
SCAR: Scheduling Multi-Model AI Workloads on

Heterogeneous Multi-Chiplet Module Accelerators

Mohanad Odema

Univ. of California, Irvine

Irvine, CA, USA

modema@uci.edu

Luke Chen

Univ. of California, Irvine

Irvine, CA, USA

panwangc@uci.edu

Hyoukjun Kwon

Univ. of California, Irvine

Irvine, CA, USA

hyoukjun.kwon@uci.edu

Mohammad Abdullah Al Faruque

Univ. of California, Irvine

Irvine, CA, USA

alfaruqu@uci.edu

Abstract—Emerging multi-model workloads with heavy models
like recent large language models significantly increased the
compute and memory demands on hardware. To address such
increasing demands, designing a scalable hardware architecture
became a key problem. Among recent solutions, the 2.5D silicon
interposer multi-chip module (MCM)-based AI accelerator has
been actively explored as a promising scalable solution due
to their significant benefits in the low engineering cost and
composability. However, previous MCM accelerators are based on
homogeneous architectures with fixed dataflow, which encounter
major challenges from highly heterogeneous multi-model work-
loads due to their limited workload adaptivity.

Therefore, in this work, we explore the opportunity in the
heterogeneous dataflow MCM AI accelerators. We identify the
scheduling of multi-model workload on heterogeneous dataflow
MCM AI accelerator is an important and challenging problem
due to its significance and scale, which reaches O(1056) even
for a two-model workload on 6x6 chiplets. We develop a set of
heuristics to navigate the huge scheduling space and codify them
into a scheduler, SCAR, with advanced techniques such as inter-
chiplet pipelining. Our evaluation on ten multi-model workload
scenarios for datacenter multitenancy and AR/VR use-cases has
shown the efficacy of our approach, achieving on average 27.6%
and 29.6% less energy-delay product (EDP) for the respective
applications settings compared to homogeneous baselines.

Index Terms—AI accelerators, Multichip modules, Chiplets,
Scheduling algorithms, Performance analysis.

I. INTRODUCTION

Recent artificial intelligence (AI) inference workloads have

increased their scale in both of the model size (e.g., large

language models [7], [69]) and the number of models deployed

together (e.g., augmented and virtual reality; AR/VR [38]),

which constructs multi-model workloads with heavier models

than those in the past. Such trends led to heavy demands

on compute capabilities in AI hardware from edge to cloud

devices. As an approach to scale up the hardware for AI

and increase the compute capability, chiplet-based multi-chip

module (MCM) package has emerged as a promising solu-

tion [55], [64], [68], [71]. Such MCM packages facilitate

the scaling of AI hardware based on their composability

and cost-effectiveness, unlike monolithic designs, which are

often constrained by fabrication yields, power, heat, and other

engineering costs such as verification [50].

Researchers have actively explored the MCM for AI, focus-

ing on the dataflow mapping (i.e., loop ordering, paralleliza-

tion, and tiling) of each layer and workload orchestration onto

chiplets considering the network-on-package (NoP) and other

communication constraints [55], [64], [68], [71]. For example,

Simba [64] proposed a scalable MCM inference architecture

that enables chiplets to either act as standalone inference

engines or collaborate as groups for a layer. Although such

works have successfully delivered promising performance and

energy efficiency than monolithic designs, they mostly focused

on single-model workloads targeting homogeneous chiplets.

Unlike single-model workloads, multi-model workloads intro-

duce major challenges to such homogeneous MCMs because

of the ML operator heterogeneity (e.g., operator types and

tensor sizes) and resulting diverse dataflow preferences [37].

Also, multi-model workloads often involve model level depen-

dency and concurrency [34], [37], [38], [51], [56], which adds

complex considerations to the scheduling problem.

Therefore, considering the new trend with multi-model AI

workloads in industry, such as multi-tenancy [23], [40], [72]

and AR/VR [38], we explore heterogeneous chiplet-based

MCM with AI accelerator chiplets with various dataflows, as

a future-proof option. To exploit the benefits of heterogeneous

MCM accelerators, we consider inter-layer pipelining to en-

hance in-package data reuse and reduce offchip traffic. We for-

mulate the scheduling problem and develop effective heuristics

to navigate the huge scheduling space, whose problem scale is

as big as O(1056) even for a two-model workload (ResNet-50

[24] and UNet [63]) on a 6x6 chiplet MCM AI accelerator

system (as in Simba [64]).

We evaluate ten MCMs including seven heterogeneous

MCMs on ten multi-model scenarios: the first five scenarios

are curated using MLPerf inference benchmark [62] repre-

senting datacenter multi-tenancy scenarios. The models are

selected based on recent datacenter model usage trends [23],

[29] and the trend of language model adoptions (e.g., GPT-

L [60]), future-proofing emerging AI workloads such as AI

assistant [47]. The other five scenarios are curated for AR/VR

usage scenarios from XRBench as a practical use case for edge

multi-model workloads [38].

