
14844 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

HyperDetect: A Real-Time Hyperdimensional

Solution for Intrusion Detection in IoT Networks
Junyao Wang , Graduate Student Member, IEEE, Haocheng Xu , Graduate Student Member, IEEE,

Yonatan Gizachew Achamyeleh , Sitao Huang , Member, IEEE,

and Mohammad Abdullah Al Faruque , Senior Member, IEEE

Abstract—Network-based security has emerged as an increas-
ingly critical challenge in the domain of the Internet of Things
(IoT). A number of network intrusion detection systems (NIDS),
typically relying on sophisticated machine learning (ML) algo-
rithms, have been proposed to monitor network traffic and detect
malicious activity. However, these NIDS designs require extensive
memory and computational power, exceeding the capability of
today’s IoT devices, and often fail to provide timely detection of
network attacks. To tackle this issue, we propose HyperDetect,
the first attempt at NIDS modeling that leverages the highly
efficient and parallel operations of brain-inspired hyperdimen-
sional computing (HDC). Our innovative model updating method
effectively mitigates model saturation and significantly reduces
the number of retraining iterations needed to reach convergence.
Additionally, we employ a novel dynamic encoding technique
to regenerate insignificant dimensions, considerably lowering the
dimensionalities required to achieve high-quality performance
and further accelerating the learning process. HyperDetect
delivers on average 5.02× faster training and 31.83× faster infer-
ence compared to state-of-the-art (SOTA) learning approaches
on a wide range of network intrusion classification tasks. We
also extensively evaluate HyperDetect on embedded hardware to
demonstrate its low-latency and resource-efficient characteristics.

Index Terms—Bio-inspired learning, hyperdimensional com-
puting (HDC), Internet of Things (IoT), network intrusion
detection.

I. INTRODUCTION

T
HE Internet of Things (IoT) has recently become an

emerging trend for its extraordinary potential to connect

various heterogeneous smart sensors and devices. However,

notorious IoT attacks, such as Stuxnet [1], have raised both

social and industrial concerns regarding network-based secu-

rity issues. In particular, due to the interconnected nature

Manuscript received 6 September 2023; revised 6 October 2023
and 17 November 2023; accepted 16 December 2023. Date of pub-
lication 20 December 2023; date of current version 9 April 2024.
(Corresponding author: Junyao Wang.)

Junyao Wang is with the Department of Computer Science, University of
California at Irvine, Irvine, CA 92697 USA (e-mail: junyaow4@uci.edu).

Haocheng Xu, Yonatan Gizachew Achamyeleh, and Sitao Huang are with
the Department of Electrical Engineering and Computer Science, University
of California at Irvine, Irvine, CA 92697 USA (e-mail: haochx5@uci.edu;
yachamye@uci.edu; sitaoh@uci.edu).

Mohammad Abdullah Al Faruque is with the Department of Computer
Science and the Department of Electrical Engineering and Computer
Science, University of California at Irvine, Irvine, CA 92697 USA (e-mail:
alfaruqu@uci.edu).

Digital Object Identifier 10.1109/JIOT.2023.3345279

Fig. 1. Model of NIDS.

of these devices, compromising a single component or com-

munication channel in Internet of Things (IoT)-based systems

can potentially paralyze the entire network [2], [3]. Traditional

anti-virus software and firewalls perform less effectively

against the evolving landscape of cyber-threats; network intru-

sion detection systems (NIDS) have become one of the most

widely deployed tools to protect information infrastructures

in the past two decades [4], [5]. As demonstrated in Fig. 1,

when traditional firewalls fail to intercept intruders, NIDS step

in to provide real-time detection and alerts to mitigate the

attacks [6]. However, existing NIDS models can be extremely

challenging to deploy given the resource limitations and

potential instabilities of IoT systems, more resource-efficient

and hardware-friendly network intrusion detection solutions

are of absolute necessity [7], [8].

Popular NIDS designs rely heavily on machine learn-

ing (ML) models to achieve high-quality performance

[9], [10], [11]. However, NIDS based on traditional ML

algorithms, e.g., support vector machines (SVMs), requires

considerable feature engineering and fine-tuning to provide

adequate detection accuracy, and demands consistent mainte-

nance with up-to-date training data sets to identify constantly

evolving cyber-threats [12], [13], [14], [15]. Although NIDS

models developed upon deep learning (DL) generally perform

better by learning from raw data, their excellent learning

quality often comes at the expense of high computational

and memory requirements, involving millions of parameters

iteratively refined over multiple time periods [9], [16]. These

resource-intensive NIDS designs can be impractical for IoT

systems. While today’s common approach is to send data

from edge to the centralized location in the cloud to complete

sophisticated learning and training tasks, it can potentially

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

WANG et al.: HyperDetect: A REAL-TIME HYPERDIMENSIONAL SOLUTION FOR INTRUSION DETECTION 14845

(a)

(b)

Fig. 2. (a) Motivation of our proposed HDC learning framework comes from
the dynamic neuron regeneration of human brains. (b) Comparing static and
our proposed dynamic HDC learning frameworks.

cause drastic efficiency loss, incur serious scalability issues,

and even raise new security concerns [17], [18]. Edge-based

computing, distributing learning tasks onto the IoT hierarchy

and bringing computations close to data sources, is hence

considered a more promising solution. Given the increasingly

massive amount of network traffic and the real-time require-

ment of network intrusion detection, there is an imperative

need for a highly efficient and lightweight NIDS design to

address security issues in IoT systems.

In contrast to popular ML methodologies, hyperdimensional

computing (HDC) is considered a promising learning algo-

rithm for resource-constrained IoT platforms for its 1) high

computational efficiency ensuring real-time learning; 2) strong

robustness against noise—a key strength for IoT systems; and

3) lightweight hardware implementations allowing efficient

execution on edge [19], [20], [21], [22]. As demonstrated in

Fig. 2(a), HDC originates from the neuroscience observation

that the cerebellum cortex in human brains effortlessly and

efficiently processes memory, perception, and cognition tasks

with neural activities in high-dimensional space. Closely

mimicking information representations in human brains, HDC

encodes low-dimensional inputs to hypervectors consisting

of thousands of elements to perform learning tasks with

highly parallel and well-trackable operations. Recent research

has shown that HDC is capable of achieving high-quality

results with notably faster convergence than state-of-the-

art (SOTA) learning approaches [21]. Additionally, utilizing

encoded data points on high-dimensional space, HDC can

potentially bring unique advantages in distinguishing various

sophisticated attacks, especially nowadays when attacks are

often disguised with similar patterns of normal network traffic.

Nevertheless, existing HDCs have two major drawbacks:

1) they do not consider momentum in the model, easily result-

ing in model saturation and requiring hundreds of iterations

to converge and 2) they typically use pregenerated encoding

modules that are never updated during the entire training phase

and thus require extremely high dimensionalities to achieve

acceptable accuracy. These drawbacks not only severely lower

the learning efficiency by involving large amounts of unneces-

sary computations but also compromise the system efficiency

with increased data size and communication cost [23]. This

can be particularly destructive for performing today’s network

intrusion detection tasks, which often require efficiently mon-

itoring and analyzing billions of network traffic instances. We

observe one major cause is that the encoding module of exist-

ing HDCs is incapable of utilizing and adapting to information

learned during training, and hence often fails to find a good

representation of the data with lower dimensionalities. In

contrast, as shown in Fig. 2(a), neurons in human brains

dynamically change and regenerate all the time and provide

more useful functionality when accessing new information.

Specifically, every day, approximately 85 000 neurons die,

i.e., 31 million in a year, and a similar number of neurons are

generated simultaneously to provide more useful functionality

to the brain [24], [25], [26]. While the goal of HDC is to

utilize the high dimensionality of randomly generated vectors

to represent information as a pattern of neural activity, existing

HDCs can hardly support a similar behavior.

