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Abstract—Emerging multi-model workloads with heavy models
like recent large language models significantly increased the
compute and memory demands on hardware. To address such
increasing demands, designing a scalable hardware architecture
became a key problem. Among recent solutions, the 2.5D silicon
interposer multi-chip module (MCM)-based AI accelerator has
been actively explored as a promising scalable solution due
to their significant benefits in the low engineering cost and
composability. However, previous MCM accelerators are based on
homogeneous architectures with fixed dataflow, which encounter
major challenges from highly heterogeneous multi-model work-
loads due to their limited workload adaptivity.

Therefore, in this work, we explore the opportunity in the
heterogeneous dataflow MCM AI accelerators. We identify the
scheduling of multi-model workload on heterogeneous dataflow
MCM AI accelerator is an important and challenging problem
due to its significance and scale, which reaches O(1056) even
for a two-model workload on 6x6 chiplets. We develop a set of
heuristics to navigate the huge scheduling space and codify them
into a scheduler, SCAR, with advanced techniques such as inter-
chiplet pipelining. Our evaluation on ten multi-model workload
scenarios for datacenter multitenancy and AR/VR use-cases has
shown the efficacy of our approach, achieving on average 27.6%
and 29.6% less energy-delay product (EDP) for the respective
applications settings compared to homogeneous baselines.

Index Terms—AI accelerators, Multichip modules, Chiplets,
Scheduling algorithms, Performance analysis.

I. INTRODUCTION

Recent artificial intelligence (AI) inference workloads have

increased their scale in both of the model size (e.g., large

language models [7], [69]) and the number of models deployed

together (e.g., augmented and virtual reality; AR/VR [38]),

which constructs multi-model workloads with heavier models

than those in the past. Such trends led to heavy demands

on compute capabilities in AI hardware from edge to cloud

devices. As an approach to scale up the hardware for AI

and increase the compute capability, chiplet-based multi-chip

module (MCM) package has emerged as a promising solu-

tion [55], [64], [68], [71]. Such MCM packages facilitate

the scaling of AI hardware based on their composability

and cost-effectiveness, unlike monolithic designs, which are

often constrained by fabrication yields, power, heat, and other

engineering costs such as verification [50].

Researchers have actively explored the MCM for AI, focus-

ing on the dataflow mapping (i.e., loop ordering, paralleliza-

tion, and tiling) of each layer and workload orchestration onto

chiplets considering the network-on-package (NoP) and other

communication constraints [55], [64], [68], [71]. For example,

Simba [64] proposed a scalable MCM inference architecture

that enables chiplets to either act as standalone inference

engines or collaborate as groups for a layer. Although such

works have successfully delivered promising performance and

energy efficiency than monolithic designs, they mostly focused

on single-model workloads targeting homogeneous chiplets.

Unlike single-model workloads, multi-model workloads intro-

duce major challenges to such homogeneous MCMs because

of the ML operator heterogeneity (e.g., operator types and

tensor sizes) and resulting diverse dataflow preferences [37].

Also, multi-model workloads often involve model level depen-

dency and concurrency [34], [37], [38], [51], [56], which adds

complex considerations to the scheduling problem.

Therefore, considering the new trend with multi-model AI

workloads in industry, such as multi-tenancy [23], [40], [72]

and AR/VR [38], we explore heterogeneous chiplet-based

MCM with AI accelerator chiplets with various dataflows, as

a future-proof option. To exploit the benefits of heterogeneous

MCM accelerators, we consider inter-layer pipelining to en-

hance in-package data reuse and reduce offchip traffic. We for-

mulate the scheduling problem and develop effective heuristics

to navigate the huge scheduling space, whose problem scale is

as big as O(1056) even for a two-model workload (ResNet-50

[24] and UNet [63]) on a 6x6 chiplet MCM AI accelerator

system (as in Simba [64]).

We evaluate ten MCMs including seven heterogeneous

MCMs on ten multi-model scenarios: the first five scenarios

are curated using MLPerf inference benchmark [62] repre-

senting datacenter multi-tenancy scenarios. The models are

selected based on recent datacenter model usage trends [23],

[29] and the trend of language model adoptions (e.g., GPT-

L [60]), future-proofing emerging AI workloads such as AI

assistant [47]. The other five scenarios are curated for AR/VR

usage scenarios from XRBench as a practical use case for edge

multi-model workloads [38].