The evaluation results show that heterogeneous MCM

combined with our scheduling method is promising for

heavy multi-model workloads, which is projected by recent

trend. Compared to the homogeneous MCM [64] running

NVDLA [52] and Shi-diannao [16] style dataflows, hetero-

geneous MCM, on average, achieved 27.6% and 29.6% less

energy-delay product (EDP) in each domain, respectively. We

also showcase that our scheduler can identify schedules that

can reduce EDP to 0.3× that of single-model schedulers like

NN-baton [68]. We summarize our contributions as follows:

565

2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO)

979-8-3503-5057-9/24/$31.00 ©2024 IEEE
DOI 10.1109/MICRO61859.2024.00049

20
24

 5
7t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

M
icr

oa
rc

hi
te

ct
ur

e
(M

IC
RO

) |
 9

79
-8

-3
50

3-
50

57
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

OI
: 1

0.
11

09
/M

IC
RO

61
85

9.
20

24
.0

00
49

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 28,2024 at 09:36:40 UTC from IEEE Xplore. Restrictions apply.

TABLE I
NOTATION USED IN THE FORMULATION.

Notation Description

Sc Multi-model workload scenario
mi the i-th model from scenario Sc
layeri,j the j-th layer from model i

H MCM hardware
C Set of accelerator chiplets on H
ci the i-th chiplet from C
DF set of supported dataflows on H
ndfi Number of chiplets adopting the i-th dataflow
BWoffchip offchip bandwidth
BWnop Network-on-package bandwidth

df Dataflow
NPE Number of processing engines
BWnoc Network-on-chip bandwidth
Szmem The memory size in c

TW (Sc) The set of time windows for Sc
tw(Sc) an execution time window for Sc on H
Ts time window start
Ttw time window end
L(tw(Sc)) set of layers executable on H during tw(Sc)
SG Set of all valid segments for tw(Sc)
sg(tw(Sc)) a layer segment from L(tw(Sc))
Sptw(Sc) Time window partioning space for Sc
Spsg(tw) Layer segmentation space at tw
SSTW (tw(Sc), H) The scheduling space for tw(Sc) on H
SSSc(H) The overall scheduling space for Sc on H
sched(Sc,H) A scheduling instance for Sc on H

Latij(A) Latency evaluation for A given identifiers i, j

Ei
j(A) Energy evaluation for A given identifiers i, j

Szdata Size of transmission data
nhops Number of hops from src to destination
nsplits Number of time window splits

III. SYSTEM MODELING AND PROBLEM FORMULATION

To develop a systematic approach to navigate complex

search space, we formulate the scheduling problem of multi-

model workloads on a heterogeneous MCM AI accelerator.

A. Base Formulation

To formulate the MCM scehduling problem, we first define

multi-model workload scenario (Sc) and MCM hardware (H).

We formulate the workload in the granularity of layers in

each model. Therefore, we formulate a multi-model workload

scenario (Sc) as the collection of layers in the models included

in the scenario. Letting the number of models included in Sc

as |Sc| and the number of layers included in a model m as

|m|, we define Sc as follows:

Definition 1. Multi-model Workload Scenario (Sc)

Sc = {layeri,j |0 < i ≤ |Sc|, 0 < j ≤ |mi|}

where layer(i,j) refers to the j-th layer of model i in Sc.

AI accelerator chiplets consist of a PE array, memory, and

on-chip interconnection among memory and PEs. In addition

to them, we also include the dataflow in the formulation to

model heterogeneous chiplet MCM AI accelerator. Accord-

ingly, we define an AI accelerator chiplet (c) as follows:

Definition 2. AI Accelerator Chiplet (c)

c = {df,NPE , BWnoc, BWmem, Szmem}

In Definition 2, df refers to the dataflow, NPE is the number

of PEs, BWnoc is the NoC bandwidth, BWmem is the chiplet-

level shared memory bandwidth, and Szmem is the memory

size in c.

Based on the definition of the chiplet, we formu-

late the MCM accelerator as the set of chiplets (C =
{c1, c2, ..., cNcpl

}), NoP, and off-chip interface as follows:

Definition 3. MCM AI Accelerator (H)

H = {C,BWoffchip, BWnop}

Unless otherwise stated, we assume the 2D mesh topology

for NoP like Simba [64], and chiplets on two sides (left and

right) of the packages have off-chip interfaces.

B. Workload Partitioning Space

To reduce the complexity of the scheduling problem, we

adopt a multi-level scheduling method, which splits the end-

to-end workload defined in the layer granularity into coarse-

grained layer groups, termed as the time window. Figure 3

shows an example of the time window that contains six layers

from Model A and five layers from Model B.

A time window (tw) is defined by the start time and the

duration (TS and Ttw) and a set of assigned layers to the time

window, as shown in Definition 4.

Definition 4. Time Window (tw)

For a target workload scenario Sc, a time window tw is

defined as follows:

tw(Sc) = (Ts, Ttw, L)

where L = {l|l ∈ Sc}

The time window describes a set of layers to be executed on

an MCM AI accelerator package, which is used for describing

package level scheduling. For each chiplet, we define a finer-

grained group of layers within a time window. We term the

sub-set of layers within a time window as segment.

Definition 5. Segment (sg)

For a time window tw(Sc) and its layers L(tw(Sc)), the

segment sg(tw(Sc)) is defined as follows:

sg(tw(Sc)) = {l|l ∈ L(tw(Sc))}

To develop a systematic optimization algorithm for layer

segmentation i each time window, we need to define the

conditions of valid layer segments, provided as follows:

Theorem 1. The validity of segments in a time window

For a time window tw(Sc) and its layers L(tw(Sc)), let the

set of all segments for tw(Sc) be SG, then SG is valid if the

following condition is satisfied:
⋃

sg∈SG

sg = L(tw(Sc)) ∧ [∀sgi ̸= sgj ∈ SG, sgi ∩ sgj = ∅]

Theorem 1 states two conditions (1) the set of segments

needs to cover all the layers in their time window for com-

pleting assigned layer computations for the time window and

568

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 28,2024 at 09:36:40 UTC from IEEE Xplore. Restrictions apply.