To address this issue, we propose HyperDetect, the first

network intrusion classification model leveraging the highly

parallel operations provided by brain-inspired HDC. We intro-

duce a novel model updating method explicitly considering

the momentum at each data point. Additionally, as shown

in Fig. 2(b), unlike existing HDCs performing encoding and

training sequentially in a one-way fashion, HyperDetect

works bidirectionally, enabling base vectors and encoding

modules with adaptivity to the information learned from each

training iteration. HyperDetect thereby provides an optimized

model that achieves effective intrusion detection with notably

fewer training iterations and lower dimensionalities, signifi-

cantly accelerating both training and inference by eliminating

unnecessary computations. The main contributions of this

article are listed as follows.

1) To the best of our knowledge, HyperDetect is the

first NIDS model leveraging the highly efficient and

parallel operations of HDC to deliver real-time attack

detection. HyperDetect provides on average a 5.02×

faster training and a 3.34× faster inference compared

to SOTA DNNs on a wide range of network intrusion

classification tasks.

2) We propose a novel model updating method with explicit

consideration of the momentum at each data point. Our

learning algorithm effectively mitigates model saturation

and significantly reduces the number of retraining iter-

ations required to reach convergence.

3) We employ an innovative dimension regeneration tech-

nique and optimize it with highly parallel matrix-wise

operations. Compared to SOTA HDC with static

encoders, HyperDetect reduces the required dimension-

ality by 16.0× and demonstrates on average a 31.83×

speedup in inference.

4) We conduct a thorough design space search utilizing

a genetic algorithm (GA) to understand model

performance in various hyperparameter settings. Our

results demonstrate the great potential of implementing

14846 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

both training and inference of HyperDetect

on edge.

5) We propose hardware-aware optimizations for the imple-

mentation of HyperDetect, and evaluate it across

multiple embedded devices, including Raspberry Pi,

NVIDIA Jetson Nano, and FPGA. HyperDetect pro-

vides considerably lower inference latency than other

ML-based approaches, with speedups from 1.16× to

4 715.6×, ensuring timely support for attack detection

on resource-constrained IoT devices.

II. BACKGROUND AND RELATED WORK

A. Threat Model

Here, we introduce potential network-based vulnerabilities

and the threat model in IoT systems by outlining threat agents,

attack vectors, system vulnerabilities, and potential impacts.

1) Threat Agents: The primary perpetrators of network-

based attacks are external attackers and insider threats.

External attackers, i.e., malicious actors outside the network,

actively seek out vulnerabilities to exploit and gain unautho-

rized access. In contrast, insider threats originate from the

misuse of authorized access by individuals within the network

who possess legitimate access privileges, either intentionally

or inadvertently. Both of these perpetrators pose significant

risks to network security, requiring real-time network intrusion

detection and comprehensive security measures.

2) Attack Vectors: The resource-constrained nature of IoT

devices substantially broadens the vulnerability landscape

for network-based attacks. Noteworthy attack vectors include

port scanning, packet sniffing, IP spoofing, man-in-the-middle

attacks, Denial of Service (DoS), Distributed DoS (DDoS),

and malware propagation. Considering the limited processing

power and memory of IoT devices, each of these tactics

presents a unique challenge for network intrusion detection.

Therefore, lightweight and adaptive intrusion detection mech-

anisms become an absolute necessity.

3) System Vulnerabilities: The main vulnerabilities in

IoT systems stem from weak authentication mechanisms,

unpatched or outdated systems, and inadequate or misconfig-

ured network monitoring. Resource-constrained IoT devices

are particularly susceptible to attacks due to insufficient

monitoring, which often fails to identify malicious activity.

This results in a broader spectrum of exploitation opportunities

for attackers and can potentially cause serious damage.

4) Potential Impacts: A successful network-based attack

can potentially cause severe consequences that impact various

aspects of IoT systems, including 1) data breaches, i.e., theft

or exposure of sensitive data; 2) disrupted operation of IoT

devices or even the entire network; and 3) unauthorized

access to privilege areas of the network gained by attack-

ers. Additionally, malware propagation can potentially occur,

wherein malware within an IoT system spreads throughout the

entire network, further compromising the system’s security.

B. Application of ML in NIDS

1) Popular NIDS Implementation: NIDS are designed

to monitor large amounts of network traffic and identify

malicious activity. Once an abnormal behavior is detected,

NIDS dispatches real-time alerts to administrators to mitigate

the attack. Prevailing NIDS implementations can be classified

into two major categories: 1) signature-based and 2) anomaly-

based [10]. A signature-based NIDS protocol maintains a

collection of signatures, each of which characterizes the profile

of a known security threat, and appropriate action is taken

when a traffic instance matches a signature [27], [28]. In

contrast, an anomaly-based NIDS design monitors network

traffic and compares it to an established baseline of normal

traffic profile, sending alerts to the administrator when a

received traffic instance is significantly different from the

baseline. However, it can often be highly subjective to decide

what can be considered as normal [29]. Thus, our work,

HyperDetect, focuses on the signature-based NIDS setting

and is evaluated by signature-based NIDS data sets.

2) Data Set and Learning Approaches for NIDS:

Numerous NIDS models leveraging the excellent performance

of ML models have been proposed in the past decade. A

number of cyber-security data sets consisting of real-life

and automatically generated network traffic have also been

established as effective benchmarks for comparing different

NIDS designs. For earlier well-known data sets, such as

NSL-KDD [30] and UNSW-NB15 [31], models based on

SVMs [13], [14], [15] have consistently achieved excellent

performance. However, SVM-based learning models require

substantially long time periods for both training and inference

when confronting large amounts of data samples. Since the

release of two more recent data sets CIC-IDS-2017 [32]

and CIC-IDS-2018 [33], which contain significantly larger

amounts of network traffic and more sophisticated attack

patterns, SVMs become less practical and more sophisticated

DL models have been actively developed [15], [34], [35].

Nevertheless, these sophisticated DL models require extensive

computational and memory resources and are often impractical

for resource-constrained embedded devices [16], [36]. In

contrast, our HyperDetect utilizes HDC to capture intricate

attack patterns with efficient and parallel matrix operations on

high-dimensional space, and thereby provide a more resource-

efficient NIDS solution for IoT systems.

C. Hyperdimensional Computing

Prior studies have exhibited enormous success in various

applications of HDC, such as graph reasoning [37] and

language recognition [21]. These works provide comparable

accuracy to SOTA learning approaches and require signifi-

cantly lower energy and computational resources. However,

existing HDC learning frameworks do not consider momentum

at each data point and use pregenerated static encoders that

are never updated during training. Consequently, hundreds

of training iterations and extremely high dimensionalities are

required to achieve acceptable accuracy [38]. NeuralHD [23],

a recently proposed dynamic encoding approach, success-

fully compressed the required dimensionality by eliminating

dimensions with minor impacts on distinguishing patterns.

However, its proposed model bundles encoded data samples

sequentially in a scalar manner and delivers significantly

WANG et al.: HyperDetect: A REAL-TIME HYPERDIMENSIONAL SOLUTION FOR INTRUSION DETECTION 14847

lower learning efficiency than SOTA HDCs with static

encoders [21], [39]. This can cause serious problems for

real-world network intrusion detection where there are often

stringent time requirements. In particular, long inference

latency can directly cause an exponential increase in the risk

of network security posed by intruders. To the best of our

knowledge, HyperDetect is the first time that a dynamic

HDC framework is being utilized to tackle the critical network

intrusion detection tasks on resource-constrained IoT devices.

We formulate and fully optimize our model with highly

parallel matrix operations, thereby tremendously accelerating

both training and inference. We also propose an innovative

model updating scheme that explicitly considers momentum

at each data point so that the number of retraining iterations

can be significantly reduced. This ensures powerful real-time

support for attack detection, positioning HyperDetect an ideal

NIDS model for IoT systems.

