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Abstract—The metaverse is a virtual space that combines
physical and digital elements, creating immersive and connected
digital worlds. For autonomous mobility, it enables new possi-
bilities with edge computing and digital twins (DTs) that offer
virtual prototyping, prediction, and more. DTs can be created
with 3D scene reconstruction methods that capture the real
world’s geometry, appearance, and dynamics. However, sending
data for real-time DT updates in the metaverse, such as camera
images and videos from connected autonomous vehicles (CAVs)
to edge servers, can increase network congestion, costs, and
latency, affecting metaverse services. Herein, a new method
is proposed based on distributed radiance fields (RFs), multi-
access edge computing (MEC) network for video compression
and metaverse DT updates. RF-based encoder and decoder are
used to create and restore representations of camera images.
The method is evaluated on a dataset of camera images from the
CARLA simulator. Data savings of up to 80% were achieved for
H.264 I-frame - P-frame pairs by using RFs instead of I-frames,
while maintaining high peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) qualitative metrics
for the reconstructed images. Possible uses and challenges for
the metaverse and autonomous mobility are also discussed.

Index Terms—autonomous driving, digital twin, edge comput-
ing, metaverse, radiance fields, video compression.

1. INTRODUCTION

The advent of connected autonomous vehicles (CAVs) with
their supporting technologies enables interactions between
vehicles, servers, and peripheral devices, but at the cost
of increased data transmission demands. The hierarchical
structure of multi-access edge computing (MEC) network,
with distributed local offloading of data and computations of
spatially close CAVs helps to mitigate excessive data transfer,
minimizing the necessity for large-scale data transmission to
centralized servers. However, the application of advanced data
compression techniques is still needed to further decrease
the transmission latency. According to the research of Hirlay
Alves et al. [1], enabling the digital twin (DT) in smart city
necessitates a network latency in the 5 to 10 ms range, and a
reliability of 1 — 107°%.

Extending the DT concept, the metaverse enables multiple
virtual models to coexist and interact, creating a dynamic
platform for autonomous mobility applications [2].

Seamless deployment of sophisticated machine learning
models trained in simulations to real-world scenarios is hin-
dered by the graphical fidelity gap between them. Therefore,
the metaverse aims to bridge this gap by constructing photore-
alistic digital environments, including dynamic elements, for
more effective training and deployment. Recent research [1]-
[6] also underscores the importance of implementing meta-
verse and DTs for reconstructing alternative digital environ-
ments, which do not necessitate advanced sensor data, e.g.,
LiDARs and their subsequent transmission over the network.

In this work, we address the challenge of efficient real-
time metaverse updates for CAVs by introducing a novel video
compression method based on distributed radiance fields (RFs)
within the context of an MEC network. This approach not only
achieves significant data reduction but also contributes to a
high-fidelity digital twin representation within the metaverse.

Our solution will use visual data compression employing
advances in implicit 3D scene reconstruction, specifically RFs.
RF is a 3D scene representation that can be created just
using a sparse set of 2D images. Following the training
phase, RF is able to reconstruct any camera view of the
scene, including views that are not present in the training set.
Ideally, transmitting only the sender’s camera pose data would
enable the receiver, equipped with the RF representation,
to reconstruct the scene. However, practical limitations like
imperfections in RF reconstruction, dynamic objects, lighting
changes, and inaccurate pose estimations necessitate additional
data transmission.

For these reasons, our method equips both sender and the
receiver with RF, so that sender can use standard video encoder
to encode any differences between the frame rendered from RF
and real 3D scene frame. At the receiver end, these differential
transformations are reapplied to the rendered RF frame. While
standard video encoding requires periodic sending of non-
differential frames containing the whole view information, our
approach can completely omit such frames, and in ideal case
decrease the differences between real and virtual 3D scene that
need to be encoded. This brings large throughput savings.

The proposed RF-based compression method reduces data
transmission while enabling seamless metaverse integration.
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Trained on diverse camera images, the RFs serve as the foun-
dation for a high-fidelity digital twin, continuously updated
with compressed deltas from CAVs. This ensures real-time
synchronization between the physical world and its metaverse
counterpart, allowing users and applications to interact with a
dynamic and visually accurate digital environment.

