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Abstract—In health monitoring and activity tracking technolo-
gies, wearable or implantable sensors have become indispensable,
linking various human body regions to collect vital health data.
Despite their potential, ensuring the security and reliability
of these devices presents significant challenges, primarily due
to the complexity of real-world scenarios that these systems
encounter. Current approaches often rely on anomaly detection
models that process historical sensor data to identify issues.
However, these models tend to falter when faced with unexpected
conditions or “corner cases,” lacking the ability to generalize
across the diverse situations encountered in everyday use. This
limitation is particularly critical in wearable devices, where
unexpected incidents are of paramount importance and cannot be
overlooked. Addressing this gap, our research investigates multi-
sensor wearable systems to understand the context of system
operations and their characteristics. We introduce a context-
aware approach that leverages the unique physics of the human
body to identify the intricate relationships between sensors. By
extracting sensor relations and patterns, our approach aims to
enhance the detection of security and reliability issues, offering
an advancement over traditional methods.

Index Terms—Wearable Devices, Sensor Correlation, Security,
Reliability, Anomaly Detection

I. INTRODUCTION

Technological developments delegated the widespread ap-
plication of Cyber-Physical Systems (CPS) in manufacturing
and fostered the Industry 4.0 paradigm. Recent advances in
low-power, affordable computation, and communication have
encouraged the healthcare sector to pursue the industrial
sector’s success and take advantage of CPS [1]. Especially
with the growth in the elderly population and various chronic
and acute diseases globally, the health industry is chang-
ing dramatically toward point-of-care diagnosis and real-time
monitoring of long-term health conditions. Therefore, wear-
able devices have grabbed a lot of attention, from healthcare
to biomedical monitoring systems, which enable continu-
ous monitoring of critical biomarkers for medical diagnos-
tics. Wearable devices significantly impact sports monitoring
and healthcare in obesity, cardiovascular diseases, diabetes,
asthma, and Alzheimer’s due to better patient monitoring, drug
management, asset monitoring, tracking, and early medical
interventions.

Wearable devices are an instance of CPS, which links the
physical domain, the human body, to the digital world of
computation. Figure 1 demonstrates the architecture of these
systems, which comprises the perception layer, communica-
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tion network, and application. The perception layer directly
interacts with the human body, mainly including sensors and
occasionally actuators. A network is expected in multi-sensor
systems where wireless data sharing is required. It is facilitated
by emerging communication modules such as Bluetooth, Near
Field Communication (NFC), Wi-Fi, and Body Area Networks
(BAN). Although single-sensor devices are also available,
many wearable devices embed multiple sensors to measure
various physical parameters in different body parts, such as [2].
The sensor measurement is collected by the communication
network and transferred to the application for storage, display,
and assessment.

Body monitoring systems must comply with certain reli-
ability and security requirements since the system or data
failure could potentially be life-threatening. Adapting the new
technologies raises security and reliability concerns deriving
from the interdisciplinary nature of CPS combined with the re-
source constraints of low-power devices [1]. Building upon the
existing gap in anomaly detection methodologies, this paper
introduces an innovative approach to enhance the security and
reliability of multi-sensor wearable systems. Recognizing the
limitations of current models that process historical sensor data
without a comprehensive understanding of the system’s con-
text, our research focuses on the unique challenges presented
by wearable devices. These challenges stem from the need
to accurately predict and address issues across a wide array
of real-world conditions, including those rare or unexpected
situations that are critical to the user’s health and safety.

The core insight guiding our research is the intrinsic con-
nection between the sensors in wearable devices and the
human body they monitor. Unlike in broader applications,
where sensors might capture disparate data points from var-
ious sources, wearable sensors are uniquely unified in their
purpose: they all measure aspects of a single, coherent system
governed by well-understood physical and physiological laws.
This fundamental principle—that the behavior of sensors in
wearable systems should align with the known physics of the
human body—provides a critical foundation for our context-
aware anomaly detection model.