III. HYPERDIMENSIONAL CLASSIFICATION

HDC, a novel computational framework inspired by cog-

nitive neuroscience, utilizes high-dimensional vectors for

information processing. It leverages great amounts of expres-

sive power on high-dimensional space to model associations

between data samples. One unique property of the high-

dimensional space is the existence of a large number of nearly

orthogonal hypervectors. Specifically, in spaces with a large

enough dimensionality, two random vectors are almost guaran-

teed to be within 5 degrees of orthogonal [40]. Mathematically,

consider two random hypervectors H1 and H2 with dimension

D, when D is large enough, the dot product H1 ·H2 ≈ 0. This

property enables highly efficient and parallel operations, such

as similarity calculations, bundlings, and bindings (elaborated

in Section III-B). Here, we introduce basic operations and the

learning framework of existing HDCs.

A. Encoding

Inspired by information representation of human brains,

HDC starts with encoding samples to high-dimensional space

via multiplication with a projection matrix consisting of ran-

domly generated high-dimensional base vectors. Each encoded

sample is referred to as a hypervector, which contains thou-

sands of elements. A hypervector stores all the information

across all its elements so that no element is more responsible

for storing any piece of information than another. The

encoding technique highly depends on the type of the original

data, e.g., feature data, text-like data, and time-series data.

Nevertheless, a fundamental principle of encoding remains

consistent: the distance correlation in original data should

be properly preserved during encoding. This ensures that

the encoded representation retains the essential relationships

and structures in the original data set and thereby prevents

information loss. Popular encoding techniques include multi-

plication of projection matrices [23], fractional binding [41]

that preserves real numbered difference, and time-series encod-

ing [19] that captures and preserves spatial and temporal

dependencies. Most of these encoding techniques are based on

the basic operations introduced in Section III-B.

B. Basic Operations in HDC

1) Similarity: Calculation of the distance between the query

hypervector and the class hypervector. For real-valued

hypervectors, a common measure is cosine similarity.

For bipolar hypervectors, it is simplified to the Hamming

distance.

2) Bundling (+): Element-wise addition of multiple hyper-

vectors, e.g., Hbundle = H1 + H2, generating a

hypervector with the same dimension as inputs. In

high-dimensional space, bundling works as a memory

operation and provides an easy way to check the

existence of a query hypervector in a bundled set.

In the previous example, δ(Hbundle,H1) � 0 while

δ(Hbundle,H3) ≈ 0 (H3 �= H1,H2). Bundling models

how human brains memorize input information.

3) Binding (*): Element-wise multiplication associating

two hypervectors to create another hypervector Hbind

that is nearly orthogonal to both H1 and H2, i.e.,

Hbind = H1 ∗ H2, where δ(Hbind,H1) ≈ 0 and

δ(Hbind,H2) ≈ 0. Due to reversibility, i.e., Hbind ∗

H1 = H2, information from both hypervectors can be

preserved. Binding models how human brains connect

input information, i.e., associating the information of

multiple objects into a single hypervector.

C. HDC Learning

1) Training: After generating each encoded hypervector Hl

for class l, the training module calculates the class hypervector

Cl by bundling all Hls to find the universal property within

a class. Mathematically, Cl =
∑J

j=1 H
l, where J denote

the number of inputs with label l. A trained HDC model

consists of k class hypervectors each with dimensions D,

where k denotes the number of classes. During retraining,

we discard the mispredicted queries from the corresponding

mispredicted classes and bundle them into their correct classes.

For an encoded data sample H, if is mispredicted as label

l′ while its true label l, we update the class hypervectors Cl

and Cl′ as

Cl ← Cl + η · [1 − δ(H, Cl)] × H

Cl′ ← Cl′ − η · [1 − δ(H, Cl′)] × H (1)

where η is a learning rate, and δ(H, ·) denotes the similarity

score between H and the corresponding class hypervector.

However, HDC retraining can be computationally expensive

as it requires both associative search and model update with

high dimensionalities [39]. Therefore, in this article, we aim

to provide effective network intrusion detection with lower

dimensionalities and faster convergence.

2) Inference: The HDC inference consists of two major

steps: 1) encoding inference samples into hyperdimensional

space as a query hypervector Q with the same encoding

technique in training and 2) calculating the similarity score

between Q and each class hypervector. The inference sample

Q is then classified to the class to which it achieves the highest

cosine similarity score. Hamming distance is often used for

binary representation, while the cosine distance is a common

measure for hypervectors with high precision.

14848 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

Fig. 3. Overview of the workflow of our proposed HyperDetect. HyperDetect starts with encoding training samples into a high-dimensional space. We then
construct HDC models with our innovative model updating technique that explicitly considers the momentum at each data point. Following this, we identify
and regenerate dimensions that have minimal impact on the classification task, eventually formulating a highly efficient HDC model.

IV. METHODOLOGY

We propose HyperDetect, a resource-efficient HDC learn-

ing framework consisting of two innovative steps: 1) HDC

learning and 2) dimension regeneration. In HDC learning,

we propose a novel adaptive model updating method that

1) eliminates model saturation by scaling a proper weight to

each data point according to how much new information is

added to the class hypervectors and 2) accelerate model con-

vergence by calculating the momentum at each data point. It

effectively lowers the number of retraining iterations required

to reach convergence. In dimension regeneration, we identify

and regenerate insignificant dimensions in the model, and

thereby reduce the required dimensionality to achieve adequate

accuracy and further accelerate the learning process.

A. Encoding

As shown in Fig. 3, HyperDetect starts with encoding (A)

training samples onto high-dimensional space. For network

intrusion classification, considering the nonlinear relationship

between features, we utilize an encoding technique inspired

by the radial basis function (RBF) [42]. Mathematically,

for a feature vector F = {f1, f2, . . . , fn}(fi ∈ R
n) with n

features, we generate the corresponding hypervector H =

{h1, h2, . . . , hD}(0 ≤ hi ≤ 1, hi ∈ R) with D dimensions as

hi = cos(Bi · F + c) × sin(Bi · F) (2)

where Bi = {b1, b2, . . . , bn} is a randomly generated base

vector such that bi ∼ Gaussian(μ = 0, σ = 1) and c ∼

Uniform[0, 2π]. The encoding module maps this vector into

a high-dimensional vector with length D, where D � n. The

random vectors Bi = {b1, b2, . . . , bn} can be generated once

offline and then can be used for the rest of the classification

tasks (Bi) ∈ Rm. After this step, each element hi represents

an element of the hypervector H.

B. HDC Training With Model Momentum

After encoding training samples onto the high-dimensional

space, we exploit a highly efficient and parallel HDC learning

algorithm (B), bundling each encoded data sample by scaling

a proper weight to each of them depending on how much new

information is added to class hypervectors. For a new encoded

training sample H, we update the model based on its cosine

similarities with all class hypervectors (C), i.e.,

δ(H, Cl) =
H · Cl

‖H‖ · ‖Cl‖
=

H

‖H‖
·

Cl

‖Cl‖
∝ H · Nl (3)

where H · Cl is the dot product between H and a class hyper-

vector Cl, and Nl represents the normalized class hypervector,

i.e., (Cl/‖Cl‖). Here, ‖H‖ is a constant factor when comparing

a query with all classes and thus can be eliminated. The

calculation of cosine similarity can hence be simplified to a

dot product operation. However, the model updating technique

of existing HDCs, as shown in (1), only considers the current

learning rate and the label at that moment. Specifically, it does

not take the last few steps into account while traversing the

class hypervectors for the training process. This can potentially

lead to minor or no updates that stagnate the learning process,

or large updates that make the learning process unable to

relax. To address this issue, our novel updating technique

explicitly considers the momentum from the previous update.

