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Autonomous vehicles are cyber-physical systems that combine embedded computing and deep learning with
physical systems to perceive the world, predict future states, and safely control the vehicle through changing
environments. The ability of an autonomous vehicle to accurately predict the motion of other road users
across a wide range of diverse scenarios is critical for both motion planning and safety. However, existing
motion prediction methods do not explicitly model contextual information about the environment, which can
cause significant variations in performance across diverse driving scenarios. To address this limitation, we
propose CASTNet: a dynamic, context-aware approach for motion prediction that (i) identifies the current
driving context using a spatio-temporal model, (ii) adapts an ensemble of motion prediction models to fit
the current context, and (iii) applies novel trajectory fusion methods to combine predictions output by the
ensemble. This approach enables CASTNet to improve robustness by minimizing motion prediction error
across diverse driving scenarios. CASTNet is highly modular and can be used with various existing image
processing backbones and motion predictors. We demonstrate how CASTNet can improve both CNN-based
and graph-learning-based motion prediction approaches and conduct ablation studies on the performance,
latency, and model size for various ensemble architecture choices. In addition, we propose and evaluate several
attention-based spatio-temporal models for context identification and ensemble selection. We also propose
a modular trajectory fusion algorithm that effectively filters, clusters, and fuses the predicted trajectories
output by the ensemble. On the nuScenes dataset, our approach demonstrates more robust and consistent
performance across diverse, real-world driving contexts than state-of-the-art techniques.
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1 INTRODUCTION

Autonomous vehicles (AVs) are cyber-physical systems (CPS) that rely on a tightly coupled
feedback loop of perception, prediction, planning, and control [14, 43]. Like many CPSs, AVs are
real-time, energy-constrained systems that require timely decisions that can be influenced by sur-
rounding environmental factors [29]. Figure 1 depicts a high-level illustration of a typical modular
autonomous driving pipeline [43]. Ultimately, an AV implements a closed-loop control system
that receives sensor and other data from the environment as inputs and determines actuation
commands to control the vehicle as outputs. The main stages of operation include: (a) sensing—
processing of on-board sensor data (e.g., cameras, radars, inertial measurement units) and data
about the environment (e.g., maps, directions); (b) positioning—localizing the vehicle in its local
frame as well as navigating the vehicle with respect to a global frame; (c) perception—usually con-
ducted in parallel with positioning tasks, responsible for the detection and tracking of surrounding
agents or objects; (d) prediction—predicting the motion of other surrounding agents (e.g., vehicles,
pedestrians, bicycles); (e) planning—determining the desired AV path given the surround objects
and their trajectories; and (f) control—updating the AV’s estimate of its state and outputting the
desired actuation commands given a control algorithm.

As Figure 1 highlights, this article focuses on the motion prediction stage, which directly influ-
ences the AV’s path planning and control tasks. Predicting agent (e.g., motorists, cyclists, pedestri-
ans) motion in an environment is a critical spatio-temporal modeling task that requires blending
various domains, including sensor fusion, dynamics, mapping, and data-driven modeling. Motion
prediction not only influences the planning and control of AVs [15], but also has significant safety
benefits: The ability to predict future agent positions accurately can help ensure safe route plan-
ning and crash avoidance [28, 30].

Recent works have shown that explicitly modeling contextual information can aid the perfor-
mance of AVs by informing how agents are likely to behave given external factors [6, 18, 25, 26, 34].
More broadly, authors in Reference [2] argue that extracting contextual information from sen-
sory data in a CPS is critical for enabling increased autonomy levels. Reference [32] highlights
the importance of context identification in analyzing the feature space of CPSs regarding out-of-
distribution analysis. Furthermore, Reference [27] demonstrates that context-specific modeling
can improve AV performance in dynamic environments. Contextual modeling can be key in devel-
oping adaptive architectures for various CPS applications [12, 16, 37, 42]. Existing methods that
lack adaptation suffer in performance during high uncertainty levels in challenging environments
[16] and along new driving scenarios [42]. Adaptive deep-learning methods for CPSs have been
proposed to leverage context identification at runtime [12, 37]. Inspired by these works, we de-
fine context as information derived from sensory data about the current state of the system and the
surrounding environment that influences the system’s goals or tasks. In the scope of this article, the
system is the autonomous vehicle, and the task under study is motion prediction.

1.1 Motivation

In this subsection, we provide insights and qualitative results on the limitations existing motion
predictors face in challenging driving environments and the benefits of our proposed approach.
The main categories of current motion predictors are physics-based approaches and data-driven
machine learning approaches. Physics-based motion prediction models struggle to predict beyond
afew seconds in the future, as they often fail to anticipate driver actions or influences from external
factors (e.g., other vehicles, road constraints) [23]. Machine learning approaches for AV motion
prediction have proven more effective 7, 31, 35, 36]. However, existing motion prediction methods
do not explicitly account for driving context in their methodologies and can fail in some contexts,
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Fig. 1. Atypical modular autonomous driving pipeline. Prediction takes in tracking and map data along with
sensor data to produce trajectories of the detected road actors. As shown, motion prediction is critical for
both the downstream tasks of path planning and control.
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Fig. 2. An example of the limitations of existing motion predictors in a complex driving scenario from
nuScenes [4]. In this scene, the goal is to predict the future trajectory of the white van (ground truth shown
in black on the map). The results from existing motion predictors are shown in their respective colors and
their points of failure are highlighted in the text boxes. Our approach, CASTNet—shown in blue—achieves
the best performance in terms of minimum distance from ground truth.

as demonstrated in Figure 2. In this example, the AV (ego vehicle) is attempting to predict the
motion of the white van located in front of it for the next 12 timesteps (6 seconds at 2 Hz). The
ground truth of the vehicle is shown in black stars, and the predicted trajectories of different
motion predictors are shown in their respective colors (with CoverNet [31] and MTP [7], each
producing three possible trajectories). As shown in the example, this challenging setting involves
construction, numerous pedestrians, and a narrow turn lane in an urban driving setting. Since
the two machine learning-based methods (CoverNet and MTP) and the physics-based model do
not explicitly model context, these models cannot account for these factors and fail to predict the
white van’s true trajectory accurately; CoverNet predicts an unlikely off-road trajectory, while
MTP and the physics-based model seem to ignore the turn lane and predict that the van will
drive straight into oncoming traffic. Overall, vehicle motion prediction presents the following key
research challenges:

(1) Predicting motion paths over long-term horizons.

