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Abstract—In the current technological landscape, Internet of
Things (IoT) systems are deeply embedded in numerous facets
of daily life, from domestic settings to critical infrastructure,
which underscores the importance of these systems security and
integrity. The constrained nature of IoT devices, in terms of
computational capacity, economic limitations, or time-to-market,
makes them vulnerable to security breaches and system failures.
Additionally, the hybrid essence of IoT- combining the physical
domain via sensor interfaces and the cyber domain through com-
munication networks and cloud connectivity- further complicates
mitigating these threats. While numerous techniques for either
network intrusion detection or sensor anomaly detection exist,
an integrated approach that synergistically combines information
from both domains is absent. This paper proposes a multi-
modal data fusion technique, which, for the first time, melds
sensor and communication data. This approach underscores the
interdependencies between the components, provides contextual
embeddings for data from each element, and integrates the
system’s physical and cyber features into a graph-based represen-
tation. Harnessing the power of Graph Neural Networks (GNNs),
we capture the normal state and context of the system, facilitating
the detection of anomalies and intrusions. Additionally, our model
discerns between network and sensor-based attacks, pinpointing
the anomaly’s origin, thereby expediting post-incident recovery.
Optimized for fog-computing environments, our solution ensures
real-time oversight. Rigorous testing on greenhouse IoT systems
indicates the efficacy of our model, with a commendable 22%
improvement in F1-score over singular modal techniques.

Index Terms—Internet of Things, sensor fusion, anomaly detec-
tion, graph neural network, security, multi-modal, heterogeneous

I. INTRODUCTION

The Internet of Things (IoT) comprises a vast interconnected
network of sensors and devices used across various sectors,
with the potential for a global economic impact of up to
$11.1 trillion by 2025. Despite their growth and importance,
the low cost and limited computational capability of many IoT
devices make them vulnerable to attacks. Ensuring IoT security
is paramount, given its extensive use in critical applications.
While many strategies exist to detect anomalies in time-series
sensor data and network intrusion, they often overlook the
interconnected context of IoT systems. Our study introduces
a holistic, real-time approach for multi-modal data fusion that
combines sensor and communication data analysis to detect
both anomalies and attacks, filling the existing gap in the
literature.

A. Motivational Example

Wireless device users in outdoor settings can experience
varied connectivity depending on the day and environmental
conditions. Research has explored the influence of factors

like temperature and humidity on wireless communication.
Specifically, [1] found that temperature adversely affects the
received signal strength indicator (RSSI), with humidity being
particularly influential at temperatures below 0°C. The study
also highlighted notable RSSI variations across individual chan-
nels and links, possibly due to multipass propagation. Although
deriving an exact model linking environmental factors and RSSI
might be challenging, statistical models can depict a correla-
tion, especially in low-power wireless networks. This example
highlights the necessity to incorporate sensor data as well as
network information to determine an attack/anomaly and its
cause. Relying only on network information, the RSSI variation
in the example could be interpreted as network intrusion.

B. Research Challenges and Opportunities

In IoT anomaly detection, researchers grapple with chal-
lenges stemming from the vast volumes of time-series data
sensors generate. Key issues include dimensionality reduc-
tion, ensuring minimal loss of crucial feature information,
and managing complications like a dimensional explosion and
concept drift [2]. Over time, accumulating noisy data can
distort anomaly predictions while evolving standards of what is
normal further complicate detection accuracy. This complexity
amplifies with multivariate time-series data. Furthermore, the
unique interactions in IoT as a cyber-physical system foster
mutual knowledge among system nodes. Deriving insights
from this context can be invaluable for understanding system
behavior and pinpointing abnormalities. However, embedding
this topology and context into a model remains intricate.

C. Our Contribution

In summary, our contributions are summarized as follows:

o We propose a novel holistic approach to the security and
integrity of IoT systems. It performs selective sensor and
network data fusion to detect anomalies and attacks on the
system’s communication network and physical layout.

o We extract the shared context among multi-modal compo-
nents of the system through time-series data analysis, and
we selectively fuse only related data in the data fusion and
machine learning processes.

o We propose a heterogeneous graph representation for IoT
systems that embodies sensing devices and communication
network parameters as nodes and correlation between
component pairs as a connection.
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o« We leverage GNN to automatically extract key features
of the system from its graph representation and detect
anomalous activities.

