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1 INTRODUCTION

Autonomous vehicles (AVs) are cyber-physical systems (CPS) that rely on a tightly coupled

feedback loop of perception, prediction, planning, and control [14, 43]. Like many CPSs, AVs are

real-time, energy-constrained systems that require timely decisions that can be in�uenced by sur-

rounding environmental factors [29]. Figure 1 depicts a high-level illustration of a typical modular

autonomous driving pipeline [43]. Ultimately, an AV implements a closed-loop control system

that receives sensor and other data from the environment as inputs and determines actuation

commands to control the vehicle as outputs. The main stages of operation include: (a) sensing—

processing of on-board sensor data (e.g., cameras, radars, inertial measurement units) and data

about the environment (e.g., maps, directions); (b) positioning—localizing the vehicle in its local

frame as well as navigating the vehicle with respect to a global frame; (c) perception—usually con-

ducted in parallel with positioning tasks, responsible for the detection and tracking of surrounding

agents or objects; (d) prediction—predicting the motion of other surrounding agents (e.g., vehicles,

pedestrians, bicycles); (e) planning—determining the desired AV path given the surround objects

and their trajectories; and (f) control—updating the AV’s estimate of its state and outputting the

desired actuation commands given a control algorithm.

As Figure 1 highlights, this article focuses on the motion prediction stage, which directly in�u-

ences the AV’s path planning and control tasks. Predicting agent (e.g., motorists, cyclists, pedestri-

ans) motion in an environment is a critical spatio-temporal modeling task that requires blending

various domains, including sensor fusion, dynamics, mapping, and data-driven modeling. Motion

prediction not only in�uences the planning and control of AVs [15], but also has signi�cant safety

bene�ts: The ability to predict future agent positions accurately can help ensure safe route plan-

ning and crash avoidance [28, 30].

Recent works have shown that explicitly modeling contextual information can aid the perfor-

mance of AVs by informing how agents are likely to behave given external factors [6, 18, 25, 26, 34].

More broadly, authors in Reference [2] argue that extracting contextual information from sen-

sory data in a CPS is critical for enabling increased autonomy levels. Reference [32] highlights

the importance of context identi�cation in analyzing the feature space of CPSs regarding out-of-

distribution analysis. Furthermore, Reference [27] demonstrates that context-speci�c modeling

can improve AV performance in dynamic environments. Contextual modeling can be key in devel-

oping adaptive architectures for various CPS applications [12, 16, 37, 42]. Existing methods that

lack adaptation su�er in performance during high uncertainty levels in challenging environments

[16] and along new driving scenarios [42]. Adaptive deep-learning methods for CPSs have been

proposed to leverage context identi�cation at runtime [12, 37]. Inspired by these works, we de-

�ne context as information derived from sensory data about the current state of the system and the

surrounding environment that in�uences the system’s goals or tasks. In the scope of this article, the

system is the autonomous vehicle, and the task under study is motion prediction.

1.1 Motivation

In this subsection, we provide insights and qualitative results on the limitations existing motion

predictors face in challenging driving environments and the bene�ts of our proposed approach.

The main categories of current motion predictors are physics-based approaches and data-driven

machine learning approaches. Physics-based motion prediction models struggle to predict beyond

a few seconds in the future, as they often fail to anticipate driver actions or in�uences from external

factors (e.g., other vehicles, road constraints) [23]. Machine learning approaches for AV motion

prediction have proven more e�ective [7, 31, 35, 36]. However, existing motion prediction methods

do not explicitly account for driving context in their methodologies and can fail in some contexts,

ACM Trans. Cyber-Phys. Syst., Vol. 8, No. 2, Article 23. Publication date: May 2024.



CASTNet: A Context-Aware, Spatio-Temporal Dynamic Motion Prediction Ensemble 23:3

Fig. 1. A typical modular autonomous driving pipeline. Prediction takes in tracking andmap data along with

sensor data to produce trajectories of the detected road actors. As shown, motion prediction is critical for

both the downstream tasks of path planning and control.

Fig. 2. An example of the limitations of existing motion predictors in a complex driving scenario from

nuScenes [4]. In this scene, the goal is to predict the future trajectory of the white van (ground truth shown

in black on the map). The results from existing motion predictors are shown in their respective colors and

their points of failure are highlighted in the text boxes. Our approach, CASTNet—shown in blue—achieves

the best performance in terms of minimum distance from ground truth.

as demonstrated in Figure 2. In this example, the AV (ego vehicle) is attempting to predict the

motion of the white van located in front of it for the next 12 timesteps (6 seconds at 2 Hz). The

ground truth of the vehicle is shown in black stars, and the predicted trajectories of di�erent

motion predictors are shown in their respective colors (with CoverNet [31] and MTP [7], each

producing three possible trajectories). As shown in the example, this challenging setting involves

construction, numerous pedestrians, and a narrow turn lane in an urban driving setting. Since

the two machine learning–based methods (CoverNet and MTP) and the physics-based model do

not explicitly model context, these models cannot account for these factors and fail to predict the

white van’s true trajectory accurately; CoverNet predicts an unlikely o�-road trajectory, while

MTP and the physics-based model seem to ignore the turn lane and predict that the van will

drive straight into oncoming tra�c. Overall, vehicle motion prediction presents the following key

research challenges:

(1) Predicting motion paths over long-term horizons.

(2) Accounting for spatio-temporal dependencies in the environment.

(3) Utilizing contextual information from sensory data to inform motion predictions.

(4) Maintaining robust prediction performance in challenging scenarios.
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To address these research challenges, we propose CASTNet—a context-aware dynamic ensemble

approach for AV motion prediction. CASTNet, shown in blue in Figure 2, can predict the closest

trajectory to the ground truth by modeling the context of the surrounding environment, adapting

the ensemble architecture accordingly, and fusing submodel outputs to produce a more accurate,

context-aware trajectory.

