the validation dataset,
and each trajectory has 102 time-steps (∆t = 0.1), including
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the initial conditions, in order to check the future prediction
accuracy based on the Koopman matrix.

Table I shows parameters used for training the B-KDE
model to linearize the pendulum system. As explained earlier,
the training data contained 51,558 points for each xt and
xt+1, and xt+1 was used as the ground truth for the loss
calculation and the KDE computation. The learning rates for
the pretraining and training were set to be different because
B-KDE worked as a final adjustment of the observables and
therefore the lower learning rate was considered to be more
appropriate following pretraining.

TABLE I
NEURAL NETWORK PARAMETERS AND CHARACTERISTICS FOR B-KDE TO

LINEARIZE THE PENDULUM MOTION.

Parameters and Characteristics Value
The Number of Hidden Layers (HL) 3

Activation Function for HL Mish
Width of 1st HL 100
Width of 2nd HL 100
Width of 3rd HL 100

Width of Linear Layer 102
Learning Rate for Pretraining 5.0×10−4

Learning Rate for B-KDE 5.0×10−10

Pretraining Epochs 400
Training Epochs 200

Fig. 3 shows the transition of MSE of the state variables
during training process of B-KDE. In this case, the training
process was switched from the pretraining to the training
of B-KDE at 400 epochs. As can be seen in Fig. 3, each
MSE drastically decreased when the Koopman matrix was
calculated based on KDE. This gap at 400 epochs indicates the
effectiveness of KDE. Moreover, the MSE gradually decreased
as training of B-KDE progressed. The weight matrix of the
linear layer was updated for a second time at 500 epochs
based on KDE using the tuned observables in order to reduce
the loss. As shown in the inset of Fig. 3, the MSE clearly
decreased by performing the second KDE. Fig. 4 shows the
comparison of the typical estimates among B-KDE, KDE
and pretraining. It can be seen that the estimation accuracy
improved in the order of pretraining, KDE and B-KDE. This
result implies that we can obtain a more accurate Koopman
matrix by tuning observables via B-KDE. It may also be
possible to improve the accuracy of pretraining by improving
the loss function, but this is outside the scope of this paper.

Fig. 5 depicts a comparison between the ground truth and
the estimate computed with AB-KDE in the θ − θ̇ phase plane
and time evolution of θ and θ̇ . The time evolution with 259
different initial θ0 and θ̇0 from the evaluation dataset was
displayed in superposition. As can be seen from Fig. 5, it
is possible to estimate the 101 steps-ahead time evolution for
any initial conditions, indicating that the ground truths and
the estimated values were qualitatively in good agreement
over a long time horizon. In Koopman operator theory, the
T -step-ahead estimate, ẑT , is simply expressed as ẑT = AT z0,
but the observables were recalculated at each step in our
case. The reason why we performed this calculation is due
to the following three points: (a) The estimation errors of the

Fig. 3. The comparison among the MSEs of the state variables during training
process of B-KDE. The inset shows an enlarged view in the linear scale after
390 epoch.

Fig. 4. The comparison of typical estimated time evolution among B-KDE,
KDE, and pretraining. The black line denotes the ground truth.

observables ||ĝT − g(xT )||22 are considered to be larger than
those of the state variables ||x̂T − (xT )||22 because there are no
exact ground truths for the observables. (b) What we would
like to predict is not the time evolution of observables, but
that of state variables. (c) Recalculating observables at each
time step can suppress the effect of these unstable poles due
to the numerical artifacts in the computation of Eq. (6) on the
prediction. The same calculation flow was used for the latter
case study in order to evaluate estimation errors.

Fig. 6 shows the result of the quantitative evaluation of
prediction accuracy based on Mean Absolute Error (MAE)
for each time step. For comparison, the EDMD results are
also shown when 100 radial basis functions were used as
the oSbservables for EDMD. The solid lines denote MAE of
θ and θ̇ , and the areas filled with colors mean the ranges
of standard deviation of ±1σ . It can be seen from Fig. 6
that a sufficiently small estimation MAE with respect to the
maximum and minimum values of θ and θ̇ in the phase plane
can be achieved even 101 steps ahead. The MAE appeared
to slightly oscillate because the maximum state values varied
with the period of the pendulum motions.

B. Three-cable pendulum

The results of the pendulum example indicated that B-KDE
allows us to linearize the nonlinear dynamical system, but this
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Fig. 5. The comparison between the ground truths (upper left), all the
estimates based on B-KDE (upper middle), and the typical estimates based
on B-KDE (upper right) in θ − θ̇ plane, and time evolution of state variables
(bottom). The color denotes the different initial conditions.

