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Abstract—A global modeling methodology based on Koopman
operator theory for the dynamics of rigid bodies that make and
break contact is presented. Traditionally, robotic systems that
contact with their environment are represented as a system
comprised of multiple dynamic equations that are switched
depending on the contact state. This switching of governing
dynamics has been a challenge in both task planning and
control. Here, a Koopman lifting linearization approach is
presented to subsume multiple dynamics such that no explicit
switching is required for examining the dynamic behaviors
across diverse contact states. First, it is shown that contact/non-
contact transitions are continuous at a microscopic level. This
allows for the application of Koopman operator theory to
the class of robotic systems that repeat contact/mon-contact
transitions. Second, an effective method for finding Koopman
operator observables for capturing rapid changes to contact
forces is presented. The method is applied to the modeling of
dynamic peg insertion where a peg collides against and bounces
on the chamfer of the hole. Furthermore, the method is applied
to the dynamic modeling of a sliding object subject to complex
friction and damping properties. Segmented dynamic equations
are unified with the Koopman modeling method.

Index Terms—Koopman operator, Hybrid switched systems,
Contact dynamics, Friction model

I. INTRODUCTION

ROBOT dynamics are complex. A robot’s governing
equations are not only intrinsically nonlinear (Coriolis
and centrifugal effects, configuration-dependent link inertia,
etc.) [1] but also exhibit hybrid and switched dynamics as
they physically interact with their environment. When robots
experience contact/non-contact transitions, non-holonomic
constraints are imposed on the robot dynamics, causing
switching in the dynamic structure of the system [2]. Dy-
namic behaviors become extrinsically hybrid and switched
among multiple dynamic equations [3]. Examples of such
systems include assembly robots that experience contact/non-
contact transitions in guiding and mating parts [4], [5], biped
robots which switch between stance and swing phases [6]—
[8], and robot fingers exhibiting complex behaviors as they
close and open kinematic chains [9], [10]. All of these
common robotics tasks are hybrid or switched in nature, and
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thus their governing equations are a set of heterogeneous
equations.

In such systems, state space is segmented into multiple
regions. Governing equations are valid only within a specific
region, or state location. Global behaviors that emerge as
the system makes multiple transitions across the segmented
space are difficult to analyze. The lack of a global and
unified representation of segmented heterogeneous dynamics
has been a major impediment in the analysis and synthesis
of robotic systems as they interact with the environment.

The overarching goal of this paper is to establish a global,
unified modeling methodology based on Koopman Operator
theory [11]. According to Koopman Operator theory, a non-
linear dynamical system behaves linearly when represented
in a high-dimensional space [3], [11]. Although the original
state equation is a collection of heterogeneous equations,
we can obtain a unified representation, which is linear. In
the high-dimensional lifted space, there is no segmentation,
no boundary, and no switching. A wealth of analysis and
synthesis tools are available for such linear models [12].

There is a growing interest in applying Koopman models
to robotic systems. Recent works have shown how linear
models can be used to control soft and continuous robots
[13], [14], multi-cable robots [15], [16], and in active learning
[17]. In many of these works, the robots being modelled
by Koopman are intended to perform tasks which heavily
involve contact with objects and the environment. However,
there has been little work exploring how best to apply Koop-
man linearization methods to dynamic systems with contact.
Koopman theory assumes that the lifted system’s dynamics
can be represented in a Hilbert space of observable functions,
an assumption which is not guaranteed for hybrid systems
with discontinuous variations of state. While hybrid systems
are a popular approach for modelling contact dynamics, they
may be a poor fit for Koopman modelling. In spite of this,
past work has explored the potential of using Koopman
linearization for hybrid systems [18], [19]. While these works
have demonstrated promising results, they do not present rig-
orous and general theoretical support for the applicability of
the Koopman operator to hybrid systems with discontinuous
variations of state. As it stands, the weak conditions for the
existence of Koopman operators of discontinuous systems
are limited to a short-horizon prediction [3]. Instead, we
propose using a viscoelastic model of contact, which provides
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continuous dynamics amenable to Koopman theory.

In robot manipulation, contact dynamics modeling has
been recognized as a critical component for robotic task
planning. Contact has been found to enhance the capabilities
of systems when effectively exploited [20]. Unfortunately,
leveraging contact in practice poses significant challenges
for the modelling and control of dynamic systems. Contact-
induced non-smoothness invalidates the local accuracy of
Taylor series approximations [21], which in turn hampers
the application of most modern gradient-based planning tech-
niques. Methods that are specifically designed for planning
through contact often take one of two approaches: explicitly
considering different contact modes as a sequence of discrete
states [22], or by smoothing out the non-smoothness of
contact dynamics [21]. We propose that a linear Koopman
model presents an alternative approach to smooth out contact
dynamics, potentially aiding with trajectory planning and
control. However for such an approach to be explored,
the ability for a linear Koopman model to approximate
contact/non-contact dynamics must be verified.