The evaluation results show that heterogeneous MCM

combined with our scheduling method is promising for

heavy multi-model workloads, which is projected by recent

trend. Compared to the homogeneous MCM [64] running

NVDLA [52] and Shi-diannao [16] style dataflows, hetero-

geneous MCM, on average, achieved 27.6% and 29.6% less

energy-delay product (EDP) in each domain, respectively. We

also showcase that our scheduler can identify schedules that

can reduce EDP to 0.3× that of single-model schedulers like

NN-baton [68]. We summarize our contributions as follows:
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TABLE I
NOTATION USED IN THE FORMULATION.

Notation Description

Sc Multi-model workload scenario
mi the i-th model from scenario Sc
layeri,j the j-th layer from model i

H MCM hardware
C Set of accelerator chiplets on H
ci the i-th chiplet from C
DF set of supported dataflows on H
ndfi Number of chiplets adopting the i-th dataflow
BWoffchip offchip bandwidth
BWnop Network-on-package bandwidth

df Dataflow
NPE Number of processing engines
BWnoc Network-on-chip bandwidth
Szmem The memory size in c

TW (Sc) The set of time windows for Sc
tw(Sc) an execution time window for Sc on H
Ts time window start
Ttw time window end
L(tw(Sc)) set of layers executable on H during tw(Sc)
SG Set of all valid segments for tw(Sc)
sg(tw(Sc)) a layer segment from L(tw(Sc))
Sptw(Sc) Time window partioning space for Sc
Spsg(tw) Layer segmentation space at tw
SSTW (tw(Sc), H) The scheduling space for tw(Sc) on H
SSSc(H) The overall scheduling space for Sc on H
sched(Sc,H) A scheduling instance for Sc on H

Latij(A) Latency evaluation for A given identifiers i, j

Ei
j(A) Energy evaluation for A given identifiers i, j

Szdata Size of transmission data
nhops Number of hops from src to destination
nsplits Number of time window splits

III. SYSTEM MODELING AND PROBLEM FORMULATION

To develop a systematic approach to navigate complex

search space, we formulate the scheduling problem of multi-

model workloads on a heterogeneous MCM AI accelerator.

A. Base Formulation

To formulate the MCM scehduling problem, we first define

multi-model workload scenario (Sc) and MCM hardware (H).

We formulate the workload in the granularity of layers in

each model. Therefore, we formulate a multi-model workload

scenario (Sc) as the collection of layers in the models included

in the scenario. Letting the number of models included in Sc

as |Sc| and the number of layers included in a model m as

|m|, we define Sc as follows:

Definition 1. Multi-model Workload Scenario (Sc)

Sc = {layeri,j |0 < i ≤ |Sc|, 0 < j ≤ |mi|}

where layer(i,j) refers to the j-th layer of model i in Sc.

AI accelerator chiplets consist of a PE array, memory, and

on-chip interconnection among memory and PEs. In addition

to them, we also include the dataflow in the formulation to

model heterogeneous chiplet MCM AI accelerator. Accord-

ingly, we define an AI accelerator chiplet (c) as follows:

Definition 2. AI Accelerator Chiplet (c)

c = {df,NPE , BWnoc, BWmem, Szmem}

In Definition 2, df refers to the dataflow, NPE is the number

of PEs, BWnoc is the NoC bandwidth, BWmem is the chiplet-

level shared memory bandwidth, and Szmem is the memory

size in c.

Based on the definition of the chiplet, we formu-

late the MCM accelerator as the set of chiplets (C =
{c1, c2, ..., cNcpl

}), NoP, and off-chip interface as follows:

Definition 3. MCM AI Accelerator (H)

H = {C,BWoffchip, BWnop}

Unless otherwise stated, we assume the 2D mesh topology

for NoP like Simba [64], and chiplets on two sides (left and

right) of the packages have off-chip interfaces.