1.2 Novel Contributions

CASTNet employs a modular architecture that dynamically adapts to enable robust motion pre-

diction performance across diverse driving scenarios. By using a novel attention-based spatio-

temporal context identi�cation module to identify the set of driving contexts present in each input,

CASTNet can select the most e�ective motion predictors to execute for each input, signi�cantly

improving performance across scenarios compared to state-of-the-art methods, which use static

architectures and do not explicitly model context. CASTNet is a general approach that can be used

with various ensemble backbones and context-identi�cation models to convert traditional static

architecture models to context-aware motion predictors. In this work, we present the following

novel contributions:

(1) We propose CASTNet, a context-aware dynamic approach for AV motion prediction, that

outperforms state-of-the-art methods on diverse, real-world driving data.

(2) We propose several novel techniques for spatio-temporal context identi�cation that enhance

situational understanding during AV motion prediction.

(3) We illustrate how CASTNet improves robustness across driving contexts while providing

the �rst analysis of how an adaptive AV motion prediction framework can leverage context

to improve performance.

(4) We demonstrate CASTNet’s modularity by performing ablation studies with di�erent archi-

tectural con�gurations and motion prediction models.

(5) We propose a trajectory fusion algorithm to fuse the outputs of an ensemble of motion pre-

diction models and evaluate the performance of several fusion methods.

1.3 Article Organization

The remainder of the article is organized as follows: Section 2 discusses related works includ-

ing background on AV motion prediction, context-aware methods in autonomous systems, and

multi-modal trajectory fusion approaches; Section 3 introduces the motion prediction problem

formulation along with detailed descriptions of our proposed methodology; Section 4 presents our

experimental setup, results, and discusses key �ndings and future research directions; and �nally,

Section 5 concludes the article.

2 RELATEDWORK

2.1 Motion Prediction

Several recent works have proposed methods for AV motion prediction.Multimodal Trajectory

Prediction (MTP) [7] uses a convolutional neural network (CNN) as a backbone feature ex-

tractor to model raster map data. These features are then combined with agent state information

(i.e., position, speed, heading, acceleration, and heading change rate) and passed through amulti-

layer perceptron (MLP) to predict multiple possible trajectories for each agent. CoverNet [31]

uses a similar approach to MTP, with the addition of a trajectory set generator that maps model

outputs to either a �xed or dynamic set of feasible trajectories. The problem is thus translated to

classi�cation over a trajectory set. Trajectron++ [35] represents the agents in the scene and their

relations to one another as a spatio-temporal graph, incorporating agent dynamics, map data, and
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scene information. A recurrent model for motion prediction along with Gaussian mixtures then

models this representation. Other approaches that use mixture of experts methods have shown

bene�ts in AV motion prediction, for example, Reference [20], which leverages a mixture of ex-

perts approach to select predictors based on uncertainties. However, this analysis focuses only on

ego vehicle motion prediction.

Other recent motion prediction works include PLOP [3] (uses conditional imitation learning),

PRECOG [33] (conditions forecasts on agent goals), and GOHOME [13] (utilizes a global heatmap

probability distribution). Reference [22] combines learning-, physics-, and maneuver-based meth-

ods and weighs their outputs as a function of their respective uncertainties in each driving scene,

enabling better predictions in unseen environments. These methods successfully incorporate en-

vironmental information for the prediction task; however, they employ static architectures and

do not explicitly model context, so these methods can fail when faced with complex real-world

driving scenarios.

2.2 Context-aware Methods in Autonomous Cyber-physical Systems

Methods exploring the use of context are essential for establishing increased levels of autonomy

in cyber-physical systems. Authors in Reference [2] propose a speci�c class of self-aware cyber-

physical systems that focus on extracting contextual information from sensory data. They argue

that leveraging distinctions in sensing can lead to more contextually meaningful modeling and,

ultimately, more autonomy in the design of CPS. The analysis of CPS performance on out-of-

distribution data is another challenge that context-aware methods can improve. Authors in Refer-

ence [32] utilize context identi�cation at runtime to analyze out-of-distribution features to enhance

the safety of CPS. Furthermore, context-aware methods are commonly used to develop adaptive ar-

chitectures for CPS [12, 16, 37, 42]. Authors in Reference [12] apply meta-adaptation strategies for

CPS to improve performance across changing environments. Likewise, in Reference [37], adaptive

deep learning is applied to improve CPS localization.

Context-aware methods have also shown bene�ts for various AV-speci�c problems. Reference

[21] uses contextual features such as curb distance and tra�c lights to improve pedestrian

trajectory prediction. MultiPath++ [39], an extension of MultiPath [5], shows improved mo-

tion forecasting results by integrating contextual information. Context-based methods using

transformers [24] and graph neural networks [6] have also proven e�ective for AV trajectory

prediction; however, they employ static architectures that can fail to adapt to challenging

scenarios. Context-aware dynamic sensor fusion architectures have been shown to improve

object detection robustness and energy e�ciency in AV perception systems [25, 26]. Furthermore,

authors in Reference [27] apply context-speci�c modeling to provide safe velocity regulation of

AVs in dynamic, unseen environments.

Context also informs AV motion prediction frameworks by providing critical information about

the current scene. Speci�cally, road type [9, 41] and density [8, 40] have been shown to in�u-

ence motion predictors. In Reference [41], authors de�ne a semantic model of a driving scene

that includes road types to develop an improved trajectory prediction model. Reference [9] im-

proves motion prediction by encoding map elements based on the scene, including driving paths,

crosswalks, lane and road boundaries, intersections, driveways, and parking lots. Reference [40]

classi�es car-following behaviors using tra�c density and road type as contextual information.

2.3 Multi-modal Trajectory Fusion

Trajectory prediction methods often output multiple possible trajectories—or modes—per agent.

These outputs can then be ranked and selected using con�dence scores or fused to produce newly

re�ned trajectories. This fusion process, called multi-modal trajectory fusion, involves combining
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multiple modes to enhance and re�ne predicted trajectories so the fused modes are more accurate

than previous individual modes [1]. There are various methods to choose subsets of modes to fuse,

such as selection algorithms inspired by non-maximum suppression in object detection [44] or

optimization-based algorithms [13]. However, these methods have been focused on the domain

of estimation and tracking and not motion prediction. One standard method of trajectory fusion

applied to estimation and tracking is the Kalman �lter (KF ). Kalman �lters assume each mode is

uncorrelated and include a prediction step incorporating a temporal motion model and an update

step using available measurements. The fused mode is ultimately estimated by the �lter by mak-

ing predictions using the known dynamics and noise model and correcting these predictions via

updates from the measurements (in our case, the di�erent modes).