Construction of Koopman operators requires an effective
set of observables with which to augment the system’s
state. Finding such lifting functions is even more challenging
for systems with contact. Many past works have proposed
and explored approaches for choosing lifting functions, and
for approximating the Koopman matrix [23]. In this paper,
we explore and compare a few prominent techniques for
performing Koopman linearization on systems with contact.
We focus on comparing the predictive capabilities of a
Koopman approximation composed of: a manually chosen
library of radial basis functions (RBFs) [24], a library of
learned Deep Koopman Network (DKN) observables [25],
and a combined model composed of a set of both learned and
manually chosen observables. In particular, we evaluate the
effectiveness of these approaches for predicting how systems
can evolve through instances of making and breaking contact.

In summary, this work makes the following contributions:

+ Koopman modeling of dynamically contacting objects
using a viscoelastic contact model

« A combined DKN-RBF method for constructing a Koop-
man model for systems with contact

« Applications of the method to dynamic peg insertion and
complex contact friction systems.

II. PRELIMINARY

Koopman operator theory was first established in the
seminal work by B. Koopman in the 1930°s [11] and has been
applied to the modeling and analysis of complex nonlinear
engineered systems and extended to a data-driven method-
ology [12], [25], [26]. Consider a system with discrete-
time, nonlinear dynamics x,+1 = F(x;). It can be shown
that a higher-order representation of the system composed
of a potentially infinite set of observable functions g(x;) =

[g1(x),g2(x;),...] in Hilbert space can be evolved linearly
with the Koopman operator, XK.
Kg = goF — Kglx) = glxs) (1)

In practice, a finite approximation of the Koopman opera-
tor is used to generate a lifted linear model. We refer to
such an approximation as a Koopman matrix. Commonly
applied through Dynamic Mode Decomposition (DMD) and
Extended Dynamic Mode Decomposition (eDMD) in the
literature [24], [27], Koopman linearization was recently
extended and supplemented with the Direct Encoding (DE)
approach and its data-driven algorithm, Data-Driven Direct
Encoding (DDE) [3], [16], [28], [29].

Selecting the observable functions g(x;) is an area of ongo-
ing discussion within the field. Manually chosen observables
have shown promise in a number of applications. The Havok
Alternative View of Koopman (HAVOK) methodology [30]
uses the state at previous times to augment a nonlinear
system, while the Taylor Series has motivated the use of
higher-order derivatives as observables [31]. A library of pre-
selected nonlinear functions can be generated and used, with
basis functions in a Hilbert space being potentially well-
suited [24]. In past work, libraries of such functions have
been used in algorithms that then select and tune the most
optimal potential observables [32]. Radial basis functions
are one such possible set of pre-chosen observables, with
a degree of local tunability. Placing center points of RBFs at
specific regions of interest, the Koopman model can represent
highly nonlinear behaviors for a long time horizon [3]. For
the purposes of this work, we are using Gaussian radial basis
functions, which are parameterized by their center location,
¢, and the dilation factor €.

—1
RBF(x,c,€) :exp(?Hx—cH%) 2)

Despite salient features, RBFs do not scale well. Machine
learning techniques for identifying Koopman observables are
more powerful and scale well for higher-order systems. Deep
Koopman Networks (DKNs) have been widely adopted and
draw upon machine learning approaches in order to learn
lifting functions from data [25]. The neural networks used
in Deep Koopman have the added use of providing an
alternative way to generate the linear model’s transformation
matrix. Rather than calculating this matrix through a least-
squares approach, a linear layer in the neural network can
itself be used to learn and represent the time evolution
of the lifted system. A particular advantage of this is to
help stabilize the Koopman matrix, which often can include
unstable eigenvalues when developed in a way that only
considers a single time-step. This is done by introducing a
multi-time step horizon into the DKN loss, which encourages
the network to find weights for the linear layer that do
not lead to unbounded predictions. The loss function of a
DKN can also be modified so that minimizing errors in the
predictions of the physical state of the system are prioritized
over predictions of how the observable functions will evolve.
While there are alternative approaches for stabilizing these
Koopman matrices [33], we selected this technique for its
simplicity and ease of implementation.
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III. KOOPMAN MODELING OF DYNAMICALLY
CONTACTING OBIJECTS

With the use of Koopman operator theory and compu-
tational methods, we aim to obtain unified, globally-linear
Koopman models of dynamically contacting objects. As
shown in Fig. 1, an object contacts with the environment’s
surfaces, bouncing back and forth through a series of col-
lisions. The key condition for applying Koopman operator
theory are that the composites of observables g; with a self-
map state transition function F are involved in a Hilbert
space.