B. Workload Partitioning Space

To reduce the complexity of the scheduling problem, we

adopt a multi-level scheduling method, which splits the end-

to-end workload defined in the layer granularity into coarse-

grained layer groups, termed as the time window. Figure 3

shows an example of the time window that contains six layers

from Model A and five layers from Model B.

A time window (tw) is defined by the start time and the

duration (TS and Ttw) and a set of assigned layers to the time

window, as shown in Definition 4.

Definition 4. Time Window (tw)

For a target workload scenario Sc, a time window tw is

defined as follows:

tw(Sc) = (Ts, Ttw, L)

where L = {l|l ∈ Sc}

The time window describes a set of layers to be executed on

an MCM AI accelerator package, which is used for describing

package level scheduling. For each chiplet, we define a finer-

grained group of layers within a time window. We term the

sub-set of layers within a time window as segment.

Definition 5. Segment (sg)

For a time window tw(Sc) and its layers L(tw(Sc)), the

segment sg(tw(Sc)) is defined as follows:

sg(tw(Sc)) = {l|l ∈ L(tw(Sc))}

To develop a systematic optimization algorithm for layer

segmentation i each time window, we need to define the

conditions of valid layer segments, provided as follows:

Theorem 1. The validity of segments in a time window

For a time window tw(Sc) and its layers L(tw(Sc)), let the

set of all segments for tw(Sc) be SG, then SG is valid if the

following condition is satisfied:
⋃

sg∈SG

sg = L(tw(Sc)) ∧ [∀sgi ̸= sgj ∈ SG, sgi ∩ sgj = ∅]

Theorem 1 states two conditions (1) the set of segments

needs to cover all the layers in their time window for com-

pleting assigned layer computations for the time window and
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A. MCM Reconfiguration Engine (MCM-Reconfig)

The MCM-Reconfig engine at the top-level step receives

the multi-model workload descriptions with layer information

in each model, layer dependency, and expected latency and

energy of each layer on each chiplet class offline-analyzed by

MAESTRO [35]. The MCM-Reconfig engine is responsible

for the window assignment in Figure 3, which (1) generates

candidate time window partitioning strategies via sampling

a set of discrete points in time as boundary points, and (2)

assigns layers from models to each time window. As the

final assignment of layers to chiplets is not known apriori,

the decisions in MCM-Reconfig engine are based on expected

execution times. Formally, given |DF | dataflow style classes,

the expected execution latency for a layer l is:

E(Lat(l)) =

|DF |
∑

i=1

ndfi

|C|
× Lat(l → i) (1)

where ndfi indicates the number of class i chiplets integrated

onto the MCM having |C| chiplets in total; Latl→i is layer

l latency when scheduled on the class i chiplet, which is

retrieved offline from latency database generated by MAE-

STRO [35], [36]. The average execution time information

is utilized in MCM-Reconfig engine for window assignment

process illustrated in Figure 3.

Time Windows Characterization. MCM-Reconfig engine

first specifies the number of windows, through a hyperparam-

eter, nsplits, to explore proper cut points for each model. For

example, in Figure 3, the model A has a cut after layer 6,

which led to having layers 1-6 in Window 1. The worst-case

latency experienced by any model is set as the time horizon

to be partitioned into periodic time windows.

Greedy Layer Packing Algorithm. We adopt a first-fit

greedy-packing heuristic to assign layers to execution time

windows if their execution time is expected to finish within

the time window boundaries (see Algorithm 1). Any layer

whose execution time lies across two time windows is deferred

to the next time window. Through this approach, we enable

(i) running low-latency layers in earlier windows (restricts

starvation). (ii) dynamically controlling the number of time

windows by skipping trivial time windows with no workloads.

Based on our analysis of the periodic window characteriza-

tion with greedy layer packing using a workload of UNet and

GPT2-L against a layer-optimal approach. We found the rate

of EDP improvement stagnated after 4 splits. We set nsplits=4

(5 time windows) as our default unless otherwise stated.

