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HyperDetect: A Real-Time Hyperdimensional
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Abstract—Network-based security has emerged as an increas-
ingly critical challenge in the domain of the Internet of Things
(IoT). A number of network intrusion detection systems (NIDS),
typically relying on sophisticated machine learning (ML) algo-
rithms, have been proposed to monitor network traffic and detect
malicious activity. However, these NIDS designs require extensive
memory and computational power, exceeding the capability of
today’s IoT devices, and often fail to provide timely detection of
network attacks. To tackle this issue, we propose HyperDetect,
the first attempt at NIDS modeling that leverages the highly
efficient and parallel operations of brain-inspired hyperdimen-
sional computing (HDC). Our innovative model updating method
effectively mitigates model saturation and significantly reduces
the number of retraining iterations needed to reach convergence.
Additionally, we employ a novel dynamic encoding technique
to regenerate insignificant dimensions, considerably lowering the
dimensionalities required to achieve high-quality performance
and further accelerating the learning process. HyperDetect
delivers on average 5.02x faster training and 31.83 x faster infer-
ence compared to state-of-the-art (SOTA) learning approaches
on a wide range of network intrusion classification tasks. We
also extensively evaluate HyperDetect on embedded hardware to
demonstrate its low-latency and resource-efficient characteristics.

Index Terms—Bio-inspired learning, hyperdimensional com-
puting (HDC), Internet of Things (IoT), network intrusion
detection.

I. INTRODUCTION

HE Internet of Things (IoT) has recently become an
T emerging trend for its extraordinary potential to connect
various heterogeneous smart sensors and devices. However,
notorious IoT attacks, such as Stuxnet [1], have raised both
social and industrial concerns regarding network-based secu-
rity issues. In particular, due to the interconnected nature

Manuscript received 6 September 2023; revised 6 October 2023
and 17 November 2023; accepted 16 December 2023. Date of pub-
lication 20 December 2023; date of current version 9 April 2024.
(Corresponding author: Junyao Wang.)

Junyao Wang is with the Department of Computer Science, University of
California at Irvine, Irvine, CA 92697 USA (e-mail: junyaow4 @uci.edu).

Haocheng Xu, Yonatan Gizachew Achamyeleh, and Sitao Huang are with
the Department of Electrical Engineering and Computer Science, University
of California at Irvine, Irvine, CA 92697 USA (e-mail: haochx5@uci.edu;
yachamye @uci.edu; sitaoh@uci.edu).

Mohammad Abdullah Al Faruque is with the Department of Computer
Science and the Department of Electrical Engineering and Computer
Science, University of California at Irvine, Irvine, CA 92697 USA (e-mail:
alfaruqu@uci.edu).

Digital Object Identifier 10.1109/JI0T.2023.3345279

, Graduate Student Member, IEEE, Haocheng Xu
, Sitao Huang
and Mohammad Abdullah Al Faruque

, Graduate Student Member, IEEE,
, Member, IEEE,
, Senior Member, IEEE

NIDS

/
=

| see an attack!

Cyber-Attack
Firewall §
g y Trusted
§ &) Network
N
Fig. 1. Model of NIDS.

of these devices, compromising a single component or com-
munication channel in Internet of Things (IoT)-based systems
can potentially paralyze the entire network [2], [3]. Traditional
anti-virus software and firewalls perform less effectively
against the evolving landscape of cyber-threats; network intru-
sion detection systems (NIDS) have become one of the most
widely deployed tools to protect information infrastructures
in the past two decades [4], [5]. As demonstrated in Fig. 1,
when traditional firewalls fail to intercept intruders, NIDS step
in to provide real-time detection and alerts to mitigate the
attacks [6]. However, existing NIDS models can be extremely
challenging to deploy given the resource limitations and
potential instabilities of IoT systems, more resource-efficient
and hardware-friendly network intrusion detection solutions
are of absolute necessity [7], [8].

Popular NIDS designs rely heavily on machine learn-
ing (ML) models to achieve high-quality performance
[9], [10], [11]. However, NIDS based on traditional ML
algorithms, e.g., support vector machines (SVMs), requires
considerable feature engineering and fine-tuning to provide
adequate detection accuracy, and demands consistent mainte-
nance with up-to-date training data sets to identify constantly
evolving cyber-threats [12], [13], [14], [15]. Although NIDS
models developed upon deep learning (DL) generally perform
better by learning from raw data, their excellent learning
quality often comes at the expense of high computational
and memory requirements, involving millions of parameters
iteratively refined over multiple time periods [9], [16]. These
resource-intensive NIDS designs can be impractical for IoT
systems. While today’s common approach is to send data
from edge to the centralized location in the cloud to complete
sophisticated learning and training tasks, it can potentially
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Fig. 2. (a) Motivation of our proposed HDC learning framework comes from
the dynamic neuron regeneration of human brains. (b) Comparing static and
our proposed dynamic HDC learning frameworks.

cause drastic efficiency loss, incur serious scalability issues,
and even raise new security concerns [17], [18]. Edge-based
computing, distributing learning tasks onto the IoT hierarchy
and bringing computations close to data sources, is hence
considered a more promising solution. Given the increasingly
massive amount of network traffic and the real-time require-
ment of network intrusion detection, there is an imperative
need for a highly efficient and lightweight NIDS design to
address security issues in IoT systems.

In contrast to popular ML methodologies, hyperdimensional
computing (HDC) is considered a promising learning algo-
rithm for resource-constrained IoT platforms for its 1) high
computational efficiency ensuring real-time learning; 2) strong
robustness against noise—a key strength for IoT systems; and
3) lightweight hardware implementations allowing efficient
execution on edge [19], [20], [21], [22]. As demonstrated in
Fig. 2(a), HDC originates from the neuroscience observation
that the cerebellum cortex in human brains effortlessly and
efficiently processes memory, perception, and cognition tasks
with neural activities in high-dimensional space. Closely
mimicking information representations in human brains, HDC
encodes low-dimensional inputs to hypervectors consisting
of thousands of elements to perform learning tasks with
highly parallel and well-trackable operations. Recent research
has shown that HDC is capable of achieving high-quality
results with notably faster convergence than state-of-the-
art (SOTA) learning approaches [21]. Additionally, utilizing
encoded data points on high-dimensional space, HDC can
potentially bring unique advantages in distinguishing various
sophisticated attacks, especially nowadays when attacks are
often disguised with similar patterns of normal network traffic.

Nevertheless, existing HDCs have two major drawbacks:
1) they do not consider momentum in the model, easily result-
ing in model saturation and requiring hundreds of iterations
to converge and 2) they typically use pregenerated encoding
modules that are never updated during the entire training phase
and thus require extremely high dimensionalities to achieve
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acceptable accuracy. These drawbacks not only severely lower
the learning efficiency by involving large amounts of unneces-
sary computations but also compromise the system efficiency
with increased data size and communication cost [23]. This
can be particularly destructive for performing today’s network
intrusion detection tasks, which often require efficiently mon-
itoring and analyzing billions of network traffic instances. We
observe one major cause is that the encoding module of exist-
ing HDC:s is incapable of utilizing and adapting to information
learned during training, and hence often fails to find a good
representation of the data with lower dimensionalities. In
contrast, as shown in Fig. 2(a), neurons in human brains
dynamically change and regenerate all the time and provide
more useful functionality when accessing new information.
Specifically, every day, approximately 85000 neurons die,
i.e., 31 million in a year, and a similar number of neurons are
generated simultaneously to provide more useful functionality
to the brain [24], [25], [26]. While the goal of HDC is to
utilize the high dimensionality of randomly generated vectors
to represent information as a pattern of neural activity, existing
HDCs can hardly support a similar behavior.