A. MCM Reconfiguration Engine (MCM-Reconfig)

The MCM-Reconfig engine at the top-level step receives

the multi-model workload descriptions with layer information

in each model, layer dependency, and expected latency and

energy of each layer on each chiplet class offline-analyzed by

MAESTRO [35]. The MCM-Reconfig engine is responsible

for the window assignment in Figure 3, which (1) generates

candidate time window partitioning strategies via sampling

a set of discrete points in time as boundary points, and (2)

assigns layers from models to each time window. As the

final assignment of layers to chiplets is not known apriori,

the decisions in MCM-Reconfig engine are based on expected

execution times. Formally, given |DF | dataflow style classes,

the expected execution latency for a layer l is:

E(Lat(l)) =

|DF |
∑

i=1

ndfi

|C|
× Lat(l → i) (1)

where ndfi indicates the number of class i chiplets integrated

onto the MCM having |C| chiplets in total; Latl→i is layer

l latency when scheduled on the class i chiplet, which is

retrieved offline from latency database generated by MAE-

STRO [35], [36]. The average execution time information

is utilized in MCM-Reconfig engine for window assignment

process illustrated in Figure 3.

Time Windows Characterization. MCM-Reconfig engine

first specifies the number of windows, through a hyperparam-

eter, nsplits, to explore proper cut points for each model. For

example, in Figure 3, the model A has a cut after layer 6,

which led to having layers 1-6 in Window 1. The worst-case

latency experienced by any model is set as the time horizon

to be partitioned into periodic time windows.

Greedy Layer Packing Algorithm. We adopt a first-fit

greedy-packing heuristic to assign layers to execution time

windows if their execution time is expected to finish within

the time window boundaries (see Algorithm 1). Any layer

whose execution time lies across two time windows is deferred

to the next time window. Through this approach, we enable

(i) running low-latency layers in earlier windows (restricts

starvation). (ii) dynamically controlling the number of time

windows by skipping trivial time windows with no workloads.

Based on our analysis of the periodic window characteriza-

tion with greedy layer packing using a workload of UNet and

GPT2-L against a layer-optimal approach. We found the rate

of EDP improvement stagnated after 4 splits. We set nsplits=4

(5 time windows) as our default unless otherwise stated.

B. Provisioner Engine (PROV)

The PROV engine provides an initial estimate on the number

of chiplet needed by each model workload in every time win-

dow from a candidate partitioning strategy. PROV assignments

are agnostic to the underlying chiplets’ properties (dataflow,

resources), and hence we refer to chiplets in this state as

nodes. We implement the PROV engine to support exhaustive

search or rule-based node distribution assignments. A uniform

distribution rule allocates Ni nodes to the ith model as follows:

Algorithm 1 Greedy Layer Packing Algorithm

Input: M (workloads), T , C, DF
Output: L2W (Layer(s) to windows assignments)

1: Function LAYERASSIGNMENT(M , C, T)
2: for m ∈ M do

3: exec win = ()
4: win idx, used cycles = 0, 0
5: for l ∈ m do

6: E(Lat(l)) =
∑|DF |

i=1

ndfi
|C|

× Lat(l → i)

7: while True do

8: if win idx == |T | then

9: Slack = None
10: else

11: Slack = ρ[win idx]− used cycles

12: if Slack == None or E(Lat(l)) <= Slack then

13: exec win += (l,)
14: used cycles += E(Lat(l))
15: Break

16: else

17: L2W [win idx][m] = exec win
18: used cycles = T [win idx]
19: exec win = ()
20: win idx += 1

21: L2W [win idx][m] = exec win

Ni = round(
E(Pi)

∑

j(E(Pj)
× |C|) (2)

where E(Pi) represents the expected value of a target per-

formance optimization metric (latency, energy, EDP) for the

model i. E(Pi) is computed in a manner similar to the

expectation formula in Equation (1).

We ensure every model in the time window is assigned at

least one node to progress its execution. The rules enable

trading off search complexity for coverage. We analyze the

efficacy of the uniform distribution compared to the exhaustive

search in Section V.

C. Segmentation Engine (SEG)

The SEG module is instantiated every time window to

partition topologically sorted model layers into layer segments

(Definition 5) that are mappable to computing nodes for

exclusive execution throughout the time window. Different

segmentation choices reflect various trade-off points between

the layer-sqeuencing and layer-pipelining features: the former

concerns with execution locality on the same node; the latter

specifies inter-layer and -chiplet pipelining opportunities.

Segmentation Search Space. A segmentation candidate

is represented by a sequence of splitting points. Candidate

splitting points for a model can be specified after each layer

provided to the SEG. Given |Li| and |Ni| as the respective

number of layers and number of assigned nodes from the

PROV to model workload mi, the max number of segments

that can be generated for mi is upper bounded by Ni.

Thus, the overall segmentation space complexity becomes

O(Πi

(

Li

Ni−1

)

), We incorporate the following heuristics to

manage complexity.