B. Provisioner Engine (PROV)

The PROV engine provides an initial estimate on the number

of chiplet needed by each model workload in every time win-

dow from a candidate partitioning strategy. PROV assignments

are agnostic to the underlying chiplets’ properties (dataflow,

resources), and hence we refer to chiplets in this state as

nodes. We implement the PROV engine to support exhaustive

search or rule-based node distribution assignments. A uniform

distribution rule allocates Ni nodes to the ith model as follows:

Algorithm 1 Greedy Layer Packing Algorithm

Input: M (workloads), T , C, DF
Output: L2W (Layer(s) to windows assignments)

1: Function LAYERASSIGNMENT(M , C, T )
2: for m ∈ M do

3: exec win = ()
4: win idx, used cycles = 0, 0
5: for l ∈ m do

6: E(Lat(l)) =
∑|DF |

i=1

ndfi
|C|

× Lat(l → i)

7: while True do

8: if win idx == |T | then

9: Slack = None
10: else

11: Slack = ρ[win idx]− used cycles

12: if Slack == None or E(Lat(l)) <= Slack then

13: exec win += (l, )
14: used cycles += E(Lat(l))
15: Break

16: else

17: L2W [win idx][m] = exec win
18: used cycles = T [win idx]
19: exec win = ()
20: win idx += 1

21: L2W [win idx][m] = exec win

Ni = round(
E(Pi)

∑

j(E(Pj)
× |C|) (2)

where E(Pi) represents the expected value of a target per-

formance optimization metric (latency, energy, EDP) for the

model i. E(Pi) is computed in a manner similar to the

expectation formula in Equation (1).

We ensure every model in the time window is assigned at

least one node to progress its execution. The rules enable

trading off search complexity for coverage. We analyze the

efficacy of the uniform distribution compared to the exhaustive

search in Section V.

C. Segmentation Engine (SEG)

The SEG module is instantiated every time window to

partition topologically sorted model layers into layer segments

(Definition 5) that are mappable to computing nodes for

exclusive execution throughout the time window. Different

segmentation choices reflect various trade-off points between

the layer-sqeuencing and layer-pipelining features: the former

concerns with execution locality on the same node; the latter

specifies inter-layer and -chiplet pipelining opportunities.

Segmentation Search Space. A segmentation candidate

is represented by a sequence of splitting points. Candidate

splitting points for a model can be specified after each layer

provided to the SEG. Given |Li| and |Ni| as the respective

number of layers and number of assigned nodes from the

PROV to model workload mi, the max number of segments

that can be generated for mi is upper bounded by Ni.

Thus, the overall segmentation space complexity becomes

O(Πi

(

Li

Ni−1

)

), We incorporate the following heuristics to

manage complexity.

Heuristic 1. Product to summation reduction. We reduce

complexity by leveraging the independence of segments from

different models to divide the search into a two-step process:
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and 57.6% from Simba (Shi); 33.0% and 28.3% from Simba

(NVD). For Scenario 3, Simba (NVD) remained superior,

achieving 79.7% EDP reduction Het-Sides. These evaluations

follow the trends from our rule-based results in Table IV.

Ablation on Greedy Packing Algorithm. Using Scenario 4

and Het-Sides, we test the efficacy of our first-fit greedy layer

packing algorithm against a uniform packing baseline, dis-

tributing layers uniformly across time windows. Ours achieved

21.8% speedup and 8.6% energy reduction.

F. Summary of Results and Main Insights

We summarize our main insights and findings as follows.

• Heterogeneous MCM patterns improve performance for

heavy and diverse multi-model workloads (scenarios 4-5).

• Homogeneous MCM patterns are more suited for small

multi-model workloads (scenarios 1-3).

• Heterogeneous MCM patterns with diverse pipelining

options (Het-Sides) are superior to heterogeneous patterns

with homogeneous pipelining options (Het-CB).

• The target optimization objective is crucial in identifying

the best integration strategy. In EDP search scenario 4,

Het-sides outperformed all other strategies on EDP, but

not on pure energy consumption.

• Topology and number of resources affect the extent of

performance improvement for heterogeneous strategies.

Our findings show that understanding multi-model workload

characteristics and usage scenarios is crucial for identifying the

best MCM integration strategy for a target objective.