To address this issue, we propose HyperDetect, the first
network intrusion classification model leveraging the highly
parallel operations provided by brain-inspired HDC. We intro-
duce a novel model updating method explicitly considering
the momentum at each data point. Additionally, as shown
in Fig. 2(b), unlike existing HDCs performing encoding and
training sequentially in a one-way fashion, HyperDetect
works bidirectionally, enabling base vectors and encoding
modules with adaptivity to the information learned from each
training iteration. HyperDetect thereby provides an optimized
model that achieves effective intrusion detection with notably
fewer training iterations and lower dimensionalities, signifi-
cantly accelerating both training and inference by eliminating
unnecessary computations. The main contributions of this
article are listed as follows.

1) To the best of our knowledge, HyperDetect is the
first NIDS model leveraging the highly efficient and
parallel operations of HDC to deliver real-time attack
detection. HyperDetect provides on average a 5.02x
faster training and a 3.34x faster inference compared
to SOTA DNNs on a wide range of network intrusion
classification tasks.

2) We propose a novel model updating method with explicit
consideration of the momentum at each data point. Our
learning algorithm effectively mitigates model saturation
and significantly reduces the number of retraining iter-
ations required to reach convergence.

3) We employ an innovative dimension regeneration tech-
nique and optimize it with highly parallel matrix-wise
operations. Compared to SOTA HDC with static
encoders, HyperDetect reduces the required dimension-
ality by 16.0x and demonstrates on average a 31.83x
speedup in inference.

4) We conduct a thorough design space search utilizing
a genetic algorithm (GA) to understand model
performance in various hyperparameter settings. Our
results demonstrate the great potential of implementing
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both training and inference of HyperDetect
on edge.

5) We propose hardware-aware optimizations for the imple-
mentation of HyperDetect, and evaluate it across
multiple embedded devices, including Raspberry Pi,
NVIDIA Jetson Nano, and FPGA. HyperDetect pro-
vides considerably lower inference latency than other
ML-based approaches, with speedups from 1.16x to
4715.6x, ensuring timely support for attack detection

on resource-constrained IoT devices.

II. BACKGROUND AND RELATED WORK
A. Threat Model

Here, we introduce potential network-based vulnerabilities
and the threat model in IoT systems by outlining threat agents,
attack vectors, system vulnerabilities, and potential impacts.

1) Threat Agents: The primary perpetrators of network-
based attacks are external attackers and insider threats.
External attackers, i.e., malicious actors outside the network,
actively seek out vulnerabilities to exploit and gain unautho-
rized access. In contrast, insider threats originate from the
misuse of authorized access by individuals within the network
who possess legitimate access privileges, either intentionally
or inadvertently. Both of these perpetrators pose significant
risks to network security, requiring real-time network intrusion
detection and comprehensive security measures.

2) Attack Vectors: The resource-constrained nature of IoT
devices substantially broadens the vulnerability landscape
for network-based attacks. Noteworthy attack vectors include
port scanning, packet sniffing, IP spoofing, man-in-the-middle
attacks, Denial of Service (DoS), Distributed DoS (DDoS),
and malware propagation. Considering the limited processing
power and memory of IoT devices, each of these tactics
presents a unique challenge for network intrusion detection.
Therefore, lightweight and adaptive intrusion detection mech-
anisms become an absolute necessity.

3) System Vulnerabilities: The main vulnerabilities in
IoT systems stem from weak authentication mechanisms,
unpatched or outdated systems, and inadequate or misconfig-
ured network monitoring. Resource-constrained IoT devices
are particularly susceptible to attacks due to insufficient
monitoring, which often fails to identify malicious activity.
This results in a broader spectrum of exploitation opportunities
for attackers and can potentially cause serious damage.

4) Potential Impacts: A successful network-based attack
can potentially cause severe consequences that impact various
aspects of IoT systems, including 1) data breaches, i.e., theft
or exposure of sensitive data; 2) disrupted operation of IoT
devices or even the entire network; and 3) unauthorized
access to privilege areas of the network gained by attack-
ers. Additionally, malware propagation can potentially occur,
wherein malware within an IoT system spreads throughout the
entire network, further compromising the system’s security.

B. Application of ML in NIDS

1) Popular NIDS Implementation: NIDS are designed
to monitor large amounts of network traffic and identify
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malicious activity. Once an abnormal behavior is detected,
NIDS dispatches real-time alerts to administrators to mitigate
the attack. Prevailing NIDS implementations can be classified
into two major categories: 1) signature-based and 2) anomaly-
based [10]. A signature-based NIDS protocol maintains a
collection of signatures, each of which characterizes the profile
of a known security threat, and appropriate action is taken
when a traffic instance matches a signature [27], [28]. In
contrast, an anomaly-based NIDS design monitors network
traffic and compares it to an established baseline of normal
traffic profile, sending alerts to the administrator when a
received traffic instance is significantly different from the
baseline. However, it can often be highly subjective to decide
what can be considered as normal [29]. Thus, our work,
HyperDetect, focuses on the signature-based NIDS setting
and is evaluated by signature-based NIDS data sets.

2) Data Set and Learning Approaches for NIDS:
Numerous NIDS models leveraging the excellent performance
of ML models have been proposed in the past decade. A
number of cyber-security data sets consisting of real-life
and automatically generated network traffic have also been
established as effective benchmarks for comparing different
NIDS designs. For earlier well-known data sets, such as
NSL-KDD [30] and UNSW-NB15 [31], models based on
SVMs [13], [14], [15] have consistently achieved excellent
performance. However, SVM-based learning models require
substantially long time periods for both training and inference
when confronting large amounts of data samples. Since the
release of two more recent data sets CIC-IDS-2017 [32]
and CIC-IDS-2018 [33], which contain significantly larger
amounts of network traffic and more sophisticated attack
patterns, SVMs become less practical and more sophisticated
DL models have been actively developed [15], [34], [35].
Nevertheless, these sophisticated DL models require extensive
computational and memory resources and are often impractical
for resource-constrained embedded devices [16], [36]. In
contrast, our HyperDetect utilizes HDC to capture intricate
attack patterns with efficient and parallel matrix operations on
high-dimensional space, and thereby provide a more resource-
efficient NIDS solution for IoT systems.

C. Hyperdimensional Computing

Prior studies have exhibited enormous success in various
applications of HDC, such as graph reasoning [37] and
language recognition [21]. These works provide comparable
accuracy to SOTA learning approaches and require signifi-
cantly lower energy and computational resources. However,
existing HDC learning frameworks do not consider momentum
at each data point and use pregenerated static encoders that
are never updated during training. Consequently, hundreds
of training iterations and extremely high dimensionalities are
required to achieve acceptable accuracy [38]. NeuralHD [23],
a recently proposed dynamic encoding approach, success-
fully compressed the required dimensionality by eliminating
dimensions with minor impacts on distinguishing patterns.
However, its proposed model bundles encoded data samples
sequentially in a scalar manner and delivers significantly
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lower learning efficiency than SOTA HDCs with static
encoders [21], [39]. This can cause serious problems for
real-world network intrusion detection where there are often
stringent time requirements. In particular, long inference
latency can directly cause an exponential increase in the risk
of network security posed by intruders. To the best of our
knowledge, HyperDetect is the first time that a dynamic
HDC framework is being utilized to tackle the critical network
intrusion detection tasks on resource-constrained IoT devices.
We formulate and fully optimize our model with highly
parallel matrix operations, thereby tremendously accelerating
both training and inference. We also propose an innovative
model updating scheme that explicitly considers momentum
at each data point so that the number of retraining iterations
can be significantly reduced. This ensures powerful real-time
support for attack detection, positioning HyperDetect an ideal
NIDS model for IoT systems.