Heuristic 1. Product to summation reduction. We reduce

complexity by leveraging the independence of segments from

different models to divide the search into a two-step process:

571

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 28,2024 at 09:36:40 UTC from IEEE Xplore. Restrictions apply.

and 57.6% from Simba (Shi); 33.0% and 28.3% from Simba

(NVD). For Scenario 3, Simba (NVD) remained superior,

achieving 79.7% EDP reduction Het-Sides. These evaluations

follow the trends from our rule-based results in Table IV.

Ablation on Greedy Packing Algorithm. Using Scenario 4

and Het-Sides, we test the efficacy of our first-fit greedy layer

packing algorithm against a uniform packing baseline, dis-

tributing layers uniformly across time windows. Ours achieved

21.8% speedup and 8.6% energy reduction.

F. Summary of Results and Main Insights

We summarize our main insights and findings as follows.

• Heterogeneous MCM patterns improve performance for

heavy and diverse multi-model workloads (scenarios 4-5).

• Homogeneous MCM patterns are more suited for small

multi-model workloads (scenarios 1-3).

• Heterogeneous MCM patterns with diverse pipelining

options (Het-Sides) are superior to heterogeneous patterns

with homogeneous pipelining options (Het-CB).

• The target optimization objective is crucial in identifying

the best integration strategy. In EDP search scenario 4,

Het-sides outperformed all other strategies on EDP, but

not on pure energy consumption.

• Topology and number of resources affect the extent of

performance improvement for heterogeneous strategies.

Our findings show that understanding multi-model workload

characteristics and usage scenarios is crucial for identifying the

best MCM integration strategy for a target objective.

VI. DISCUSSION AND LIMITATIONS

Multi-model optimization targets. We experimented with

different optimization targets (latency, EDP, energy) for our

scenarios, and showed that the top performing strategy can

change based on the target objective. As multi-model work-

loads evolve, it may be desirable to assign separate optimiza-

tion targets for different models within a scenario (EDP v.

lat). One practical way to achieve this in our framework is by

adding a constraint in our EDP search, invalidating schedules

that have certain models violate a latency constraint (i.e., the

EDP search becomes lower bounded by the latency search).

Heterogeneous chiplets technology. Heterogeneous chiplet

integration has become a viable, cost-effective approach to

design state-of-the-art AI systems. Nvidia’s world-class super-

chips are a successful example of heterogeneous on-package

integration (e.g., Grace-Blackwell (1 CPU + 2 GPUs) [14]).

The success of these systems and others (AMD’s MI300X

[1]) is testament to the hardware manufacturers’ investment

in chiplets technology, where through advanced manufactur-

ing processes and heterogeneous integration capabilities, the

development of MCM AI accelerators (like Nvidia’s Simba

[64]) becomes more accessible, allowing chiplet modifica-

tions/replacement in MCM hardware at lower costs without

requiring a complete overhaul of the entire package.

Scheduler Software Integration. SCAR can be integrated

on top of existing compiler infrastructure. The advanced

scheduling techniques supported by the scheduler (dynamic

TABLE VII
COMPARISON AGAINST PRIOR RELATED SCHEDULING WORKS.

Work
Chiplet-based Multi- Inter-Layer Heterog-

Systems Models Pipelining Aware

Simba [64] ✓ ✓

Tangram [19] ✓

NN-baton [68] ✓

SET [8] ✓

Gemini [9] ✓ ✓

Herald [37] ✓ ✓

MAGMA [32] ✓ ✓

Planaria [21] ✓ ✓

Veltair [42] ✓

MoCA [33] ✓

This Work ✓ ✓ ✓ ✓

chiplet regrouping, inter-chiplet pipelining) represent high-

level abstractions of the computational graphs that can be

transformed through standard compiler software (e.g., MLIR

[39]) to representations suited for the underlying hardware.

For example, dynamic chiplets regrouping is correspondent

to graph partitioning, where a model’s computational graph

is divided into smaller subgraphs, each associated with the

set of computing nodes assigned during the corresponding

time window. The subgraphs can then be transformed to lower

representations covering the details of buffer management, die-

to-die communication, memory R/W requests, I/O, all the way

to the transformations covering the dataflow features (loop

reordering, spatial unrolling) for the specialized accelerators.

VII. RELATED WORKS

Scheduler for Accelerators. Table VII compares our work

against prior scheduling works. As shown, the related works

can be categorized into two groups: one which has considered

aspects of inter-layer pipelining and chiplet-based systems [8],

[9], [19], [64], [68], and another that focused on multi-model

workloads on heterogeneous platforms [21], [32], [33], [37],

[42]. Only this work addressed MCM, multi-model workloads,

inter-layer pipelining, and heterogeneous dataflow.

Multi-chiplet Modules. Several works proposed to address

the scalability challenge for DNN acceleration via MCM

integration [3], [28], [55], [64], [68]. Most notably, Simba [64]

pioneered a scalable deep learning MCM inference accelerator

leveraging non-uniform work partitioning, communication-

aware data placement, and cross-layer pipelining.

Intra- and Inter-layer Parallelism. Prior works explored

intra-layer parallelism to maximize DNN performance effi-

ciency by partitioning DNN layers into smaller, parallelizable

tiles [25]–[27], [43], [57], [73], [74]. Other works studied the

inter-layer scheduling space to compensate for workloads with

low degrees of parallelism [6], [8], [19], [31], [45], [53], [78].