Fig. 1: An object may make and break contact multiple times
during a realistic trajectory with collisions.

gioFeXH,i=1,2,.- 3

If the function F(x) is continuous and the observables are
chosen such that the compositional function is square inte-
grable, a Koopman operator exists. However, this condition
does not hold for most hybrid systems with discontinuities.
Colliding objects, however, are not necessarily discontinu-
ous when examined at a micro-scale, according to applied
mechanics literature [34], [35].

Friction is another complex factor significantly affecting
the collision mechanisms. Dry friction, in particular, is a
discontinuous phenomenon at the macroscale. Detailed stud-
ies in tribology show that continuous models derived from
micro-scale contact mechanisms can nevertheless represent
complex friction accurately [36].

Fig. 2: In the viscoelastic model, contact is represented by
the force exerted from a spring and damper connecting the
two contacting bodies. These forces are only exerted when
the two rigid bodies are penetrating one another.

Here we use viscoelastic models of contact by introducing
a spring and damper between the two colliding bodies [37].
Initially inspired by considering the collisions of spherical
particles, these models have shown promising alignment with
experimental data in spite of their simplicity [37], [38].
Viscoelastic models allow for rigid bodies to inter-penetrate,
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and then use the penetration distance to compress the spring-
damper system and exert a normal force, as depicted in Fig.
2. While this penetration is clearly non-physical, viscoelastic
models can nevertheless offer a number of benefits: the
objects involved in contact can be modelled as rigid, even
though compliance may play a crucial role in physically
accurate collisions; and the dynamics are continuous and do
not involve sudden jumps in state space, as is the case for
hybrid models with reset maps. This continuity allows us to
readily apply Koopman operator theory.

While viscoelastic models are continuous, they neverthe-
less come with drawbacks. Accurately representing physical
contact dynamics often requires very stiff springs, which can
lead to stiff ODEs when evaluating the dynamics.

An added challenge emerges when using these models
to generate data for data-driven Koopman methods, such as
DKNs. Usually, contact between objects is kept very brief,
leading to only a small fraction of the data highlighting
the impact of the collision dynamics. As was shown in
[28], Koopman models can be vulnerable to favoring ap-
proximations that are more accurate in regions with denser
training data, at the expense of performance in regions with
sparser measurements. This could lead to issues for systems
in which brief instances of contact have significant effects
over longer time horizons. This is an especially significant
problem during instances of bouncing, where a brief contact
causes a rapid change in state.

IV. CoMBINED DKN AND RBF OBSERVABLES

As an alternative approach to using learned or manually
chosen functions for Koopman observables, we developed
a combined DKN-RBF approach for Koopman linearization
(Fig. 3). In this approach both learned observables and locally
tuned RBFs are used to lift a nonlinear system. The RBFs are
intended to better model the stiff, and highly local, dynamics
during instances of contact, while the learned neural net
observables offer broader coverage of the smoother dynamics
away from switching contact surfaces.

Input:

* = (Vo Vr)

Fig. 3: We learn a set of Koopman observables that are aware
of the RBFs. Combining these sets of observables together
leads to improved performance when modelling complex
systems with contact.

When the system’s state is located close to one of the
RBFs’ centers, it has a relatively greater impact on the



evolution of the lifted dynamics. In contrast, the same RBF
would have a smaller impact on the dynamics when the
system is operating in a more distant region of state space.
While RBFs have been used to great effect in Koopman
linearizations, it is prohibitive to cover a larger and higher-
dimensional domain with narrow RBFs. Doing so involves
placing many functions, which can rapidly cause the lifted
dimension to increase. Observables learned through a DKN
are far more efficient at covering larger, and more benign,
dynamic regions. While we might expect a suitably large
neural network within a DKN, as a universal approximator
[39], to replicate or exceed the performance of RBFs, doing
so may involve significant quantities of both data and training
time.

By using both RBFs and learned observables to lift our sys-
tem, we can gain some of the benefits of both. In systems with
contact, we are able to densely pack RBFs in the small region
where contact dynamics dominate, thereby leaving the DKN
to learn the more benign dynamics away from switching
contact surfaces. A simple approach for implementing this
method would be to learn observables from a DKN, and then
concatenate them with the RBFs prior to calculating the linear
transformation matrix. However, this runs the risk of the
learned observables providing redundant, or even conflicting,
information that is already afforded from the RBFs. Instead,
we first define the RBFs with centers that are close to areas
of state space with contact. The outputs from these RBFs are
then provided to the linear time-evolution layer in the DKN
during training, thereby encouraging the learned observables
to augment the information provided by the RBFs without
redundancy.