III. HYPERDIMENSIONAL CLASSIFICATION

HDC, a novel computational framework inspired by cog-
nitive neuroscience, utilizes high-dimensional vectors for
information processing. It leverages great amounts of expres-
sive power on high-dimensional space to model associations
between data samples. One unique property of the high-
dimensional space is the existence of a large number of nearly
orthogonal hypervectors. Specifically, in spaces with a large
enough dimensionality, two random vectors are almost guaran-
teed to be within 5 degrees of orthogonal [40]. Mathematically,
consider two random hypervectors H; and H> with dimension
D, when D is large enough, the dot product H1 - H> = 0. This
property enables highly efficient and parallel operations, such
as similarity calculations, bundlings, and bindings (elaborated
in Section III-B). Here, we introduce basic operations and the
learning framework of existing HDCs.

A. Encoding

Inspired by information representation of human brains,
HDC starts with encoding samples to high-dimensional space
via multiplication with a projection matrix consisting of ran-
domly generated high-dimensional base vectors. Each encoded
sample is referred to as a hypervector, which contains thou-
sands of elements. A hypervector stores all the information
across all its elements so that no element is more responsible
for storing any piece of information than another. The
encoding technique highly depends on the type of the original
data, e.g., feature data, text-like data, and time-series data.
Nevertheless, a fundamental principle of encoding remains
consistent: the distance correlation in original data should
be properly preserved during encoding. This ensures that
the encoded representation retains the essential relationships
and structures in the original data set and thereby prevents
information loss. Popular encoding techniques include multi-
plication of projection matrices [23], fractional binding [41]
that preserves real numbered difference, and time-series encod-
ing [19] that captures and preserves spatial and temporal
dependencies. Most of these encoding techniques are based on
the basic operations introduced in Section III-B.
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B. Basic Operations in HDC

1) Similarity: Calculation of the distance between the query
hypervector and the class hypervector. For real-valued
hypervectors, a common measure is cosine similarity.
For bipolar hypervectors, it is simplified to the Hamming
distance.

2) Bundling (4): Element-wise addition of multiple hyper-
vectors, e.g., Hpundle = H1 + Ho, generating a
hypervector with the same dimension as inputs. In
high-dimensional space, bundling works as a memory
operation and provides an easy way to check the
existence of a query hypervector in a bundled set.
In the previous example, &§(Hpundie, H1) > 0 while
8 (Hpundles H3) = 0 (H3z # Hi, H2). Bundling models
how human brains memorize input information.

3) Binding (*): Element-wise multiplication associating
two hypervectors to create another hypervector Hping
that is nearly orthogonal to both H; and Hj, i.e.,
Hoina = Hi * Hp, where §(Hpind, H1) ~ 0 and
8 (Hpind, H2) =~ 0. Due to reversibility, i.e., Hping *
‘H1 = Ha, information from both hypervectors can be
preserved. Binding models how human brains connect
input information, i.e., associating the information of
multiple objects into a single hypervector.

C. HDC Learning

1) Training: After generating each encoded hypervector '
for class /, the training module calculates the class hypervector
C; by bundling all H's to find the universal property within
a class. Mathematically, C; = Zfil H!, where J denote
the number of inputs with label /. A trained HDC model
consists of k class hypervectors each with dimensions D,
where k denotes the number of classes. During retraining,
we discard the mispredicted queries from the corresponding
mispredicted classes and bundle them into their correct classes.
For an encoded data sample H, if is mispredicted as label
I while its true label [, we update the class hypervectors C;
and Cy as

G<C+n-[1-8(H,CPIxH
Cr < Cr—n-[1=8H,CHIxH (1

where 1 is a learning rate, and 6(7, -) denotes the similarity
score between H and the corresponding class hypervector.
However, HDC retraining can be computationally expensive
as it requires both associative search and model update with
high dimensionalities [39]. Therefore, in this article, we aim
to provide effective network intrusion detection with lower
dimensionalities and faster convergence.

2) Inference: The HDC inference consists of two major
steps: 1) encoding inference samples into hyperdimensional
space as a query hypervector Q with the same encoding
technique in training and 2) calculating the similarity score
between Q and each class hypervector. The inference sample
@ is then classified to the class to which it achieves the highest
cosine similarity score. Hamming distance is often used for
binary representation, while the cosine distance is a common
measure for hypervectors with high precision.
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Fig. 3. Overview of the workflow of our proposed HyperDetect. HyperDetect starts with encoding training samples into a high-dimensional space. We then
construct HDC models with our innovative model updating technique that explicitly considers the momentum at each data point. Following this, we identify
and regenerate dimensions that have minimal impact on the classification task, eventually formulating a highly efficient HDC model.

IV. METHODOLOGY

We propose HyperDetect, a resource-efficient HDC learn-
ing framework consisting of two innovative steps: 1) HDC
learning and 2) dimension regeneration. In HDC learning,
we propose a novel adaptive model updating method that
1) eliminates model saturation by scaling a proper weight to
each data point according to how much new information is
added to the class hypervectors and 2) accelerate model con-
vergence by calculating the momentum at each data point. It
effectively lowers the number of retraining iterations required
to reach convergence. In dimension regeneration, we identify
and regenerate insignificant dimensions in the model, and
thereby reduce the required dimensionality to achieve adequate
accuracy and further accelerate the learning process.

A. Encoding

As shown in Fig. 3, HyperDetect starts with encoding (§Y)
training samples onto high-dimensional space. For network
intrusion classification, considering the nonlinear relationship
between features, we utilize an encoding technique inspired
by the radial basis function (RBF) [42]. Mathematically,
for a feature vector F = {f1,f2,....fu}(fi € R") with n
features, we generate the corresponding hypervector H =

{h1, hy, ..., hp}(0 < h; < 1, h; € R) with D dimensions as
h; = cos(B; - F + ¢) x sin(B; - F) 2)

where B; = {by, by, ..., by} is a randomly generated base

vector such that b; ~ Gaussian(u = 0,0 = 1) and ¢ ~

Uniform[0, 2r]. The encoding module maps this vector into
a high-dimensional vector with length D, where D > n. The
random vectors B; = {by, by, ..., b,} can be generated once
offline and then can be used for the rest of the classification
tasks (B;) € R™. After this step, each element 4; represents
an element of the hypervector H.

B. HDC Training With Model Momentum

After encoding training samples onto the high-dimensional
space, we exploit a highly efficient and parallel HDC learning
algorithm (@), bundling each encoded data sample by scaling
a proper weight to each of them depending on how much new

information is added to class hypervectors. For a new encoded
training sample H, we update the model based on its cosine
similarities with all class hypervectors (0), ie.,

H-C H C
IHI- NG IHIE NG

where H - C; is the dot product between H and a class hyper-
vector C;, and N represents the normalized class hypervector,
i.e., (Ci/|ICy]l)- Here, || H || is a constant factor when comparing
a query with all classes and thus can be eliminated. The
calculation of cosine similarity can hence be simplified to a
dot product operation. However, the model updating technique
of existing HDCs, as shown in (1), only considers the current
learning rate and the label at that moment. Specifically, it does
not take the last few steps into account while traversing the
class hypervectors for the training process. This can potentially
lead to minor or no updates that stagnate the learning process,
or large updates that make the learning process unable to
relax. To address this issue, our novel updating technique
explicitly considers the momentum from the previous update.
In particular, if H has the highest cosine similarity with class
L; while it actually has label £;, the model updates (@) as

S(H,C) =

3)

t t t t—1
ClCl4+n-(1-8)xH+e-C

CleClen-(1-8)xH+e-C! 4)

where 1 denotes a learning rate, ¢ and 7— 1 denotes the current
learning trail and the previous training trail, respectively. A
large §; indicates the input data point is marginally mismatched
or already exists in the model, and the model is updated
by adding a very small portion of the encoded query (1 —
8(H,-) =~ 0). In contrast, a small §(H,-), indicating a
noticeably new pattern that is uncommon or does not already
exist in the model, updates the model with a large factor
(1 —-36(H,-) = 1). To avoid over-fitting, We do not update
the model when 7 has the highest cosine similarity with
its actual label. Our learning algorithm provides a higher
chance for noncommon patterns to be properly included in the
model, thereby effectively reducing computationally expensive
retraining iterations required to achieve reasonable accuracy.
Additionally, including the momentum can effectively prevent
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us from abrupt changes and falling in the wrong direction;
a large difference between C! and Cffl indicates the current
update may cause an oscillation when the optimization land-
scape is narrow and steep. More precisely, the momentum can
be considered as an exponentially weighted moving average
of past gradients. Instead of updating the hypervector only
based on the current data point, our learning algorithm utilizes
an exponentially weighted moving average of the preceding
updates that acts as a form of memory for the optimizer,
enabling it to achieve faster convergence, reduce the risk of
oscillation, retain the direction it was moving in, and persist
in that trajectory, even if the current data point suggests a
different direction for the update.