VIII. CONCLUSION

In this work, we explored the scheduling space of a new

class of MCM accelerator architecture, heterogeneous MCM

AI accelerator, targeting multi-model AI workloads. We iden-

tify that the scheduling problem is intractably large but multi-

level problem formulation and heuristics we proposed are ef-

fective for the large-scale scheduling problem. The results also

show that heterogeneous MCM accelerator is beneficial for

multi-model workloads, which motivates further exploration.

576

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 28,2024 at 09:36:40 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] AMD. Amd instinct mi300x accelerator. https://www.amd.com/content/
dam/amd/en/documents/instinct-tech-docs/data-sheets/amd-instinct-
mi300x-data-sheet.pdf.

[2] Apple. Apple Vision Pro Specs. https://www.apple.com/apple-vision-
pro/specs/, 2024.

[3] Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho, Ugljesa Milic, Eiman
Ebrahimi, Oreste Villa, Aamer Jaleel, Carole-Jean Wu, and David
Nellans. Mcm-gpu: Multi-chip-module gpus for continued performance
scalability. ACM SIGARCH Computer Architecture News, 45(2):320–
332, 2017.

[4] Eunjin Baek, Dongup Kwon, and Jangwoo Kim. A multi-neural network
acceleration architecture. In 2020 ACM/IEEE 47th Annual International

Symposium on Computer Architecture (ISCA), pages 940–953. IEEE,
2020.

[5] Noah Beck, Sean White, Milam Paraschou, and Samuel Naffziger. ‘zep-
pelin’: An soc for multichip architectures. In 2018 IEEE International

Solid-State Circuits Conference-(ISSCC), pages 40–42. IEEE, 2018.

[6] Halima Bouzidi, Mohanad Odema, Hamza Ouarnoughi, Smail Niar, and
Mohammad Abdullah Al Faruque. Map-and-conquer: Energy-efficient
mapping of dynamic neural nets onto heterogeneous mpsocs. In 2023

60th ACM/IEEE Design Automation Conference (DAC), pages 1–6.
IEEE, 2023.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901,
2020.

[8] Jingwei Cai, Yuchen Wei, Zuotong Wu, Sen Peng, and Kaisheng
Ma. Inter-layer scheduling space definition and exploration for tiled
accelerators. In Proceedings of the 50th Annual International Symposium

on Computer Architecture (ISCA), pages 1–17, 2023.

[9] Jingwei Cai, Zuotong Wu, Sen Peng, Yuchen Wei, Zhanhong Tan,
Guiming Shi, Mingyu Gao, and Kaisheng Ma. Gemini: Mapping and
architecture co-exploration for large-scale dnn chiplet accelerators. In
2024 IEEE International Symposium on High-Performance Computer

Architecture (HPCA), pages 156–171. IEEE, 2024.

[10] Prasanth Chatarasi, Hyoukjun Kwon, Angshuman Parashar, Michael
Pellauer, Tushar Krishna, and Vivek Sarkar. Marvel: a data-centric
approach for mapping deep learning operators on spatial accelerators.
ACM Transactions on Architecture and Code Optimization (TACO),
19(1):1–26, 2021.

[11] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin
Kwon, and Jaehyuk Huh. Multi-model machine learning inference
serving with gpu spatial partitioning. arXiv preprint arXiv:2109.01611,
2021.

[12] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin
Kwon, and Jaehyuk Huh. Serving heterogeneous machine learning
models on {Multi-GPU} servers with {Spatio-Temporal} sharing. In
2022 USENIX Annual Technical Conference (USENIX ATC 22), pages
199–216, 2022.

[13] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin,
Joseph E Gonzalez, and Ion Stoica. Clipper: A {Low-Latency} online
prediction serving system. In 14th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 17), pages 613–627, 2017.

[14] CRN. Nvidia Reveals Next-Gen Blackwell GPUs, Promised To ’Unlock
Breakthroughs’ In GenAI. https://www.crn.com/news/components-
peripherals/2024/nvidia-reveals-next-gen-blackwell-gpus-promised-to-
unlock-breakthroughs-in-genai, 2024.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[16] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao
Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. Shidiannao:
Shifting vision processing closer to the sensor. In Proceedings of the

42nd Annual International Symposium on Computer Architecture, pages
92–104, 2015.

[17] FacebookResearch. Hrvit-b1. https://github.com/facebookresearch/
HRViT/blob/main/models/hrvit.py#L1125-L1155, 2022.

[18] Amin Firoozshahian, Joel Coburn, Roman Levenstein, Rakesh Nattoji,
Ashwin Kamath, Olivia Wu, Gurdeepak Grewal, Harish Aepala, Bhasker
Jakka, Bob Dreyer, et al. Mtia: First generation silicon targeting

meta’s recommendation systems. In Proceedings of the 50th Annual

International Symposium on Computer Architecture, pages 1–13, 2023.

[19] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos
Kozyrakis. Tangram: Optimized coarse-grained dataflow for scalable
nn accelerators. In Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and

Operating Systems, pages 807–820, 2019.

[20] Liuhao Ge, Zhou Ren, Yuncheng Li, Zehao Xue, Yingying Wang, Jianfei
Cai, and Junsong Yuan. 3d hand shape and pose estimation from a single
rgb image. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 10833–10842, 2019.