(2) Accounting for spatio-temporal dependencies in the environment.

(3) Utilizing contextual information from sensory data to inform motion predictions.
(4) Maintaining robust prediction performance in challenging scenarios.
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To address these research challenges, we propose CASTNet—a context-aware dynamic ensemble
approach for AV motion prediction. CASTNet, shown in blue in Figure 2, can predict the closest
trajectory to the ground truth by modeling the context of the surrounding environment, adapting
the ensemble architecture accordingly, and fusing submodel outputs to produce a more accurate,
context-aware trajectory.

1.2 Novel Contributions

CASTNet employs a modular architecture that dynamically adapts to enable robust motion pre-
diction performance across diverse driving scenarios. By using a novel attention-based spatio-
temporal context identification module to identify the set of driving contexts present in each input,
CASTNet can select the most effective motion predictors to execute for each input, significantly
improving performance across scenarios compared to state-of-the-art methods, which use static
architectures and do not explicitly model context. CASTNet is a general approach that can be used
with various ensemble backbones and context-identification models to convert traditional static
architecture models to context-aware motion predictors. In this work, we present the following
novel contributions:

(1) We propose CASTNet, a context-aware dynamic approach for AV motion prediction, that
outperforms state-of-the-art methods on diverse, real-world driving data.

(2) We propose several novel techniques for spatio-temporal context identification that enhance
situational understanding during AV motion prediction.

(3) We illustrate how CASTNet improves robustness across driving contexts while providing
the first analysis of how an adaptive AV motion prediction framework can leverage context
to improve performance.

(4) We demonstrate CASTNet’s modularity by performing ablation studies with different archi-
tectural configurations and motion prediction models.

(5) We propose a trajectory fusion algorithm to fuse the outputs of an ensemble of motion pre-
diction models and evaluate the performance of several fusion methods.

1.3 Article Organization

The remainder of the article is organized as follows: Section 2 discusses related works includ-
ing background on AV motion prediction, context-aware methods in autonomous systems, and
multi-modal trajectory fusion approaches; Section 3 introduces the motion prediction problem
formulation along with detailed descriptions of our proposed methodology; Section 4 presents our
experimental setup, results, and discusses key findings and future research directions; and finally,
Section 5 concludes the article.

2 RELATED WORK
2.1 Motion Prediction

Several recent works have proposed methods for AV motion prediction. Multimodal Trajectory
Prediction (MTP) 7] uses a convolutional neural network (CNN) as a backbone feature ex-
tractor to model raster map data. These features are then combined with agent state information
(i.e., position, speed, heading, acceleration, and heading change rate) and passed through a multi-
layer perceptron (MLP) to predict multiple possible trajectories for each agent. CoverNet [31]
uses a similar approach to MTP, with the addition of a trajectory set generator that maps model
outputs to either a fixed or dynamic set of feasible trajectories. The problem is thus translated to
classification over a trajectory set. Trajectron++ [35] represents the agents in the scene and their
relations to one another as a spatio-temporal graph, incorporating agent dynamics, map data, and
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scene information. A recurrent model for motion prediction along with Gaussian mixtures then
models this representation. Other approaches that use mixture of experts methods have shown
benefits in AV motion prediction, for example, Reference [20], which leverages a mixture of ex-
perts approach to select predictors based on uncertainties. However, this analysis focuses only on
ego vehicle motion prediction.

Other recent motion prediction works include PLOP [3] (uses conditional imitation learning),
PRECOG [33] (conditions forecasts on agent goals), and GOHOME [13] (utilizes a global heatmap
probability distribution). Reference [22] combines learning-, physics-, and maneuver-based meth-
ods and weighs their outputs as a function of their respective uncertainties in each driving scene,
enabling better predictions in unseen environments. These methods successfully incorporate en-
vironmental information for the prediction task; however, they employ static architectures and
do not explicitly model context, so these methods can fail when faced with complex real-world
driving scenarios.

2.2 Context-aware Methods in Autonomous Cyber-physical Systems

Methods exploring the use of context are essential for establishing increased levels of autonomy
in cyber-physical systems. Authors in Reference [2] propose a specific class of self-aware cyber-
physical systems that focus on extracting contextual information from sensory data. They argue
that leveraging distinctions in sensing can lead to more contextually meaningful modeling and,
ultimately, more autonomy in the design of CPS. The analysis of CPS performance on out-of-
distribution data is another challenge that context-aware methods can improve. Authors in Refer-
ence [32] utilize context identification at runtime to analyze out-of-distribution features to enhance
the safety of CPS. Furthermore, context-aware methods are commonly used to develop adaptive ar-
chitectures for CPS [12, 16, 37, 42]. Authors in Reference [12] apply meta-adaptation strategies for
CPS to improve performance across changing environments. Likewise, in Reference [37], adaptive
deep learning is applied to improve CPS localization.

Context-aware methods have also shown benefits for various AV-specific problems. Reference
[21] uses contextual features such as curb distance and traffic lights to improve pedestrian
trajectory prediction. MultiPath++ [39], an extension of MultiPath [5], shows improved mo-
tion forecasting results by integrating contextual information. Context-based methods using
transformers [24] and graph neural networks [6] have also proven effective for AV trajectory
prediction; however, they employ static architectures that can fail to adapt to challenging
scenarios. Context-aware dynamic sensor fusion architectures have been shown to improve
object detection robustness and energy efficiency in AV perception systems [25, 26]. Furthermore,
authors in Reference [27] apply context-specific modeling to provide safe velocity regulation of
AVs in dynamic, unseen environments.