C. Dimension Regeneration

1) Drop Insignificant Dimensions: HDC algorithms repre-
sent each class with a class hypervector that encodes the
patterns of that class. An effective classifier achieves the
desired accuracy by a strong capability to distinguish patterns
so that, in the inference phase, query vectors can have very
differentiated cosine similarities to each class. In contrast, a
weak classifier can hardly find distinct patterns for different
classes; this makes the classification task hard as the query
may have a close similarity value to multiple classes. Similarly,
dimensions with similar values over all classes indicate they
store common information across classes and therefore play
minimal roles in the classification. As demonstrated in Fig. 3,
HyperDetect starts with an initial trained model and nor-
malizes each class hypervectors (@)). We then calculate the
variance of each dimension over all classes (§)) to measure
the dispersion of that dimension. In particular, dimensions
with minimal variances (@) are considered insignificant (@).
We then select R portion of dimensions with the lowest
variance to drop (@), depending on a regeneration rate
R (@). In this way, HyperDetect achieves high-quality
performance with a significantly compressed dimensional-
ity, and hence greatly improves the training and inference
efficiency.

2) Dimension Regeneration: To mitigate the accuracy loss
caused by dropping dimensions, instead of leaving these
dimensions blank, HyperDetect regenerates (€)) them so
that the new dimensions can potentially have a higher impact
on the classification task and better distinguish different
patterns. During regeneration, HyperDetect replaces each of
the base vectors (e) of selected dimensions with another
randomly generated hypervector from Gaussian Distribution,
in the hope that the new hypervector can have a more
positive impact on the classification task or provide a better
performance.

3) Retraining: HyperDetect then updates the current
model by retraining. Instead of starting training from scratch,
HyperDetect updates the values of class hypervectors on
the dropped dimensions while other dimensions continue
learning based on their existing values. The iterative learn-
ing and regeneration continue until HyperDetect finds a
model where most dimensions are highly contributing to the
classification.
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D. Hardware Optimizations

Network intrusion detection tasks typically have strin-
gent requirements for both inference latency and model
performance.  We apply the following hardware-aware
optimizations into the implementation of our proposed
HyperDetect to maximize both its learning efficiency and
model performance:

1) Multithreading: Leveraging the powerful multicore pro-
cessor, multithreading facilitates the execution of multiple
threads simultaneously and enables overlapping computations.
In our work, we employ multithreading to effectively enhance
the overall throughput of HyperDetect and fully parallelize
operations, including random basis generation, basis regener-
ation, encoding, and vector normalization.

2) Tiled Matrix  Multiplication: Several steps in
HyperDetect are naturally matrix operations, e.g., encoding
and cosine similarity. We employ a memory hierarchy
approach, breaking down these matrices into smaller tiles that
fit within the cache. This strategy significantly reduces the
frequency of data fetching from the main memory, resulting in
enhanced efficiency as data can be repeatedly accessed from
cached tiles during matrix multiplication.

3) Kernel Fusion: During HyperDetect implementation,
we create custom kernels to fuse original kernels, e.g., the
fusion of basis regeneration and encoding. This minimizes
the frequency of memory read and write operations required
for storing intermediate results back to the main memory due
to limitations in local buffer size. Additionally, it effectively
reduces the overhead associated with kernel invocations.

4) Quantization: Quantization can significantly reduce the
memory requirements by decreasing the number of bits
required for storing numerical values. Additionally, it acceler-
ates computations thanks to the innate hardware support for
quantized numbers, such as INTS8, which is notably faster
when compared to higher precision floating-point numbers.
HyperDetect supports the customization of bitwidth to fully
utilize low-bitwidth functional units on specific hardware
platforms, further enhancing computational efficiency.

E. Hyperparameter Design Space Exploration

1) Design Space Definition: To understand HyperDetect
in different hyperparameter settings, in particular, for different
physical dimensionality (D), effective dimensionality (D*),
and regeneration rate (R), we conduct a comprehensive design
space exploration (DSE). The effective dimensionality (D*)
is defined as the addition of the physical dimensions (D) of
HyperDetect with all the regenerated dimensions throughout
the retraining iterations. Mathematically, D* = D+ D x R x
Number of Iterations, where R is a regeneration rate. Existing
HDC works [23] typically select the physical dimensionality
(D*) and effective dimensionality (D) based on heuristic,
which might not be the optimal solution for IoT network
intrusion detection tasks with stringent constraints in both
accuracy and hardware resources. Therefore, we define a
comprehensive multidimensional design space so that we can
explore all the possibilities and systematically search for
optimal solutions. We define our design space to be a 3-D



14850

TABLE I
TERMINOLOGY IN GA

Term | Description

Gene The value of one of the dimensions of a design point
Genome A set of genes that represents a design point
Population A set of all possible genomes (one generation)
Elite A set of genomes with high fitness score
Mutation Randomly choose some genes to be changed
Crossover Blend parents’ genes to reproduce children genomes

Initialization

Evolution: Evolution: Fitness
Crossover Mutations Score
N o o — — — — — — — —

L

Fig. 4. GA for HyperDetect DSE.

space spanned by all valid values for D, D*, and R. The size
of this space is O(10') = O(10° x 10° x 10°).

2) Search Algorithm: Due to the vastness of the design
space (hundreds of billions of possibilities) and the exponential
increase in the evaluation cost for certain hyperparameter
variations, it can be impractical to employ a naive exhaustive
grid search method to explore the entire design space. Here,
we develop a search technique based on GAs, one of the most
popular and versatile algorithms for addressing scheduling
problems within a discontinuous space. GA can converge to
global optima in most hyperparameter optimization problems
and achieve comparable performance as deep reinforcement
learning [43]. Some common terminologies for GA are demon-
strated in Table 1.

3) Genetic Algorithm: As shown in Fig. 4, our DSE flow
includes initialization, two evolution operators, i.e., crossover
and mutations, an evaluation stage to calculate the fitness
score, and a selection stage to select the good genes. We
elaborate on these generic evolution operators as follows.

1) Initialization: We select a subset of design points for
each generation by randomly initializing a population
size P. Specifically, we construct P using different
combinations of physical dimensionality (D), effec-
tive dimensionality (D*), and regeneration rate (R),
and each combination is considered a genome or an
individual.

2) Evolution Crossover: We randomly select a pair of
genes, i.e., two genomes, from the P combinations
initialized and blend their genes by interchanging param-
eter values.

3) Evolution Mutations: We assign a random probability
for each pair of genes.