In particular, if H has the highest cosine similarity with class

Li while it actually has label Lj, the model updates (D) as

Ct
j ← Ct

j + η · (1 − δt
j) × H + ε · Ct−1

j

Ct
i ← Ct

i − η · (1 − δt
i) × H + ε · Ct−1

i (4)

where η denotes a learning rate, t and t−1 denotes the current

learning trail and the previous training trail, respectively. A

large δl indicates the input data point is marginally mismatched

or already exists in the model, and the model is updated

by adding a very small portion of the encoded query (1 −

δ(H, ·) ≈ 0). In contrast, a small δ(H, ·), indicating a

noticeably new pattern that is uncommon or does not already

exist in the model, updates the model with a large factor

(1 − δ(H, ·) ≈ 1). To avoid over-fitting, We do not update

the model when H has the highest cosine similarity with

its actual label. Our learning algorithm provides a higher

chance for noncommon patterns to be properly included in the

model, thereby effectively reducing computationally expensive

retraining iterations required to achieve reasonable accuracy.

Additionally, including the momentum can effectively prevent

WANG et al.: HyperDetect: A REAL-TIME HYPERDIMENSIONAL SOLUTION FOR INTRUSION DETECTION 14849

us from abrupt changes and falling in the wrong direction;

a large difference between Ct
i and Ct−1

i indicates the current

update may cause an oscillation when the optimization land-

scape is narrow and steep. More precisely, the momentum can

be considered as an exponentially weighted moving average

of past gradients. Instead of updating the hypervector only

based on the current data point, our learning algorithm utilizes

an exponentially weighted moving average of the preceding

updates that acts as a form of memory for the optimizer,

enabling it to achieve faster convergence, reduce the risk of

oscillation, retain the direction it was moving in, and persist

in that trajectory, even if the current data point suggests a

different direction for the update.

C. Dimension Regeneration

1) Drop Insignificant Dimensions: HDC algorithms repre-

sent each class with a class hypervector that encodes the

patterns of that class. An effective classifier achieves the

desired accuracy by a strong capability to distinguish patterns

so that, in the inference phase, query vectors can have very

differentiated cosine similarities to each class. In contrast, a

weak classifier can hardly find distinct patterns for different

classes; this makes the classification task hard as the query

may have a close similarity value to multiple classes. Similarly,

dimensions with similar values over all classes indicate they

store common information across classes and therefore play

minimal roles in the classification. As demonstrated in Fig. 3,

HyperDetect starts with an initial trained model and nor-

malizes each class hypervectors (E). We then calculate the

variance of each dimension over all classes (F) to measure

the dispersion of that dimension. In particular, dimensions

with minimal variances (G) are considered insignificant (H).

We then select R portion of dimensions with the lowest

variance to drop (K), depending on a regeneration rate

R (I). In this way, HyperDetect achieves high-quality

performance with a significantly compressed dimensional-

ity, and hence greatly improves the training and inference

efficiency.

2) Dimension Regeneration: To mitigate the accuracy loss

caused by dropping dimensions, instead of leaving these

dimensions blank, HyperDetect regenerates (J) them so

that the new dimensions can potentially have a higher impact

on the classification task and better distinguish different

patterns. During regeneration, HyperDetect replaces each of

the base vectors (A) of selected dimensions with another

randomly generated hypervector from Gaussian Distribution,

in the hope that the new hypervector can have a more

positive impact on the classification task or provide a better

performance.

3) Retraining: HyperDetect then updates the current

model by retraining. Instead of starting training from scratch,

HyperDetect updates the values of class hypervectors on

the dropped dimensions while other dimensions continue

learning based on their existing values. The iterative learn-

ing and regeneration continue until HyperDetect finds a

model where most dimensions are highly contributing to the

classification.

D. Hardware Optimizations

Network intrusion detection tasks typically have strin-

gent requirements for both inference latency and model

performance. We apply the following hardware-aware

optimizations into the implementation of our proposed

HyperDetect to maximize both its learning efficiency and

model performance:

1) Multithreading: Leveraging the powerful multicore pro-

cessor, multithreading facilitates the execution of multiple

threads simultaneously and enables overlapping computations.

In our work, we employ multithreading to effectively enhance

the overall throughput of HyperDetect and fully parallelize

operations, including random basis generation, basis regener-

ation, encoding, and vector normalization.

2) Tiled Matrix Multiplication: Several steps in

HyperDetect are naturally matrix operations, e.g., encoding

and cosine similarity. We employ a memory hierarchy

approach, breaking down these matrices into smaller tiles that

fit within the cache. This strategy significantly reduces the

frequency of data fetching from the main memory, resulting in

enhanced efficiency as data can be repeatedly accessed from

cached tiles during matrix multiplication.

3) Kernel Fusion: During HyperDetect implementation,

we create custom kernels to fuse original kernels, e.g., the

fusion of basis regeneration and encoding. This minimizes

the frequency of memory read and write operations required

for storing intermediate results back to the main memory due

to limitations in local buffer size. Additionally, it effectively

reduces the overhead associated with kernel invocations.

4) Quantization: Quantization can significantly reduce the

memory requirements by decreasing the number of bits

required for storing numerical values. Additionally, it acceler-

ates computations thanks to the innate hardware support for

quantized numbers, such as INT8, which is notably faster

when compared to higher precision floating-point numbers.

HyperDetect supports the customization of bitwidth to fully

utilize low-bitwidth functional units on specific hardware

platforms, further enhancing computational efficiency.

E. Hyperparameter Design Space Exploration

1) Design Space Definition: To understand HyperDetect

in different hyperparameter settings, in particular, for different

physical dimensionality (D), effective dimensionality (D∗),

and regeneration rate (R), we conduct a comprehensive design

space exploration (DSE). The effective dimensionality (D∗)

is defined as the addition of the physical dimensions (D) of

HyperDetect with all the regenerated dimensions throughout

the retraining iterations. Mathematically, D∗ = D +D ×R×

Number of Iterations, where R is a regeneration rate. Existing

HDC works [23] typically select the physical dimensionality

(D∗) and effective dimensionality (D) based on heuristic,

which might not be the optimal solution for IoT network

intrusion detection tasks with stringent constraints in both

accuracy and hardware resources. Therefore, we define a

comprehensive multidimensional design space so that we can

explore all the possibilities and systematically search for

optimal solutions. We define our design space to be a 3-D

14850 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

TABLE I
TERMINOLOGY IN GA

Fig. 4. GA for HyperDetect DSE.

space spanned by all valid values for D, D∗, and R. The size

of this space is O(1011) = O(103 × 105 × 103).

2) Search Algorithm: Due to the vastness of the design

space (hundreds of billions of possibilities) and the exponential

increase in the evaluation cost for certain hyperparameter

variations, it can be impractical to employ a naive exhaustive

grid search method to explore the entire design space. Here,

we develop a search technique based on GAs, one of the most

popular and versatile algorithms for addressing scheduling

problems within a discontinuous space. GA can converge to

global optima in most hyperparameter optimization problems

and achieve comparable performance as deep reinforcement

learning [43]. Some common terminologies for GA are demon-

strated in Table I.

3) Genetic Algorithm: As shown in Fig. 4, our DSE flow

includes initialization, two evolution operators, i.e., crossover

and mutations, an evaluation stage to calculate the fitness

score, and a selection stage to select the good genes. We

elaborate on these generic evolution operators as follows.

1) Initialization: We select a subset of design points for

each generation by randomly initializing a population

size P . Specifically, we construct P using different

combinations of physical dimensionality (D), effec-

tive dimensionality (D∗), and regeneration rate (R),

and each combination is considered a genome or an

individual.

2) Evolution Crossover: We randomly select a pair of

genes, i.e., two genomes, from the P combinations

initialized and blend their genes by interchanging param-

eter values.

3) Evolution Mutations: We assign a random probability

for each pair of genes.