II. RELATED WORK
A. Deep Learning-Based Video Compression

The method presented in [7] uses implicit neural repre-
sentation with a separate neural network for each frame,
however, individual video frames are represented implicitly
instead of the whole 3D scene. The models used in this work
are designed to be relatively simple, with their size further
decreasing via quantization and use of the similarities between
neighboring frames. Additionally, no pretrained network is
used on the receiver side.

The study in [8] introduces two compression schemes,
motion residual compression (MRC) and disparity residual
compression (DRC), exploiting redundancies in binocular
automotive videos. These methods leverage geometric and
temporal correlations to compress motion and disparity offsets,
using deformable convolution for warping.

Reviews of a wide range of deep learning techniques used
for video compression are available in [9] and [10]. In [10], the
main methods proposed in existing research are categorized
as end-to-end schemes, next video frame prediction, gener-
ative models and autoencoder schemes. To the best of our
knowledge, none of the existing approaches uses encoder and
decoder structures based on RFs.

B. RFs as DTs in Autonomous Mobility

Neural radiance field (NeRF) refers to approximation of
3D scene radiance, capable of reconstructing views on the
scene from arbitrary location and angle. Block-NeRF [11]
demonstrates how neighbourhood-scale NeRF representation
can be built from a set of individually trained NeRFs from
visually very diverse data collected over timespan of three
months. This work provides an important proof of practical
feasibility of building the distributed set of standalone NeRF
neural networks seamlessly modelling large area, that far
exceeds volumes manageable by a single NeRF.

Distributed visual data collection for creation of NeRF-
based DT for autonomous mobility was examined in [12].
The work has tested the speed of real-world to DT updates
when considering different DT quality and network conditions.
While this work tests many of the assumptions crucial for
our work, it misses the key idea of use of NeRFs for rapid
compression to further improve the latency.

NeRF-based simulator for autonomous driving was devel-
oped in [13]. This approach models background environment
and foreground objects separately and allows multiple dif-
ferent NeRF backbones and sampling strategies. Modelling
the dynamic foreground objects, like vehicles, using NeRFs
increases utility of such environment for training of other
machine learning models. Limited modification of captured
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dynamic foreground objects is demonstrated, like addition,
deletion, rotation and translation.

Robustness of training other algorithms for downstream
tasks with NeRF-based simulators is shown in [14]. Here,
robot is trained in NeRF with environment collisions deter-
mined by NeRF volume density and fully synthetic dynamic
object, as opposed to NeRF rendered ones, with its physics
approximating the real one. Policy learned in NeRF-based
simulation was successfully transferred into the real world.

These works show both the proof of potential of large-scale
RF-based metaverse with real-time transfer of state from real
world into the metaverse, but also the knowledge gap our work
tries to close.

III. VIDEO COMPRESSION USING DISTRIBUTED RFS
A. Neural Radiance Fields

NeRFs [15] utilize multi-layer perceptrons (MLPs) to en-
code 3D scenes into a neural network, parametrizing images
with camera poses and optimizing a volumetric scene function
approximated by MLP Fg:

F@ : ((E,d) — (67 0—)7 (1)

where x is the location of the point in 3D space, d is the
viewing direction, ¢ is the emitted radiance, and o is the
volume density.

Rendering from RF involves calculating the expected color
C(r) of a ray »(t) o + td, defined by its origin o
and direction d, within near and far bounds ¢, and ty, by
integrating transmittance 7'(¢):
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The loss £ nyerr is the squared error between rendered C (7)
and ground truth (GT) C(r) colors:

LNeRF = Z[Hé(r) - C(T)Hg]»

reER
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where R is the set of rays in each batch.