4) Fitness Score: After evolution, we use the following
fitness function to evaluate the candidates and then select
the candidates with the higher fitness score for the
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Algorithm 1 Hyperparameter DSE
Input: Sets of valid hyperparameters {D;}, {D/*}, {Ry}
Output: The optimal training time (7%, ), inference latency
(T, and accuracy (A*)
1: for each (i,j, k) € {D;} x {D;‘} x {Ry} do

2 if i > j then

3 continue > D should not be greater than D*
4: else

5 Teeains Teests A < HyperDetect™"* (data)

6: t;kain’ 7;:517 A* < optimal(Tirain, Trest> A)

7. return i,j, k < D, D*, R

TABLE 1T
DATA SETS FOR EVALUATING NIDS DESIGNS (n: NUMBER
OF FEATURES AND k: NUMBER OF CLASSES)

| n k  Train Size  Test Size  Release Year
NSL-KDD 33 5 665,319 285,137 2009 [30]
UNSW-15 39 10 180,371 77,302 2015 [31]
CIC-IDS-2017 | 49 15 1,698,008 727,719 2017 [32]
CIC-IDS-2018 | 41 11 172,711 74,019 2018 [33]
next generation:
Fitness Score =« - L+ 8- A+y - T (5)

where £ denotes latency, A denotes accuracy, and T
denotes training time. «, 8, y are hyperparameters that
can be tuned. In the experiment, we set « = 0.5, 8 =
0.3, and y = 0.2 to expect a better finding targeting
edge devices.

4) Verification: We employ Algorithm 1 to traverse part of
possible combinations of (D, D*, R) to construct a design
space that is significantly smaller than the original one and
more practical to evaluate. Considering the resource limitations
of edge devices, we start by setting a lower bound and upper
bound for the physical dimensionality (D) of our HDC model
and then emulate from the lowest physical dimensionality
toward the upper bound. Additionally, we emulate all the pos-
sible effective dimensionality (D*, D* > D) and regeneration
rate (R) to fully explore this design space and capture the
optima. Algorithm 1 outputs the optimal hyperparameters that
deliver the best detection accuracy, training efficiency, and
testing efficiency in the smaller space defined by GA. With
the trend and results obtained from this search, we can verify
the performance of GA (elaborated in Section V-E).

V. EXPERIMENTAL RESULT

We evaluate HyperDetect on widely used network intrusion
data sets listed in Table II. We compare HyperDetect with
SOTA DNNSs [44], SVMs [15], and HDC algorithms [23], [39]
in terms of accuracy, training and inference efficiency, and
performance on resource-constrained devices. We implement
and evaluate HyperDetect on a wide range of platforms,
including server CPU, embedded CPU, embedded GPU, and
FPGA. We also explore the hyperparameter design space of
HyperDetect and identify the optimal hyperparameters.
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Fig. 5. Comparing accuracy of NIDS classification. HyperDetect demon-

strates a comparable classification accuracy to SOTA learning algorithms.

A. Experimental Setup

We evaluate HyperDetect on both server CPU and embed-
ded platforms listed as follows.

1) Server CPU: Intel Xeon Silver 4310 CPU (12-core,
24-thread, 2.10 GHz), 96-GB DDR4 memory, Ubuntu 20.04,
Python 3.8.10, PyTorch 1.12.1, and TDP 120 W.

2) Embedded CPU: Raspberry Pi 3 Model 3+ (quad-core
ARM A53 @1.4 GHz), 1-GB LPDDR2 memory, Debian 11,
Python 3.9.2, PyTorch 1.13.1, and TDP 5 W.

3) Embedded GPU: NVIDIA Jetson Nano (quad-core
ARM AS57 @1.43 GHz, 128-core Maxwell GPU), 4 GB
LPDDR4 memory, Ubuntu 20.04, Python 3.8.10, PyTorch
1.13.0, CUDA 10.2, and TDP 10 W.

4) FPGA: AMD Alveo U50, 8-GB HBM, PCI express
(PCIe) gen3 x16, 872K lookup tables (LUTs), 1743K registers,
5952 DSPs, and TDP 75 W.

B. Accuracy

1) HyperDetect Versus Popular Learning Approaches: We
compare the accuracy of HyperDetect with the SOTA DNN
and SVMs for each data set. Our DNN algorithm is trained
with TensorFlow while SVM is trained with the scikit-learn
library [45]. We utilize the common practice of grid search
to identify the best hyperparameters for each model. As
demonstrated in Fig. 5, HyperDetect provides a comparable
classification accuracy to these SOTA learning approaches.

2) HyperDetect Versus SOTA HDC: We compare the
classification accuracy of HyperDetect with the SOTA
HDC algorithm without the capability to regenerate dimen-
sions (BaselineHD) [21] and a recently proposed HDC
learning approach with a dynamic encoding technique
(NeuralHD) [23]. The results of BaselineHD are reported in
two dimensionalities: 1) physical dimensionality (D = 0.5k)
of NeuralHD and HyperDetect, a compressed dimensionality
designed for resource-efficient implementations on IoT devices
and 2) effective dimensionality (D* = 8k), defined as the
sum of the physical dimensions (D) and all the regenerated
dimensions throughout the retraining iterations. As demon-
strated in Fig. 5, HyperDetect shows on average a 14.98%
higher accuracy than the SOTA HDC (D = 0.5k) and 3.97%
higher accuracy than NeuralHD (D = 0.5k). Additionally,
HyperDetect exhibits a comparable accuracy to the SOTA
HDC (D* = 8k), indicating HyperDetect is capable of
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providing high-quality attack detection while using 16.0x
lower physical dimensionality.

C. Efficiency

1) Efficiency on Server CPU: For fairness, we compare the
training time and inference latency of HyperDetect with the
SOTA DNN, SVMs, BaselineHD (D* = 8k) and NeuralHD
(D = 0.5k) since they achieve comparable accuracy as elabo-
rated in Section V-B. As demonstrated in Fig. 6, HyperDetect
delivers considerably higher learning efficiency than the
SOTA DNN (5.02x faster training, 3.34x faster inference),
SVMs (97.79x faster training, 18959.88x faster infer-
ence), BaselineHD (31.83x faster inference), and NeuralHD
(234.13x faster training, 225.73 faster inference). In contrast
to NeuralHD, where data points are processed by scalar
operations sequentially, HyperDetect train data samples with
optimized and highly parallel matrix operations. Compared to
BaselineHD, though HyperDetect requires more iterations to
reach convergence during the training process, each iteration
requires significantly less time because of the notably lowered
dimensionality; HyperDetect thereby provides comparable
training efficiency to BaselineHD. Additionally, such lower
dimensionality remarkably accelerates the inference by sim-
plifying the encoding and classification of query vectors.

2) Efficiency on Embedded CPU and GPU: To further
understand the performance of HyperDetect on resource-
constrained embedded devices, we evaluate the efficiency
of HyperDetect, the SOTA DNN, SVMs, and BaselineHD
(D* = 8k) using a Raspberry Pi 3 Model B+ board and
an NVIDIA Jetson Nano board. Both platforms have very
limited memory and CPU cores (and GPU cores for Jetson
Nano). Fig. 7 shows the total inference time for each algorithm
processing all 77302 samples in the UNSW-15 data set.
Specifically, HyperDetect outperforms other algorithms on
both the Raspberry Pi and the Jetson Nano platforms in terms
of inference latency with speedups ranging from 1.16x to
4715.6x. Notably, BaselineHD ran out of memory and failed
to complete the inference task on the Raspberry Pi. We also
tested the power consumption as demonstrated in Fig. 7. SVM
requires extraordinarily long inference time on both platforms
compared to other methods, so we killed the programs;
BaselineHD can not even start running inference on Raspberry
Pi so the program is also killed. Among algorithms that
can be successfully executed on edge devices, HyperDetect
demonstrates significantly higher energy efficiency, ranging
from 1.5x to 80x more. This evaluation further proves
that HyperDetect can run efficiently on energy-constrained
platforms.

D. Data Size Scalability

We exhibit the scalability of HyperDetect and SOTA
learning algorithms using various training and inference data
sizes (percentages of the full data set). As shown in Fig. 8,
with the increasing size of the training data set, HyperDetect
is capable of maintaining high efficiency for both training
and inference with a sublinear growth in execution time.
In contrast, the training time of other learning approaches,
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Fig. 6. Comparing training time and inference latency on server CPU. HyperDetect provides 5.02x faster training and 3.34x faster inference than SOTA
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training and 225.73x faster inference than NeuralHD [23].
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Fig. 7. Inference latency and energy consumption on embedded platforms.