Our approach capitalizes on this principle, expecting sensor
behaviors to adhere to the physiological and physical dynamics
of the body. anticipate issues under less common, real-world
conditions. Our contribution lies in developing a context-aware
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approach that, unlike its predecessors, does not rely solely on
historical data. Instead, it incorporates an understanding of the
wearable system’s operational context and the intricate dynam-
ics between sensors. By weaving this insight into the fabric
of anomaly detection models, we enable these systems to not
only recognize standard operational states but also identify and
adapt to exceptional cases. Furthermore, this enriched model
provides researchers with a powerful tool to delve into the
origins of anomalies, facilitating a deeper understanding of the
underlying causes and the nature of the issues encountered.
This dual capability enhances the practical application of
our approach, offering a robust foundation for both detecting
anomalies and conducting subsequent investigative analysis.

II. RELATED WORKS AND BACKGROUND
A. Wearable Systems

Wearable devices encompass a broad category of electronic
devices designed to be worn on the body, and they are intended
to provide users with convenience and ease of access. These
devices are user-friendly computing devices and are considered
among the most personal and intimate electronic gadgets due
to their proximity to the user. The increasing adoption of
wearable devices has brought concerns related to their security
to the forefront. In a study conducted by Lee et al. [3], the
vulnerabilities of wearable devices are examined across three
primary factors: the device itself, the communication between
the device and servers, and the servers hosting the wearable
services. The authors’ investigation led to the identification
of three novel attack scenarios targeting wearable services.
These scenarios were subsequently applied to real commercial
smart bands used for healthcare monitoring, and the results
demonstrated the effectiveness of these attacks. These attacks
could compromise the wearable device and expose personal
user information, including health data.

Furthermore, a comprehensive overview of security and
privacy threats faced by wearable devices is presented in [4].
This study includes a security analysis of various wearable
devices, such as Google Glass and Fitbit. The authors argue

perception layer, network, and application.

that due to wearable devices’ limited computational power and
bandwidth, their security posture is comparatively weaker than
that of other computing devices. One of the primary chal-
lenges in ensuring privacy and security in wearable devices,
as highlighted by the authors, is authentication, particularly
given their interactions with other devices like smartphones.
In wearable devices, proximity to the human body introduces
a unique set of security considerations. In the work by Mills et
al. [5], the authors delve into the security aspects of wearable
devices, emphasizing the potential for harm to individuals.
They assert that wearable devices represent a distinct category
of electronic devices with a tangible risk of causing physical
harm to the wearer, in addition to posing threats to data
security and the devices themselves. The authors call for
a more in-depth examination and development of security
measures to safeguard the well-being of wearable device users.

B. Anomaly Detection

Conventionally, statistical or probabilistic methods are uti-
lized for anomaly detection [6] in which a statistical [7],
or probabilistic model [8] is mapped on the normal data.
The model captures the system’s normal behavior, and its
comparison to the new data point reveals if the data point
is statistically unlikely or has a low generation probability.
Recently, the advancement in machine learning has fostered
the application of deep learning to detect anomalies. Various
techniques for density measurement and clustering are pro-
posed in the literature, such as K-Nearest Neighbor (KNN)
[9], Local Density Factor [10], reverse KNN [11], and deep
embedding for clustering [12].

In another approach, a predictive model is trained on normal
data to learn the features of the normal state by studying the
recent and long-term trends of the system. Later, it evaluates
the normality of data instances by their consistency with
the predictive model expectation, and substantial deviation is
denoted as an anomaly. The predictive models are usually con-
structed based on recurrent neural network [13], AutoEncoder
(AE) [14], [15], and convolutional neural network [16], [17].
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III. OUR APPROACH

Health monitoring and activity tracking technologies heavily
rely on the integration of wearable or implantable sensors
that establish connections with various regions of the human
body, including the potential to link multiple individuals.
These interconnected sensors form multi-node networks, en-
abling biometric data collection from human subjects and the
objects they interact with. Establishing secure and reliable
communication links among these nodes, commonly referred
to as BANS, is crucial for the real-time parsing of biometric
information [18], [19].