Context also informs AV motion prediction frameworks by providing critical information about
the current scene. Specifically, road type [9, 41] and density [8, 40] have been shown to influ-
ence motion predictors. In Reference [41], authors define a semantic model of a driving scene
that includes road types to develop an improved trajectory prediction model. Reference [9] im-
proves motion prediction by encoding map elements based on the scene, including driving paths,
crosswalks, lane and road boundaries, intersections, driveways, and parking lots. Reference [40]
classifies car-following behaviors using traffic density and road type as contextual information.

2.3 Multi-modal Trajectory Fusion

Trajectory prediction methods often output multiple possible trajectories—or modes—per agent.
These outputs can then be ranked and selected using confidence scores or fused to produce newly
refined trajectories. This fusion process, called multi-modal trajectory fusion, involves combining
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multiple modes to enhance and refine predicted trajectories so the fused modes are more accurate
than previous individual modes [1]. There are various methods to choose subsets of modes to fuse,
such as selection algorithms inspired by non-maximum suppression in object detection [44] or
optimization-based algorithms [13]. However, these methods have been focused on the domain
of estimation and tracking and not motion prediction. One standard method of trajectory fusion
applied to estimation and tracking is the Kalman filter (KF). Kalman filters assume each mode is
uncorrelated and include a prediction step incorporating a temporal motion model and an update
step using available measurements. The fused mode is ultimately estimated by the filter by mak-
ing predictions using the known dynamics and noise model and correcting these predictions via
updates from the measurements (in our case, the different modes).

3 METHODOLOGY
3.1 Problem Formulation

Following the typical AV modular pipeline described in Figure 1, the first objective of the AV system
is to perceive and model sensor data from the environment via the positioning and perception
modules. These modules take sensor data D from the AV (e.g., camera, lidar) as input and (i) detect
and track objects and (ii) localize objects, spatial landmarks, and the AV itself relative to stored
high-definition map data. The object detection and tracking components produce a list of agents
in the scene and corresponding tracking information (e.g., position, velocity, heading) denoted T.
At the same time, the localization and navigation components use stored high-definition map data
denoting the different lanes, directions of travel, and static obstacles in the physical environment
to correlate object tracks with their relative map locations. Next, these outputs are processed by
the prediction module to predict future object trajectories.

As in related works [7, 10, 31], we combine the tracking information T and map information
provided by the perception module to construct a bird’s-eye view of the scene at each timestep
containing both current and past location information about each visible agent, resulting in a
raster map M. Following Reference [4], we encode two seconds of historical tracking information
T into M to predict future agent trajectories. We denote s;. as the discrete-time trajectory of an
agent a from frame i to j where i < j. Our objective is to predict the trajectory of each agent a in
a scene by modeling the following function:

slaj = ¢(M(2’TQ’D)9 (1)

for all a in M where M, is M transformed to be in the reference frame of a, and T, is the tracking
information corresponding to a. We extend this core formulation to a dynamic model architecture
as follows: Here, we assume ¢ is composed of a general purpose feature extraction model f that
produces an initial set of features F, as well as several independent motion prediction sub-models
o1, P2, ..., ¢, that process F.

F=p(Ma) @)
We propose that ¢ contains a context-identification component 7 to identify the scene’s current
context « and dynamically configure which sub-models are executed for each input. We denote
this selected set of n submodels as ¢*.

w = 1(D,T,) 3)
¢" =dlo] ={¢1.¢2.... ¢n} ()

Then, we process F and T, with each submodel in ¢*, where each submodel outputs a set of output
trajectories, denoted as sy, s, . . ., Sp.

$1,82, .. Sn = ¢"(F, T,) (5)
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Fig. 3. CASTNet Architecture. Our approach processes sensor, tracking, and map data as inputs fed into the
shared feature extractor, denoted as the stem. These features are then passed to the branches representing an
ensemble of motion predictor models. The gate is trained on sensor and tracking data to perform the branch
selection process. Finally, our multi-modal trajectory fusion algorithm processes the predicted trajectories
from the branches and produces the final fused set of trajectories.

We also define a mechanism ¥ for combining the trajectories s, predicted by the individual sub-
models to produce a final decision. ¥ can be a simple aggregation method or a multi-modal fusion
approach.

ng = (1,82, ..5,) (6)
The resulting trajectory predictions are then passed to the planning module to generate a fea-

sible, safe motion plan for the ego car. This plan is processed by the control module to execute a
series of actuator commands to complete the vehicle motion plan.

3.2 CASTNet Architecture

The CASTNet architecture is shown in Figure 3 and is a multi-branch tree-structured model.
As such, it implements a shared feature extractor, denoted the stem, followed by a set of
context-specialized sub-models, or branches. The end-to-end workflow of our model is described
in Algorithm 1 and consists of the following steps: First, map data M and tracking data T are
passed to the stem model to extract features F. At the same time, sensor data D and tracking
data T are passed to the gate model to identify the current driving context «. This context is
then used to select the set of branches ¢* to process F. Then, the selected branches each output
a set of predicted trajectories S for each agent. Finally, the trajectory fusion block fuses the
outputs of the different branches to produce a more refined set of predicted trajectories, each
compared to the ground truth trajectory for the agent at that timestep s{};. CASTNet is a general
approach that can extend any motion prediction model to a multi-branch dynamic architecture
to improve performance across diverse contexts. We evaluate two variants of our model: (i) a
CoverNet [31]/MTP [7] CNN-based architecture that uses raster map data as input, where the
stem is a ResNet-18 CNN model and the branches are MLP-based motion predictors, and (ii) a
Trajectron++ [35] architecture that uses scene-graph representations as input for a variational
graph autoencoder, where the encoder is used as the stem and each branch implements a decoder.
In the subsequent sections, we describe each component of our architecture.