V. DYNAMIC PEG INSERTION
A. Task and Data Generation

Peg insertion is a classical manipulation problem of prac-
tical and scientific importance [4]. The celebrated Remote
Center Compliance (RCC) hand can guide a misaligned peg
towards the center of a hole by contact with the chamfer
[40]. See Fig. 4. This peg guidance and insertion process
is highly dynamic, but prior work treated it as a quasi-
static process except for [41]. As the peg slides off at the
bottom of the chamfer, point C in the figure, the static force
balance conditions are no longer held and, thereby, the peg
accelerates, i.e. the process is dynamic.Furthermore, the peg
collides with the chamfer surface and may bounce on it,
which may lead to a failure of peg insertion. Understanding
such dynamic interactions between a peg and a chamfer is
thus important.

As the dynamic analysis in [41], we consider a peg inter-
acting with a chamfer within a vertical plane. The peg has 6
state variables (x,y,0,%,y,0), where x,y are the coordinates
of the peg’s center of mass and 6 is the tilting angle of the
peg (Fig.4). The chamfer angle is 50°. We represented contact
with a viscoelastic model but also included friction along the
chamfer edge as F = uUN.

To mimic how data may be gathered for such a system in
practice, data were generated by simulating the peg dynamics

Fig. 4: Diagram of the peg and chamfer problem. When the
corner of the peg penetrates the chamfer, a viscoelastic model
of contact is applied. Close to the chamfer corner, a slight
rounding is applied to prevent sudden changes in the direction
of the normal force during contact. The peg is assumed to
start with an initial pose close to vertical, 6 = £3°

subject to the viscoelastic contact force. The governing equa-
tions were switched depending on the contact state. In this
work we considered a) projectile motion without contact, b)
contact between the peg’s corner and the chamfer surface AC,
and c) contact between the peg’s corner and the bottom of
the chamfer C, which is round, as shown in Fig. 4. The peg is
assumed to make only these contacts, which is reasonable for
small tilt angles (8) of the peg. From these contact dynamics
of the peg, the depth of insertion of the first two-point
contact is determined, which is the key metric for predicting
whether the peg is successfully inserted or not [40], [41].
The force applied by the viscoelastic contact model is then
determined by the perpendicular distance from the peg’s
contacting corner to the nearest edge of the chamfer/hole.

Trajectories were computed from a set of initial conditions
at varying heights above the chamfer and at a range of initial
angles close to vertical (43°). The resulting data can be
viewed in Fig 5. This is intended to replicate the collection
of data from a physical peg being dropped repeatedly on the
chamfer, with its trajectory recorded each time.

B. Model Training

The training of the combined RBF/DKN model was per-
formed using a loss function similar to that of the stan-
dard DKN [26]. The main difference is that the combined
RBF/DKN loss function includes a loss term for the RBF
observable estimates.

k
L=Y% (4 MSE(ey) W
t=1

+ % MSE(g;, g) + Yrsr MSE(RBF¢, RBFy))

where ¥, ¥, and Yrpr are WeiAghts associated to output ¥y,
observables g;, and RBFs RBF;, respectively, y; is time
decay, and the MSE function refers to the mean-squared error
given by

n

1
MSE(p,q) = - Z(Pi —q)? ©)
by
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Trajectory Data in xy for the Peg/Chamfer

Training Da
x  RBF Centers ™

-0.05 0.00 0.05
x\m

70?15 70110
Fig. 5: Sample points from the training data trajectories used
to generate the peg/chamfer models are shown in red. The
center locations of the RBFs used in the combined model
are also shown and were positioned by performing k-Means
clustering on the data. The peg angle, 0, was excluded from
the plot for readability but was still used to locate the RBF
centers.

where p = [p1,p2,...,pn] and q = [q1,92,...,qn). The RBFs
are treated as another set of observables and are assigned
their own weight in the loss function, Ygpr, during training.
A key difference between the completely learned observables,
g, and the RBFs is that while the ground-truth measurement
of the observables, g¢, varies during the training process
as the weights of the observable functions themselves are
updated, the output of the radial basis functions for a given
state remains constant. In contrast to the learned observables,
updating the network weights does not change the output
of a fixed RBF. This comes with the theoretical benefit
of a smoother training process afforded by the RBF term
of the loss function, at least when compared to that of
the learned observables which are constantly being updated.
Table I shows the parameter values used for training the
neural network.

TABLE I: Key parameters for the peg/chamfer’s combined
DKN/RBF model.