[21] Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim, Sean Kinzer,
Brahmendra Reddy Yatham, Navateja Alla, Hardik Sharma, Moham-
mad Alian, Eiman Ebrahimi, Nam Sung Kim, Cliff Young, and Hadi
Esmaeilzadeh. Planaria: Dynamic architecture fission for spatial multi-
tenant acceleration of deep neural networks. In 2020 53rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 681–697. IEEE, 2020.

[22] Johann Hauswald, Yiping Kang, Michael A Laurenzano, Quan Chen,
Cheng Li, Trevor Mudge, Ronald G Dreslinski, Jason Mars, and Lingjia
Tang. Djinn and tonic: Dnn as a service and its implications for future
warehouse scale computers. ACM SIGARCH Computer Architecture

News, 43(3S):27–40, 2015.

[23] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, et al. Applied machine learning at facebook: A datacenter
infrastructure perspective. In 2018 IEEE International Symposium

on High Performance Computer Architecture (HPCA), pages 620–629.
IEEE, 2018.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition, 2015.

[25] Kartik Hegde, Po-An Tsai, Sitao Huang, Vikas Chandra, Angshuman
Parashar, and Christopher W Fletcher. Mind mappings: enabling
efficient algorithm-accelerator mapping space search. In Proceedings

of the 26th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 943–958, 2021.

[26] Charles Hong, Qijing Huang, Grace Dinh, Mahesh Subedar, and
Yakun Sophia Shao. Dosa: Differentiable model-based one-loop search
for dnn accelerators. In Proceedings of the 56th Annual IEEE/ACM

International Symposium on Microarchitecture, pages 209–224, 2023.

[27] Qijing Huang, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind
Kalaiah, James Demmel, John Wawrzynek, and Yakun Sophia Shao.
Cosa: Scheduling by constrained optimization for spatial accelerators.
In 2021 ACM/IEEE 48th Annual International Symposium on Computer

Architecture (ISCA), pages 554–566. IEEE, 2021.

[28] Ranggi Hwang, Taehun Kim, Youngeun Kwon, and Minsoo Rhu. Cen-
taur: A chiplet-based, hybrid sparse-dense accelerator for personalized
recommendations. In 2020 ACM/IEEE 47th Annual International

Symposium on Computer Architecture (ISCA), pages 968–981. IEEE,
2020.

[29] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th annual international

symposium on computer architecture, pages 1–12, 2017.

[30] Ajaykumar Kannan, Natalie Enright Jerger, and Gabriel H Loh. Enabling
interposer-based disintegration of multi-core processors. In Proceedings

of the 48th international symposium on Microarchitecture, pages 546–
558, 2015.

[31] Sheng-Chun Kao, Geonhwa Jeong, and Tushar Krishna. Confuciux:
Autonomous hardware resource assignment for dnn accelerators using
reinforcement learning. In 2020 53rd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 622–636. IEEE, 2020.

[32] Sheng-Chun Kao and Tushar Krishna. Magma: An optimization frame-
work for mapping multiple dnns on multiple accelerator cores. In
2022 IEEE International Symposium on High-Performance Computer

Architecture (HPCA), pages 814–830. IEEE, 2022.

[33] Seah Kim, Hasan Genc, Vadim Vadimovich Nikiforov, Krste Asanović,
Borivoje Nikolić, and Yakun Sophia Shao. Moca: Memory-centric,
adaptive execution for multi-tenant deep neural networks. In 2023 IEEE

International Symposium on High-Performance Computer Architecture

(HPCA), pages 828–841. IEEE, 2023.

[34] Seah Kim, Hyoukjun Kwon, Jinook Song, Jihyuck Jo, Yu-Hsin Chen,
Liangzhen Lai, and Vikas Chandra. Dream: A dynamic scheduler

577

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 28,2024 at 09:36:40 UTC from IEEE Xplore. Restrictions apply.

for dynamic real-time multi-model ml workloads. In Proceedings of

the 28th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, Volume 4, pages 73–
86, 2023.

[35] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman
Parashar, Vivek Sarkar, and Tushar Krishna. Understanding reuse, per-
formance, and hardware cost of dnn dataflow: A data-centric approach.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium

on Microarchitecture, pages 754–768, 2019.

[36] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna,
Michael Pellauer, and Angshuman Parashar. Maestro: A data-centric
approach to understand reuse, performance, and hardware cost of dnn
mappings. IEEE micro, 40(3):20–29, 2020.

[37] Hyoukjun Kwon, Liangzhen Lai, Michael Pellauer, Tushar Krishna, Yu-
Hsin Chen, and Vikas Chandra. Heterogeneous dataflow accelerators
for multi-dnn workloads. In 2021 IEEE International Symposium on

High-Performance Computer Architecture (HPCA), pages 71–83. IEEE,
2021.

[38] Hyoukjun Kwon, Krishnakumar Nair, Jamin Seo, Jason Yik, Debabrata
Mohapatra, Dongyuan Zhan, Jinook Song, Peter Capak, Peizhao Zhang,
Peter Vajda, et al. Xrbench: An extended reality (xr) machine learning
benchmark suite for the metaverse. Proceedings of Machine Learning

and Systems, 5, 2023.

[39] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. Mlir: Scaling compiler infrastructure
for domain specific computation. In 2021 IEEE/ACM International

Symposium on Code Generation and Optimization (CGO), pages 2–14.
IEEE, 2021.