3.3 Stem Model

The stem model, f, is a shared feature extraction model that learns from all of the driving contexts
in the training set. For the CoverNet and MTP variants of CASTNet, the stem uses a ResNet-18
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ALGORITHM 1: CASTNet Algorithm

Input: Raster Map (M) and Tracking Data (T,) for agent a,
Sensor Data (D),
Gate Selection Method (select € {topi, binary})
Output: Fused Motion Predictions sf = {s{, sg, o, S{O} for agent a
1 Initialize branch output vector S

2 F e (Mg, Ty) // process raster map using stem
3 w«— 1(D,Ty) // gate identifies current contexts from sensor data
4 if select = top, then

5 L @' — topy(w) // select top-k highest confidence contexts
¢ else if select = binary then

7 L " «— w[sigmoid(w) > 0.5] // select contexts with confidence score > 0.5
8 ¢* — Plo’] // select branch models to execute
9 for branch in ¢* do

10 L S[branch] « branch(F) // generate trajectory predictions
u s/ «— Algorithm2(S) // multi-modal fusion over branch predictions

[17] CNN model, similar to the CNN backbones used in References [7, 31]. Trajectron++ uses a
graph autoencoder architecture, so the Trajectron++ variants of CASTNet use the encoder model
as the stem. For the CNN-based stems, we implement a configurable split point that determines
which layers of the model are included in the stem and which layers are added to each branch.
In this manner, we can tune the proportion of layers used for shared feature extraction (those in
the stem) or context-specific modeling (those in the branches). Having a larger stem can improve
the quality of shared features and generalization across contexts. However, having larger branches
increases the capacity of the branch models to specialize in their contexts and reduces the amount
of feature extraction done by the stem. We provide an ablation study of this stem-branch split
point in Section 4.6. After feature extraction, each of the selected branches uses the stem’s outputs
for context-specific motion prediction.

3.4 Context-aware Gating Model

The gating model 7 aims to identify the current driving context using sensor and state information.
Based on this context identified by the gate model, the appropriate motion prediction model can
be selected from the ensemble for that input sample. Since our branches are trained on specific
subsets of the dataset and multiple contexts can exist in any given input, we train the gate model
as a multi-label classifier to identify all matching contexts for a given input.

We propose several gate model architectures, detailed in Figure 4, and compare the performance
of different architectures in ablation studies in Section 4.5. Each gate model processes two prior
seconds of front-facing camera images from D and agent tracking information T,. We capture as
much contextual information from the scene as possible by using the front-view image directly
as our input instead raster maps that are limited in their ability to model high-level visual con-
text cues such as pedestrian density, road obstructions, road markings, and so on. The CNN Gate
spatially models the input images using three 2D convolution layers followed by a max-pooling
layer, producing an output feature vector for each image. We then sum these features across the
two seconds of history. The Attention gate is implemented similarly to the CNN gate, with an
added self-attention layer before the max-pooling layer to attend over the image features. The
CNN-LSTM and Attention-LSTM gates are the same as the previous gates but use a two-layer
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Fig. 4. Various architectural configurations we developed for the gating models. Each gate model takes cam-
era images (D) and agent tracking data T, as input and outputs the set of branch models to execute. The
left three gates are shown with top-k(k = 3) gate selection, while the right three gates are shown with bi-
nary gate selection. The right four gates show the differences between various temporal pooling and spatial
modeling options.

long short-term memory (LSTM) network to temporally model the image feature vectors in-
stead of the summation operation used by the CNN Gate and Attention Gate. After the LSTM, we
apply a pooling operation to aggregate the temporal features across the input images. We evaluate
three temporal pooling operations: sum (summation across the outputs), mean (averaging across
the outputs), and attn. The attn pooling operation applies self-attention over the first LSTM layer’s
output for each image, then passes the result to the second LSTM. The last output from the second
LSTM is then returned.

After spatio-temporal features have been extracted from the image data, the agent tracking
information is concatenated to the features (shown in Figure 3), and the result is passed through
an MLP layer, producing the gate output as a logit score for each possible context. We then use one
of the following gate selection techniques to identify which branches to execute: top-k (selecting
the x highest-scoring contexts) or binary (applying a sigmoid and selecting all contexts with a
confidence score > 0.5, or the highest confidence one if none are > 0.5).

3.5 Motion Predictor Ensemble

Each branch (#1, ¢, . . ., P,) contains a motion prediction model (e.g., MTP, CoverNet, Trajec-
tron++), and when CASTNet is deployed, each branch within the ensemble is built with the same
model type. The branches are specialized in a specific context by training each branch with the
scenes from the dataset labeled as that matching context. This approach differs from training a mo-
tion prediction model across the entire dataset, where it may learn to generalize well but perform
poorly in specific scenarios. Since the stem is a shared feature extraction backbone that contains
the first part of the motion prediction model, we only include the layers from the model that are
not in the stem in each branch (e.g., the MLP layers of MTP and CoverNet, the decoder layers in
Trajectron++). Varying the backbone split point will adjust the proportion of layers in the shared
stem versus each branch, providing insight into the balance between generalized feature extraction
performed in the stem and scenario specialization performed in the branches.

As mentioned above, we train each branch with a different subset of the dataset to enable
branches to specialize in distinct driving contexts. We define three location-specific contexts,
{city streets, suburban, parking lot}, and three density-specific contexts, {high vehicle density, high
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ALGORITHM 2: Trajectory Fusion Algorithm

Input: Branch Motion Predictions: S = s1,5s2,...,Sn,
Number of Clusters: C,
Time in Future: T,
Fusion Method: fusion € {CI,ITF,KF, Averaging}

Output: Fused Motion Predictions sf = {s{, sg, R S{O}

1 S « mapfilter(S) // discard off-road trajectories, s
2 S « concat(sy,$2,...5n) // remove repeat trajectories
3 T « ranking(S) // rank trajectories based on confidence scores
14 A « dist(S) // compute matrix of distances between trajectories
5 & « cluster(A,T,C) // cluster trajectories based on similarity
6 Sf,D,M // initialize fused modes, dynamics and measurement models

7 forcinC do
8 L fortinT do

| S[ellt] = fusion(&[c][t]. D, M)

10 return S/ // fused mode predictions

©

pedestrian density, low density}, where samples can have multiple context labels assigned. The set
of possible contexts can be redefined, depending on the problem and application; we chose this set
of contexts for AV motion prediction, because each of these contexts has a different distribution of
motion paths, presenting unique challenges (e.g., high pedestrian density and city street scenarios
have more complex agent motion patterns than suburban or low-density driving). Additionally,
the selection of location-specific [9, 41] and density-specific [8, 40] contexts is supported in the
current literature. Each branch selected by the gate model outputs a set of modes that are then
collectively fused by the trajectory fusion component.