Instant neural graphics primitives (INGP) [16] tackles the
issue of NeRFs in excessive training and rendering times
using neural graphics primitives and multiresolution hash
encoding. The model contains trainable weight parameters
¢ and encoding parameters ¢ structured into L € N levels,
each holding up to 7" feature vectors of dimension F'. Each
level | € L operates independently, storing feature vectors at
grid vertices. The grid resolution at each level [ follows a
geometric progression from the coarsest N,,;, to the finest
Npaz resolution by formulas:

Nj = Nygin - V', “)

where NNV is the resolution at level [, and b is the growth factor:

In Nppax — In Nopin
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B. 3D Gaussian Splatting for RFs

The 3D Gaussian Splatting (3DGS) [17] uses differentiable
3D Gaussians to model scenes without the use of neural
components. 3DGS constructs 3D Gaussians G(x) represented
by point (mean) p, covariance matrix >, and opacity a:

(6)

These Gaussians are projected to 2D using a transformation
W and Jacobian J, resulting in a camera-space covariance
matrix 3

G(a) = erp(—5 ()57 (2).

Y =JwwTJT. 7

The covariance matrix X defines scaling S and rotation R:

> = RSSTRT. (8)

Stochastic gradient descent (SGD) optimizes Gaussian pa-
rameters p, «, >, and spherical harmonics (SH) representing
color ¢ of each Gaussian. The loss function L3pgs com-
bines mean absolute error £ and a differentiable structural
similarity index measure (SSIM) Lp_ssry Wwith a balance
hyperparameter A:

Lspcs =1 =ML+ Ap_ssim- 9

C. Video Compression Using RFs

In stark contrast to widely used compression algorithms,
our approach uses models with much higher informational
content about 3D scenes, surpassing traditional compression
by accessing even pixel information not available in previously
encoded 2D frames. This capability is particularly crucial
for capturing details about unseen pixels beyond the camera
field of view boundaries or occluded object parts that become
visible during movement.

While our approach relies on RFs, real-world camera view
will still have multiple differences when compared to RF
views, introduced by mobile objects, lighting changes and
noise, among other factors. For this reason, we use H.264
compression algorithm to bridge the RF-to-real gap. CAVs
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capture and encode images continuously during their opera-
tion, transmitting the compressed data to the MEC server for
decoding and metaverse integration. H.264 compressed video
streams consist of /-frames with complete image information,
P-frames that encode only the differences from the preceding
I-frames, and B-frames capable of encoding differences from
temporally bidirectional frames. From now we will refer to
the differences encoded by P-frame as P-frame delta, or just
delta. Conventionally, every n-th frame in a compressed video
is an I-frame, with parameter n being set prior to video
compression, our approach is able to omit such frames.

Our proposed approach consists of RF encoder, the encod-
ing data scheme combining camera pose with H.264 encoded
difference between real and RF frame and RF decoder as
depicted in Fig. 1. RF encoder uses camera pose at CAV to
obtain a view rendered by the local copy of the RF and then
encodes the difference between real frame and RF rendered
one, into P-frame delta using H.264 encoder. Camera pose and
P-frame delta are sent through the wireless network to roadside
unit (RSU) that contains local MEC server performing the
decoding. RF decoder decodes the original image from camera
pose, used to render the view with RF, and P-frame delta,
which encodes the differences between the real world and
stored RF. The RF models are pre-trained and distributed
through wireless and wired links of MEC network to both
CAVs and MEC servers, ensuring consistent rendering and
decoding of the visual information.

The whole process of RF-based encoding, transmission
of encoded data, and RF-based decoding is described in
pseudocode Alg. 1, using the three corresponding procedures.

An experimental setup was established in a virtual urban
environment using the CARLA simulator to validate this
approach.