3 METHODOLOGY

3.1 Problem Formulation

Following the typical AVmodular pipeline described in Figure 1, the �rst objective of theAV system

is to perceive and model sensor data from the environment via the positioning and perception

modules. These modules take sensor data D from the AV (e.g., camera, lidar) as input and (i) detect

and track objects and (ii) localize objects, spatial landmarks, and the AV itself relative to stored

high-de�nition map data. The object detection and tracking components produce a list of agents

in the scene and corresponding tracking information (e.g., position, velocity, heading) denoted T .

At the same time, the localization and navigation components use stored high-de�nition map data

denoting the di�erent lanes, directions of travel, and static obstacles in the physical environment

to correlate object tracks with their relative map locations. Next, these outputs are processed by

the prediction module to predict future object trajectories.

As in related works [7, 10, 31], we combine the tracking information T and map information

provided by the perception module to construct a bird’s-eye view of the scene at each timestep

containing both current and past location information about each visible agent, resulting in a

raster mapM . Following Reference [4], we encode two seconds of historical tracking information

T into M to predict future agent trajectories. We denote sai :j as the discrete-time trajectory of an

agent a from frame i to j where i < j. Our objective is to predict the trajectory of each agent a in

a scene by modeling the following function:

sai :j = ϕ(Ma ,Ta ,D), (1)

for all a inM whereMa isM transformed to be in the reference frame of a, and Ta is the tracking

information corresponding to a. We extend this core formulation to a dynamic model architecture

as follows: Here, we assume ϕ is composed of a general purpose feature extraction model β that

produces an initial set of features F, as well as several independent motion prediction sub-models

ϕ1,ϕ2, . . . ,ϕn that process F.

F = β(Ma) (2)

We propose that ϕ contains a context-identi�cation component π to identify the scene’s current

context ω and dynamically con�gure which sub-models are executed for each input. We denote

this selected set of n submodels as ϕ∗.

ω = π (D,Ta) (3)

ϕ∗
= ϕ[ω] = {ϕ1,ϕ2, . . .ϕn} (4)

Then, we process F andTa with each submodel in ϕ∗, where each submodel outputs a set of output

trajectories, denoted as s1, s2, . . . , sn .

s1, s2, . . . sn = ϕ∗(F,Ta) (5)
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Fig. 3. CASTNet Architecture. Our approach processes sensor, tracking, and map data as inputs fed into the

shared feature extractor, denoted as the stem. These features are then passed to the branches representing an

ensemble of motion predictor models. The gate is trained on sensor and tracking data to perform the branch

selection process. Finally, our multi-modal trajectory fusion algorithm processes the predicted trajectories

from the branches and produces the final fused set of trajectories.

We also de�ne a mechanism Ψ for combining the trajectories sn predicted by the individual sub-

models to produce a �nal decision. Ψ can be a simple aggregation method or a multi-modal fusion

approach.

sai :j = Ψ(s1, s2, . . . sn) (6)

The resulting trajectory predictions are then passed to the planning module to generate a fea-

sible, safe motion plan for the ego car. This plan is processed by the control module to execute a

series of actuator commands to complete the vehicle motion plan.

3.2 CASTNet Architecture

The CASTNet architecture is shown in Figure 3 and is a multi-branch tree-structured model.

As such, it implements a shared feature extractor, denoted the stem, followed by a set of

context-specialized sub-models, or branches. The end-to-end work�ow of our model is described

in Algorithm 1 and consists of the following steps: First, map data M and tracking data T are

passed to the stem model to extract features F. At the same time, sensor data D and tracking

data T are passed to the gate model to identify the current driving context ω. This context is

then used to select the set of branches ϕ∗ to process F. Then, the selected branches each output

a set of predicted trajectories S for each agent. Finally, the trajectory fusion block fuses the

outputs of the di�erent branches to produce a more re�ned set of predicted trajectories, each

compared to the ground truth trajectory for the agent at that timestep sai :j . CASTNet is a general

approach that can extend any motion prediction model to a multi-branch dynamic architecture

to improve performance across diverse contexts. We evaluate two variants of our model: (i) a

CoverNet [31]/MTP [7] CNN-based architecture that uses raster map data as input, where the

stem is a ResNet-18 CNN model and the branches are MLP-based motion predictors, and (ii) a

Trajectron++ [35] architecture that uses scene-graph representations as input for a variational

graph autoencoder, where the encoder is used as the stem and each branch implements a decoder.

In the subsequent sections, we describe each component of our architecture.

3.3 Stem Model

The stemmodel, β , is a shared feature extraction model that learns from all of the driving contexts

in the training set. For the CoverNet and MTP variants of CASTNet, the stem uses a ResNet-18

ACM Trans. Cyber-Phys. Syst., Vol. 8, No. 2, Article 23. Publication date: May 2024.



23:8 T. Mortlock et al.

ALGORITHM 1: CASTNet Algorithm

Input: Raster Map (Ma ) and Tracking Data (Ta ) for agent a,

Sensor Data (D),

Gate Selection Method (select ∈ {topκ ,binary})

Output: Fused Motion Predictions Sf = {s
f
1 , s

f
2 , . . . , s

f
10} for agent a

1 Initialize branch output vector S

2 F ← β(Ma ,Ta ) // process raster map using stem

3 ω ← π (D,Ta ) // gate identifies current contexts from sensor data

4 if select = topκ then

5 ω ′ ← topκ (ω) // select top-k highest confidence contexts

6 else if select = binary then

7 ω ′ ← ω[siдmoid(ω) > 0.5] // select contexts with confidence score > 0.5

8 ϕ∗ ← ϕ[ω ′] // select branch models to execute

9 for branch in ϕ∗ do

10 S[branch] ← branch(F) // generate trajectory predictions

11 Sf ← Algorithm2(S) // multi-modal fusion over branch predictions

[17] CNN model, similar to the CNN backbones used in References [7, 31]. Trajectron++ uses a

graph autoencoder architecture, so the Trajectron++ variants of CASTNet use the encoder model

as the stem. For the CNN-based stems, we implement a con�gurable split point that determines

which layers of the model are included in the stem and which layers are added to each branch.