HyperDetect provides significantly faster inference and requires notable
energy consumption than other learning algorithms.

including the SOTA DNN, SVMs, and BaselineHD (D* =
8k) increases notably faster than HyperDetect. This indicates
that HyperDetect is capable of providing scalable NIDS
solutions for both high-performance and resource-constrained
computing devices.

E. Hyperparameter Design Space Exploration

1) Setting: The framework of our GA is demonstrated
in Fig. 4. We set both the evolution mutation rate and the
crossover rate as 0.1, and our GA implementation is adopted
from Nevergrad [46]. To verify the finding of GA, we evaluate
each design point, with different steps, in the space and ana-
lyze how they impact the detection accuracy, training time, and
testing time of HyperDetect. We set physical dimensionality
(D) to be from 500 to 4000 with 200 increments in each step,
effective dimensionality (D*) to be from 2000 to 8000 with
500 increments in each step, and regeneration rate to be from

10% to 90% with 20% increment in each step, and then follow
procedures detailed in Algorithm 1.

2) Result: As demonstrated in Fig. 9(a), the accuracy of
utilizing lower physical dimensionality (D) can be com-
pensated by utilizing more iterations of regeneration and
larger effective dimensionality (D*). Even with extremely
low physical dimensionality, e.g., (D = 0.5k), a fine-tuned
HyperDetect model can achieve comparable performance to
using D = 8k, which requires significantly more computa-
tional and memory resources. For instance, the training trails
in the neighborhood of @) delivers comparable performance
to training trails near @ In Fig. 9(b), by fixing physical
dimension D = 500, we further prove this idea by showing
that the model performance can be considerably enhanced
with the increase of effective dimensionality. Additionally, as
shown in Fig. 10, with proper hyperparameters, HyperDetect
can achieve high-quality performance within a short training
period (ranging from O to 20 s) with timely inference (ranging
from 0.06 to 0.08 s), indicating a great potential of implement-
ing both training and inference tasks at the edge. In conclusion,
our GA-based HyperDetect provides us with the Pareto-front
solution.

F. Training Efficiency on Low-Bitwidth Hardware
Accelerator

Quantization can effectively compress HDC models and
enhance learning efficiency. We quantize HyperDetect to six
different bitwiths to evaluate its efficiency. Lower bitwidth set-
tings will require higher dimensional hypervectors to achieve
comparable model performance. For fairness, we tune the
number of dimensions for each bitwidth so that all six con-
figurations achieve roughly the same detection accuracy. The
configurations are (dimensions in parentheses), 32 bits (1.2k),
16 bits (2.1k), 8 bits (3.6k), 4 bits (5.6k), 2 bits (7.5k), and 1 bit
(8.8k). We design FPGA accelerators with custom bitwidths
for HyperDetect using C++ high-level synthesis (HLS) tool,
AMD-Xilinx Vitis HLS [47]. We use ap_ fixed types in Vitis
HLS to implement fixed point types with custom bitwidths.
The synthesized design has been tested on a system with one
Intel i9-12900 host CPU and one Xilinx Alveo U50 board,
which is connected to the host system via PCle. The FPGA-
CPU communication channel is generated by AMD-Xilinx
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Vitis tool and managed by Xilinx RunTime (XRT). Table III
shows the resource utilization on the Alveo US50 FPGA,
in terms of LUT, flip-flop (FF), block RAM (BRAM), and
DSP. We evaluate the training efficiency of HyperDetect
on desktop CPU and this custom FPGA accelerator under
various bitwidths, for all four data sets. Fig. 11 shows the
evaluation results, including training time breakdown (stacked
bars) and speedups from FPGA accelerator over CPU (curve).
All FPGA accelerators are running at 200 MHz. HyperDetect
on CPU achieves higher efficiency with low dimensionality
and high bitwidth because of its high frequency and pow-
erful arithmetic logic unit (ALU). FPGA shows excellent
efficiency improvement below 8 bits compared to CPU thanks
to FPGA’s fine-grained parallelism. Furthermore, this FPGA
implementation demonstrates excellent energy efficiency. On
the Xilinx Alveo U50 FPGA board, the power consumption

TABLE III
ALVEO U50 FPGA RESOURCE UTILIZATION

bits | D | LUT | FF | BRAM | DSP
32 1.2k | 74.09% | 56.16% | 4.70% 27.25%
16 2.1k | 86.63% | 59.22% | 4.70% 10.04%
8 3.6k | 98.35% | 58.88% | 4.70% 11.55%
4 5.6k | 93.04% | 24.23% | 4.70% 11.55%
2 7.5k | 90.08% | 21.93% | 4.70% 11.55%
1 8.8k | 95.02% | 23.23% | 4.70% 11.55%
16 Time (us) Speedup 2
110 Encoding Classification —+—Speedup over CPU
12 18
8 12
4 6
0 0
2L L2 L8/ 2820220082 2L2L808082020822882¢8
§883483§88382§883828/§883548¢
® ® - ® - ©® -
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Fig. 11. Efficiency of HyperDetect on low-bitwidth FPGA accelerator.

of the HyperDetect accelerator is less than 20 W under
200-MHz frequency.

G. Robustness Against Errors and Noises

Given the typical harsh deployment environments for IoT
systems, we consider the errors and noises caused by potential
intrinsic and extrinsic threats and evaluate the robustness of
HyperDetect against these errors and noises. We will show
that one key advantage of HyperDetect is its high robustness
against noise and failure. We evaluate the robustness of
HyperDetect and the SOTA DNN-based NIDS model [44]
by comparing their average quality loss under different per-
centages of hardware errors in Fig. 12. The error rate refers
to the percentage of random bit flips on memory storing
DNN and HyperDetect models. For fairness, all DNN weights
are quantized to their effective 8-bit representation. In DNN,
random bit flip results in significant quality loss as corruptions
on most significant bits can cause major weight changes. In
contrast, HyperDetect provides significantly higher robust-
ness against noise due to its redundant and holographic
distribution. Specifically, in HyperDetect, every hypervector
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Hardware Error 1.0% 2.0% 5.0% 10.0% 15.0%
DNN 3.9% 10.7% 17.8% 32.1% 41.2%

1k 1.1% 1.7% 3.6% 5.4% 7.2%

1bit | 2K 0.7% 1.3% 2.8% 4.2% 6.4%

3k 0.4% 0.7% 1.3% 3.7% 5.9%

4k 0.0% 0.0% 1.0% 3.1% 4.1%

- 1k 1.9% 2.3% 4.5% 7.9% 10.4%
Q| gpits | 2k | 12% 1.7% 3.7% 68% | 9.9%
° 3k 0.5% 1.1% 2.5% 5.9% 8.7%
Q 4k 0.0% 0.5% 1.6% 4.8% 8.0%
b} 1k 2.3% 4.7% 8.4% 13.1% 17.3%
N abits | 2K 1.6% 3.2% 6.9% 12.7% 15.9%
ha 3k 0.9% 2.1% 4.7% 10.2% 13.7%
4k 0.2% 1.0% 2.9% 7.4% 11.7%

1k 3.6% 7.9% 13.7% 18.3% 22.9%

abits | 2K 2.7% 6.1% 10.8% 15.7% 20.1%

3k 1.9% 4.9% 8.1% 14.1% 19.8%

4k 1.4% 3.6% 5.1% 12.8% 17.6%

Fig. 12. Comparing the robustness of HyperDetect and SOTA DNN-based
NIDS model against hardware errors.

consists of randomly generated and holographic i.i.d. elements.
Each hypervector stores information across all its components
so that no component is more responsible for storing any more
information than another; therefore, failure on partial data
will not result in the loss of entire information. HyperDetect
demonstrates the maximum robustness using hypervectors
with 4k dimensions in 1-bit precision, that is on average
12.90x higher than the robustness of the DNN. An increase
in precision will lower the robustness of HyperDetect since
random flips on more significant bits will introduce more
loss of accuracy. For instance, for 10% bit flips in hardware,
HyperDetect using 1-bit precision and 4k dimensions pro-
vides 10.35x and 4.13x higher robustness than the DNN
and HyperDetect using 8 bits with the same dimensionality,
respectively. Additionally, higher dimensionality improves the
robustness of HyperDetect to noise due to its redundant and
holographic information distribution. For example, for 10%
hardware error, HyperDetect using 4k dimensions and 8-bit
precision achieves 1.43x higher robustness than HyperDetect
using 1k dimensions with the same bitwidth.