D. Technical Challenges
The proposed RF-based video compression method, faces
several technical challenges, that can however be resolved :
« Dynamic Object Representation: Integrating dynamic

objects directly into RFs for metaverse applications be-
yond video transmission is challenging. Potential solu-
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Algorithm 1 RF-based Encoder, Network Transmission, and
RF-based Decoder
1: procedure RFENCODER(CAV_Images, RF)
2 Encoded_Frames <— empty list
3 for each image € CAV_Images do
4: pose < ExtractPose(image)
5: RF_frame <— RenderViewFromRF(RF, pose)
6
7
8

delta < EncodeDifference(image, RF_frame)
Add(Encoded_Frames, (pose, delta))
end for
9: return Encoded_Frames
10: end procedure
11:
12: procedure NETWORKTX(Encoded_Frames, Throughput)

13: Transmitted_Frames < empty list

14: for each (pose, delta) € Encoded_Frames do
15: frame_size < GetSize(pose, delta)

16: 7 < frame_size/Throughput

17: SendFrameOverNetwork (pose, delta, 7)
18: Add(Transmitted_Frames, (pose, delta, 7))
19: end for

20: return Transmitted_Frames

21: end procedure

22:

23: procedure RFDECODER(Transmitted_Frames, RF)

24: Decoded_Images < empty list

25: for each (pose, delta, 7) € Transmitted_Frames do
26: WaitForTransmission(7)

27: RF_frame < RenderViewFromRF(RF, pose)
28: image < DecodeDifference(RF_frame, delta)
29: Add(Decoded_Images, image)

30: end for

31 return Decoded_Images

32: end procedure

tions include combining RFs with polygonal 3D models
or developing RFs specifically for dynamic scenes.

« Real-time Synchronization and Latency: Efficient data
transmission and low latency are crucial for real-time
DT updates in the metaverse. RF-based compression
must minimize data size while ensuring fast transfer to
maintain synchronization. Network conditions can impact
latency and system performance.

« Camera Pose Estimation: Accurate camera pose estima-
tion is vital for RF rendering. Inaccurate pose information
can distort reconstructed images, affecting visual quality
and compression. Robust pose estimation is essential,
especially in dynamic real-world scenarios.

E. Qualitative Metrics

To evaluate both the possible quality degradation introduced
by RFs and differences between the RFs and changes in the
environment (different lighting, presence of vehicles at new
locations, etc.) we have used multiple metrics widely applied
for image quality comparisons. These include peak signal-
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to-noise ratio (PSNR), SSIM, and learned perceptual image
patch similarity (LPIPS). These metrics measure the difference
between a reference image and a distorted image in terms
of pixel values, structural features, and perceptual features,
respectively.

IV. EXPERIMENTAL RESULTS

An experimental framework was established to evaluate the
quality of the 3D scene reconstructed by RFs and compression
savings of a newly RF-based compression algorithm within an
urban 3D environment, as illustrated in Fig. 2.

A. Dataset

A training dataset for the RFs was meticulously compiled by
rendering the specified urban 3D scene utilizing the CARLA
simulation software using 18 cameras attached to the car
driving in both directions of the street. Fig. 2 depicts images
from CARLA simulator as GT for two scenarios, empty road
and parked vehicles on the sides of the road. The compression
efficiency of the proposed approach was systematically eval-
uated by plotting the compression gains across 144 frames
captured from multiple cameras positioned along the vehicle’s
trajectory.

B. H.264 Encoding

Fig. 3 illustrates the percentages of compression savings
achieved at varying resolutions using INGP in the scene
without vehicles. The efficiency of our proposed method
is quantified in terms of compression savings, which are
determined in relation to a baseline established by frame pairs
(I-frame and P-frame) compressed using the H.264 codec.
This assessment encompassed a range of frame resolutions,
extending from 300 x 168 to 1920 x 1080 (full HD).
Images within the dataset were encoded utilizing configuration
settings, specifically presets including ’veryslow’, 'medium’,
and ’veryfast’, coupled with constant rate factors (CRFs) of
18, 23, and 28. Subsequently, the values obtained for each
encoded image pair were averaged to derive the final results.
Notably, in our approach, the I-frame is not transmitted over
the network. Instead, it is generated using RFs. The formula
employed for the calculation of compression savings thus
calculates percentual data size decrease resulting from I-frame
omission as follows 100 * Ig;.e/(Isize + Psize), Where I e
and Py;.. denote the file sizes of the I-frame and P-frame,
respectively.