In this manner, we can tune the proportion of layers used for shared feature extraction (those in

the stem) or context-speci�c modeling (those in the branches). Having a larger stem can improve

the quality of shared features and generalization across contexts. However, having larger branches

increases the capacity of the branch models to specialize in their contexts and reduces the amount

of feature extraction done by the stem. We provide an ablation study of this stem-branch split

point in Section 4.6. After feature extraction, each of the selected branches uses the stem’s outputs

for context-speci�c motion prediction.

3.4 Context-aware Gating Model

The gating model π aims to identify the current driving context using sensor and state information.

Based on this context identi�ed by the gate model, the appropriate motion prediction model can

be selected from the ensemble for that input sample. Since our branches are trained on speci�c

subsets of the dataset and multiple contexts can exist in any given input, we train the gate model

as a multi-label classi�er to identify all matching contexts for a given input.

We propose several gate model architectures, detailed in Figure 4, and compare the performance

of di�erent architectures in ablation studies in Section 4.5. Each gate model processes two prior

seconds of front-facing camera images from D and agent tracking information Ta . We capture as

much contextual information from the scene as possible by using the front-view image directly

as our input instead raster maps that are limited in their ability to model high-level visual con-

text cues such as pedestrian density, road obstructions, road markings, and so on. The CNN Gate

spatially models the input images using three 2D convolution layers followed by a max-pooling

layer, producing an output feature vector for each image. We then sum these features across the

two seconds of history. The Attention gate is implemented similarly to the CNN gate, with an

added self-attention layer before the max-pooling layer to attend over the image features. The

CNN-LSTM and Attention-LSTM gates are the same as the previous gates but use a two-layer
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Fig. 4. Various architectural configurations we developed for the gating models. Each gate model takes cam-

era images (D) and agent tracking data Ta as input and outputs the set of branch models to execute. The

le� three gates are shown with top-κ(k = 3) gate selection, while the right three gates are shown with bi-

nary gate selection. The right four gates show the di�erences between various temporal pooling and spatial

modeling options.

long short-term memory (LSTM) network to temporally model the image feature vectors in-

stead of the summation operation used by the CNN Gate and Attention Gate. After the LSTM, we

apply a pooling operation to aggregate the temporal features across the input images. We evaluate

three temporal pooling operations: sum (summation across the outputs), mean (averaging across

the outputs), and attn. The attn pooling operation applies self-attention over the �rst LSTM layer’s

output for each image, then passes the result to the second LSTM. The last output from the second

LSTM is then returned.

After spatio-temporal features have been extracted from the image data, the agent tracking

information is concatenated to the features (shown in Figure 3), and the result is passed through

an MLP layer, producing the gate output as a logit score for each possible context. We then use one

of the following gate selection techniques to identify which branches to execute: top-κ (selecting

the κ highest-scoring contexts) or binary (applying a sigmoid and selecting all contexts with a

con�dence score > 0.5, or the highest con�dence one if none are > 0.5).

3.5 Motion Predictor Ensemble

Each branch (ϕ1,ϕ2, . . . ,ϕn ) contains a motion prediction model (e.g., MTP, CoverNet, Trajec-

tron++), and when CASTNet is deployed, each branch within the ensemble is built with the same

model type. The branches are specialized in a speci�c context by training each branch with the

scenes from the dataset labeled as that matching context. This approach di�ers from training a mo-

tion prediction model across the entire dataset, where it may learn to generalize well but perform

poorly in speci�c scenarios. Since the stem is a shared feature extraction backbone that contains

the �rst part of the motion prediction model, we only include the layers from the model that are

not in the stem in each branch (e.g., the MLP layers of MTP and CoverNet, the decoder layers in

Trajectron++). Varying the backbone split point will adjust the proportion of layers in the shared

stem versus each branch, providing insight into the balance between generalized feature extraction

performed in the stem and scenario specialization performed in the branches.

As mentioned above, we train each branch with a di�erent subset of the dataset to enable

branches to specialize in distinct driving contexts. We de�ne three location-speci�c contexts,

{city streets, suburban, parking lot}, and three density-speci�c contexts, {high vehicle density, high
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ALGORITHM 2: Trajectory Fusion Algorithm

Input: Branch Motion Predictions: S = s1, s2, . . . , sn ,

Number of Clusters: C ,

Time in Future: T ,

Fusion Method: fusion ∈ {CI , IT F ,KF ,Averaдinд}

Output: Fused Motion Predictions Sf = {s
f
1 , s

f
2 , . . . , s

f
10}

1 S ←mapf ilter (S) // discard off-road trajectories, s

2 S ← concat(s1, s2, . . . sn) // remove repeat trajectories

3 Γ ← rankinд(S) // rank trajectories based on confidence scores

4 Δ ← dist(S) // compute matrix of distances between trajectories

5 ξ ← cluster (Δ, Γ,C) // cluster trajectories based on similarity

6 Sf ,D,M // initialize fused modes, dynamics and measurement models

7 for c in C do

8 for t in T do

9 Sf [c][t] = f usion(ξ [c][t],D,M)

10 return Sf // fused mode predictions

pedestrian density, low density}, where samples can have multiple context labels assigned. The set

of possible contexts can be rede�ned, depending on the problem and application; we chose this set

of contexts for AV motion prediction, because each of these contexts has a di�erent distribution of

motion paths, presenting unique challenges (e.g., high pedestrian density and city street scenarios

have more complex agent motion patterns than suburban or low-density driving). Additionally,

the selection of location-speci�c [9, 41] and density-speci�c [8, 40] contexts is supported in the

current literature. Each branch selected by the gate model outputs a set of modes that are then

collectively fused by the trajectory fusion component.