Parameter Value
Learned Observables | 200
RBF Observables 50

Ye 0.1

¥ 1
YRBF 0.1
Training Steps (k) 20
Time Decay () 0.95

The model accuracy depends on the hyperparameters of
RBFs, in particular, the locations of the center point c. To
place a limited number of RBFs effectively, the RBF centers
were calculated by performing k-Means clustering on the
data. This approach is motivated by the observation that
the peg tends to ‘stick’ to the chamfer after contact. As
such, more instances involving contact will be present in
the data than instances with the peg in a ballistic trajectory.
By performing a clustering operation, we would then expect
the centers to preferentially be located close to the contact
manifold. The results of this method can be seen in Fig. 5,

which shows the sample points from the trajectories making
up the training data as red dots, and the centers of the RBF
observables as black crosses.

C. Results

Fig. 6 shows an example trajectory with the bottom-left
corner of the peg colliding against the chamfer. The combined
DKN/RBF Koopman model is able to predict the peg’s
bouncing off of the chamfer after the initial collision. The
estimated trajectory in red shows a good agreement with
the ground truth trajectory in black computed by the full
nonlinear equations, with a gradual accumulation of error as
the prediction length increases.

Fig.7 shows the prediction error comparison among the
three Koopman models: the one using DKN neural networks
only, the one with RBFs only, and the one with the com-
bined DKN-RBF. The mean error for each of the models
across the full validation trajectory dataset is plotted, along
with a corresponding 95% confidence interval. While the
DKN outperformed a model composed entirely of RBFs,
the combined linear model composed of a combination of
the two performed the best, as is indicated in Figs. 7. We
posit that this is due to the challenge of learning useful
observables across the multi-dimensional contact manifold.
This manifold represents all the possible configurations of
the peg in which it initiates contact with the chamfer.

Peg Bounce

0.3 4

0.2 4

0.14

0.0 1

—0.1+

—-- Bottem-left Corner Estimate
=== Bottom-left Corner Ground truth

—0.2 4

T
-0.1 0.0 01

T
-0.2
x

T T
-0.4 —-0.3

Fig. 6: Example trajectory of the peg with linear predictions.

Comparing the performance of the combined RBF/DKN
model with similarly sized lifted models using just RBF or
DKN observables, we can see that the combined model leads
to more accurate predictions. This indicates that the act of
adding in carefully placed RBFs as observables can allow for
greater performance when producing a lifted linear model for
dynamic systems with contact. In a way, the addition of RBFs
allows for the designer to add domain-specific knowledge
of the system - that is, the presence of contact - to better
initialize the DKN prior to training.
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Peg/Chamfer: Position MSE for Validation Data

model
0.08 1 — 250NN

200NN/50RBF
------ 250RBF
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T T
[} 5 10 15 20 25 30
Time step

Fig. 7: Performance of the linear prediction for the peg across
the full set of validation trajectories.

Fig. 8: Diagram of the sliding block model. The block
experiences a force from a linear spring connected to the
origin and friction due to contact with the ground.

VI. MODELLING A SLIDING BLOCK WITH FRICTION

A. Nonlinear Dynamics

Friction plays a crucial role in many tasks involving
contact, such as manipulation and locomotion. While a
simple model of friction is present in the peg/chamfer model
discussed in section V, we further investigate whether the
proposed Koopman model can represent complex nonlineari-
ties of friction. Consider a sliding block experiencing friction
while sliding along the ground(Fig. 8). A linear spring
connects the block to the origin, imparting an additional force
that may or may not be sufficient to overcome friction. The
state of the block is represented by its horizontal position, x,
and velocity, x. Additional parameters include the mass, m,
and spring stiffness, k. The friction model (eq. (6)) used in
this work is a modified Stribeck friction model taken from
[42], with definitions for the variables in table II. A plot
showing how the friction force varies with the velocity of
the block can be seen in Fig. 9.

X

F = V2e(Fy— Fo) - exp (—(

)2) + Fetanh = + foi (6)
Vst Vst Ve

Note that this friction model based on tribology is smooth
and continuous, including at X = 0. Much like with the
viscoelastic model for contact, this means that Koopman
operator theory can be readily applied.

We compare the performance of two linear models: one
composed of 225 RBF observables and another with 1000
DKN observables. In both cases, the states were appended
as additional observables.

TABLE II: Parameters of the Stribeck friction model

Variable Parameter
; friction force
Fpie breakaway friction
F. Coulomb friction
Vst Stribeck velocity theshold
f viscous friction coefficient
Ve Coulomb velocity threshold
- Sliding Block Friction Model
20 1 o
F brk
104 F,
Approx. slope at x = 0:
1581Ns/m

Friction force (N)
o

-10

-30

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
x (m/s)

Fig. 9: The friction model (eq. (6)) used in the sliding
block example is highly nonlinear, but ultimately smooth and
continuous.