II. RELATED WORKS AND BACKGROUND

This paper closely correlates with three well-established
research areas discussed in this section.

A. Network Intrusion Detection

Network Intrusion Detection (NID) employs abnormality
detection techniques to identify deviations in network traffic
patterns. With the rise of deep learning, numerous models
have been introduced to enhance NID. D-PACK [3] combines
CNN and AE for traffic categorization while facing memory
challenges. Kim et al. [4] designed a CNN model tailored
for Denial-of-Service (DoS) detection, surpassing earlier RNN
designs, while another of their works [5] utilizes local out-
lier factor and AE for malware detection. E-GraphSage [6]
integrates a GNN model, emphasizing network topology, but
has space and time complexity issues. In terms of physical
cyberattacks, Qiu et al. [7] uses an adaptive neural network
examining channel characteristics, and Liao et al. [8] offers
a hybrid method for physical layer authentication in wireless
sensors, emphasizing efficiency in communication resources.

B. Data Fusion and Anomaly Detection

In recent decades, machine learning has become a prominent
tool for data fusion and time-series analysis. CNNs and RNNs
are often employed for anomaly detection due to their ability to
handle both spatial and temporal information. Yin et al. [9] de-
veloped a model integrating CNN and recurrent autoencoder for
univariate time-series anomaly detection, emphasizing temporal
relevance through a two-stage sliding window. Meanwhile,
Zhang et al. [10] introduced a Dual-Window RNN-CNN for
periodic multivariate time-series data, leveraging both the GRU
to learn temporal features and a CNN-based Autoencoder to
determine feature dependencies. While effective, their datasets
had limited anomalies. [11] addressed multivariate time-series
anomalies using a deep convolutional clustering-based model,
enhancing detection performance through K-means clustering
loss in the AE latent space.

C. GNN for anomaly detection

Machine learning has emerged as the preferred approach for
data fusion and time-series analysis in recent years. CNNs and
RNNs play pivotal roles due to their ability to handle spatial
and temporal information for anomaly detection. Yin et al. [9]
combined CNN and recurrent autoencoders, focusing solely
on univariate time-series data, while Zhang et al. [10] intro-
duced a Dual-Window RNN-CNN to handle the complexities
of periodic multivariate data, capturing temporal and spatial
dependencies with a CNN-based Autoencoder and multi-head
GRU, albeit with datasets having few anomalies. Meanwhile,
Chadha et al. [11] targeted multivariate time-series anomaly
detection using a deep one-dimensional CNN autoencoder,
enhancing performance by partitioning the AE latent space and
employing a K-means clustering loss.

III. METHODOLOGY: MULTI-MODAL DATA FUSION

We aim to integrate physical and network layers of IoT
systems and detect security threats and malfunctions. Our
methodology is explained in this section according to the
pipeline depicted in Figure 1.

A. IoT Network Security Analysis

This section delves into prevalent attacks against the Long
Range Wide Area Network (LoRaWAN), used in IoT systems
like greenhouse monitoring [12]. We examine various attack
impacts and their distinctive signatures on communication
metadata such as RSS and SNR. Given IoT system’s low
power and cost constraints, these networks are susceptible
to several cyberattacks, including spoofing, jamming, replay,
and wormhole attacks [13]. Spoofing: Here, attackers pose as
genuine nodes to corrupt or alter data. Specifically, LoORaWAN
is sensitive to acknowledgment spoofing [14]. Significant RSS
fluctuations might indicate an attack, as devices typically
maintain consistent transmission power. Jamming attacks:
These attacks, a subset of DoS attacks, involve intentional
signal interference [15]. While generic jamming impacts all
devices on a given frequency, selective jamming targets individ-
ual devices, making its detection challenging. [16] introduced
a selective jamming mechanism effective against LoRaWAN
packets, achieving a 98% success rate. Jamming’s primary aim
is to elevate the SNR, where a decreased SNR indicates poten-
tial jamming, leading to frequent packet losses [17]. Replay
attack: Attackers intercept and resend messages, allowing data
and metadata manipulation. Sung et al. [18] devised a method
to shield LoORaWAN devices from these attacks, utilizing RSSI
and handshaking. A constantly shifting RSSI might hint at an
ongoing replay attack. Wormhole attacks: Here, an attacker’s
device seizes a data packet and transfers it to another malicious
device for multiple replays. This type of attack allows metadata
tampering, like RSSI, SNR, and packet travel time. A study
by [19] revealed that these attacks can be executed using
wormholes, increasing RSSI and SNR.