VI. LIMITATIONS AND FUTURE WORKS
A. Limitations

In contrast to popular ML and DL learning algorithms,
our proposed HyperDetect leverages encoded data on
high-dimensional space to provide a real-time and more
resource-efficient solution for intrusion detection tasks in IoT
Networks. Our proposed HyperDetect also significantly out-
performs other HDC learning frameworks in terms of latency
and energy consumption. However, the detection accuracy of
HyperDetect is slightly lower than DNNs due to the inherent
nature of HDC.

1) We utilize the established HDC encoding method to map
low-dimensional feature data into a high-dimensional
space. Nevertheless, this encoding process may poten-
tially cause information loss and lacks clarity in terms
of explainability.

2) The dimension regeneration step involves randomness.
While a newly generated vector may potentially con-
tribute positively to classification tasks, such outcomes
are not guaranteed and may ultimately limit the model
performance that can be achieved.
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B. Future Works

For future research, we intend to delve into alternative
encoding and dimension regeneration schemes to further
enhance our model performance. Additionally, the evaluation
of HyperDetect on data-center scale platforms has not yet
been conducted. We anticipate that system-level optimizations
will be necessary to effectively deploy HDC applications on
a larger scale. Currently, the training process of HyperDetect
is performed on the host server, but we are actively exploring
the possibility of conducting training in an edge environment
as well. Finally, as HDC has demonstrated its effectiveness in
network intrusion detection tasks, we believe it can also be
applied to other security domains, e.g., malware detection.

VII. CONCLUSION

We propose HyperDetect, a novel HDC framework ensur-
ing resource-efficient and real-time intrusion detection in IoT
Networks. HyperDetect dynamically identifies and regen-
erates dimensions with less impact on classification tasks,
and hence effectively reduces the required dimensionality
to achieve adequate model performance. Our evaluations on
a wide range of network intrusion detection tasks show
that HyperDetect delivers significantly higher learning effi-
ciency than existing HDCs and SOTA DNNs. Additionally,
HyperDetect outperforms other ML methods on embedded
CPU and GPU devices in terms of both inference time and
energy efficiency.

REFERENCES

[1] R.Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security
Privacy, vol. 9, no. 3, pp. 49-51, May 2011.

[2] W. Igbal, H. Abbas, M. Daneshmand, B. Rauf, and Y. A. Bangash,
“An in-depth analysis of IoT security requirements, challenges, and their
countermeasures via software-defined security,” IEEE Internet Things J.,
vol. 7, no. 10, pp. 10250-10276, Oct. 2020.

[3] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki,
“Network intrusion detection for IoT security based on learning tech-
niques,” IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2671-2701,
3rd Quart., 2019.

[4] A. N. Jahromi, H. Karimipour, A. Dehghantanha, and K.-K. R. Choo,
“Toward detection and attribution of cyber-attacks in IoT-enabled
cyber—physical systems,” IEEE Internet Things J., vol. 8, no. 17,
pp- 13712-13722, Sep. 2021.

[5] B. B. Zarpeldo et al., “A survey of intrusion detection in Internet of
Things,” J. Netw. Comput. Appl., 2017.

[6] B. Mukherjee, L. T. Heberlein, and K. N. Levitt, “Network intrusion
detection,” IEEE Netw., vol. 8, no. 3, pp. 26-41, May 1994.

[7]1 R. Yasaei, F. Hernandez, and M. A. Al Faruque, “IoT-CAD: Context-
aware adaptive anomaly detection in IoT systems through sensor
association,” in Proc. 39th Int. Conf. Comput.-Aided Design, 2020,
pp. 1-9.

[8] M. A. Faruque, F. Regazzoni, and M. Pajic, “Design methodologies
for securing cyber-physical systems,” in Proc. Int. Conf. Hardw./Softw.
Codesign Syst. Synthesis (ISSS), 2015, pp. 30-36.

[9] M. Zaman and C.-H. Lung, “Evaluation of machine learning techniques

for network intrusion detection,” in Proc. IEEE/IFIP Netw. Operations

Manage. Symp. (NOMS), 2018, pp. 1-5.

S. Kumar, “Survey of current network intrusion detection techniques,”

Washington Univ. St. Louis, 2007, pp. 1-18.

A. Barua, D. Muthirayan, P. P. Khargonekar, and M. A. Al Faruque,

“Hierarchical temporal memory-based one-pass learning for real-time

anomaly detection and simultaneous data prediction in smart grids,”

IEEE Trans. Depend. Secure Comput., vol. 19, no. 3, pp. 1770-1782,

May 2020.

[10]

(1]



WANG et al.: HyperDetect: A REAL-TIME HYPERDIMENSIONAL SOLUTION FOR INTRUSION DETECTION

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

K. A. Da Costa, J. P. Papa, C. O. Lisboa, R. Munoz, and
V. H. C. De Albuquerque, “Internet of Things: A survey on machine
learning-based intrusion detection approaches,” Comput. Netw., vol. 151,
Mar. 2019, pp. 147-157.

W.-H. Chen, S.-H. Hsu, and H.-P. Shen, “Application of SVM and
ANN for intrusion detection,” Comput. Oper. Res., vol. 32, no. 10,
pp. 2617-2634, 2005.

R.-C. Chen, K.-F. Cheng, and C.-F. Hsieh, “Using rough set and support
vector machine for network intrusion detection,” 2010, arXiv:1004.0567.
D. Jing and H.-B. Chen, “SVM based network intrusion detection for
the UNSW-NB15 dataset,” in Proc. 13th Int. Conf. ASIC ASICON, 2019,
pp. 1-4.

J. Pan and J. McElhannon, “Future edge cloud and edge computing for
Internet of Things applications,” IEEE Internet Things J., vol. 5, no. 1,
pp. 439-449, Feb. 2018.

Y. R. Siwakoti et al., “Advances in IoT security: Vulnerabilities, enabled
criminal services, attacks and countermeasures,” IEEE Internet Things
J., vol. 10, no. 13, pp. 11224-11239, Jul. 2023.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637-646,
Oct. 2016.

J. Wang, L. Chen, and M. A. Al Faruque, “DOMINO: Domain-invariant
Hyperdimensional classification for multi-sensor time series data,” in
Proc. 42nd ACM/IEEE Int. Conf. Comput.-Aided Design (ICCAD), 2023,
pp. 1-9.

J. Wang, H. Chen, M. Issa, S. Huang, and M. Imani, “Late breaking
results: Scalable and efficient Hyperdimensional computing for network
intrusion detection,” in Proc. 60th ACM/IEEE Design Autom. Conf.
(DAC), 2023, pp. 1-2.

A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient
classifier using brain-inspired hyperdimensional computing,” in Proc.
Int. Symp. Low Power Electron. Design, (ISLPED), 2016, pp. 64—69.
J. Wang, S. Huang, and M. Imani, “DistHD: A learner-aware dynamic
encoding method for Hyperdimensional classification,” in Proc. 60th
ACM/IEEE Design Autom. Conf. (DAC), 2023, pp. 1-6.

Z. Zou, Y. Kim, FE. Imani, H. Alimohamadi, R. Cammarota, and
M. Imani, “Scalable edge-based hyperdimensional learning system with
brain-like neural adaptation,” in Proc. Int. Conf. High Perform. Comput.,
Netw., Stor. Anal. (SC), 2021, pp. 1-15.