In our wearable system, the specific requirements of BANs
impose a unique set of constraints on the performance of the
magneto-inductive waveguide. This waveguide must exhibit
high flexibility, remain impervious to bodily motion, offer
ease of extension, and adopt a microelectronics-free design. To
address these constraints, we have designed multiturn flexible
planar coils composed of metal foils (aluminum and/or copper)
as resonators to seamlessly integrate into the clothing textile.
The propagation of magneto-inductive waves through arrays
of magnetically coupled resonators allows for more complex
network architectures, accommodating the relative placement
of resonators and introducing horizontal distances within the
network between the reader and sensor nodes. Unlike tradi-
tional BANs that rely on wired connections between coils, our
inter-resonator magnetic coupling facilitates intricate network
structures with user-friendly scalability. This approach enables
signal paths to span multiple layers of disconnected clothing,
setting it apart from other textile-based BANs reliant on wire
or conductive thread-based connections. Establishing secure
and reliable communication links among nodes is crucial for
the real-time parsing of biometric information [18], [19]. The
robustness of a BAN is contingent upon several key attributes:
user comfort, adaptability to existing clothing, adherence to
established standards [20], node sampling rates, and wireless
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Fig. 2. Experimental setup, (a) designed wearable system, (b) detailed view of the setup, (c) movement range for different sensors

power capabilities [21].

We have employed a software-based Time Domain Multi-
ple Access (TDMA) technique to enable seamless switching
between sensing nodes. The controlled surface propagation
of magneto-inductive waves eliminates the need for multiple
near-field antennas connected by wires [22], [23], or complex
antenna switching schemes requiring active microelectronics.
This design allows conventional NFC-enabled smartphones to
serve as compatible readers. The wireless efficiency of the
network was evaluated through measurements of the NFC
Packet Reception Ratio (PRR), defined as the ratio of success-
fully received packets by the reader to the total transmitted
packets. Each packet encompasses sensor information from
all transponders within the network during a single refresh. In
practice, limitations such as strain sensor latency and hystere-
sis affect performance at higher frequencies. Furthermore, the
TDMA approach permits the connection of up to 12 sensors
along the network, with trade-offs between sampling rate, the
number of sensors, and packet loss. The magneto-inductive
BAN can be tailored to individual needs and produced cost-
effectively, fostering personalized wearable networks.

This versatile ecosystem holds the potential to facilitate
real-time healthcare and status monitoring in diverse settings,
including clinical, athletic, and daily routines. For instance,
integration into hospital patient uniforms could enable seam-
less patient monitoring through the effortless placement and
rearrangement of sensors on clothing. Professional sports
organizations may develop highly customized networks that
are aligned with their branding and optimized to cater to
specific athletic training and monitoring requirements. The
vinyl-based elements empower users to create and rearrange
networks without needing specialized equipment, adaptable for
both local and long-range monitoring across the body. Sensing
nodes can be easily interchanged or repositioned, facilitating
plug-and-play measurements of various relevant parameters.

In addition to designing and implementing this wearable
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system, We present a methodology to detect anomalies in
such multi-sensor systems. This system is designed to process
a sequence of sensor readings as input data. While these
sensors exhibit distinct characteristics, it is important to note
that the values they generate can exhibit interdependencies.
For instance, changes in one sensor’s reading can have ripple
effects on the readings of other sensors. The proposed system
capitalizes on the Context Learning model, which considers a
variety of sensor readings over a specific period and leverages
this information to forecast the values of these sensors at
the subsequent time stamp. Notably, this model goes beyond
the individual attributes of each sensor by understanding the
intricate relationships among different sensors. The predicted
sensor values serve as the input for an anomaly detection
module. We study the system through different data analysis
techniques elaborated in Section IV and devise a strategy that
determines the safe zones and threat zones of sensor data.