3.6 Fusion of Multi-modal Motion Predictions

For each agent in a scene, each active branch outputs multiple possible modes with varying con-
fidence levels. The goal of ¥, the trajectory fusion function, is to produce a set of fused modes
that are more accurate than the individual modes. The functionality of ¥ is described in Algo-
rithm 2 and consists of the following steps: First, if map data is available, then we can perform
map filtering, filtering out trajectories that exit the drivable road area. Then, all branch outputs are
concatenated, filtered for repeat trajectories, and ranked according to the confidence of each mode.
Next, a distance matrix of the average displacement error between modes is computed and passed
through a hierarchical agglomerative clustering method that recursively groups modes together,
starting with the closest pair of nodes until an entire tree structure of clustered modes is created.
Finally, the modes in each cluster are combined according to a fusion method to produce a fused
mode prediction for that cluster. These fused modes are subsequently ranked by their confidence
and define the final set of output predictions.

We evaluate our architecture with two fusion methods: Kalman filtering (KF) and Averaging—
calculating the point-wise average across all modes per cluster for each timestep. KF is performed
as follows using the general form of the discretized linear dynamics of a system with state sf<F (x.y
position of the target vehicle) and measurements z (branch motion predictions to fuse) at timestep
t, given as:

skp(t) = Askp(t — 1) + v(b), (7)

2(t) = Hsk (1) + w(?), (8)
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where A is the state transition matrix; v is the process noise vector, which is modeled as zero-mean,
normally distributed random variable with covariance, Q; H is the measurement matrix relating
the state to the measurements; and w is the measurement noise vector, which also is zero-mean
with a normal distribution and covariance, R. During the prediction step of KF, the state estimate,
sf(F, and its estimation error covariance matrix, P(k), are propagated forward through the dynamics

model with the added process noise. The prediction equations are as follows:

skp(tlt — 1) = Ashp(t — 1]t — 1), (9)

P(t]t —1) = AP(t — 1|t — 1) AT + Q(t — 1), (10)
where the notation (¢ + 1|t), indicates the next timestep given the current timestep. Next, during
the update step, measurements (z), in the form of the selected branch motion predictions (s;),
are sequentially used to update the state estimate and its covariance. The measurement update
equations are as follows:

skp(tlt) = skp(t]t — 1) — K(O)[H(skp (2]t — 1) — 2(2)], (11)
P(t|t) = P(t]t — 1) — K(H)HP(¢]t — 1), (12)
K(t) = P(t|t - DHT[HP(¢|t - DH' + R(t)]™%, (13)

with K representing the Kalman gain. The prediction and update step are iterated for the available
number of timesteps T to produce an estimate of the state, sf(F, and its associated estimation error
covariance, P, representing the uncertainty involved with the state estimate.

The measurement noise covariance matrix was set at R = [5,0;0,5]. Additionally, for KF, a
2D constant-velocity dynamics model for A and H was utilized with a process noise covariance
matrix Q = [12.5,2.5e-4;2.5e-4, 12.5]. The initial estimate was set to the last known position of
the target agent, with an initial covariance matrix P = [1,0;0, 1]. Tuning for the multi-modal
fusion parameters for the Kalman filter (Q,R), including the number of modes and clusters, was
conducted over the training dataset. We additionally implemented an approach that tuned the
Kalman filter based on the confidence values returned by our deep-learning motion prediction
models; however, the performance of these methods was worse than the statically defined noise
values, as the deep-learning models’ confidence predictions were not representative of their true
accuracy to the ground truth trajectories.

4 EXPERIMENTS
4.1 Experimental Setup

We evaluate CASTNet on the nuScenes dataset [4] and use the training/validation sets and metrics
defined by the nuScenes prediction challenge. Since the nuScenes test set annotations are not
provided, we present results using the nuScenes validation set. For each agent a in a particular
sample, two seconds of historical data are given (M,, T,, and D). Each model then predicts the
agent’s future location over the next 6 seconds at 2 Hz, yielding 12 (x,y) predictions.

The distribution of the different contexts across all samples in the dataset is as follows: 40%
for city streets, 31% for suburban, 5% for parking lot, 31% for high vehicle density, 15% for high
pedestrian density, 28% for low density. We note that a single sample can span multiple contexts,
which accounts for the overlap between context subsets.

We compare CASTNet against several state-of-the-art motion prediction techniques including
MTP [7], CoverNet [31], and Trajectron++ (T++) [35], introduced in Section 2. We evaluate MTP
configured with either one or three output modes. We configured CoverNet with 64 (e=8), 415
(e=4), or 2,206 output modes (e=2), corresponding to the fixed trajectory sets defined in their paper.
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The evaluated MTP and CoverNet baselines use a ResNet-18 [17] backbone. We evaluate Trajec-
tron++ with dynamics information (dyn) and dynamics and map information (dyn, map). We also
compare CASTNet against one physics-based baseline that makes trajectory predictions assum-
ing a constant agent velocity and heading (CVH). The CVH model assumes the acceleration
and heading of each agent are constant and then computes the future trajectory given the past
kinematics data, time window horizon of prediction, and frequency of measurements. We used
a pre-trained Trajectron++ model that was trained on nuScenes. We trained MTP and CoverNet
following the training procedures stated in the respective papers.