B. Results

Both the RBF and DKN based linear models show promis-
ing results in Figs. 10a and 10b respectively, although the
RBF model performs especially well. The estimated trajec-
tories for the sliding block only show slight deviations from
the nonlinear ground truths. This makes a convincing case for
Koopman linear models being able to reasonably approximate
dry friction models, despite the macroscopic discontinuities
between static and dynamic friction.

-1.00

VII. DISCUSSION

We have demonstrated that Koopman theory can generate
useful linear approximations for dynamic systems with con-
tact. Excitingly, we have shown that linear Koopman models
can predict the evolution of these systems through multiple
instances of making and breaking contact. While these results
are promising, there are limitations. Chief among them is that
the Koopman models are inherently approximations of the
underlying system and so exhibit an error that - in general -
grows over time. This limits the utility of predictions from
these models to relatively short time horizons. An example
would be model predictive control, which has been combined
with Koopman models in the past [14], [15], [43]. The faster
computation time and the convex-nature of optimization
afforded by a linear model are significant advantages of the
Koopman approach over the traditional counterpart. Future
work could explore whether Koopman MPC or alternative
control frameworks can be successfully applied to systems
with contact.

One of the consequences of performing a Koopman lin-
earization on systems with contact, is the potential for force-
from-a-distance to be observed in the approximated model.
This phenomenon can be seen in the case of contact between
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Sliding Block 225 RBFs
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x
(a) Model composed of the states and 225 RBF
observables.

Sliding Block 1000 NN
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X
(b) Model composed of the states and 50 observables
learned from a DKN neural network.
Fig. 10: Results for predicting trajectories of the sliding block
with different models.

a peg and chamfer in Fig. 6. The predicted trajectory of the
peg begins to diverge from the true trajectory prior to physical
contact occurring with the chamfer. Force-from-a-distance
effects are commonly observed while modelling contact,
including both reinforcement learning and analytic, model-
based approaches. Moreover, while the phenomenon is non-
physical and inaccurate it can provide useful information to
gradient-based planners on the potential for future instances
of contact [21], [44].

Using a Koopman model to approximate systems with
contact can be interpreted as finding a linear approximation
for a stiff differential equation. The practical implementation
of the examples presented in this paper saw us producing
data by numerically solving the contact dynamics for the
peg/chamfer and sliding block systems. Using the viscoelastic
contact and continuous friction models causes the dynamics
to be represented by relatively stiff ODEs, requiring the
integrator to take smaller time steps during instances of
contact or sharp changes in friction. While this represents
a high up-front computational cost, once the linear Koopman
model is produced the resulting discrete model of the system
has a fixed time step. This raises the prospect of a Koopman
linearization providing an alternative approach for dealing
with stiff systems, although future work must explore this
observation further.

VIII. OPEN QUESTIONS

Does the data-driven nature of the linearization intro-
duce biases towards regions with denser sample points?

Data-driven implementations of the Koopman operator can
suffer from sampling biases [28], and the implementations in
this work are no exception. Ng and Asada presented tackeld
this issue with data-driven direct encoding, which weights
samples based upon the density of additional nearby data
points. This work has been extended to work more efficiently
in higher dimensional systems [16]. This approach might be
especially useful in the case of modelling contact dynamics,
since brief contacts may not be as well covered by collected
data. While efforts were made to apply direct encoding to
modelling contact, the resulting models were unstable. Future
work will explore how the direct encoding methodology
can be modified to encourage the discovery of stable linear
models.

Are there any guarantees on the performance of the
model?

While Koopman theory offers the potential for a lifted
linear model to perfectly mimic a nonlinear system [45],
there is no guarantee that a finite-dimensional approximation
of the true Koopman operator exists for an arbitrary system.
As a result, this work does not offer any guarantee on the
accuracy of the approximated dynamics. This is an advantage
retained by a point-wise Taylor approximation, which is at
least accurate when sufficiently close to the point at which
the linearization is being performed. Ongoing work in the
field has sought to impose some bounds on the modelling
errors from a Koopman approximation, but they are beyond
the scope of this paper [46].

Could functions other than RBFs provide benefits to
the combined model?

Radial basis functions were chosen based on their prior use
in Koopman models [24]. Their center locations and dilation
factors allow them to be associated with meaningful measures
in the original state space, allowing for them to be posi-
tioned in a way that would better linearize localized contact
dynamics. As a result, this paper focused on implementing
a model that specifically utilized RBFs alongside learned
observables. This is not a strict restriction however, and
alternative functions, such as polynomials, could be included
in combined models.