IV. DATA ANALYSIS AND CONTEXT EXTRACTION
A. Experimental Setup and Dataset

In Section III, we discussed the experimental setup utilized
to investigate human arm movements. In this context, we aim
to assess the arm’s motion comprehensively. We employed
coils to cover the entire arm, as illustrated in Figure 2(a). Sub-
sequently, we strategically placed strain sensors at crucial arm
joints, including the elbow, shoulder, and wrist. Strategically
positioned at the mentioned joints, these three sensors are well-
suited to monitor a wide spectrum of arm movements. Figure
2(c) visually represents the start and end points of motion,
along with the associated range of motion and sensor values
for each action.

Our approach involves a custom-designed PCB equipped
with an RF430frl152 NFC chip, an NFC antenna, and a
strain sensor. We utilize a PN7150 NFC reader connected
to a Raspberry Pi to retrieve data from these sensors. For
the data collection phase, we enlisted the participation of
ten individuals, each aged 25 to 41 years. These participants
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were instructed to perform arm movements for a duration of
10 minutes, encompassing various directions and ranges of
motion. By incorporating the clothing setup and the three
strategically positioned strain sensors (located at the elbow,
shoulder, and wrist) as described in Section IV-A, we recorded
these movements at a frequency of 8Hz.

B. Wearable System Context and Sensors Relation

We investigate the importance of context-aware anomaly
detection for wearable devices in a setup explained in Section
III. In this system, three strain sensors are attached to a wrist,
elbow, and shoulder wearable device to monitor human body
movements. An NFC network is implemented on the device to
gather the measurement frequently. Figure 4 demonstrates the
three sensor recordings in a time interval involving frequent
movements. To analyze data further, we plot the trendline
of each time-series data by calculating the moving average
of data with a window size of 10. The averaging process
reduces the noisy local variations and reveals the general
pattern. The results indicate the hidden relationships among the
sensors. The elbow and wrist sensors are directly related and
follow a similar pattern of changes, while the shoulder sensor
changes pursue a reverse pattern. This correlation relies on the
shared context among sensors, which is common in wearable
sensors. The interaction with the physical world highlights the
importance of context in CPS because the same environmental
factors influence multiple components. Consequently, their
behavior and data would show correlations. In large-scale CPS,
it is challenging to discover the shared context between sensors
due to widespread sensor distribution. However, sensor corre-
lations are evident in wearable devices because the sensors
are attached in close proximity and observe a single physical
system, the human body.

During each movement, several muscles and joints are
engaged; as a result, these movements influence multiple
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sensors positioned at various joints. This implies that the
readings from these sensors exhibit correlations with each
other. As illustrated in Figure 3, this interrelation between
the values of sensors attached to the elbow and shoulder is
depicted. Notably, these sensor values tend to cluster within
specific ranges, reflecting the constrained set of movements
that the human body is capable of. Leveraging a multi-sensor
system and capitalizing on the interrelatedness of sensor values
equips us with the capability to detect abnormal situations.
To expound further, let’s consider a scenario where one of
the sensors is under attack. Given the intrinsic correlations
between sensor values, detecting this attack by observing the
other sensors’ values is feasible. Figure 5 demonstrates the
result of our data analysis in which we divide the data space
into two zones, determining the state of the wearable system.

V. CONCLUSION

This study addresses the critical issues of reliability and
security in wearable devices by implementing anomaly detec-
tion and diagnosis. Wearable devices interact with the physical
world and share a contextual environment. This shared context
is particularly pronounced in wearable devices since the phys-
ical environment remains consistent across all components,
primarily the human body. By embedding this comprehension
into our anomaly detection models, we enable the system
to accurately identify both standard and exceptional states.
Furthermore, this refined approach facilitates researchers in
delving deeper into the anomalies, allowing them to investigate
the underlying causes and precisely classify the nature of the
issues encountered.

REFERENCES

[1] J. I. Jimenez, H. Jahankhani, and S. Kendzierskyj, “Health care in the
cyberspace: Medical cyber-physical system and digital twin challenges,”
in Digital twin technologies and smart cities. Springer, 2020.

