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Abstract—In the current technological landscape, Internet of
Things (IoT) systems are deeply embedded in numerous facets
of daily life, from domestic settings to critical infrastructure,
which underscores the importance of these systems security and
integrity. The constrained nature of IoT devices, in terms of
computational capacity, economic limitations, or time-to-market,
makes them vulnerable to security breaches and system failures.
Additionally, the hybrid essence of IoT- combining the physical
domain via sensor interfaces and the cyber domain through com-
munication networks and cloud connectivity- further complicates
mitigating these threats. While numerous techniques for either
network intrusion detection or sensor anomaly detection exist,
an integrated approach that synergistically combines information
from both domains is absent. This paper proposes a multi-
modal data fusion technique, which, for the first time, melds
sensor and communication data. This approach underscores the
interdependencies between the components, provides contextual
embeddings for data from each element, and integrates the
system’s physical and cyber features into a graph-based represen-
tation. Harnessing the power of Graph Neural Networks (GNNs),
we capture the normal state and context of the system, facilitating
the detection of anomalies and intrusions. Additionally, our model
discerns between network and sensor-based attacks, pinpointing
the anomaly’s origin, thereby expediting post-incident recovery.
Optimized for fog-computing environments, our solution ensures
real-time oversight. Rigorous testing on greenhouse IoT systems
indicates the efficacy of our model, with a commendable 22%
improvement in F1-score over singular modal techniques.

Index Terms—Internet of Things, sensor fusion, anomaly detec-
tion, graph neural network, security, multi-modal, heterogeneous

I. INTRODUCTION

The Internet of Things (IoT) comprises a vast interconnected

network of sensors and devices used across various sectors,

with the potential for a global economic impact of up to

$11.1 trillion by 2025. Despite their growth and importance,

the low cost and limited computational capability of many IoT

devices make them vulnerable to attacks. Ensuring IoT security

is paramount, given its extensive use in critical applications.

While many strategies exist to detect anomalies in time-series

sensor data and network intrusion, they often overlook the

interconnected context of IoT systems. Our study introduces

a holistic, real-time approach for multi-modal data fusion that

combines sensor and communication data analysis to detect

both anomalies and attacks, filling the existing gap in the

literature.

A. Motivational Example

Wireless device users in outdoor settings can experience

varied connectivity depending on the day and environmental

conditions. Research has explored the influence of factors

like temperature and humidity on wireless communication.

Specifically, [1] found that temperature adversely affects the

received signal strength indicator (RSSI), with humidity being

particularly influential at temperatures below 0
◦C. The study

also highlighted notable RSSI variations across individual chan-

nels and links, possibly due to multipass propagation. Although

deriving an exact model linking environmental factors and RSSI

might be challenging, statistical models can depict a correla-

tion, especially in low-power wireless networks. This example

highlights the necessity to incorporate sensor data as well as

network information to determine an attack/anomaly and its

cause. Relying only on network information, the RSSI variation

in the example could be interpreted as network intrusion.

B. Research Challenges and Opportunities

In IoT anomaly detection, researchers grapple with chal-

lenges stemming from the vast volumes of time-series data

sensors generate. Key issues include dimensionality reduc-

tion, ensuring minimal loss of crucial feature information,

and managing complications like a dimensional explosion and

concept drift [2]. Over time, accumulating noisy data can

distort anomaly predictions while evolving standards of what is

normal further complicate detection accuracy. This complexity

amplifies with multivariate time-series data. Furthermore, the

unique interactions in IoT as a cyber-physical system foster

mutual knowledge among system nodes. Deriving insights

from this context can be invaluable for understanding system

behavior and pinpointing abnormalities. However, embedding

this topology and context into a model remains intricate.

C. Our Contribution

In summary, our contributions are summarized as follows:

• We propose a novel holistic approach to the security and

integrity of IoT systems. It performs selective sensor and

network data fusion to detect anomalies and attacks on the

system’s communication network and physical layout.

• We extract the shared context among multi-modal compo-

nents of the system through time-series data analysis, and

we selectively fuse only related data in the data fusion and

machine learning processes.