4) Fitness Score: After evolution, we use the following

fitness function to evaluate the candidates and then select

the candidates with the higher fitness score for the

Algorithm 1 Hyperparameter DSE

Input: Sets of valid hyperparameters {Di}, {D∗
j }, {Rk}

Output: The optimal training time (T ∗
train), inference latency

(T ∗
test), and accuracy (A∗)

1: for each (i, j, k) ∈ {Di} × {D∗
j } × {Rk} do

2: if i > j then

3: continue � D should not be greater than D∗

4: else

5: Ttrain, Ttest,A ← HyperDetect(i,j,k)(data)

6: T ∗
train, T ∗

test,A
∗ ← optimal(Ttrain, Ttest,A)

7: return i, j, k ← D,D∗,R

TABLE II
DATA SETS FOR EVALUATING NIDS DESIGNS (n: NUMBER

OF FEATURES AND k: NUMBER OF CLASSES)

next generation:

Fitness Score = α · L + β · A + γ · T (5)

where L denotes latency, A denotes accuracy, and T

denotes training time. α, β, γ are hyperparameters that

can be tuned. In the experiment, we set α = 0.5, β =

0.3, and γ = 0.2 to expect a better finding targeting

edge devices.

4) Verification: We employ Algorithm 1 to traverse part of

possible combinations of (D,D∗,R) to construct a design

space that is significantly smaller than the original one and

more practical to evaluate. Considering the resource limitations

of edge devices, we start by setting a lower bound and upper

bound for the physical dimensionality (D) of our HDC model

and then emulate from the lowest physical dimensionality

toward the upper bound. Additionally, we emulate all the pos-

sible effective dimensionality (D∗,D∗ ≥ D) and regeneration

rate (R) to fully explore this design space and capture the

optima. Algorithm 1 outputs the optimal hyperparameters that

deliver the best detection accuracy, training efficiency, and

testing efficiency in the smaller space defined by GA. With

the trend and results obtained from this search, we can verify

the performance of GA (elaborated in Section V-E).

V. EXPERIMENTAL RESULT

We evaluate HyperDetect on widely used network intrusion

data sets listed in Table II. We compare HyperDetect with

SOTA DNNs [44], SVMs [15], and HDC algorithms [23], [39]

in terms of accuracy, training and inference efficiency, and

performance on resource-constrained devices. We implement

and evaluate HyperDetect on a wide range of platforms,

including server CPU, embedded CPU, embedded GPU, and

FPGA. We also explore the hyperparameter design space of

HyperDetect and identify the optimal hyperparameters.

WANG et al.: HyperDetect: A REAL-TIME HYPERDIMENSIONAL SOLUTION FOR INTRUSION DETECTION 14851

Fig. 5. Comparing accuracy of NIDS classification. HyperDetect demon-
strates a comparable classification accuracy to SOTA learning algorithms.

A. Experimental Setup

We evaluate HyperDetect on both server CPU and embed-

ded platforms listed as follows.

1) Server CPU: Intel Xeon Silver 4310 CPU (12-core,

24-thread, 2.10 GHz), 96-GB DDR4 memory, Ubuntu 20.04,

Python 3.8.10, PyTorch 1.12.1, and TDP 120 W.

2) Embedded CPU: Raspberry Pi 3 Model 3+ (quad-core

ARM A53 @1.4 GHz), 1-GB LPDDR2 memory, Debian 11,

Python 3.9.2, PyTorch 1.13.1, and TDP 5 W.

3) Embedded GPU: NVIDIA Jetson Nano (quad-core

ARM A57 @1.43 GHz, 128-core Maxwell GPU), 4 GB

LPDDR4 memory, Ubuntu 20.04, Python 3.8.10, PyTorch

1.13.0, CUDA 10.2, and TDP 10 W.

4) FPGA: AMD Alveo U50, 8-GB HBM, PCI express

(PCIe) gen3 x16, 872K lookup tables (LUTs), 1743K registers,

5952 DSPs, and TDP 75 W.

B. Accuracy

1) HyperDetect Versus Popular Learning Approaches: We

compare the accuracy of HyperDetect with the SOTA DNN

and SVMs for each data set. Our DNN algorithm is trained

with TensorFlow while SVM is trained with the scikit-learn

library [45]. We utilize the common practice of grid search

to identify the best hyperparameters for each model. As

demonstrated in Fig. 5, HyperDetect provides a comparable

classification accuracy to these SOTA learning approaches.

2) HyperDetect Versus SOTA HDC: We compare the

classification accuracy of HyperDetect with the SOTA

HDC algorithm without the capability to regenerate dimen-

sions (BaselineHD) [21] and a recently proposed HDC

learning approach with a dynamic encoding technique

(NeuralHD) [23]. The results of BaselineHD are reported in

two dimensionalities: 1) physical dimensionality (D = 0.5k)

of NeuralHD and HyperDetect, a compressed dimensionality

designed for resource-efficient implementations on IoT devices

and 2) effective dimensionality (D∗ = 8k), defined as the

sum of the physical dimensions (D) and all the regenerated

dimensions throughout the retraining iterations. As demon-

strated in Fig. 5, HyperDetect shows on average a 14.98%

higher accuracy than the SOTA HDC (D = 0.5k) and 3.97%

higher accuracy than NeuralHD (D = 0.5k). Additionally,

HyperDetect exhibits a comparable accuracy to the SOTA

HDC (D∗ = 8k), indicating HyperDetect is capable of

providing high-quality attack detection while using 16.0×

lower physical dimensionality.

C. Efficiency

1) Efficiency on Server CPU: For fairness, we compare the

training time and inference latency of HyperDetect with the

SOTA DNN, SVMs, BaselineHD (D∗ = 8k) and NeuralHD

(D = 0.5k) since they achieve comparable accuracy as elabo-

rated in Section V-B. As demonstrated in Fig. 6, HyperDetect

delivers considerably higher learning efficiency than the

SOTA DNN (5.02× faster training, 3.34× faster inference),

SVMs (97.79× faster training, 18 959.88× faster infer-

ence), BaselineHD (31.83× faster inference), and NeuralHD

(234.13× faster training, 225.73 faster inference). In contrast

to NeuralHD, where data points are processed by scalar

operations sequentially, HyperDetect train data samples with

optimized and highly parallel matrix operations. Compared to

BaselineHD, though HyperDetect requires more iterations to

reach convergence during the training process, each iteration

requires significantly less time because of the notably lowered

dimensionality; HyperDetect thereby provides comparable

training efficiency to BaselineHD. Additionally, such lower

dimensionality remarkably accelerates the inference by sim-

plifying the encoding and classification of query vectors.

2) Efficiency on Embedded CPU and GPU: To further

understand the performance of HyperDetect on resource-

constrained embedded devices, we evaluate the efficiency

of HyperDetect, the SOTA DNN, SVMs, and BaselineHD

(D∗ = 8k) using a Raspberry Pi 3 Model B+ board and

an NVIDIA Jetson Nano board. Both platforms have very

limited memory and CPU cores (and GPU cores for Jetson

Nano). Fig. 7 shows the total inference time for each algorithm

processing all 77 302 samples in the UNSW-15 data set.

Specifically, HyperDetect outperforms other algorithms on

both the Raspberry Pi and the Jetson Nano platforms in terms

of inference latency with speedups ranging from 1.16× to

4 715.6×. Notably, BaselineHD ran out of memory and failed

to complete the inference task on the Raspberry Pi. We also

tested the power consumption as demonstrated in Fig. 7. SVM

requires extraordinarily long inference time on both platforms

compared to other methods, so we killed the programs;

BaselineHD can not even start running inference on Raspberry

Pi so the program is also killed. Among algorithms that

can be successfully executed on edge devices, HyperDetect

demonstrates significantly higher energy efficiency, ranging

from 1.5× to 80× more. This evaluation further proves

that HyperDetect can run efficiently on energy-constrained

platforms.