3.6 Fusion of Multi-modal Motion Predictions

For each agent in a scene, each active branch outputs multiple possible modes with varying con-

�dence levels. The goal of Ψ, the trajectory fusion function, is to produce a set of fused modes

that are more accurate than the individual modes. The functionality of Ψ is described in Algo-

rithm 2 and consists of the following steps: First, if map data is available, then we can perform

map �ltering, �ltering out trajectories that exit the drivable road area. Then, all branch outputs are

concatenated, �ltered for repeat trajectories, and ranked according to the con�dence of each mode.

Next, a distance matrix of the average displacement error between modes is computed and passed

through a hierarchical agglomerative clustering method that recursively groups modes together,

starting with the closest pair of nodes until an entire tree structure of clustered modes is created.

Finally, the modes in each cluster are combined according to a fusion method to produce a fused

mode prediction for that cluster. These fused modes are subsequently ranked by their con�dence

and de�ne the �nal set of output predictions.

We evaluate our architecture with two fusion methods:Kalman �ltering (KF ) and Averaging—

calculating the point-wise average across all modes per cluster for each timestep. KF is performed

as follows using the general form of the discretized linear dynamics of a system with state sf
KF

(x ,y

position of the target vehicle) and measurements z (branch motion predictions to fuse) at timestep

t , given as:

sfKF(t) = AsfKF(t − 1) + v(t), (7)

z(t) = HsfKF(t) +w(t), (8)
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whereA is the state transition matrix; v is the process noise vector, which is modeled as zero-mean,

normally distributed random variable with covariance, Q; H is the measurement matrix relating

the state to the measurements; and w is the measurement noise vector, which also is zero-mean

with a normal distribution and covariance, R. During the prediction step of KF, the state estimate,

sf
KF
, and its estimation error covariancematrix, P(k), are propagated forward through the dynamics

model with the added process noise. The prediction equations are as follows:

sfKF(t |t − 1) = A sfKF(t − 1|t − 1), (9)

P(t |t − 1) = AP(t − 1|t − 1)A�
+ Q(t − 1), (10)

where the notation (t + 1|t), indicates the next timestep given the current timestep. Next, during

the update step, measurements (z), in the form of the selected branch motion predictions (si ),

are sequentially used to update the state estimate and its covariance. The measurement update

equations are as follows:

sfKF(t |t) = sfKF(t |t − 1) − K(t)[H(sfKF(t |t − 1) − z(t)], (11)

P(t |t) = P(t |t − 1) − K(t)HP(t |t − 1), (12)

K(t) = P(t |t − 1)H�[HP(t |t − 1)H�
+ R(t)]−1, (13)

with K representing the Kalman gain. The prediction and update step are iterated for the available

number of timestepsT to produce an estimate of the state, sf
KF
, and its associated estimation error

covariance, P, representing the uncertainty involved with the state estimate.

The measurement noise covariance matrix was set at R = [5, 0; 0, 5]. Additionally, for KF, a

2D constant-velocity dynamics model for A and H was utilized with a process noise covariance

matrix Q = [12.5, 2.5e-4; 2.5e-4, 12.5]. The initial estimate was set to the last known position of

the target agent, with an initial covariance matrix P = [1, 0; 0, 1]. Tuning for the multi-modal

fusion parameters for the Kalman �lter (Q,R), including the number of modes and clusters, was

conducted over the training dataset. We additionally implemented an approach that tuned the

Kalman �lter based on the con�dence values returned by our deep-learning motion prediction

models; however, the performance of these methods was worse than the statically de�ned noise

values, as the deep-learning models’ con�dence predictions were not representative of their true

accuracy to the ground truth trajectories.

4 EXPERIMENTS

4.1 Experimental Setup

We evaluate CASTNet on the nuScenes dataset [4] and use the training/validation sets and metrics

de�ned by the nuScenes prediction challenge. Since the nuScenes test set annotations are not

provided, we present results using the nuScenes validation set. For each agent a in a particular

sample, two seconds of historical data are given (Ma , Ta , and D). Each model then predicts the

agent’s future location over the next 6 seconds at 2 Hz, yielding 12 (x,y) predictions.

The distribution of the di�erent contexts across all samples in the dataset is as follows: 40%

for city streets, 31% for suburban, 5% for parking lot, 31% for high vehicle density, 15% for high

pedestrian density, 28% for low density. We note that a single sample can span multiple contexts,

which accounts for the overlap between context subsets.

We compare CASTNet against several state-of-the-art motion prediction techniques including

MTP [7], CoverNet [31], and Trajectron++ (T++) [35], introduced in Section 2. We evaluate MTP

con�gured with either one or three output modes. We con�gured CoverNet with 64 (ϵ=8), 415

(ϵ=4), or 2,206 output modes (ϵ=2), corresponding to the �xed trajectory sets de�ned in their paper.
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The evaluated MTP and CoverNet baselines use a ResNet-18 [17] backbone. We evaluate Trajec-

tron++ with dynamics information (dyn) and dynamics and map information (dyn, map). We also

compare CASTNet against one physics-based baseline that makes trajectory predictions assum-

ing a constant agent velocity and heading (CVH). The CVH model assumes the acceleration

and heading of each agent are constant and then computes the future trajectory given the past

kinematics data, time window horizon of prediction, and frequency of measurements. We used

a pre-trained Trajectron++ model that was trained on nuScenes. We trained MTP and CoverNet

following the training procedures stated in the respective papers.

For the MTP and CoverNet variants of CASTNet, training from scratch took longer but yielded

better performance than initializing the model with pre-trained ImageNet weights and training

on nuScenes for additional epochs as was done in References [7] and [31]. As such, we trained

the stem/branch models simultaneously from scratch on the nuScenes dataset for 400 epochs us-

ing a learning rate of 1e-7, the Adam optimizer, and a batch size of 16. On a single GPU, training

took ∼120 hours. Training the MTP and CoverNet baselines took ∼100 hours, as we found that

performance could be improved by extending training to 150 epochs. Since nuScenes does not an-

notate the high-level context of each scene, we used three human annotators to label the matching

contexts for each scene in nuScenes. The stem was trained with data from all contexts, while the

branches were trained as described in Section 3.5. For the Trajectron++ variants of CASTNet, we

use the encoder layers as the stem and the decoder layers as each branch. With these variants, we

initialized the model from pre-trained Trajectron++ weights. The best performance was achieved

by freezing the pre-trained Trajectron++ weights in the stem and re�ning the branch weights

with additional training for 10 epochs, which took ∼40 hours. CASTNet-CN and CASTNet-T de-

note CASTNet with CoverNet stem/branches and Trajectron++ stem/branches, respectively. All

CASTNet results shown are with the AttentionLSTM gate and attn pooling, except Table 5. We

used a learning rate of 2e-4, the Adam optimizer, and a batch size of 64 to train our gate models

for 100 epochs. We trained and evaluated all models on a Linux server with an Intel Xeon E5-2630

CPU and an Nvidia Titan Xp GPU.