B. B. Andersen, H. J. G. Gundersen, and B. Pakkenberg, “Aging of the
human cerebellum: A stereological study,” J. Comp. Neurol., vol. 466,
no. 3, pp. 356-365, 2003.

B. Pakkenberg et al., “Aging and the human neocortex,” Exp. Gerontol.,
vol. 38, nos. 1-2, pp. 95-99, 2003.

J. Wang and M. A. A. Faruque, “Robust and scalable Hyperdimensional
computing with brain-like neural adaptations,” 2023, arXiv:2311.07705.
J. Asharf, N. Moustafa, H. Khurshid, E. Debie, W. Haider, and
A. Wahab, “A review of intrusion detection systems using machine and
deep learning in Internet of Things: Challenges, solutions and future
directions,” Electronics, vol. 9, no. 7, p. 1177, 2020.

A. Bivens, C. Palagiri, R. Smith, and B. Szymanski, “Network-based
intrusion detection using neural networks,” in Proc. Intell. Eng. Syst.
Artif. Neural Netw., 2002, pp. 579-584.

D. Chou and M. Jiang, “A survey on data-driven network intrusion
detection,” in Proc. ACM Comput. Surveys, 2021, pp. 1-36.

M. Tavallace, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in Proc. Symp. Comput. Intell.
Security Defense Appl. (CISDA), 2009, pp. 1-6.

N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in Proc. Mil. Commun. Inf. Syst. Conf. (CIS), 2015, pp. 1-6.

I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,” in
Proc. 4th Int. Conf. Inf. Syst. Security Privacy (ICISSP), 2018, pp. 1-9.
J. L. Leevy and T. M. Khoshgoftaar, “A survey and analysis of intrusion
detection models based on CSE-CIC-IDS2018 big data,” J. Big Data,
vol. 7, p. 104, Nov. 2020.

A. Rosay et al., “Multi-layer perceptron for network intrusion detection,”
Ann. Telecommun., vol. 77, pp. 371-394, Jun. 2022.

F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, “A novel two-stage
deep learning model for efficient network intrusion detection,” IEEE
Access, vol. 7, pp. 30373-30385, 2019.

N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE Trans. Emerg. Topics Comput.
Intell., vol. 2, no. 1, pp. 41-50, Feb. 2018.

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

14855

P. Poduval et al.,, “GrapHD: Graph-based hyperdimensional memo-
rization for brain-like cognitive learning,” Front. Neurosci., vol. 16,
Feb. 2022, Art. no. 757125.

M. Imani et al., “A framework for collaborative learning in secure high-
dimensional space,” in Proc. IEEE 12th Int. Conf. Cloud Comput., 2019,
pp. 435-446.

A. Herndndez-Cano, N. Matsumoto, E. Ping, and M. Imani, “OnlineHD:
Robust, efficient, and single-pass online learning using hyperdimensional
system,” in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), 2021,
pp. 56-61.

K. Schlegel, P. Neubert, and P. Protzel, “A comparison of vector
symbolic architectures,” Artif. Intell. Rev., vol. 55, pp. 4523-4555,
Aug. 2022.

B. Komer, T. C. Stewart, A. R. Voelker, and C. Eliasmith, “A neural
representation of continuous space using fractional binding,” in Proc.
41st Annu. Meet. Cogn. Sci. Society, 2019, pp. 2038-2043.

A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Proc. 20th Int. Conf. Adv. Neural Inf. Process. Syst., 2007,
pp. 1177-1184.

N. Hansen, “The CMA evolution strategy: A comparing review,” in
Towards a New Evolutionary Computation. Berlin, Germany: Springer,
2006, pp. 75-102.

A. Rosay, F. Carlier, and P. Leroux, “MLP4NIDS: An efficient MLP-
based network intrusion detection for CICIDS2017 Dataset,” in Proc.
2nd Int. Conf. Mach. Learn. Netw., 2019, pp. 240-254.

F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J. Mach.
Learn. Res., vol. 12, no. 85, pp. 2825-2830, 2011.

J. Rapin and O. Teytaud. “Nevergrad-a gradient-free optimization

platform.” 2018. [Online]. Available: https://GitHub.com/
FacebookResearch/Nevergrad

V. Kathail, “Xilinx vitis unified software platform,” in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2020,
pp. 173-174.

Junyao Wang (Graduate Student Member, IEEE)
received the B.S. degree in mathematics and
statistics and the M.S. degree in operations
research from the University of Illinois at Urbana—
Champaign, Champaign, IL, USA, in 2019 and
2020, respectively. She is currently pursuing the
Ph.D. degree with the Department of Computer
Science, University of California at Irvine, Irvine,
CA, USA.

Her research primarily includes resource-efficient
machine learning algorithms, applications of graph

neural networks in autonomous systems, and the intersection of machine
learning and sensor fusion.

Haocheng Xu (Graduate Student Member, IEEE)
received the B.S. degree from the College of
Information and Electrical Engineering, China
Agricultural University, Beijing, China, in 2017,
and the M.S. degree from the Viterbi School of
Engineering, University of Southern California, Los
Angeles, CA, USA, in 2019. He is currently pursu-
ing the Ph.D. degree in computer engineering with
the University of California at Irvine, Irvine, CA,
USA.

His research interests include efficient machine

learning, deep learning accelerators, and AI/ML systems.

Lab.

Yonatan Gizachew Achamyeleh received the
B.S. degree in electrical engineering from Korea
Advanced Institute of Science and Technology,
Daejeon, South Korea, in 2021. He is currently
pursuing the Ph.D. degree in computer engineering
with the University of California at Irvine, Irvine,
CA, USA.

He has previously interned with Siemens
Technology, Princeton, NJ, USA, and Intel Labs,
Hillsboro, OR, USA. He is a member of the
Autonomous and Intelligent Cyber-Physical Systems

1

His research focuses on the security aspects of embedded and cyber—
physical systems, especially in sectors, such as manufacturing, IoT, and
healthcare.



14856

Sitao Huang (Member, IEEE) received the B.S.
degree from Tsinghua University, Beijing, China, in
2014, and the M.S. and Ph.D. degrees in electri-
cal and computer engineering from the University
of Illinois at Urbana—Champaign, Champaign, IL,
USA, in 2017 and 2021, respectively.

He is an Assistant Professor with the Department
of Electrical Engineering and Computer Science,
University of California at Irvine, Irvine, CA, USA.
His research interests include hardware accelera-
tors, compilers for accelerators, and heterogeneous
systems.

Dr. Huang is a 2022 DARPA Forward Riser. His research won the Best
Paper Award at IDEAL 2021, the Best Paper Nomination at ASP-DAC 2021,
and the Student Innovation Award at the 2018 IEEE HPEC Graph Challenge.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

Mohammad Abdullah Al Faruque (Senior
Member, IEEE) received the Ph.D. degree in
computer science from Karlsruhe Institute of
Technology, Karlsruhe, Germany, in 2009.

He is currently with the University of California
at Irvine, Irvine, CA, USA, as a Full Professor
and Directing the Embedded and Cyber-Physical
Systems Lab, where he also directs the Samueli
School of Engineering Autonomous Systems
Initiatives. His research focuses on the system-level
design of embedded and cyber—physical systems
(CPS) with a special interest in low-power design, CPS security, and data-
driven CPS design.

Prof. Al Faruque has received four Best Paper Awards (ACSAC 2022,
DATE 2016, DAC 2015, and ICCAD 2009). He also received the IEEE
Technical Committee on Cyber-Physical Systems Early-Career Award and
the IEEE CEDA Ernest S. Kuh Early Career Award. He has been awarded
the Thomas Alva Edison Patent Award for one of his inventions. He is an
ACM Senior Member. He is also the IEEE CEDA Distinguished Lecturer.