[40] Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gadepally, and Devesh
Tiwari. Miso: exploiting multi-instance gpu capability on multi-tenant
gpu clusters. In Proceedings of the 13th Symposium on Cloud Comput-

ing, pages 173–189, 2022.

[41] Chen Liu, Kihwan Kim, Jinwei Gu, Yasutaka Furukawa, and Jan Kautz.
Planercnn: 3d plane detection and reconstruction from a single image.
In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 4450–4459, 2019.

[42] Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and
Minyi Guo. Veltair: towards high-performance multi-tenant deep learn-
ing services via adaptive compilation and scheduling. In Proceedings

of the 27th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 388–401, 2022.

[43] Liqiang Lu, Naiqing Guan, Yuyue Wang, Liancheng Jia, Zizhang Luo,
Jieming Yin, Jason Cong, and Yun Liang. Tenet: A framework
for modeling tensor dataflow based on relation-centric notation. In
2021 ACM/IEEE 48th Annual International Symposium on Computer

Architecture (ISCA), pages 720–733. IEEE, 2021.

[44] Fangchang Ma and Sertac Karaman. Sparse-to-dense: Depth prediction
from sparse depth samples and a single image. In 2018 IEEE interna-

tional conference on robotics and automation (ICRA), pages 4796–4803.
IEEE, 2018.

[45] Xiaohan Ma, Chang Si, Ying Wang, Cheng Liu, and Lei Zhang.
Nasa: accelerating neural network design with a nas processor. In
2021 ACM/IEEE 48th Annual International Symposium on Computer

Architecture (ISCA), pages 790–803. IEEE, 2021.

[46] Meta. D2go. https://github.com/facebookresearch/d2go, 2022.

[47] Microsoft. Announcing microsoft copilot, your everyday ai
companion. https://blogs.microsoft.com/blog/2023/09/21/announcing-
microsoft-copilot-your-everyday-ai-companion/, 2023.

[48] Microsoft. Azure openai service. https://azure.microsoft.com/en-us/
products/ai-services/openai-service, 2023.

[49] MLCommons. Mlperf inference. https://mlcommons.org/benchmarks/
inference-datacenter/, 2023.

[50] Samuel Naffziger, Noah Beck, Thomas Burd, Kevin Lepak, Gabriel H
Loh, Mahesh Subramony, and Sean White. Pioneering chiplet technol-
ogy and design for the amd epyc™ and ryzen™ processor families:
Industrial product. In 2021 ACM/IEEE 48th Annual International

Symposium on Computer Architecture (ISCA), pages 57–70. IEEE, 2021.

[51] Sokratis Nikolaidis, Stylianos I. Venieris, and Iakovos S. Venieris.
Multitasc: A multi-tenancy-aware scheduler for cascaded dnn inference
at the consumer edge. In 2023 IEEE Symposium on Computers and

Communications (ISCC), pages 411–416, 2023.

[52] NVIDIA. Nvdla deep learning accelerator. http://nvdla.org,2017., 2023.

[53] Mohanad Odema, Halima Bouzidi, Hamza Ouarnoughi, Smail Niar,
and Mohammad Abdullah Al Faruque. Magnas: A mapping-aware
graph neural architecture search framework for heterogeneous mpsoc
deployment. ACM Transactions on Embedded Computing Systems,
22(5s):1–26, 2023.

[54] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen,
Li Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan
Soyke. Tensorflow-serving: Flexible, high-performance ml serving.
arXiv preprint arXiv:1712.06139, 2017.

[55] Marcelo Orenes-Vera, Esin Tureci, David Wentzlaf, and Margaret
Martonosi. Massive data-centric parallelism in the chiplet era. arXiv

preprint arXiv:2304.09389, 2023.

[56] Ioannis Panopoulos, Stylianos Venieris, and Iakovos Venieris. Carin:
Constraint-aware and responsive inference on heterogeneous devices
for single-and multi-dnn workloads. ACM Transactions on Embedded

Computing Systems, 2024.

[57] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin
Chen, Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan,
Brucek Khailany, Stephen W Keckler, and Joel Emer. Timeloop: A
systematic approach to dnn accelerator evaluation. In 2019 IEEE inter-

national symposium on performance analysis of systems and software

(ISPASS), pages 304–315. IEEE, 2019.

[58] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind
Kalaiah, Daya Khudia, James Law, Parth Malani, Andrey Malevich,
Satish Nadathur, et al. Deep learning inference in facebook data centers:
Characterization, performance optimizations and hardware implications.
arXiv preprint arXiv:1811.09886, 2018.

[59] Qualcomm. Quacomm hexagon 680. https://www.hotchips.org/wp-
content/uploads/hc archives/hc27/HC27.24-Monday-Epub/HC27.
24.20-Multimedia-Epub/HC27.24.211-Hexagon680-Codrescu-
Qualcomm.pdf, 2015.

[60] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language models are unsupervised multitask learners.
OpenAI blog, 1(8):9, 2019.

[61] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and
Vladlen Koltun. Towards robust monocular depth estimation: Mixing
datasets for zero-shot cross-dataset transfer. IEEE transactions on

pattern analysis and machine intelligence, 44(3):1623–1637, 2020.

[62] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien
Breughe, Mark Charlebois, William Chou, et al. Mlperf inference
benchmark. In 2020 ACM/IEEE 47th Annual International Symposium

on Computer Architecture (ISCA), pages 446–459. IEEE, 2020.