D. Data Size Scalability

We exhibit the scalability of HyperDetect and SOTA

learning algorithms using various training and inference data

sizes (percentages of the full data set). As shown in Fig. 8,

with the increasing size of the training data set, HyperDetect

is capable of maintaining high efficiency for both training

and inference with a sublinear growth in execution time.

In contrast, the training time of other learning approaches,

14852 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

Fig. 6. Comparing training time and inference latency on server CPU. HyperDetect provides 5.02× faster training and 3.34× faster inference than SOTA
DNN [44], 97.79× faster training and 18.959.88× faster inference than SVMs [15], 31.82× faster inference than the SOTA HDC [39], and 234.13× faster
training and 225.73× faster inference than NeuralHD [23].

Fig. 7. Inference latency and energy consumption on embedded platforms.
HyperDetect provides significantly faster inference and requires notable
energy consumption than other learning algorithms.

including the SOTA DNN, SVMs, and BaselineHD (D∗ =

8k) increases notably faster than HyperDetect. This indicates

that HyperDetect is capable of providing scalable NIDS

solutions for both high-performance and resource-constrained

computing devices.

E. Hyperparameter Design Space Exploration

1) Setting: The framework of our GA is demonstrated

in Fig. 4. We set both the evolution mutation rate and the

crossover rate as 0.1, and our GA implementation is adopted

from Nevergrad [46]. To verify the finding of GA, we evaluate

each design point, with different steps, in the space and ana-

lyze how they impact the detection accuracy, training time, and

testing time of HyperDetect. We set physical dimensionality

(D) to be from 500 to 4000 with 200 increments in each step,

effective dimensionality (D∗) to be from 2000 to 8000 with

500 increments in each step, and regeneration rate to be from

10% to 90% with 20% increment in each step, and then follow

procedures detailed in Algorithm 1.

2) Result: As demonstrated in Fig. 9(a), the accuracy of

utilizing lower physical dimensionality (D) can be com-

pensated by utilizing more iterations of regeneration and

larger effective dimensionality (D∗). Even with extremely

low physical dimensionality, e.g., (D = 0.5k), a fine-tuned

HyperDetect model can achieve comparable performance to

using D = 8k, which requires significantly more computa-

tional and memory resources. For instance, the training trails

in the neighborhood of B delivers comparable performance

to training trails near A . In Fig. 9(b), by fixing physical

dimension D = 500, we further prove this idea by showing

that the model performance can be considerably enhanced

with the increase of effective dimensionality. Additionally, as

shown in Fig. 10, with proper hyperparameters, HyperDetect

can achieve high-quality performance within a short training

period (ranging from 0 to 20 s) with timely inference (ranging

from 0.06 to 0.08 s), indicating a great potential of implement-

ing both training and inference tasks at the edge. In conclusion,

our GA-based HyperDetect provides us with the Pareto-front

solution.

F. Training Efficiency on Low-Bitwidth Hardware

Accelerator

Quantization can effectively compress HDC models and

enhance learning efficiency. We quantize HyperDetect to six

different bitwiths to evaluate its efficiency. Lower bitwidth set-

tings will require higher dimensional hypervectors to achieve

comparable model performance. For fairness, we tune the

number of dimensions for each bitwidth so that all six con-

figurations achieve roughly the same detection accuracy. The

configurations are (dimensions in parentheses), 32 bits (1.2k),

16 bits (2.1k), 8 bits (3.6k), 4 bits (5.6k), 2 bits (7.5k), and 1 bit

(8.8k). We design FPGA accelerators with custom bitwidths

for HyperDetect using C++ high-level synthesis (HLS) tool,

AMD-Xilinx Vitis HLS [47]. We use ap_fixed types in Vitis

HLS to implement fixed point types with custom bitwidths.

The synthesized design has been tested on a system with one

Intel i9-12900 host CPU and one Xilinx Alveo U50 board,

which is connected to the host system via PCIe. The FPGA-

CPU communication channel is generated by AMD-Xilinx

WANG et al.: HyperDetect: A REAL-TIME HYPERDIMENSIONAL SOLUTION FOR INTRUSION DETECTION 14853

Fig. 8. Comparing training time and inference latency using different sizes of data. HyperDetect maintains significantly higher efficiency for both training
and inference than SOTA DNN, SVM, BaselineHD, and NeuralHD, regardless of data sizes.

(a) (b)

Fig. 9. (a) Relation between physical dimensionality (D), effective dimen-
sionality (D∗), and model performance. (b) Impact of effective dimensionality
(D∗) on accuracy with physical dimensionality (D) set as 0.5k. Both (a) and
(b) show that, even with very low physical dimensionality (e.g., 0.5k), a fine-
tuned model can provide comparable accuracy to models using much higher
dimensionalities.

Fig. 10. Relation between training time, inference latency, and model
performance. As shown in the blocked areas, high-quality results can be
achieved with a short training period and timely inference.

Vitis tool and managed by Xilinx RunTime (XRT). Table III

shows the resource utilization on the Alveo U50 FPGA,

in terms of LUT, flip-flop (FF), block RAM (BRAM), and

DSP. We evaluate the training efficiency of HyperDetect

on desktop CPU and this custom FPGA accelerator under

various bitwidths, for all four data sets. Fig. 11 shows the

evaluation results, including training time breakdown (stacked

bars) and speedups from FPGA accelerator over CPU (curve).

All FPGA accelerators are running at 200 MHz. HyperDetect

on CPU achieves higher efficiency with low dimensionality

and high bitwidth because of its high frequency and pow-

erful arithmetic logic unit (ALU). FPGA shows excellent

efficiency improvement below 8 bits compared to CPU thanks

to FPGA’s fine-grained parallelism. Furthermore, this FPGA

implementation demonstrates excellent energy efficiency. On

the Xilinx Alveo U50 FPGA board, the power consumption

TABLE III
ALVEO U50 FPGA RESOURCE UTILIZATION

Fig. 11. Efficiency of HyperDetect on low-bitwidth FPGA accelerator.

of the HyperDetect accelerator is less than 20 W under

200-MHz frequency.

G. Robustness Against Errors and Noises

Given the typical harsh deployment environments for IoT

systems, we consider the errors and noises caused by potential

intrinsic and extrinsic threats and evaluate the robustness of

HyperDetect against these errors and noises. We will show

that one key advantage of HyperDetect is its high robustness

against noise and failure. We evaluate the robustness of

HyperDetect and the SOTA DNN-based NIDS model [44]

by comparing their average quality loss under different per-

centages of hardware errors in Fig. 12. The error rate refers

to the percentage of random bit flips on memory storing

DNN and HyperDetect models. For fairness, all DNN weights

are quantized to their effective 8-bit representation. In DNN,

random bit flip results in significant quality loss as corruptions

on most significant bits can cause major weight changes. In

contrast, HyperDetect provides significantly higher robust-

ness against noise due to its redundant and holographic

distribution. Specifically, in HyperDetect, every hypervector

14854 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

Fig. 12. Comparing the robustness of HyperDetect and SOTA DNN-based
NIDS model against hardware errors.

consists of randomly generated and holographic i.i.d. elements.

Each hypervector stores information across all its components

so that no component is more responsible for storing any more

information than another; therefore, failure on partial data

will not result in the loss of entire information. HyperDetect

demonstrates the maximum robustness using hypervectors

with 4k dimensions in 1-bit precision, that is on average

12.90× higher than the robustness of the DNN. An increase

in precision will lower the robustness of HyperDetect since

random flips on more significant bits will introduce more

loss of accuracy. For instance, for 10% bit flips in hardware,

HyperDetect using 1-bit precision and 4k dimensions pro-

vides 10.35× and 4.13× higher robustness than the DNN

and HyperDetect using 8 bits with the same dimensionality,

respectively. Additionally, higher dimensionality improves the

robustness of HyperDetect to noise due to its redundant and

holographic information distribution. For example, for 10%

hardware error, HyperDetect using 4k dimensions and 8-bit

precision achieves 1.43× higher robustness than HyperDetect

using 1k dimensions with the same bitwidth.