For the MTP and CoverNet variants of CASTNet, training from scratch took longer but yielded
better performance than initializing the model with pre-trained ImageNet weights and training
on nuScenes for additional epochs as was done in References [7] and [31]. As such, we trained
the stem/branch models simultaneously from scratch on the nuScenes dataset for 400 epochs us-
ing a learning rate of le-7, the Adam optimizer, and a batch size of 16. On a single GPU, training
took ~120 hours. Training the MTP and CoverNet baselines took ~100 hours, as we found that
performance could be improved by extending training to 150 epochs. Since nuScenes does not an-
notate the high-level context of each scene, we used three human annotators to label the matching
contexts for each scene in nuScenes. The stem was trained with data from all contexts, while the
branches were trained as described in Section 3.5. For the Trajectron++ variants of CASTNet, we
use the encoder layers as the stem and the decoder layers as each branch. With these variants, we
initialized the model from pre-trained Trajectron++ weights. The best performance was achieved
by freezing the pre-trained Trajectron++ weights in the stem and refining the branch weights
with additional training for 10 epochs, which took ~40 hours. CASTNet-CN and CASTNet-T de-
note CASTNet with CoverNet stem/branches and Trajectron++ stem/branches, respectively. All
CASTNet results shown are with the AttentionLSTM gate and attn pooling, except Table 5. We
used a learning rate of 2e-4, the Adam optimizer, and a batch size of 64 to train our gate models
for 100 epochs. We trained and evaluated all models on a Linux server with an Intel Xeon E5-2630
CPU and an Nvidia Titan Xp GPU.

We use the following metrics commonly used to score motion prediction [7, 31, 35] to evaluate
each approach.

— Minimum Average Displacement Error over k (minADE}) meters: Computed by taking
the average of the point-wise L2 distances between the predicted trajectory and the ground
truth for the k most likely predictions before selecting the minimum value.

— Miss Rate at 2 Meters over k (MR2;. ) meters: This metric reports how often the k most likely
predictions have a point-wise Euclidean distance greater than 2 meters from the ground truth
trajectory.

— Final Displacement Error over k (FDE}) meters: L2 distance between the final position
of each agent and the predicted final position of the agent for the k most likely prediction
before averaging across all agents.

4.2 nuScenes Evaluation

We evaluate the performance improvements gained by CASTNet-CN compared to the baseline
CoverNet (e=4) on the nuScenes validation set in Table 1. In this section, CASTNet is evaluated with
Attention-LSTM gating and two mode fusion variations: Kalman filtering (KF) and Averaging
(avg.). CASTNet-CN improves upon the CoverNet baseline across all metrics for all the variations
of gate selections and late fusion. We bold the results for each gate selection method for the best-
performing late fusion method. As shown in Table 1, KF outperforms avg. on all metrics except
the y = top—3 gating method, where avg. marginally beats KF for minADE;, minADEs, FDE;. The
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Table 1. Performance Improvement when Using CASTNet-CN (e=4) over
CoverNet (e=4) on the nuScenes Dataset

Model minADE; MR2;, FDE,,
(Configuration) k=1 k=5 k=10 k=5 k=10 k=1 k=5 k=10
CoverNet (e=4) [31] 7.556 3.855 2963 0972 0962 16.732 8.186 5.966
CASTNet-CN (a, avg.) 6.149 2266 1.787 0.890 0.794 12.385 4.146 2.980
CASTNet-CN (o, KF) 6.107 2.262 1782 0.883 0.789 12.339 4.123 2.953
CASTNet-CN (y,avg.) 6.151 2.294 1.802 0.901 0.799 12.325 4.180 3.002
CASTNet-CN (y, KF) 6.152 2.294 1.798 0.896 0.795 12326 4.163 2.980
CASTNet-CN (o, avg.) 6.143 2277 1789 0.895 0.797 12.356 4.154 2.980
CASTNet-CN (0, KF) 6.104 2.273 1.786 0.888 0.792 12.314 4.132 2.955

Gate Selection Legend: a=top-1, y=top-3, o=binary

Table 2. Performance Improvement when Using CASTNet-T over T++ on the nuScenes Dataset

Model minADEy MR2y FDE,
(Configuration) k=1 k=5 k=10 k=5 k=10 k=1 k=5 k=10
T++ (dyn, map) [35] 4.264 2.319 1.887 0.614 0.615 10.063 5.086 3.952
CASTNet-T (a, avg.) 3.418 1.597 1334 0.683 0.671 8.092 3.689 2.944
CASTNet-T (¢, KF) 3.393 1598 1.333 0.676 0.666 8.043 3.684 2.938
Gate Selection Legend:  a=top-1

underlined results indicate the best performance across all variations, as the CASTNet-CN (a =
top — 1, KF) performs the best across the majority of metrics, achieving a 41.3% lower minADE;
than the CoverNet baseline. This performance improvement showcases the ability of our modular,
model-agnostic approach to improve existing motion prediction methods. Binary gate selection
achieves lower minADE; and FDE; than top-1 and top-3 gate selection, but top-1 performs best
across all metrics. Finally, the FDE results for CASTNet-CN show significant improvement upon
the baseline, nearly decreasing the error by 50% for FDE; and FDE;y. The high FDE; results indicate
that future work should focus on improving trajectory predictions at longer time horizons.

The results for T++ and the CASTNet-T variants are shown in Table 2. Based on CASTNet-CN’s
performance for the gate selection method, we tested our CASTNet-T models with Attention-
LSTM gating using top-1 selection and evaluated the same two mode fusion variations (KF and
avg.). T++ uses slightly different inputs (additional information regarding pedestrians within the
scene) and evaluation samples (due to T++ only requiring 1 second of history vs. 2 seconds, allow-
ing for more viable agents in a scene). The CASTNet-T variants outperform the baseline T++ model
on all metrics except for MR2. The MR2 is calculated as the proportion of misses over all agents
in a scene—so, the fact that T++ achieves better MR2 metrics but worse minADE metrics indi-
cates that T++’s predictions can be more conservative, but overall less accurate than CASTNet-T’s
predictions. Better metrics for CASTNet-T are achieved when KF is used instead of avg. for trajec-
tory fusion, except for minADEs; where avg. nominally beats KF. Compared to the CASTNet-CN
variants, the CASTNet-T variants achieved much better MR2 scores, indicating that CASTNet-T’s
predictions were relatively close together for each agent.