We use the following metrics commonly used to score motion prediction [7, 31, 35] to evaluate

each approach.

—Minimum Average Displacement Error over k (minADEk ) meters: Computed by taking

the average of the point-wise L2 distances between the predicted trajectory and the ground

truth for the k most likely predictions before selecting the minimum value.

—MissRate at 2Meters over k (MR2k )meters: Thismetric reports how often the kmost likely

predictions have a point-wise Euclidean distance greater than 2meters from the ground truth

trajectory.

— Final Displacement Error over k (FDEk ) meters: L2 distance between the �nal position

of each agent and the predicted �nal position of the agent for the k most likely prediction

before averaging across all agents.

4.2 nuScenes Evaluation

We evaluate the performance improvements gained by CASTNet-CN compared to the baseline

CoverNet (ϵ=4) on the nuScenes validation set in Table 1. In this section, CASTNet is evaluatedwith

Attention-LSTM gating and two mode fusion variations: Kalman �ltering (KF ) and Averaging

(avg.). CASTNet-CN improves upon the CoverNet baseline across all metrics for all the variations

of gate selections and late fusion. We bold the results for each gate selection method for the best-

performing late fusion method. As shown in Table 1, KF outperforms avg. on all metrics except

the γ = top−3 gating method, where avg.marginally beats KF for minADE1, minADE5, FDE1. The
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Table 1. Performance Improvement when Using CASTNet-CN (ϵ=4) over

CoverNet (ϵ=4) on the nuScenes Dataset

Model

(Con�guration)

minADEk MR2k FDEk
k=1 k=5 k=10 k=5 k=10 k=1 k=5 k=10

CoverNet (ϵ=4) [31] 7.556 3.855 2.963 0.972 0.962 16.732 8.186 5.966

CASTNet-CN (α , avg.) 6.149 2.266 1.787 0.890 0.794 12.385 4.146 2.980

CASTNet-CN (α , KF ) 6.107 2.262 1.782 0.883 0.789 12.339 4.123 2.953

CASTNet-CN (γ , avg.) 6.151 2.294 1.802 0.901 0.799 12.325 4.180 3.002

CASTNet-CN (γ , KF ) 6.152 2.294 1.798 0.896 0.795 12.326 4.163 2.980

CASTNet-CN (σ , avg.) 6.143 2.277 1.789 0.895 0.797 12.356 4.154 2.980

CASTNet-CN (σ , KF ) 6.104 2.273 1.786 0.888 0.792 12.314 4.132 2.955

Gate Selection Legend: α=top-1, γ =top-3, σ=binary

Table 2. Performance Improvement when Using CASTNet-T over T++ on the nuScenes Dataset

Model

(Con�guration)

minADEk MR2k FDEk
k=1 k=5 k=10 k=5 k=10 k=1 k=5 k=10

T++ (dyn, map) [35] 4.264 2.319 1.887 0.614 0.615 10.063 5.086 3.952

CASTNet-T (α , avg.) 3.418 1.597 1.334 0.683 0.671 8.092 3.689 2.944

CASTNet-T (α , KF ) 3.393 1.598 1.333 0.676 0.666 8.043 3.684 2.938

Gate Selection Legend: α=top-1

underlined results indicate the best performance across all variations, as the CASTNet-CN (α =

top − 1, KF ) performs the best across the majority of metrics, achieving a 41.3% lower minADE5
than the CoverNet baseline. This performance improvement showcases the ability of our modular,

model-agnostic approach to improve existing motion prediction methods. Binary gate selection

achieves lower minADE1 and FDE1 than top-1 and top-3 gate selection, but top-1 performs best

across all metrics. Finally, the FDE results for CASTNet-CN show signi�cant improvement upon

the baseline, nearly decreasing the error by 50% for FDE5 and FDE10. The high FDE1 results indicate

that future work should focus on improving trajectory predictions at longer time horizons.

The results for T++ and the CASTNet-T variants are shown in Table 2. Based on CASTNet-CN’s

performance for the gate selection method, we tested our CASTNet-T models with Attention-

LSTM gating using top-1 selection and evaluated the same two mode fusion variations (KF and

avg.). T++ uses slightly di�erent inputs (additional information regarding pedestrians within the

scene) and evaluation samples (due to T++ only requiring 1 second of history vs. 2 seconds, allow-

ing for more viable agents in a scene). The CASTNet-T variants outperform the baseline T++model

on all metrics except for MR2. The MR2 is calculated as the proportion of misses over all agents

in a scene—so, the fact that T++ achieves better MR2 metrics but worse minADE metrics indi-

cates that T++’s predictions can be more conservative, but overall less accurate than CASTNet-T’s

predictions. Better metrics for CASTNet-T are achieved when KF is used instead of avg. for trajec-

tory fusion, except for minADE5 where avg. nominally beats KF. Compared to the CASTNet-CN

variants, the CASTNet-T variants achieved much better MR2 scores, indicating that CASTNet-T’s

predictions were relatively close together for each agent.

We further evaluate baseline motion predictors on the nuScenes validation set in Table 3.