VI. LIMITATIONS AND FUTURE WORKS

A. Limitations

In contrast to popular ML and DL learning algorithms,

our proposed HyperDetect leverages encoded data on

high-dimensional space to provide a real-time and more

resource-efficient solution for intrusion detection tasks in IoT

Networks. Our proposed HyperDetect also significantly out-

performs other HDC learning frameworks in terms of latency

and energy consumption. However, the detection accuracy of

HyperDetect is slightly lower than DNNs due to the inherent

nature of HDC.

1) We utilize the established HDC encoding method to map

low-dimensional feature data into a high-dimensional

space. Nevertheless, this encoding process may poten-

tially cause information loss and lacks clarity in terms

of explainability.

2) The dimension regeneration step involves randomness.

While a newly generated vector may potentially con-

tribute positively to classification tasks, such outcomes

are not guaranteed and may ultimately limit the model

performance that can be achieved.

B. Future Works

For future research, we intend to delve into alternative

encoding and dimension regeneration schemes to further

enhance our model performance. Additionally, the evaluation

of HyperDetect on data-center scale platforms has not yet

been conducted. We anticipate that system-level optimizations

will be necessary to effectively deploy HDC applications on

a larger scale. Currently, the training process of HyperDetect

is performed on the host server, but we are actively exploring

the possibility of conducting training in an edge environment

as well. Finally, as HDC has demonstrated its effectiveness in

network intrusion detection tasks, we believe it can also be

applied to other security domains, e.g., malware detection.

VII. CONCLUSION

We propose HyperDetect, a novel HDC framework ensur-

ing resource-efficient and real-time intrusion detection in IoT

Networks. HyperDetect dynamically identifies and regen-

erates dimensions with less impact on classification tasks,

and hence effectively reduces the required dimensionality

to achieve adequate model performance. Our evaluations on

a wide range of network intrusion detection tasks show

that HyperDetect delivers significantly higher learning effi-

ciency than existing HDCs and SOTA DNNs. Additionally,

HyperDetect outperforms other ML methods on embedded

CPU and GPU devices in terms of both inference time and

energy efficiency.

REFERENCES

[1] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security

Privacy, vol. 9, no. 3, pp. 49–51, May 2011.

[2] W. Iqbal, H. Abbas, M. Daneshmand, B. Rauf, and Y. A. Bangash,
“An in-depth analysis of IoT security requirements, challenges, and their
countermeasures via software-defined security,” IEEE Internet Things J.,
vol. 7, no. 10, pp. 10250–10276, Oct. 2020.

[3] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki,
“Network intrusion detection for IoT security based on learning tech-
niques,” IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2671–2701,
3rd Quart., 2019.

[4] A. N. Jahromi, H. Karimipour, A. Dehghantanha, and K.-K. R. Choo,
“Toward detection and attribution of cyber-attacks in IoT-enabled
cyber–physical systems,” IEEE Internet Things J., vol. 8, no. 17,
pp. 13712–13722, Sep. 2021.

[5] B. B. Zarpelão et al., “A survey of intrusion detection in Internet of
Things,” J. Netw. Comput. Appl., 2017.

[6] B. Mukherjee, L. T. Heberlein, and K. N. Levitt, “Network intrusion
detection,” IEEE Netw., vol. 8, no. 3, pp. 26–41, May 1994.

[7] R. Yasaei, F. Hernandez, and M. A. Al Faruque, “IoT-CAD: Context-
aware adaptive anomaly detection in IoT systems through sensor
association,” in Proc. 39th Int. Conf. Comput.-Aided Design, 2020,
pp. 1–9.

[8] M. A. Faruque, F. Regazzoni, and M. Pajic, “Design methodologies
for securing cyber-physical systems,” in Proc. Int. Conf. Hardw./Softw.

Codesign Syst. Synthesis (ISSS), 2015, pp. 30–36.

[9] M. Zaman and C.-H. Lung, “Evaluation of machine learning techniques
for network intrusion detection,” in Proc. IEEE/IFIP Netw. Operations

Manage. Symp. (NOMS), 2018, pp. 1–5.

[10] S. Kumar, “Survey of current network intrusion detection techniques,”
Washington Univ. St. Louis, 2007, pp. 1–18.

[11] A. Barua, D. Muthirayan, P. P. Khargonekar, and M. A. Al Faruque,
“Hierarchical temporal memory-based one-pass learning for real-time
anomaly detection and simultaneous data prediction in smart grids,”
IEEE Trans. Depend. Secure Comput., vol. 19, no. 3, pp. 1770–1782,
May 2020.

WANG et al.: HyperDetect: A REAL-TIME HYPERDIMENSIONAL SOLUTION FOR INTRUSION DETECTION 14855

[12] K. A. Da Costa, J. P. Papa, C. O. Lisboa, R. Munoz, and
V. H. C. De Albuquerque, “Internet of Things: A survey on machine
learning-based intrusion detection approaches,” Comput. Netw., vol. 151,
Mar. 2019, pp. 147–157.

[13] W.-H. Chen, S.-H. Hsu, and H.-P. Shen, “Application of SVM and
ANN for intrusion detection,” Comput. Oper. Res., vol. 32, no. 10,
pp. 2617–2634, 2005.

[14] R.-C. Chen, K.-F. Cheng, and C.-F. Hsieh, “Using rough set and support
vector machine for network intrusion detection,” 2010, arXiv:1004.0567.

[15] D. Jing and H.-B. Chen, “SVM based network intrusion detection for
the UNSW-NB15 dataset,” in Proc. 13th Int. Conf. ASIC ASICON, 2019,
pp. 1–4.

[16] J. Pan and J. McElhannon, “Future edge cloud and edge computing for
Internet of Things applications,” IEEE Internet Things J., vol. 5, no. 1,
pp. 439–449, Feb. 2018.

[17] Y. R. Siwakoti et al., “Advances in IoT security: Vulnerabilities, enabled
criminal services, attacks and countermeasures,” IEEE Internet Things

J., vol. 10, no. 13, pp. 11224–11239, Jul. 2023.

[18] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[19] J. Wang, L. Chen, and M. A. Al Faruque, “DOMINO: Domain-invariant
Hyperdimensional classification for multi-sensor time series data,” in
Proc. 42nd ACM/IEEE Int. Conf. Comput.-Aided Design (ICCAD), 2023,
pp. 1–9.

[20] J. Wang, H. Chen, M. Issa, S. Huang, and M. Imani, “Late breaking
results: Scalable and efficient Hyperdimensional computing for network
intrusion detection,” in Proc. 60th ACM/IEEE Design Autom. Conf.

(DAC), 2023, pp. 1–2.

[21] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient
classifier using brain-inspired hyperdimensional computing,” in Proc.

Int. Symp. Low Power Electron. Design, (ISLPED), 2016, pp. 64–69.

[22] J. Wang, S. Huang, and M. Imani, “DistHD: A learner-aware dynamic
encoding method for Hyperdimensional classification,” in Proc. 60th

ACM/IEEE Design Autom. Conf. (DAC), 2023, pp. 1–6.

[23] Z. Zou, Y. Kim, F. Imani, H. Alimohamadi, R. Cammarota, and
M. Imani, “Scalable edge-based hyperdimensional learning system with
brain-like neural adaptation,” in Proc. Int. Conf. High Perform. Comput.,

Netw., Stor. Anal. (SC), 2021, pp. 1–15.

[24] B. B. Andersen, H. J. G. Gundersen, and B. Pakkenberg, “Aging of the
human cerebellum: A stereological study,” J. Comp. Neurol., vol. 466,
no. 3, pp. 356–365, 2003.