IX. CONCLUSIONS

This paper introduced using Koopman linearization as
an alternative for modeling robotic systems that make and
break contact with the environment. The Koopman operator
is used not only for linearizing nonlinear dynamics but
also for obtaining a global and unified model subsuming
and aggregating segmented dynamics due to contact / non-
contact switching. This opens up new possibilities for solving
challenging robotics problems. In future, the effectiveness of
these linear Koopman predictions for task planning through
contact and control will be explored and compared with
existing techniques. By considering a globally relevant lin-
earization, it is hoped that a Koopman model would allow for

715



linear methods to be applied to challenging robotic tasks that
require agents to plan through multiple instances of making-
and-breaking contact.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

H. Asada and J.-J. Slotine, Robot analysis and control.
& Sons, 1991.

J. E. Colgate and N. Hogan, “Robust control of dynamically interacting
systems,” International journal of Control, vol. 48, no. 1, pp. 65-88,
1988.

H. H. Asada, “Global, unified representation of heterogenous robot
dynamics using composition operators: A koopman direct encoding
method,” IEEE/ASME Transactions on Mechatronics, 2023.

J. L. Nevins and D. E. Whitney, “Computer-controlled assembly,”
Scientific American, vol. 238, no. 2, pp. 62-75, 1978.

B. J. McCarragher and H. Asada, “The discrete event control of robotic
assembly tasks,” 1995.

M. H. Raibert, Legged robots that balance. MIT press, 1986.

E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE transactions on automatic
control, vol. 48, no. 1, pp. 42-56, 2003.

A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly
exponentially stabilizing control lyapunov functions and hybrid zero
dynamics,” IEEE Transactions on Automatic Control, vol. 59, no. 4,
pp. 876-891, 2014.

R. M. Murray, Z. Li, and S. Shankar Sastry, “A mathmematical
introduction to robotic manipulation,” 1994.

A. Billard and D. Kragic, “Trends and challenges in robot manipula-
tion,” Science, vol. 364, no. 6446, p. eaat8414, 2019.

B. Koopman, “Hamiltonian systems and transformation in hilbert
space,” Proceedings of National Academy of Science (PNAS), vol. 17,
pp. 315-318, 1931.

1. Mezié, “Analysis of fluid flows via spectral properties of the
koopman operator,” Annual Review of Fluid Mechanics, vol. 45, pp.
357-378, 2013.

D. Bruder, X. Fu, R. B. Gillespie, C. D. Remy, and R. Vasude-
van, ‘“Koopman-based control of a soft continuum manipulator under
variable loading conditions,” IEEE Robotics and Automation Letters,
vol. 6, no. 4, pp. 6852-6859, 2021.

——, “Data-driven control of soft robots using koopman operator
theory,” IEEE Transactions on Robotics, vol. 37, no. 3, pp. 948-961,
2021.

J. Ng and H. H. Asada, “Model predictive control and transfer learning
of hybrid systems using lifting linearization applied to cable suspension
systems,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp.
682-689, 2022.

1. Nozawa, E. Kamienski, C. O’Neill, and H. H. Asada, “A monte carlo
approach to koopman direct encoding and its application to the learn-
ing of neural-network observables,” IEEE Robotics and Automation
Letters, vol. 9, no. 3, pp. 2264-2271, 2024.

I. Abraham and T. D. Murphey, “Active learning of dynamics for
data-driven control using koopman operators,” I[EEE Transactions on
Robotics, vol. 35, no. 5, pp. 1071-1083, 2019.

N. Govindarajan, H. Arbabi, L. V. Blargian, T. Matchen, E. Tegling,
and I. Mezic, “An operator-theoretic viewpoint to non-smooth dynam-
ical systems: Koopman analysis of a hybrid pendulum.” Institute of
Electrical and Electronics Engineers Inc., 12 2016, pp. 6477-6484.
C. Bakker, A. Bhattacharya, S. Chatterjee, C. J. Perkins, and M. R.
Oster, “Learning koopman representations for hybrid systems,” 6
2020. [Online]. Available: http://arxiv.org/abs/2006.12427

N. Chavan-Dafle and A. Rodriguez, “Sampling-based planning of in-
hand manipulation with external pushes,” in Robotics Research: The
18th International Symposium ISRR. Springer, 2020, pp. 523-539.
T. Pang, H. J. T. Suh, L. Yang, and R. Tedrake, “Global planning
for contact-rich manipulation via local smoothing of quasi-dynamic
contact models,” IEEE Transactions on Robotics, vol. 39, no. 6, pp.
4691-4711, 2023.