We further evaluate baseline motion predictors on the nuScenes validation set in Table 3.
Compared to the CVH, MTP, and CoverNet baselines, CASTNet-CN (a, KF, e=4) achieves the best
minADE;, minADEs, MR2,¢, FDEs, and FDE;, scores. MTP (modes=1) and CVH only predict one
mode, so their scores across k remain constant. Although this allows for more fine-tuned results
on k=1 with good performance, they are often less robust in predicting challenging trajectories,
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Table 3. Comparison of Motion Prediction Results on the nuScenes Dataset

minADE MR2y FDEy

k=1 k=5 k=10 k=5 k=10 k=1 k=5 k=10
Physics-based (CVH) 4.613 4.613 4.613 0912 0912 11.21 11.21 11.21
MTP (modes=1) [7] 3912 3912 3912 0945 0945 9.271 9271 9.271
MTP (modes=3) [7] 4.236 3.492 3.492 0.880 0.880 9911 7.479 7.479
CoverNet (e=8) [31] 6.438 2.628 2.272 0.922 0918 13.44 5.086 3.898
CoverNet (e=4) [31] 7.556 3.855 2.963 0.972 0.962 16.73 8.186 5.966
CoverNet (e=2) [31] 1296 5.545 3.801 0.896 0.816 23.33 11.11 7.473

CASTNet-CN (a, KF) 6.107 2.262 1.782 0.883 0.789 12.34 4.123 2.953

Gate Selection Legend:  a=top-1

Model (Configuration)

leading to worse performance as k increases and potential safety concerns with only one
prediction available. MTP (modes=1) performed best on the k=1 metrics, likely because the model
specialized for this task due to its single output mode. CoverNet (e=8) outperforms the other
CoverNets, because the smaller output reduces model complexity and improves convergence.
MTP (modes=3) achieves higher k=5,10 metrics than MTP with one mode. Although CASTNet
does not achieve the best results for minADE;, it significantly improves upon both minADE; and
minADE,. Overall, the results from Tables 1, 2, and 3 indicate that integrating motion predictors
with CASTNet can improve their performance significantly and enable them to outperform
state-of-the-art motion prediction models across most metrics.

4.3 Inference Latency and Model Size Analysis

In Table 4, we compare our approach’s inference latency and model size with the baseline methods.
This section evaluates our CASTNet models with avg. trajectory mode fusion. As shown in Table 4,
our CASTNet-CN variants have a larger model size but a minimal latency increase compared to
the baseline CoverNet (e=4) model. The larger model size can be attributed to the multi-branch
architecture of the model, while the slight latency increase results from the addition of the gat-
ing model. Top-1 (@) gate selection results in the lowest CASTNet-CN inference latency. These
trends repeat for the CASTNet-T models compared to the T++ baseline. T++ incurs significantly
higher latency than MTP and CoverNet but uses far fewer parameters. This difference is likely
attributable to T++’s use of scene-graph modeling and heavy reliance on temporal models, while
MTP and CoverNet use CNNs and MLPs to model image data. Our approach is computationally
expensive at the training stage, as it employs an ensemble method; however, during inference time,
it achieves latency close to the baseline models used within its ensemble, making it on par with
current approaches in terms of resources necessary while deployed.

4.4 Scenario-specific Evaluation

Figure 5 presents each approach’s scenario-specific minADE, for six different driving contexts.
In the subsection, we show results from our CASTNet variants using KF trajectory mode fusion.
The results show that CASTNet-T (dyn) outperforms CVH, MTP, CoverNet, and T++ across all
scenarios. The limitations of CVH, MTP, and CoverNet are most visible in the high ped. density
and high veh. density contexts, as their error increases significantly while our approach remains
stable. We also find that both CASTNet-CN and CASTNet-T perform more consistently across
scenarios than T++, achieving a minADE;; < 2 in all contexts, while T++ varies from 1.6-2.26,
performing worst in low density and suburban contexts. Notably, CASTNet-T (dyn) outperforms
T++ (dyn, map) in every context evaluated, even though T++ (dyn, map) benefits from additional
map information.
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Table 4. Inference Latency Comparison between Baseline
Models and CASTNet Variants

Model (Configuration) Latency (ms) Num. Params.

MTP (modes=1) [7] 10.50 13M
MTP (modes=3) [7] 10.80 14M
CoverNet (e=8) [31] 9.97 14M
CoverNet (e=4) [31] 10.03 15M
CoverNet (e=2) [31] 10.63 22M
CASTNet-CN (a, €=4) 11.10 34M
CASTNet-CN (y, e=4) 12.98 34M
CASTNet-CN (o, e=4) 12.24 34M
T++ (dyn) [35] 86.60 0.3M
CASTNet-T (a, dyn) 90.98 1.2M

Gate Selection Legend: a=top-1, y=top-3, o=binary

uCVH = MTP (modes=3)
" CoverNet (e =4) T++ (dyn, map)
N CASTNet-CN (a, e =4) % CASTNet-T (o, dyn)

B T++ (Ground Truth Scenarios)

High error in

B high-risk contexts
4.5 *
~4.0 minADE ; <2.0
S35 4T% across contexts :026:.,
- W
g 30 lower_
< 28.9% 26.5%
£ 2.5 lower lower
E I — T
city suburban parking high ped high veh. low density
density density
Context Type

Fig. 5. Motion prediction results for each approach in different driving contexts of the nuScenes dataset.

We also show the performance of each branch within CASTNet-T on their respective ground
truth scenarios, denoted as T++ (Ground Truth Scenarios). Interestingly, CASTNet-T outperforms
these specialized branches across all scenarios except for parking, which can likely be attributed to
the benefits of using a shared stem with a learned gating model and varying the branch selection
for each input sample. These results indicate that CASTNet is more robust to variability across
driving scenarios and highlights the benefits of contextual modeling.