Compared to the CVH, MTP, and CoverNet baselines, CASTNet-CN (α , KF, ϵ=4) achieves the best

minADE10, minADE5, MR210, FDE5, and FDE10 scores. MTP (modes=1) and CVH only predict one

mode, so their scores across k remain constant. Although this allows for more �ne-tuned results

on k=1 with good performance, they are often less robust in predicting challenging trajectories,
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Table 3. Comparison of Motion Prediction Results on the nuScenes Dataset

Model (Con�guration)
minADEk MR2k FDEk

k=1 k=5 k=10 k=5 k=10 k=1 k=5 k=10

Physics-based (CVH) 4.613 4.613 4.613 0.912 0.912 11.21 11.21 11.21

MTP (modes=1) [7] 3.912 3.912 3.912 0.945 0.945 9.271 9.271 9.271

MTP (modes=3) [7] 4.236 3.492 3.492 0.880 0.880 9.911 7.479 7.479

CoverNet (ϵ=8) [31] 6.438 2.628 2.272 0.922 0.918 13.44 5.086 3.898

CoverNet (ϵ=4) [31] 7.556 3.855 2.963 0.972 0.962 16.73 8.186 5.966

CoverNet (ϵ=2) [31] 12.96 5.545 3.801 0.896 0.816 23.33 11.11 7.473

CASTNet-CN (α , KF ) 6.107 2.262 1.782 0.883 0.789 12.34 4.123 2.953

Gate Selection Legend: α=top-1

leading to worse performance as k increases and potential safety concerns with only one

prediction available. MTP (modes=1) performed best on the k=1 metrics, likely because the model

specialized for this task due to its single output mode. CoverNet (ϵ=8) outperforms the other

CoverNets, because the smaller output reduces model complexity and improves convergence.

MTP (modes=3) achieves higher k=5,10 metrics than MTP with one mode. Although CASTNet

does not achieve the best results for minADE1, it signi�cantly improves upon both minADE5 and

minADE10. Overall, the results from Tables 1, 2, and 3 indicate that integrating motion predictors

with CASTNet can improve their performance signi�cantly and enable them to outperform

state-of-the-art motion prediction models across most metrics.

4.3 Inference Latency and Model Size Analysis

In Table 4, we compare our approach’s inference latency and model size with the baseline methods.

This section evaluates our CASTNet models with avg. trajectory mode fusion. As shown in Table 4,

our CASTNet-CN variants have a larger model size but a minimal latency increase compared to

the baseline CoverNet (ϵ=4) model. The larger model size can be attributed to the multi-branch

architecture of the model, while the slight latency increase results from the addition of the gat-

ing model. Top-1 (α ) gate selection results in the lowest CASTNet-CN inference latency. These

trends repeat for the CASTNet-T models compared to the T++ baseline. T++ incurs signi�cantly

higher latency than MTP and CoverNet but uses far fewer parameters. This di�erence is likely

attributable to T++’s use of scene-graph modeling and heavy reliance on temporal models, while

MTP and CoverNet use CNNs and MLPs to model image data. Our approach is computationally

expensive at the training stage, as it employs an ensemble method; however, during inference time,

it achieves latency close to the baseline models used within its ensemble, making it on par with

current approaches in terms of resources necessary while deployed.

4.4 Scenario-specific Evaluation

Figure 5 presents each approach’s scenario-speci�c minADE10 for six di�erent driving contexts.

In the subsection, we show results from our CASTNet variants using KF trajectory mode fusion.

The results show that CASTNet-T (dyn) outperforms CVH, MTP, CoverNet, and T++ across all

scenarios. The limitations of CVH, MTP, and CoverNet are most visible in the high ped. density

and high veh. density contexts, as their error increases signi�cantly while our approach remains

stable. We also �nd that both CASTNet-CN and CASTNet-T perform more consistently across

scenarios than T++, achieving a minADE10 < 2 in all contexts, while T++ varies from 1.6–2.26,

performing worst in low density and suburban contexts. Notably, CASTNet-T (dyn) outperforms

T++ (dyn, map) in every context evaluated, even though T++ (dyn, map) bene�ts from additional

map information.
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Table 4. Inference Latency Comparison between Baseline

Models and CASTNet Variants

Model (Con�guration) Latency (ms) Num. Params.

MTP (modes=1) [7] 10.50 13M

MTP (modes=3) [7] 10.80 14M

CoverNet (ϵ=8) [31] 9.97 14M

CoverNet (ϵ=4) [31] 10.03 15M

CoverNet (ϵ=2) [31] 10.63 22M

CASTNet-CN (α , ϵ=4) 11.10 34M

CASTNet-CN (γ , ϵ=4) 12.98 34M

CASTNet-CN (σ , ϵ=4) 12.24 34M

T++ (dyn) [35] 86.60 0.3M

CASTNet-T (α , dyn) 90.98 1.2M

Gate Selection Legend: α=top-1, γ =top-3, σ=binary

Fig. 5. Motion prediction results for each approach in di�erent driving contexts of the nuScenes dataset.

We also show the performance of each branch within CASTNet-T on their respective ground

truth scenarios, denoted as T++ (Ground Truth Scenarios). Interestingly, CASTNet-T outperforms

these specialized branches across all scenarios except for parking, which can likely be attributed to

the bene�ts of using a shared stem with a learned gating model and varying the branch selection

for each input sample. These results indicate that CASTNet is more robust to variability across

driving scenarios and highlights the bene�ts of contextual modeling.

4.5 Gating Evaluation

We evaluate the performance of our gate models in Table 5 in terms of minADE5 score and MR25
score when used in our CASTNet-CN (α , ϵ=4) model with KF fusion. We also show each gate’s
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Table 5. Evaluation of Our Proposed Gating Models

Gate Model
Temp. Pooling Acc. Coverage Error

minADE5 MR25
Spatial Temporal

CNN None sum 13.85% 3.478 2.287 0.886

Attn. None sum 9.79% 3.537 2.347 0.889

CNN LSTM sum 13.60% 3.354 2.296 0.885

CNN LSTM mean 7.64% 3.302 2.274 0.882

CNN LSTM attn 22.17% 3.171 2.279 0.883

Attn. LSTM sum 19.59% 3.332 2.284 0.884

Attn. LSTM mean 15.44% 3.299 2.274 0.883

Attn. LSTM attn 18.08% 3.248 2.262 0.883

multi-label classi�cation accuracy. For this metric, the prediction for a sample is only deemed cor-

rect if the predicted labels match the ground truth. As such, this metric does not support partially

correct predictions, which are typical for multi-label classi�ers. To address this gap, we include

coverage error [38], which measures how many branches must be selected until all the ground-

truth positive labels are covered; a lower coverage error indicates a better multi-label classi�er. A

perfect gate model would achieve a coverage error of 1.937 on this dataset.