[25] B. Pakkenberg et al., “Aging and the human neocortex,” Exp. Gerontol.,
vol. 38, nos. 1–2, pp. 95–99, 2003.

[26] J. Wang and M. A. A. Faruque, “Robust and scalable Hyperdimensional
computing with brain-like neural adaptations,” 2023, arXiv:2311.07705.

[27] J. Asharf, N. Moustafa, H. Khurshid, E. Debie, W. Haider, and
A. Wahab, “A review of intrusion detection systems using machine and
deep learning in Internet of Things: Challenges, solutions and future
directions,” Electronics, vol. 9, no. 7, p. 1177, 2020.

[28] A. Bivens, C. Palagiri, R. Smith, and B. Szymanski, “Network-based
intrusion detection using neural networks,” in Proc. Intell. Eng. Syst.

Artif. Neural Netw., 2002, pp. 579–584.

[29] D. Chou and M. Jiang, “A survey on data-driven network intrusion
detection,” in Proc. ACM Comput. Surveys, 2021, pp. 1–36.

[30] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in Proc. Symp. Comput. Intell.

Security Defense Appl. (CISDA), 2009, pp. 1–6.

[31] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in Proc. Mil. Commun. Inf. Syst. Conf. (CIS), 2015, pp. 1–6.

[32] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,” in
Proc. 4th Int. Conf. Inf. Syst. Security Privacy (ICISSP), 2018, pp. 1–9.

[33] J. L. Leevy and T. M. Khoshgoftaar, “A survey and analysis of intrusion
detection models based on CSE-CIC-IDS2018 big data,” J. Big Data,
vol. 7, p. 104, Nov. 2020.

[34] A. Rosay et al., “Multi-layer perceptron for network intrusion detection,”
Ann. Telecommun., vol. 77, pp. 371–394, Jun. 2022.

[35] F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, “A novel two-stage
deep learning model for efficient network intrusion detection,” IEEE

Access, vol. 7, pp. 30373–30385, 2019.

[36] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE Trans. Emerg. Topics Comput.

Intell., vol. 2, no. 1, pp. 41–50, Feb. 2018.

[37] P. Poduval et al., “GrapHD: Graph-based hyperdimensional memo-
rization for brain-like cognitive learning,” Front. Neurosci., vol. 16,
Feb. 2022, Art. no. 757125.

[38] M. Imani et al., “A framework for collaborative learning in secure high-
dimensional space,” in Proc. IEEE 12th Int. Conf. Cloud Comput., 2019,
pp. 435–446.

[39] A. Hernández-Cano, N. Matsumoto, E. Ping, and M. Imani, “OnlineHD:
Robust, efficient, and single-pass online learning using hyperdimensional
system,” in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), 2021,
pp. 56–61.

[40] K. Schlegel, P. Neubert, and P. Protzel, “A comparison of vector
symbolic architectures,” Artif. Intell. Rev., vol. 55, pp. 4523–4555,
Aug. 2022.

[41] B. Komer, T. C. Stewart, A. R. Voelker, and C. Eliasmith, “A neural
representation of continuous space using fractional binding,” in Proc.

41st Annu. Meet. Cogn. Sci. Society, 2019, pp. 2038–2043.
[42] A. Rahimi and B. Recht, “Random features for large-scale kernel

machines,” in Proc. 20th Int. Conf. Adv. Neural Inf. Process. Syst., 2007,
pp. 1177–1184.

[43] N. Hansen, “The CMA evolution strategy: A comparing review,” in
Towards a New Evolutionary Computation. Berlin, Germany: Springer,
2006, pp. 75–102.

[44] A. Rosay, F. Carlier, and P. Leroux, “MLP4NIDS: An efficient MLP-
based network intrusion detection for CICIDS2017 Dataset,” in Proc.

2nd Int. Conf. Mach. Learn. Netw., 2019, pp. 240–254.
[45] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J. Mach.

Learn. Res., vol. 12, no. 85, pp. 2825–2830, 2011.
[46] J. Rapin and O. Teytaud. “Nevergrad-a gradient-free optimization

platform.” 2018. [Online]. Available: https://GitHub.com/
FacebookResearch/Nevergrad

[47] V. Kathail, “Xilinx vitis unified software platform,” in Proc.

ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2020,
pp. 173–174.

Junyao Wang (Graduate Student Member, IEEE)
received the B.S. degree in mathematics and
statistics and the M.S. degree in operations
research from the University of Illinois at Urbana–
Champaign, Champaign, IL, USA, in 2019 and
2020, respectively. She is currently pursuing the
Ph.D. degree with the Department of Computer
Science, University of California at Irvine, Irvine,
CA, USA.

Her research primarily includes resource-efficient
machine learning algorithms, applications of graph

neural networks in autonomous systems, and the intersection of machine
learning and sensor fusion.

Haocheng Xu (Graduate Student Member, IEEE)
received the B.S. degree from the College of
Information and Electrical Engineering, China
Agricultural University, Beijing, China, in 2017,
and the M.S. degree from the Viterbi School of
Engineering, University of Southern California, Los
Angeles, CA, USA, in 2019. He is currently pursu-
ing the Ph.D. degree in computer engineering with
the University of California at Irvine, Irvine, CA,
USA.

His research interests include efficient machine
learning, deep learning accelerators, and AI/ML systems.

Yonatan Gizachew Achamyeleh received the
B.S. degree in electrical engineering from Korea
Advanced Institute of Science and Technology,
Daejeon, South Korea, in 2021. He is currently
pursuing the Ph.D. degree in computer engineering
with the University of California at Irvine, Irvine,
CA, USA.

He has previously interned with Siemens
Technology, Princeton, NJ, USA, and Intel Labs,
Hillsboro, OR, USA. He is a member of the
Autonomous and Intelligent Cyber-Physical Systems

Lab. His research focuses on the security aspects of embedded and cyber–
physical systems, especially in sectors, such as manufacturing, IoT, and
healthcare.

14856 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

Sitao Huang (Member, IEEE) received the B.S.
degree from Tsinghua University, Beijing, China, in
2014, and the M.S. and Ph.D. degrees in electri-
cal and computer engineering from the University
of Illinois at Urbana–Champaign, Champaign, IL,
USA, in 2017 and 2021, respectively.

He is an Assistant Professor with the Department
of Electrical Engineering and Computer Science,
University of California at Irvine, Irvine, CA, USA.
His research interests include hardware accelera-
tors, compilers for accelerators, and heterogeneous
systems.

Dr. Huang is a 2022 DARPA Forward Riser. His research won the Best
Paper Award at IDEAL 2021, the Best Paper Nomination at ASP-DAC 2021,
and the Student Innovation Award at the 2018 IEEE HPEC Graph Challenge.

Mohammad Abdullah Al Faruque (Senior
Member, IEEE) received the Ph.D. degree in
computer science from Karlsruhe Institute of
Technology, Karlsruhe, Germany, in 2009.

He is currently with the University of California
at Irvine, Irvine, CA, USA, as a Full Professor
and Directing the Embedded and Cyber-Physical
Systems Lab, where he also directs the Samueli
School of Engineering Autonomous Systems
Initiatives. His research focuses on the system-level
design of embedded and cyber–physical systems

(CPS) with a special interest in low-power design, CPS security, and data-
driven CPS design.

Prof. Al Faruque has received four Best Paper Awards (ACSAC 2022,
DATE 2016, DAC 2015, and ICCAD 2009). He also received the IEEE
Technical Committee on Cyber-Physical Systems Early-Career Award and
the IEEE CEDA Ernest S. Kuh Early Career Award. He has been awarded
the Thomas Alva Edison Patent Award for one of his inventions. He is an
ACM Senior Member. He is also the IEEE CEDA Distinguished Lecturer.