• We propose a heterogeneous graph representation for IoT

systems that embodies sensing devices and communication

network parameters as nodes and correlation between

component pairs as a connection.
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• We leverage GNN to automatically extract key features

of the system from its graph representation and detect

anomalous activities.

II. RELATED WORKS AND BACKGROUND

This paper closely correlates with three well-established

research areas discussed in this section.

A. Network Intrusion Detection

Network Intrusion Detection (NID) employs abnormality

detection techniques to identify deviations in network traffic

patterns. With the rise of deep learning, numerous models

have been introduced to enhance NID. D-PACK [3] combines

CNN and AE for traffic categorization while facing memory

challenges. Kim et al. [4] designed a CNN model tailored

for Denial-of-Service (DoS) detection, surpassing earlier RNN

designs, while another of their works [5] utilizes local out-

lier factor and AE for malware detection. E-GraphSage [6]

integrates a GNN model, emphasizing network topology, but

has space and time complexity issues. In terms of physical

cyberattacks, Qiu et al. [7] uses an adaptive neural network

examining channel characteristics, and Liao et al. [8] offers

a hybrid method for physical layer authentication in wireless

sensors, emphasizing efficiency in communication resources.

B. Data Fusion and Anomaly Detection

In recent decades, machine learning has become a prominent

tool for data fusion and time-series analysis. CNNs and RNNs

are often employed for anomaly detection due to their ability to

handle both spatial and temporal information. Yin et al. [9] de-

veloped a model integrating CNN and recurrent autoencoder for

univariate time-series anomaly detection, emphasizing temporal

relevance through a two-stage sliding window. Meanwhile,

Zhang et al. [10] introduced a Dual-Window RNN-CNN for

periodic multivariate time-series data, leveraging both the GRU

to learn temporal features and a CNN-based Autoencoder to

determine feature dependencies. While effective, their datasets

had limited anomalies. [11] addressed multivariate time-series

anomalies using a deep convolutional clustering-based model,

enhancing detection performance through K-means clustering

loss in the AE latent space.

C. GNN for anomaly detection

Machine learning has emerged as the preferred approach for

data fusion and time-series analysis in recent years. CNNs and

RNNs play pivotal roles due to their ability to handle spatial

and temporal information for anomaly detection. Yin et al. [9]

combined CNN and recurrent autoencoders, focusing solely

on univariate time-series data, while Zhang et al. [10] intro-

duced a Dual-Window RNN-CNN to handle the complexities

of periodic multivariate data, capturing temporal and spatial

dependencies with a CNN-based Autoencoder and multi-head

GRU, albeit with datasets having few anomalies. Meanwhile,

Chadha et al. [11] targeted multivariate time-series anomaly

detection using a deep one-dimensional CNN autoencoder,

enhancing performance by partitioning the AE latent space and

employing a K-means clustering loss.

III. METHODOLOGY: MULTI-MODAL DATA FUSION

We aim to integrate physical and network layers of IoT

systems and detect security threats and malfunctions. Our

methodology is explained in this section according to the

pipeline depicted in Figure 1.

A. IoT Network Security Analysis

This section delves into prevalent attacks against the Long

Range Wide Area Network (LoRaWAN), used in IoT systems

like greenhouse monitoring [12]. We examine various attack

impacts and their distinctive signatures on communication

metadata such as RSS and SNR. Given IoT system’s low

power and cost constraints, these networks are susceptible

to several cyberattacks, including spoofing, jamming, replay,

and wormhole attacks [13]. Spoofing: Here, attackers pose as

genuine nodes to corrupt or alter data. Specifically, LoRaWAN

is sensitive to acknowledgment spoofing [14]. Significant RSS

fluctuations might indicate an attack, as devices typically

maintain consistent transmission power. Jamming attacks:

These attacks, a subset of DoS attacks, involve intentional

signal interference [15]. While generic jamming impacts all

devices on a given frequency, selective jamming targets individ-

ual devices, making its detection challenging. [16] introduced

a selective jamming mechanism effective against LoRaWAN

packets, achieving a 98% success rate. Jamming’s primary aim

is to elevate the SNR, where a decreased SNR indicates poten-

tial jamming, leading to frequent packet losses [17]. Replay

attack: Attackers intercept and resend messages, allowing data

and metadata manipulation. Sung et al. [18] devised a method

to shield LoRaWAN devices from these attacks, utilizing RSSI

and handshaking. A constantly shifting RSSI might hint at an

ongoing replay attack. Wormhole attacks: Here, an attacker’s

device seizes a data packet and transfers it to another malicious

device for multiple replays. This type of attack allows metadata

tampering, like RSSI, SNR, and packet travel time. A study

by [19] revealed that these attacks can be executed using

wormholes, increasing RSSI and SNR.

B. Anomaly Implementation

In our work, we simulate various security incidents (detailed

in Section III-A) in IoT systems incorporating synthetic anoma-

lies in 10% of the data. To understand the signatures of these

threats and gauge their effects on sensor and network data.

Network Anomalies: For each node, anomalies were in-

serted at random data points (timestamps). The type of anomaly

was also randomly selected. To simulate spoofing, the RSSI was

augmented with an added data anomaly. RSSI values ranged

between -40dBm and -30dBm. Packet dropping was simulated

for replay attacks, and time lags representative of packet drop

intervals were added. Wormhole attacks involved modifications

to RSSI, SNR, and humidity and temperature readings. RSSI

values were selected from high (-40dBm to -30dBm) or low

(-100 dBm to -90 dBm) ranges. SNR was reduced to represent

increased noise, with values ranging between -30dB and -

20dB. Lastly, jamming was simulated by decreasing SNR and

introducing packet drops.
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TABLE IV
COMPARING ANOMALY DETECTION PERFORMANCE OF STATE-OF-THE-ART

METHODS FOR SWAT DATASET.
Method F1-score Precision Recall

GNN 81% 99% 68%
MAD-GAN [21] 77% 99% 63%
LSTM-VAE [22] 74% 96% 60%

AE [23] 61% 52% 72%
DAGMM [24] 39% 27% 70%

PCA [25] 23% 25% 22%
FB [26] 10% 10% 10%

KNN [27] 8% 8% 8%

TABLE V
TIMING OF TRAIN, TEST, AND VALIDATION FOR EACH DATA POINT.

Methodology
Training

time
Testing time

Validation

time

Multi-modal 150ms 5.9ms 3.7ms
Only Temperature 67ms 3.8ms 2.4ms

Only Humidity 66ms 6.0ms 2.7ms
Only SNR 67ms 4.0ms 2.5ms
Only RSS 65ms 3.7ms 2.7ms

Only Delay 67ms 3.7ms 2.6ms

approach achieves an impressive 3.7ms anomaly detection time,

meeting real-time requirements for our greenhouse system.

D. Attack Analysis

Our method deeply integrates system communication and

sensing nodes through multi-modal fusion, allowing for detailed

analysis of anomalies and tracing them to their source. As

detailed in Section III-A, we explore the consequences of

various cyber and physical attacks. Physical attacks target

sensors with faulty data, leading to abnormal measurements,

while attacks like denial of service may result from system

failures or physical breaches, causing data irregularities.

Conversely, communication channel attacks affect both cyber

readings, such as SNR or RSSI, and the physical layer. For

instance, Figure 6 showcases a discrepancy between actual

and predicted readings from temperature, humidity sensors,

and their communication channel SNR. Notable data changes,

while other system components remain normal, hint at potential

abnormal activities. After identifying an attack signature, we

can ascertain the nature of the threat, such as a spoofing attack,

and adapt our response accordingly. Similar methods apply to

other attacks like jamming, replay, and wormhole.

V. CONCLUSION

In this study, we introduce a method for the selective fusion

of sensor and communication data to detect anomalies in IoT

systems in real-time. Utilizing a graph representation with

GNN, we learn system behaviors and trace anomalies back to

their origins and types of attack. This not only aids in system

recovery but also guides appropriate security measures. To our

understanding, this is the pioneering work in using GNN for

fusing sensor and communication data, paving the way for more

integrated and accurate digital modeling of real-world systems.
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