4.5 Gating Evaluation

We evaluate the performance of our gate models in Table 5 in terms of minADE; score and MR25
score when used in our CASTNet-CN (a, e=4) model with KF fusion. We also show each gate’s
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Table 5. Evaluation of Our Proposed Gating Models

Qate Model Temp. Pooling  Acc. Coverage Error minADEs  MR2s
Spatial Temporal

CNN None sum 13.85% 3.478 2.287 0.886
Attn. None sum 9.79% 3.537 2.347 0.889
CNN LSTM sum 13.60% 3.354 2.296 0.885
CNN LSTM mean 7.64% 3.302 2.274 0.882
CNN LSTM attn 22.17% 3.171 2.279 0.883
Attn. LSTM sum 19.59% 3.332 2.284 0.884
Attn. LSTM mean 15.44% 3.299 2.274 0.883
Attn. LSTM attn 18.08% 3.248 2.262 0.883

multi-label classification accuracy. For this metric, the prediction for a sample is only deemed cor-
rect if the predicted labels match the ground truth. As such, this metric does not support partially
correct predictions, which are typical for multi-label classifiers. To address this gap, we include
coverage error [38], which measures how many branches must be selected until all the ground-
truth positive labels are covered; a lower coverage error indicates a better multi-label classifier. A
perfect gate model would achieve a coverage error of 1.937 on this dataset.

The results show that using a temporal model slightly improves all evaluated metrics. Interest-
ingly, using attention in the spatial model only benefits when a temporal model is included. Regard-
ing temporal pooling, attn pooling outperforms both sum and mean pooling, and mean pooling is
slightly better than sum. Overall, we found that the AttentionLSTM gate with attn pooling results
in the lowest minADEs. The CNN LSTM gate with attn pooling achieved the highest accuracy and
lowest coverage error, meaning it could better predict each sample’s exact set of matching labels.

4.6 Architecture Ablation Study

To illustrate CASTNet’s modularity, we explore the performance of different architectural config-
urations in Table 6. We evaluate both CoverNet (¢e=8) and MTP (modes=16) branch configurations
and two backbone split points (we note that 16 modes were used here to allow for an appropriate
evaluation across k=10). The results shown are with an AttentionLSTM gate with attn pooling,
top-1 gate selection, and KF mode fusion. Since ResNet-18 consists of four CNN blocks, Block-1
indicates that the first block of the ResNet-18 backbone is located in the stem, and each branch
contains the remaining three blocks and the motion predictor’s MLP layers. Stem indicates that
all four blocks are in the stem, and each branch contains only the motion predictor’s MLP layers.
Table 6 shows that splitting at Block-1 leads to significantly larger model size and diminished per-
formance. This result suggests using a larger shared feature extractor is more effective than larger
context-specific feature extractors. The results also show a narrower gap between the performance
of Block-1 versus Stem with CoverNet branches than with MTP branches. Overall, these results
are significant, as they demonstrate that using smaller network sizes can improve performance—
inspiring further research into searching for optimal split point locations.

4.7 Discussion

Our results demonstrate that CASTNet can convert existing motion prediction models into dy-
namic, context-aware architectures, improving robustness across driving scenarios. Our method
for splitting and gating the model does not require significant algorithmic changes; thus, real-
world implementations can be developed relatively quickly. Although we trained and tested using
six explicitly defined contexts informed by related works, this approach may limit the model in
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Table 6. Ablation Study on Different Architectural Configurations of
Our CASTNet Model

CASTNet Branch Type Split Point Num. Params. minADEs minADE,

CoverNet (e = 8) Block-1 81M 3.189 2.367
CoverNet (e = 8) Stem 24M 3.131 2.229
MTP (modes=16) Block-1 89M 3.644 3.107
MTP (modes=16) Stem 34M 3.228 2.636

more complex settings. Further ablation studies could be performed on scenarios with overlapping
contexts. In our approach, due to the limitations of the dataset, we used human annotators to label
the contexts present; however, this raises concerns about scalability and cost. An interesting future
direction would be to explore learned methods for defining contexts and splitting data for branch
specialization instead of heuristically defining scenarios.

While we showed the efficacy of CNN-based gating strategies, using methods that integrate
knowledge or stem features could improve performance. It would be insightful to evaluate how
more complex gating and fusion approaches improve the generalization and accuracy of CASTNet
in future works. Similarly, future works could explore different mode fusion strategies. Our Kalman
filter’s dynamics models for different classes of objects (e.g., cars, pedestrians, bicycles) within the
filter could further improve results if object classifications are performed accurately.

The CASTNet architecture can be particularly beneficial in scenarios requiring high levels of
adaptation. However, one limitation of CASTNet is its reliance on sensing data, which may not
always be guaranteed in contested sensing environments that may cause sensor failures. An inter-
esting area of future work revolves around enabling further levels of adaptation by training gate
models with different subsets of sensor data (e.g., camera data only, lidar data only, camera and
lidar data) to improve the robustness to a variety of sensing conditions. Additionally, we recog-
nize that our results and analysis are constrained to the nuScenes dataset and that using further
datasets and simulation platforms can allow for further studies on the effects of parameters, such
as several different scenarios and the amount of prior data used by the models. Although nuScenes
is currently the most popular motion prediction dataset, CASTNet’s performance could be evalu-
ated on newer datasets like Lyft Level 5 [19] and Waymo Open Motion Dataset [11] once trained
motion prediction model weights for these datasets become publicly available.

5 CONCLUSION

AV motion prediction is a challenging multi-domain problem that can vary in complexity, depend-
ing on the driving context. In this work, we proposed CASTNet, a dynamic context-aware motion
prediction approach for AVs. CASTNet is a highly modular approach that employs an ensemble of
motion predictors and a deep learning—based context identification module that helps to improve
the robustness of prediction performance in challenging environments. This work demonstrated
that CASTNet outperforms state-of-the-art motion predictors across driving contexts on a real-
world driving dataset. Additionally, we showed that spatio-temporal attention could be used to
model the driving context from vehicle sensor data effectively. We conducted extensive ablation
studies on our proposed architecture including evaluation of architectural configurations and con-
text identification models. We also proposed several strategies for performing multi-modal trajec-
tory fusion and illustrated the modularity of our approach by evaluating multiple different motion
prediction backbones within CASTNet. Since real-world driving consists of a wide range of di-
verse driving scenarios, CASTNet is likely to perform better in a real AV than existing methods,
due to its ability to adapt the architecture to maximize performance in each driving context. The
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key research findings demonstrated in this work are beneficial to providing increased levels of au-
tonomy in CPS, and the techniques demonstrated can be applied to other CPS that utilize sensors
to perceive and predict actions of other entities in the surrounding environment.
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