B. J. McCarragher and H. H. Asada, “The discrete event
modeling and trajectory planning of robotic assembly tasks,”
Journal of Dynamic Systems Measurement and Control-transactions
of The Asme, vol. 117, pp. 394-400, 1995. [Online]. Available:
https://api.semanticscholar.org/CorpusID:62072279

C. Bakker, A. Bhattacharya, S. Chatterjee, C. J. Perkins, and M. R.
Oster, “The koopman operator: Capabilities and recent advances,” in
2020 Resilience Week (RWS), 2020, pp. 34-40.

John Wiley

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

(33]
[34]
[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

716

M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data—driven
approximation of the koopman operator: Extending dynamic mode
decomposition,” Journal of Nonlinear Science, vol. 25, pp. 1307-1346,
2015.

E. Yeung, S. Kundu, and N. Hodas, “Learning deep neural network rep-
resentations for koopman operators of nonlinear dynamical systems,”
in 2019 American Control Conference (ACC). IEEE, 2019, pp. 4832—
4839.

B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal
linear embeddings of nonlinear dynamics,” Nature communications,
vol. 9, no. 1, pp. 1-10, 2018.

P. J. SCHMID, “Dynamic mode decomposition of numerical and
experimental data,” Journal of Fluid Mechanics, vol. 656, p. 5-28,
2010.

J. Ng and H. H. Asada, “Learned lifted linearization applied to unstable
dynamic systems enabled by koopman direct encoding,” IEEE Control
Systems Letters, vol. 7, pp. 1153-1158, 2023.

——, “Data-driven encoding: A new numerical method for computa-
tion of the koopman operator,” IEEE Robotics and Automation Letters,
vol. 8, no. 7, pp. 3940-3947, 2023.

S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and J. N. Kutz,
“Chaos as an intermittently forced linear system,” Nature communica-
tions, vol. 8, no. 1, p. 19, 2017.

G. Mamakoukas, M. L. Castaiio, X. Tan, and T. D. Murphey,
“Derivative-based koopman operators for real-time control of robotic
systems,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 2173—
2192, 2021.

E. Lew, A. Hekal, K. Potomkin, N. Kochdumper, B. Hencey, S. Bak,
and S. Bogomolov, “Autokoopman: A toolbox for automated system
identification via koopman operator linearization,” in International
Symposium on Automated Technology for Verification and Analysis.
Springer, 2023, pp. 237-250.

G. Mamakoukas, I. Abraham, and T. D. Murphey, “Learning stable
models for prediction and control,” IEEE Transactions on Robotics,
vol. 39, no. 3, pp. 2255-2275, 2023.

R. M. Brach, “Rigid body collisions,” 1989.

V. Bhatt and J. Koechling, “Three-dimensional frictional rigid-body
impact,” 1995.

M. Nosonovsky and B. Bhushan, “Multiscale friction mechanisms and
hierarchical surfaces in nano-and bio-tribology,” Materials Science and
Engineering: R: Reports, vol. 58, no. 3-5, pp. 162-193, 2007.

H. Kruggel-Emden, E. Simsek, S. Rickelt, S. Wirtz, and V. Scherer,
“Review and extension of normal force models for the discrete element
method,” Powder Technology, vol. 171, no. 3, pp. 157-173, 2007.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0032591006004360

C. Thornton, S. Cummins, and P. Cleary, “An investigation of the
comparative behaviour of alternative contact force models during
elastic collisions,” Powder Technology, vol. 210, no. 3, pp. 189-197,
July 2011.

S. Sonoda and N. Murata, “Neural network with unbounded activa-
tion functions is universal approximator,” Applied and Computational
Harmonic Analysis, vol. 43, no. 2, pp. 233-268, 2017.

D. E. Whitney et al., “Quasi-static assembly of compliantly supported
rigid parts,” Journal of Dynamic Systems, Measurement, and Control,
vol. 104, no. 1, pp. 65-77, 1982.

H. Asada and Y. Kakumoto, “The dynamic analysis and design of a
high-speed insertion hand using the generalized centroid and virtual
mass,” 1990.

The MathWorks, Inc. Translational friction. [Online]. Available: https:
/Iwww.mathworks.com/help/simscape/ref/translationalfriction.html

M. Korda and I. Mezi¢, “Linear predictors for nonlinear dynamical
systems: Koopman operator meets model predictive control,”
Automatica, vol. 93, pp. 149-160, 2018. [Online]. Available: https:
/lwww.sciencedirect.com/science/article/pii/S000510981830133X

M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
timization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69-81, 2014.

S. L. Brunton, M. Budisic, E. Kaiser, and J. N. Kutz, “Modern
koopman theory for dynamical systems,” STAM Review, vol. 64, no. 2,
pp. 229-340, 2022.

C. Bakker, T. Ramachandran, and W. S. Rosenthal, “Learning
bounded koopman observables: Results on stability, continuity, and
controllability,” arXiv: Dynamical Systems, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:216914572