B. Anomaly Implementation

In our work, we simulate various security incidents (detailed
in Section III-A) in IoT systems incorporating synthetic anoma-
lies in 10% of the data. To understand the signatures of these
threats and gauge their effects on sensor and network data.

Network Anomalies: For each node, anomalies were in-
serted at random data points (timestamps). The type of anomaly
was also randomly selected. To simulate spoofing, the RSSI was
augmented with an added data anomaly. RSSI values ranged
between -40dBm and -30dBm. Packet dropping was simulated
for replay attacks, and time lags representative of packet drop
intervals were added. Wormhole attacks involved modifications
to RSSI, SNR, and humidity and temperature readings. RSSI
values were selected from high (-40dBm to -30dBm) or low
(-100 dBm to -90 dBm) ranges. SNR was reduced to represent
increased noise, with values ranging between -30dB and -
20dB. Lastly, jamming was simulated by decreasing SNR and
introducing packet drops.
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Fig. 1. Multi-modal data fusion pipeline for anomaly detection in IoT systems.

Sensor Anomalies: Sensor measurement anomalies are ei-
ther global or contextualized outliers [20]. Global outliers
deviate significantly from other values but still lie within
the sensor’s operational range. Upper and lower bounds for
these outliers, upper_outlier and lower_outlier, are computed
from the interquartile range. Anomalies are randomly selected
from the ranges (smallest_global_value, lower_outlier) and
(upper_outlier, largest_global_value). Contextualized outliers
deviate from the average of a specific range of values. For a
time instance X;, the context is given by the values in the
range (X;—;, X¢y1), where [ represents context length. The
anomalous value, A, is derived as A = X; ;11 + (A x o)
with A denoting the contextual threshold and o representing
the standard deviation of the sub-sequence values.

C. Data Preprocessing

In the preprocessing phase of our multivariate time-series
dataset, we focused on ensuring data periodicity, continuity,
and synchronization. Upon analyzing the data, each sensor
shared the same periodicity, albeit with some missing data
gaps. We establish a threshold for allowable time differences,
targeting values greater than the sensor period but within the
threshold. Achieving synchronization requires us to make the
data continuous to ensure uniform timestamp counts across all
sensors. This involved timestamp normalization to one-minute
intervals, handling outliers, and aligning start and end time.

D. Context Extraction and Graph Generation

GNN is designed to process data structured as a graph.
This accommodates non-Euclidean data within deep learning
frameworks. The basic graph structure is represented as G =
(V,E), where V denotes nodes (in this context, sensors) and
FE the edges (relationships between sensors). We visualize our
IoT system, especially for a greenhouse, as a graph, with
nodes symbolizing system components and edges defining the
correlation between these components. Contextual relationships
between the components, vital for modeling the IoT system,
are encoded as edges, guiding the graph learning procedure
by merging related data. The relationships between nodes are
stored in an adjacency matrix, A;;. These relationships might be
provided manually based on system understanding or extracted
using data analysis. For automatic extraction, we experiment
with cosine similarity and a correlation matrix. By default,
sensors are interrelated, making A;; a matrix of 1’s. If specific

sensors aren’t interrelated, the corresponding matrix entry is
0. For component data similarity, we use cosine similarity for
node embeddings, as shown:

Li Lj
€ji = (1)
T -
1 ifj T - K i - i
A= b ifj € Top ({exi : k € S;}) @

0, otherwise

Here, S; is the set of embeddings excluding x;. The ad-
jacency matrix, Aj;, is constructed from cosine similarities.
The model uses the Top-K indices during its forward propaga-
tion. Alternatively, the similarity between sensor embeddings
can be determined using the correlation coefficient matrix,
R = Sji
adjacency matrix is assembled similarly to the cosine similarity
method.

where S represents the covariance matrix. The

E. Forecasting Graph Neural Network

Before we carry out anomaly detection, we need a baseline
to compare data and find anomalies. We train our GNN model
using a forecast-based approach to predict the values at a future
time based on a window of values from the past. The input to
the model, x(z), NXw, where N is the number of nodes in the
dataset, and w is the size of the sliding window:

b= S(t—W)7s(t—W+1)7. . .75@—1) 3)

The output predicts the node values at time s(t). The
aforementioned learned graph is then used to perform graph
attention-based feature extraction. It aggregates a node’s fea-
tures with the information of its neighboring node through a
process called message passing. We aggregate sensor i’s input
feature vector, z,) with all of the features of its neighboring
nodes to produce z;:

2" = ReLU <ai,,-Wx§” + > ai,ijg”), 4)
JEN()
Where Ny = {j |Aj; > 0} is the neighborhood of sensor

1. W €Rgxw. «yj are attention coefficients and can be found
with the following calculations:

g = v; & wx" )
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TABLE 1
STATISTICS OF THE GREENHOUSE AND SWAT DATASET

Dataset #devices/ Train Test Anomalies
features
Greenhouse 110 10128 2533 10%
SWaT 51 47515 44986 12%
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Fig. 2. The plot MSE and AUC loss vs. the number of epochs.
7 (i,7) = LeakyRe LU (aT <g§i> @ gﬁ”)) ©)

(i)
ZkeN(i)U{i} exp (m (i, k))

)

W is a trainable weight matrix that performs a linear
transformation on a node’s input feature vector, xl(.t) . gl(.t)
concatenates the sensor embedding and the transformed result.
LeakyReLU calculates the attention coefficient, after which it
is normalized with a softmax function. Each aggregated sensor,
z;, 18 then multiplied element-wise with its embedding, v;. The
final results for each sensor are concatenated and represent the

vector of predicted values, 5® for each sensor at time ¢:

5® :fg([v,;ozgt),...,vNozl(\t,)D (8)
F. Anomaly Detection

Our model is trained on an anomaly-free training dataset to
establish a baseline for normal behavior and tested against a
testing dataset. Anomaly detection is performed in real-time
on a validation dataset, differentiating our model from tradi-
tional deep learning models that test in batches. We calculate
the deviation from the normal state, considering the trade-
off between precise anomaly detection and minimizing false
positives. Several strategies are employed to determine these
deviations:

Gaussian Estimator Method: Error scores between actual
and predicted values are computed. Time-series data’s sea-
sonality is accounted for by assigning different thresholds for
different times of day. Gaussian distributions, based on test
dataset losses for each time of day, are then used to calculate
data point probabilities using the probability density function.
Thresholds are determined based on potential candidates rang-
ing from pjin tO Dpas, Optimizing for the highest Fl-score.

Standard Deviation Method: This method employs mean p
and standard deviation o of the test results to define anomalies.
If any data value at time ¢ deviates from the normal range, it’s
labeled as an anomaly.

1, ifoyy<pu—25%0
state(v,) =< 1, elseif v, > p+25%0 )

0, otherwise
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Error Score Method: Error scores at time ¢ for each test
data are calculated as Err;(t) = |s(t); — §(¢);] . These scores
are normalized:
a;(t) = Erralt — ) (,tv_ /1)
i
Where ji; and &; represent the median and inter-quartile range
of each sensor’s error array across time ¢t. Anomalies are de-
tected by comparing each sensor’s error score to the threshold.
Max Node Prediction Score Method: Like the previous
method, but uses the maximum of all node prediction scores at
t to determine anomalies. These techniques allow the model
to dynamically adapt to different conditions and effectively
identify real-time anomalies in the data.