Fig. 6. The Mean Absolute Error (MAE) of θ and θ̇ for each time step based
on EDMD (top) and B-KDE (bottom). The filled areas denote the ranges of
standard deviation of ±1σ .

system has a relatively benign nonlinearity. In order to check
whether this method can linearize more complex nonlinear
dynamical systems with higher dimensions, we attempted to
use B-KDE to linearize a three-cable pendulum, which is a
6-dimensional switched nonlinear system.

Fig. 7 depicts the schematic diagram of the three-cable
pendulum. The pendulum consists of a point-mass bob with
mass m = 1 hanging from three cables with unstretched length
L0. The coordinate of the bob is P = (x,y,z). The pivot points
of each cable, A0, B0 and C0 are on the circle with a radius of
0.5 m on the z = 0 plane. A0, B0 and C0 form an equilateral
triangle and the centroid matches with O, which is the origin of
the coordinate system. The unstretched length of each cable
is set to be L0 = 1 and the elongation of each cable dLi is
defined as follows:

dLid =
√
(x− xid)2 +(y− yid)2 +(z− zid)2 −L0 (17)

where id corresponds to the cable identifier A, B or C. In this
model, assuming that the tension of the cables follow Hooke’s

Fig. 7. Three-dimensional three-cable pendulum.

law, the product of the spring constant k = 2000 and dLid for
each cable gives the tension applied to the cable. Additionally,
the taut-slack conditions of the cables are switched based on
Eq. (17). If dLid ≥ 0, then the cable is taut, and tension of the
cable id is generated, whereas if dLid < 0, then the tension
of the cable is set to be zero. Therefore, the 23 = 8 different
taut-slack conditions vary depending on the condition of each
of the three cables. The damping component is assumed to be
proportional to be the velocity of the bob, v =

√
ẋ2 + ẏ2 + ż2.

The kinematic energy, K and potential energy, U are described
as follows:

K =
1
2

m(ẋ2 + ẏ2 + ż2) (18)

U = mgz+
1
2
(kAdL2

A + kBdL2
B + kCdL2

C). (19)

The Lagrangian, L of the system can be written as L =
K −U . Because the system is assumed to lose its energy due
to friction, the dissipation function, E0 was also considered as
follows:

E0 =
1
2

b(ẋ2 + ẏ2 + ż2). (20)

The Euler-Lagrangian equations can be obtained with respect
to ẍ, ÿ, z̈ and were solved as an initial value problem of the
system of ordinary differential equations.

The training data were collected based on the pseudo-
random sampling method with the total energy constraint. In
this example, Hmax is set based on the potential energy of a
free-falling mass point from a starting position of P= (0,0,0).
Under the above condition, xt and xt+1 =F(xt) with N=36,074
different initial conditions were computed based on the gov-
erning equations. Additionally, 191 trajectories with different
initial conditions were computed as for the validation dataset.
The time step and the number of time steps for the simulation
were set to be 0.02 and 200, respectively.

Table II shows parameters used for training the B-KDE
model to linearize the three-cable pendulum system. Because
this system has a more challenging nonlinearity and higher di-
mensions than the pendulum system, we increased the number
of HLs and the width of the linear layer.

Fig. 8 shows the result of lifting linearization for the
three-cable pendulum system. Using 506 lifted state variables,
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TABLE II
NEURAL NETWORK PARAMETERS AND CHARACTERISTICS FOR B-KDE TO

LINEARIZE THE THREE-CABLE PENDULUM SYSTEM.

Parameters and Characteristics Value
The Number of Hidden Layers (HL) 4

Activation Function Mish
Width of 1st HL 100
Width of 2nd HL 100
Width of 3rd HL 100
Width of 4th HL 500

Width of Linear Layer 506
Learning Rate for Pretraining 1.0×10−2

Learning Rate for B-KDE 1.0×10−8

Decay Rate of Scheduler for Pretraining 0.999
Pretraining Epochs 2500

Training Epochs 1000

Fig. 8. The comparison between the ground truths (black) and the estimates
based on B-KDE (red) and EDMD with radial basis functions (blue) from the
viewpoints of x− ẋ, y− ẏ, z− ż phase planes.

including both state variables and observables, we were able
to obtain prediction results that were in qualitatively good
agreement with the ground truth data, even if the system
dimension is high. For comparison, the results of EDMD with
500 radial basis functions are also shown. Additionally, Fig.
(9) shows the comparison of typical estimates among ground
truths, B-KDE, and EDMD to make it easy to compare the
results intuitively.