A. Hajiaghajani, A. H. Afandizadeh Zargari, M. Dautta, A. Jimenez,
F. Kurdahi, and P. Tseng, “Textile-integrated metamaterials for near-
field multibody area networks,” Nature Electronics, 2021.

M. Lee, K. Lee, J. Shim, S.-j. Cho, and J. Choi, “Security threat on
wearable services: Empirical study using a commercial smartband,”
in 2016 IEEE International Conference on Consumer Electronics-Asia
(ICCE-Asia), 2016.

[2]

[31

(4]

(5]

(6]

(71

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(7]

(18]
[19]
[20]

[21]

[22]

(23]

K. W. Ching and M. M. Singh, “Wearable technology devices security
and privacy vulnerability analysis,” International Journal of Network
Security & Its Applications, 2016.

A. J. Mills, R. T. Watson, L. Pitt, and J. Kietzmann, “Wearing safe:
Physical and informational security in the age of the wearable device,”
Business Horizons, 2016.

M. Markou and S. Singh, “Novelty detection: a review—part 1: statis-
tical approaches,” Signal processing, 2003.

M. L. Han, J. Lee, A. R. Kang, S. Kang, J. K. Park, and H. K. Kim, “A
statistical-based anomaly detection method for connected cars in internet
of things environment,” in Internet of Vehicles - Safe and Intelligent
Mobility. Springer International Publishing, 2015.

H. Sedjelmaci, S. M. Senouci, and M. Al-Bahri, “A lightweight anomaly
detection technique for low-resource iot devices: A game-theoretic
methodology,” in 2016 IEEE International Conference on Communi-
cations (ICC), 2016.

S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for
mining outliers from large data sets,” in Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, 2000.

L. J. Latecki, A. Lazarevic, and D. Pokrajac, “Outlier detection with ker-
nel density functions,” in International Workshop on Machine Learning
and Data Mining in Pattern Recognition. Springer, 2007.

M. Radovanovi¢, A. Nanopoulos, and M. Ivanovi¢, “Reverse nearest
neighbors in unsupervised distance-based outlier detection,” IEEE trans-
actions on knowledge and data engineering, 2014.

J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in International conference on machine learning,
2016.

W. Lu, Y. Cheng, C. Xiao, S. Chang, S. Huang, B. Liang, and T. Huang,
“Unsupervised sequential outlier detection with deep architectures,”
IEEE transactions on image processing, 2017.

C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep
autoencoders,” in Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, 2017.

R. T. Ionescu, F. S. Khan, M.-1. Georgescu, and L. Shao, “Object-centric
auto-encoders and dummy anomalies for abnormal event detection in
video,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019.

D. Abati, A. Porrello, S. Calderara, and R. Cucchiara, “Latent space
autoregression for novelty detection,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019.

W. Liu, W. Luo, D. Lian, and S. Gao, “Future frame prediction
for anomaly detection—a new baseline,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018.

M. R. Yuce, “Wearable sensors get connected with plasmons,” Nature
Electronics, 2019.

J. Kim, A. S. Campbell, B. E.-F. de Avila, and J. Wang, “Wearable
biosensors for healthcare monitoring,” Nature biotechnology, 2019.

M. R. Yuce, “Implementation of wireless body area networks for
healthcare systems,” Sensors and Actuators A: Physical, 2010.

H.-J. Kim, H. Hirayama, S. Kim, K. J. Han, R. Zhang, and J.-W. Choi,
“Review of near-field wireless power and communication for biomedical
applications,” IEEE Access, 2017.

K. Aslanidis and V. N. Gunasegaran, “Trf7970a nfc reader antenna
multiplexing,” Texas, 2016.

J. Wyatt, “Trf7960a rfid multiplexer example system,” 2012.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 28,2024 at 07:10:35 UTC from IEEE Xplore. Restrictions apply.