(10)

IV. EVALUATION

To assess our multi-modal data fusion approach, we stud-
ied data from a LoRaWAN-based greenhouse IoT system
monitoring tomato crops in Belgium. This dataset, containing
communication and sensor data, includes 22 devices logging
temperature, humidity, RSSI, and SNR over five months. The
extracted communication delay led to a total of 110 compo-
nents, represented as a system graph with 110 nodes, each with
12661 data instances. The dataset was divided into 80% for
training (normal data) and 20% for testing and validation, with
the latter having 10% anomalies. Our main approach, the multi-
modal model, utilizes the entire greenhouse dataset with 110
nodes. To examine the benefits of fusing varied data types and
integrating communication with sensor data, we also created
single-modal models. This single-modal technique resulted in
5 distinct models, each focusing on a specific sensor type with
22 nodes. Additionally, we employed the public Secure Water
Treatment (SWaT) dataset, which contains normal operation
data and attack scenarios, to compare the performance of our
GNN anomaly detection model against other existing methods.
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TABLE I
DATA FORECASTING ERROR AND GRAPH CHARACTERISTICS FOR
DIFFERENT MODELS

Methodology Total loss (MSE) | #nodes | #edges
Multi-modal 0.29 110 5500
Only Temperature 0.16 22 132
Only Humidity 12.12 22 132
Only SNR 0.25 22 220
Only RSS 0.78 22 51
Only Delay 0.84 22 51

All methods and variants were implemented using PyTorch
version 1.5.1, CUDA 10.2, and the PyTorch Geometric library.

A. Forecasting Model Performance

Our pipeline begins with data preprocessing, context extrac-
tion, and graph generation to transform the data into a graph
representation. This is followed by our GNN model, trained on
an anomaly-free dataset to establish a normal behavior baseline.
The Mean Squared Error (MSE) loss function given by:

1 TtTain 2
Ly = ———— (gﬁ) — s(t)) (11)
MSE Tirain — w tzzw;-l

Measures prediction errors. As training progresses, the loss
reduces until changes become negligible, signifying model con-
vergence. This loss reflects the model’s proficiency in learning
time-series patterns and predicting node values. Visualizations,
like Figures 3 and 4, demonstrate the model’s prediction
accuracy. Table II reveals that multi-modal data fusion outper-
forms single-modality methods, underscoring the efficacy of
our GNN-based approach in merging data from varied system
layers for improved learning and model precision.

B. Anomaly Detection Performance

The forecasting model predicts the upcoming data instance
based on historical data, which is the expected normal value.
The deviation from expectation is analyzed upon observation of
actual data to determine whether an anomaly has occurred and
label the data instance. We use F1-score, precision, and recall
as evaluation metrics to assess anomaly detection performance.

Single-modal vs. Multi-modal Anomaly Detection: Testing
the single-modal and multi-modal models on anomaly-infested
testing dataset resulted in the performance reported in Figure 5.
The results indicate that the multi-modal approach outperforms
the single-modal approach on average by 22%. Although for
some data types, such as temperature, the single-modal model
has comparable results to multi-modal, standalone models fail
to detect various anomalies because different attacks have
varied impacts and signatures, as discussed in Section III-A.
All the parameters are required to capture diverse types of
anomalies, and on average, anomaly detection on a single data
modality performs inferior. The underlying reason the multi-
modal dataset performs much better than the single-modal
datasets is that its graph is more comprehensive. Hence, it
provides more context during attention-based forecasting. The
graph density in Table II is the total number of edges for each
dataset, which ends up being the total number of nodes used
for training multiplied by the top k values of the normalized dot
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Fig. 5. The performance of multi-modal Vs. single-modal models.

TABLE III
COMPARING CONTEXT EXTRACTION METHODS: COSINE SIMILARITY VS.
CORRELATION COEFFICIENT MATRIX

Algorithm F1-score | Precision | Recall
Cosine Similarity 91% 93% 90%
Correlation Coefficient Matrix | 83% 87% 79%

products computed during graph generation. The multi-modal
method graph has about five times as many edges as the single-
modal datasets, which could challenge the training process but
embeds more detailed information.