Fig. 10 shows the quantitative evaluation of prediction
accuracy based on MAE for each time step. As can be seen
from the Fig. 10, MAE increased as the prediction were
repeated several tens of time steps ahead because of the
accumulation of prediction errors. However, the MAE values
are smaller than the maximum and minimum values of the
dynamic range seen in the Fig. 8, and this result indicated
that complex nonlinear systems such as this switched system

Fig. 9. The comparison of typical estimated time evolution between B-KDE
and EDMD. The black line denotes the ground truth.

Fig. 10. The quantitative evaluation of prediction accuracy based on MAE
for each state variable at each time step based on EDMD (top) and B-KDE
(bottom). The filled areas denote the ranges of standard deviation of ±1σ .

can be linearly approximated based on B-KDE.

C. Limitations and Open Questions

Here we would like to discuss limitations and open ques-
tions about B-KDE.

What is the upper bound of the system dimensions?
The degree to which B-KDE can handle high-dimensional

systems is governed by the system dimensions where the
inner product calculation can be performed. To the authors’
knowledge, the QMC performance regarding the system di-
mensions highly depends on the integrand and the type of low
discrepancy sequences used for sampling points. In addition,
it is also important to consider at what dimensions the low
discrepancy sequences can uniformly generate sample points.
Depending on the dimension of the system being considered,
sequences other than the Halton sequence may be appropriate
in order to maintain uniformity of the sampling points in high
dimensional systems.

How many sampling points are required for B-KDE?
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Because B-KDE generates observable functions based on
the deep encoder architecture, it is unknown that what the
ground truths of the inner products for each pair of observables
are. This indicates that we cannot estimate the integration
errors, and hence, the number of sampling points cannot be
determined based on the errors. However, it is possible to
use our proposed method for calculating KDE based on QMC
integration for the naive KDE computation. In this case, we
can adopt functions whose inner products we can analytically
compute, such as elementary functions, as observables. We
believe that this treatment allows us to estimate the suitable
number of sampling points based on the integration error
analysis.

How many times B-KDE must be repeated?
In the computational framework of B-KDE, tuning of the

observables and AKDE was iteratively repeated, and the calcu-
lation was completed when the loss function reached a plateau.
In this study, the indicators of how often AKDE should be
updated and how much of the same AKDE should be used to
tune the observations are determined by the user. It would be
desirable to be able to automatically determine these values
from the gradients and/or absolute values of the loss function.

How to tune the network hyperparameters
The neural network for B-KDE has some hyperparameters,

including the widths of the hidden layers, activation function,
loss function, and learning rates. These hyperparameters need
to be tuned for a given nonlinear system for which linearization
is being performed. It is desirable to devise a method to adjust
hyperparameters so that a given accuracy can be achieved with
as small a number of observables as possible. A systemic way
to accomplish this hyperparameter tuning remains elusive.

How to remove unstable poles due to the numerical
artifacts?

As mentioned before, AB−KDE sometimes contains unstable
poles and it requires recalculating observables in order to avoid
the divergence of the predicted results. From the viewpoint
of control applications, we believe that it is better for us
to linearly compute multi-step predictions based on AB−KDE
instead of recalculating them. Although we can apply model
predictive control (MPC) with a short time horizon or non-
linear MPC for the B-KDE model. One solution is to apply
singular value decomposition to AB−KDE and remove unstable
poles based on the threshold for the singular values. In
addition, since prior works, such as in the reference [18],
provide methods to suppress unstable poles, combining B-
KDE with such a method can probably solve this problem.

VI. CONCLUSIONS

In this paper, we presented a novel neural network structure
called Bootstrapped Direct Encoding (B-KDE), which allows
us to compute a Koopman matrix with high accuracy. This
method consists of combining Koopman Direct Encoding
(KDE) with a deep encoder network, which makes it possible
to finely tune both observables and a Koopman matrix by
iterating the optimization process. Additionally, by introducing
Quasi-Monte Carlo integration for the inner-product compu-
tation of KDE, we relaxed the practical restriction in our

prior works which limited the number of system dimensions.
Through the examples of a single pendulum and a three-
cable pendulum, it was shown that it is possible to linearize
nonlinear dynamical systems with B-KDE even in the case of
a high-dimensional switched system.
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