VI. DISCUSSION AND LIMITATIONS

Multi-model optimization targets. We experimented with

different optimization targets (latency, EDP, energy) for our

scenarios, and showed that the top performing strategy can

change based on the target objective. As multi-model work-

loads evolve, it may be desirable to assign separate optimiza-

tion targets for different models within a scenario (EDP v.

lat). One practical way to achieve this in our framework is by

adding a constraint in our EDP search, invalidating schedules

that have certain models violate a latency constraint (i.e., the

EDP search becomes lower bounded by the latency search).

Heterogeneous chiplets technology. Heterogeneous chiplet

integration has become a viable, cost-effective approach to

design state-of-the-art AI systems. Nvidia’s world-class super-

chips are a successful example of heterogeneous on-package

integration (e.g., Grace-Blackwell (1 CPU + 2 GPUs) [14]).

The success of these systems and others (AMD’s MI300X

[1]) is testament to the hardware manufacturers’ investment

in chiplets technology, where through advanced manufactur-

ing processes and heterogeneous integration capabilities, the

development of MCM AI accelerators (like Nvidia’s Simba

[64]) becomes more accessible, allowing chiplet modifica-

tions/replacement in MCM hardware at lower costs without

requiring a complete overhaul of the entire package.

Scheduler Software Integration. SCAR can be integrated

on top of existing compiler infrastructure. The advanced

scheduling techniques supported by the scheduler (dynamic

TABLE VII
COMPARISON AGAINST PRIOR RELATED SCHEDULING WORKS.

Work
Chiplet-based Multi- Inter-Layer Heterog-

Systems Models Pipelining Aware

Simba [64] ✓ ✓

Tangram [19] ✓

NN-baton [68] ✓

SET [8] ✓

Gemini [9] ✓ ✓

Herald [37] ✓ ✓

MAGMA [32] ✓ ✓

Planaria [21] ✓ ✓

Veltair [42] ✓

MoCA [33] ✓

This Work ✓ ✓ ✓ ✓

chiplet regrouping, inter-chiplet pipelining) represent high-

level abstractions of the computational graphs that can be

transformed through standard compiler software (e.g., MLIR

[39]) to representations suited for the underlying hardware.

For example, dynamic chiplets regrouping is correspondent

to graph partitioning, where a model’s computational graph

is divided into smaller subgraphs, each associated with the

set of computing nodes assigned during the corresponding

time window. The subgraphs can then be transformed to lower

representations covering the details of buffer management, die-

to-die communication, memory R/W requests, I/O, all the way

to the transformations covering the dataflow features (loop

reordering, spatial unrolling) for the specialized accelerators.

VII. RELATED WORKS

Scheduler for Accelerators. Table VII compares our work

against prior scheduling works. As shown, the related works

can be categorized into two groups: one which has considered

aspects of inter-layer pipelining and chiplet-based systems [8],

[9], [19], [64], [68], and another that focused on multi-model

workloads on heterogeneous platforms [21], [32], [33], [37],

[42]. Only this work addressed MCM, multi-model workloads,

inter-layer pipelining, and heterogeneous dataflow.

Multi-chiplet Modules. Several works proposed to address

the scalability challenge for DNN acceleration via MCM

integration [3], [28], [55], [64], [68]. Most notably, Simba [64]

pioneered a scalable deep learning MCM inference accelerator

leveraging non-uniform work partitioning, communication-

aware data placement, and cross-layer pipelining.

Intra- and Inter-layer Parallelism. Prior works explored

intra-layer parallelism to maximize DNN performance effi-

ciency by partitioning DNN layers into smaller, parallelizable

tiles [25]–[27], [43], [57], [73], [74]. Other works studied the

inter-layer scheduling space to compensate for workloads with

low degrees of parallelism [6], [8], [19], [31], [45], [53], [78].

VIII. CONCLUSION

In this work, we explored the scheduling space of a new

class of MCM accelerator architecture, heterogeneous MCM

AI accelerator, targeting multi-model AI workloads. We iden-

tify that the scheduling problem is intractably large but multi-

level problem formulation and heuristics we proposed are ef-

fective for the large-scale scheduling problem. The results also

show that heterogeneous MCM accelerator is beneficial for

multi-model workloads, which motivates further exploration.
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