Context Extraction Evaluation: We investigate the impact
of the initial similarity extraction algorithm on the model
performance and compare the performance of the multi-modal
method using the cosine similarity versus the correlation coeffi-
cient matrix to generate the adjacency matrix. In Table III, the
results show that cosine similarity supersedes the correlation
coefficient matrix with higher F1-score, precision, and recall.

Comparing Anomaly Detection Methods in the Liter-
ature: We compare the GNN-based approach for anomaly
detection in time-series data with other popular techniques in
the literature. We base the comparison on the SWaT dataset
and gather the results of different methods. Table IV compares
models performance as well as the characteristics of each
model. The comparison reveals that GNN outperforms others.

C. Timing Analysis

Effective IoT system supervision mandates swift, real-time
anomaly detection, even with the constrained computational
resources characteristic of IoT. Relying on cloud servers for
model execution results in significant data transmission over-
head as raw measurements travel from edge devices through the
fog layer to the cloud. Hence, our model is optimized for real-
time anomaly detection on a fog platform. A key advantage of
our multi-modal fusion technique is being more compact than
the aggregate of single-modal models, reducing both compu-
tational overhead and memory usage. Table V showcases the
training, testing, and validation times for the data, all executed
on an X86-64 CPU. Training and testing times are one-time
operations for setting up the system. The subsequent validation
time represents the real-time detection latency. The real-time
validation is conducted per data instance, ensuring timely
monitoring. Ideally, the processing time for each data point
should stay below the system’s data collection frequency. Our
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TABLE IV
COMPARING ANOMALY DETECTION PERFORMANCE OF STATE-OF-THE-ART
METHODS FOR SWAT DATASET.

Method F1-score | Precision | Recall
GNN 81% 99% 68%
MAD-GAN [21] 77% 99% 63%
LSTM-VAE [22] 74% 96% 60%
AE [23] 61% 52% 72%
DAGMM [24] 39% 27% 70%
PCA [25] 23% 25% 22%
FB [26] 10% 10% 10%
KNN [27] 8% 8% 8%
TABLE V
TIMING OF TRAIN, TEST, AND VALIDATION FOR EACH DATA POINT.
Methodology Trzfmmg Testing time Vah.d ation
time time
Multi-modal 150ms 5.9ms 3.7Tms
Only Temperature 67ms 3.8ms 2.4ms
Only Humidity 66ms 6.0ms 2.7ms
Only SNR 67ms 4.0ms 2.5ms
Only RSS 65ms 3.7ms 2.7Tms
Only Delay 67ms 3.7ms 2.6ms

approach achieves an impressive 3.7ms anomaly detection time,
meeting real-time requirements for our greenhouse system.

D. Attack Analysis

Our method deeply integrates system communication and
sensing nodes through multi-modal fusion, allowing for detailed
analysis of anomalies and tracing them to their source. As
detailed in Section III-A, we explore the consequences of
various cyber and physical attacks. Physical attacks target
sensors with faulty data, leading to abnormal measurements,
while attacks like denial of service may result from system
failures or physical breaches, causing data irregularities.

Conversely, communication channel attacks affect both cyber
readings, such as SNR or RSSI, and the physical layer. For
instance, Figure 6 showcases a discrepancy between actual
and predicted readings from temperature, humidity sensors,
and their communication channel SNR. Notable data changes,
while other system components remain normal, hint at potential
abnormal activities. After identifying an attack signature, we
can ascertain the nature of the threat, such as a spoofing attack,
and adapt our response accordingly. Similar methods apply to
other attacks like jamming, replay, and wormhole.

V. CONCLUSION

In this study, we introduce a method for the selective fusion
of sensor and communication data to detect anomalies in IoT
systems in real-time. Utilizing a graph representation with
GNN, we learn system behaviors and trace anomalies back to
their origins and types of attack. This not only aids in system
recovery but also guides appropriate security measures. To our
understanding, this is the pioneering work in using GNN for
fusing sensor and communication data, paving the way for more
integrated and accurate digital modeling of real-world systems.
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