The results show that using a temporal model slightly improves all evaluated metrics. Interest-

ingly, using attention in the spatial model only bene�ts when a temporal model is included. Regard-

ing temporal pooling, attn pooling outperforms both sum and mean pooling, and mean pooling is

slightly better than sum. Overall, we found that the AttentionLSTM gate with attn pooling results

in the lowest minADE5. The CNN LSTM gate with attn pooling achieved the highest accuracy and

lowest coverage error, meaning it could better predict each sample’s exact set of matching labels.

4.6 Architecture Ablation Study

To illustrate CASTNet’s modularity, we explore the performance of di�erent architectural con�g-

urations in Table 6. We evaluate both CoverNet (ϵ=8) and MTP (modes=16) branch con�gurations

and two backbone split points (we note that 16 modes were used here to allow for an appropriate

evaluation across k=10). The results shown are with an AttentionLSTM gate with attn pooling,

top-1 gate selection, and KF mode fusion. Since ResNet-18 consists of four CNN blocks, Block-1

indicates that the �rst block of the ResNet-18 backbone is located in the stem, and each branch

contains the remaining three blocks and the motion predictor’s MLP layers. Stem indicates that

all four blocks are in the stem, and each branch contains only the motion predictor’s MLP layers.

Table 6 shows that splitting at Block-1 leads to signi�cantly larger model size and diminished per-

formance. This result suggests using a larger shared feature extractor is more e�ective than larger

context-speci�c feature extractors. The results also show a narrower gap between the performance

of Block-1 versus Stem with CoverNet branches than with MTP branches. Overall, these results

are signi�cant, as they demonstrate that using smaller network sizes can improve performance—

inspiring further research into searching for optimal split point locations.

4.7 Discussion

Our results demonstrate that CASTNet can convert existing motion prediction models into dy-

namic, context-aware architectures, improving robustness across driving scenarios. Our method

for splitting and gating the model does not require signi�cant algorithmic changes; thus, real-

world implementations can be developed relatively quickly. Although we trained and tested using

six explicitly de�ned contexts informed by related works, this approach may limit the model in

ACM Trans. Cyber-Phys. Syst., Vol. 8, No. 2, Article 23. Publication date: May 2024.



CASTNet: A Context-Aware, Spatio-Temporal Dynamic Motion Prediction Ensemble 23:17

Table 6. Ablation Study on Di�erent Architectural Configurations of

Our CASTNet Model

CASTNet Branch Type Split Point Num. Params. minADE5 minADE10
CoverNet (ϵ = 8) Block-1 81M 3.189 2.367

CoverNet (ϵ = 8) Stem 24M 3.131 2.229

MTP (modes=16) Block-1 89M 3.644 3.107

MTP (modes=16) Stem 34M 3.228 2.636

more complex settings. Further ablation studies could be performed on scenarios with overlapping

contexts. In our approach, due to the limitations of the dataset, we used human annotators to label

the contexts present; however, this raises concerns about scalability and cost. An interesting future

direction would be to explore learned methods for de�ning contexts and splitting data for branch

specialization instead of heuristically de�ning scenarios.

While we showed the e�cacy of CNN-based gating strategies, using methods that integrate

knowledge or stem features could improve performance. It would be insightful to evaluate how

more complex gating and fusion approaches improve the generalization and accuracy of CASTNet

in futureworks. Similarly, futureworks could explore di�erentmode fusion strategies. Our Kalman

�lter’s dynamics models for di�erent classes of objects (e.g., cars, pedestrians, bicycles) within the

�lter could further improve results if object classi�cations are performed accurately.

The CASTNet architecture can be particularly bene�cial in scenarios requiring high levels of

adaptation. However, one limitation of CASTNet is its reliance on sensing data, which may not

always be guaranteed in contested sensing environments that may cause sensor failures. An inter-

esting area of future work revolves around enabling further levels of adaptation by training gate

models with di�erent subsets of sensor data (e.g., camera data only, lidar data only, camera and

lidar data) to improve the robustness to a variety of sensing conditions. Additionally, we recog-

nize that our results and analysis are constrained to the nuScenes dataset and that using further

datasets and simulation platforms can allow for further studies on the e�ects of parameters, such

as several di�erent scenarios and the amount of prior data used by the models. Although nuScenes

is currently the most popular motion prediction dataset, CASTNet’s performance could be evalu-

ated on newer datasets like Lyft Level 5 [19] and Waymo Open Motion Dataset [11] once trained

motion prediction model weights for these datasets become publicly available.

5 CONCLUSION

AV motion prediction is a challenging multi-domain problem that can vary in complexity, depend-

ing on the driving context. In this work, we proposed CASTNet, a dynamic context-aware motion

prediction approach for AVs. CASTNet is a highly modular approach that employs an ensemble of

motion predictors and a deep learning–based context identi�cation module that helps to improve

the robustness of prediction performance in challenging environments. This work demonstrated

that CASTNet outperforms state-of-the-art motion predictors across driving contexts on a real-

world driving dataset. Additionally, we showed that spatio-temporal attention could be used to

model the driving context from vehicle sensor data e�ectively. We conducted extensive ablation

studies on our proposed architecture including evaluation of architectural con�gurations and con-

text identi�cation models. We also proposed several strategies for performing multi-modal trajec-

tory fusion and illustrated the modularity of our approach by evaluating multiple di�erent motion

prediction backbones within CASTNet. Since real-world driving consists of a wide range of di-

verse driving scenarios, CASTNet is likely to perform better in a real AV than existing methods,

due to its ability to adapt the architecture to maximize performance in each driving context. The
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key research �ndings demonstrated in this work are bene�cial to providing increased levels of au-

tonomy in CPS, and the techniques demonstrated can be applied to other CPS that utilize sensors

to perceive and predict actions of other entities in the surrounding environment.
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