[63] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Con-
volutional networks for biomedical image segmentation. In Nassir
Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi,
editors, Medical Image Computing and Computer-Assisted Intervention

– MICCAI 2015, pages 234–241, Cham, 2015. Springer International
Publishing.

[64] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian
Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter,
Nathaniel Pinckney, Priyanka Raina, et al. Simba: Scaling deep-learning
inference with multi-chip-module-based architecture. In Proceedings of

the 52nd Annual IEEE/ACM International Symposium on Microarchi-

tecture, pages 14–27, 2019.

[65] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. Nexus:
A gpu cluster engine for accelerating dnn-based video analysis. In Pro-

ceedings of the 27th ACM Symposium on Operating Systems Principles,
pages 322–337, 2019.

[66] Yangyang Shi, Yongqiang Wang, Chunyang Wu, Ching-Feng Yeh,
Julian Chan, Frank Zhang, Duc Le, and Mike Seltzer. Emformer:
Efficient memory transformer based acoustic model for low latency
streaming speech recognition. In ICASSP 2021-2021 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
6783–6787. IEEE, 2021.

[67] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 1–
9, 2015.

[68] Zhanhong Tan, Hongyu Cai, Runpei Dong, and Kaisheng Ma. Nn-
baton: Dnn workload orchestration and chiplet granularity exploration
for multichip accelerators. In 2021 ACM/IEEE 48th Annual International

578

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 28,2024 at 09:36:40 UTC from IEEE Xplore. Restrictions apply.

Symposium on Computer Architecture (ISCA), pages 1013–1026. IEEE,
2021.

[69] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[70] Pascal Vivet, Eric Guthmuller, Yvain Thonnart, Gael Pillonnet, Guil-
laume Moritz, Ivan Miro-Panadès, Cesar Fuguet, Jean Durupt, Christian
Bernard, Didier Varreau, Julian Pontes, Sebastien Thuries, David Coriat,
Michel Harrand, Denis Dutoit, Didier Lattard, Lucile Arnaud, Jean
Charbonnier, Perceval Coudrain, Arnaud Garnier, Frederic Berger, Alain
Gueugnot, Alain Greiner, Quentin Meunier, Alexis Farcy, Alexandre
Arriordaz, Severine Cheramy, and Fabien Clermidy. 2.3 a 220gops
96-core processor with 6 chiplets 3d-stacked on an active interposer
offering 0.6 ns/mm latency, 3tb/s/mm 2 inter-chiplet interconnects and
156mw/mm 2@ 82%-peak-efficiency dc-dc converters. In 2020 IEEE

International Solid-State Circuits Conference-(ISSCC), pages 46–48.
IEEE, 2020.

[71] Zhenyu Wang, Gopikrishnan Raveendran Nair, Gokul Krishnan, Sumit K
Mandal, Ninoo Cherian, Jae-Sun Seo, Chaitali Chakrabarti, Umit Y
Ogras, and Yu Cao. Ai computing in light of 2.5 d interconnect roadmap:
Big-little chiplets for in-memory acceleration. In 2022 International

Electron Devices Meeting (IEDM), pages 23–6. IEEE, 2022.
[72] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choud-

hury, Marat Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill
Jia, et al. Machine learning at facebook: Understanding inference at
the edge. In 2019 IEEE international symposium on high performance

computer architecture (HPCA), pages 331–344. IEEE, 2019.
[73] Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze,

and Joel S Emer. Sparseloop: An analytical approach to sparse tensor
accelerator modeling. In 2022 55th IEEE/ACM International Symposium

on Microarchitecture (MICRO), pages 1377–1395. IEEE, 2022.
[74] Qingcheng Xiao, Size Zheng, Bingzhe Wu, Pengcheng Xu, Xuehai Qian,

and Yun Liang. Hasco: Towards agile hardware and software co-design
for tensor computation. In 2021 ACM/IEEE 48th Annual International

Symposium on Computer Architecture (ISCA), pages 1055–1068. IEEE,
2021.

[75] Haoran You, Cheng Wan, Yang Zhao, Zhongzhi Yu, Yonggan Fu, Jiayi
Yuan, Shang Wu, Shunyao Zhang, Yongan Zhang, Chaojian Li, et al.
Eyecod: eye tracking system acceleration via flatcam-based algorithm &
accelerator co-design. In Proceedings of the 49th Annual International

Symposium on Computer Architecture, pages 610–622, 2022.
[76] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. {MArk}:

Exploiting cloud services for {Cost-Effective},{SLO-Aware} machine
learning inference serving. In 2019 USENIX Annual Technical Confer-

ence (USENIX ATC 19), pages 1049–1062, 2019.
[77] Xinyi Zhang, Cong Hao, Peipei Zhou, Alex Jones, and Jingtong Hu.

H2h: heterogeneous model to heterogeneous system mapping with
computation and communication awareness. In Proceedings of the 59th

ACM/IEEE Design Automation Conference, pages 601–606, 2022.
[78] Shixuan Zheng, Xianjue Zhang, Leibo Liu, Shaojun Wei, and Shouyi

Yin. Atomic dataflow based graph-level workload orchestration for
scalable dnn accelerators. In 2022 IEEE International Symposium

on High-Performance Computer Architecture (HPCA), pages 475–489.
IEEE, 2022.

579

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 28,2024 at 09:36:40 UTC from IEEE Xplore. Restrictions apply.