C. Evaluation

Table I presents an evaluation of the RF models utilizing
PSNR, SSIM, and LPIPS metrics to reveal differences between
GT and RF-generated image. In the scenario devoid of external
elements not present in RF, the INGP model exhibited notably
inferior performance, primarily attributable to its less precise
reconstruction of street lamp structures compared to the 3DGS
model, as illustrated in Fig. 2. This disparity in model efficacy
is further reflected in the context of video compression savings.
Fig. 3 and Fig. 4 demonstrate that compression savings of the
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Fig. 2. GT images from CARLA simulator with matched INGP and 3DGS images from the same camera pose. Note the varying degree of blur and missing
details in INGP and 3DGS rendered frames, like distortion of the letters in the "MUSEUM?” sign and missing parts of the lamp structures.

TABLE I
AVERAGE MEAN VALUES OF RF MODELS
Metrics PSNR 1 SSIM 1 LPIPS |
Scenario | INGP | 3DGS | INGP | 3DGS | INGP | 3DGS
Empty 26.33 | 29.41 0.75 0.85 0.38 0.24
Vehicles | 21.33 | 21.78 0.68 0.71 0.44 0.30

3DGS model are ranging from 45% to 80%, whereas the INGP
model achieved a lower range of 30% to 68%.

Compression savings
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| —"300x168
—— 500x280
| — 720x404
—— 1920x1080

0 20 40 60 80 100

Indices of the image sequence

120 140

Fig. 3. Encoder setting-averaged compression savings relative to H.264
achieved for individual images in empty scene scenario using INGP.

Conversely, in the scenario incorporating vehicles into the
3D scene, while using RFs in which they were absent, both
RF models experienced a decline in metric performance due
to the introduction of these additional objects. The differences
in performance between the models in this scenario were more
nuanced. As per Table I, the LPIPS metric was consistent
with the empty scenario, showing similar variance. However,
Fig. 5 and Fig. 6 suggest more subtle distinctions between the
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Compression savings

Saving [%]
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Fig. 4. Encoder setting-averaged compression savings relative to H.264
achieved for individual images in empty scene scenario using 3DGS.

models in this scenario compared to the former. In this case,
the INGP model exhibited compression savings between 28%
and 68%, while the 3DGS model ranged from 30% to 75%.
This suggests that increased variability in the real scene leads
to more homogeneous evaluation results of the RF-generated
images, indicating a correlation between scene complexity and
model performance consistency.

Additional outcome is the observed inverse relationship
between resolution and compression savings, partly due to
the imperfections in images generated by RF models. In the
downscaling process, high-frequency signal components are
lost in both original and RF-generated images, acting as a
form of lossy compression. This loss brings RF-generated
images closer to the GT by removing high-frequency artifacts,
highlighting the complex interplay between resolution and
compression effectiveness.
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Fig. 5. Encoder setting-averaged compression savings relative to H.264
achieved for individual images in vehicles in the scene scenario using INGP.
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Fig. 6. Encoder setting-averaged compression savings relative to H.264
achieved for individual images in vehicles in the scene scenario using 3DGS.

V. CONCLUSION

This work introduces a novel compression approach uti-
lizing RF-based encoder and decoder, simultaneously serving
as a distributed photorealistic metaverse backbone, featuring
low real-to-sim synchronization latency. By transmitting only
compressed deltas, the method minimizes network congestion
and facilitates rapid metaverse updates. This enables other
metaverse users and applications to experience a dynamic,
visually accurate, and responsive digital twin of the physical
environment.

We have first evaluated feasibility of such approach in
review of related work, and then experimentally on a dataset
of camera images and videos captured by simulated CAVs in
CARLA simulator. Our results show that our approach can
achieve significant data compression and high reconstruction
quality.

Future research could focus on incorporating dynamic ob-
ject representations into the RFs for enhanced metaverse
realism and enabling interactions with moving objects. Fur-
thermore, validating the method’s performance with real-world
data, considering factors like sensor noise, lighting variations
and complex dynamic interactions, will provide a comprehen-
sive understanding of its real-world applicability.
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