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Eugen Šlapak∗, Matúš Dopiriak∗, Mohammad Abdullah Al Faruque†, Juraj Gazda∗, Marco Levorato†

∗Department of Computers and Informatics, Technical University of Košice, Slovakia
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Abstract—The metaverse is a virtual space that combines
physical and digital elements, creating immersive and connected
digital worlds. For autonomous mobility, it enables new possi-
bilities with edge computing and digital twins (DTs) that offer
virtual prototyping, prediction, and more. DTs can be created
with 3D scene reconstruction methods that capture the real
world’s geometry, appearance, and dynamics. However, sending
data for real-time DT updates in the metaverse, such as camera
images and videos from connected autonomous vehicles (CAVs)
to edge servers, can increase network congestion, costs, and
latency, affecting metaverse services. Herein, a new method
is proposed based on distributed radiance fields (RFs), multi-
access edge computing (MEC) network for video compression
and metaverse DT updates. RF-based encoder and decoder are
used to create and restore representations of camera images.
The method is evaluated on a dataset of camera images from the
CARLA simulator. Data savings of up to 80% were achieved for
H.264 I-frame - P-frame pairs by using RFs instead of I-frames,
while maintaining high peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) qualitative metrics
for the reconstructed images. Possible uses and challenges for
the metaverse and autonomous mobility are also discussed.

Index Terms—autonomous driving, digital twin, edge comput-
ing, metaverse, radiance fields, video compression.

I. INTRODUCTION

The advent of connected autonomous vehicles (CAVs) with

their supporting technologies enables interactions between

vehicles, servers, and peripheral devices, but at the cost

of increased data transmission demands. The hierarchical

structure of multi-access edge computing (MEC) network,

with distributed local offloading of data and computations of

spatially close CAVs helps to mitigate excessive data transfer,

minimizing the necessity for large-scale data transmission to

centralized servers. However, the application of advanced data

compression techniques is still needed to further decrease

the transmission latency. According to the research of Hirlay

Alves et al. [1], enabling the digital twin (DT) in smart city

necessitates a network latency in the 5 to 10 ms range, and a

reliability of 1− 10−5%.

Extending the DT concept, the metaverse enables multiple

virtual models to coexist and interact, creating a dynamic

platform for autonomous mobility applications [2].

Seamless deployment of sophisticated machine learning

models trained in simulations to real-world scenarios is hin-

dered by the graphical fidelity gap between them. Therefore,

the metaverse aims to bridge this gap by constructing photore-

alistic digital environments, including dynamic elements, for

more effective training and deployment. Recent research [1]–

[6] also underscores the importance of implementing meta-

verse and DTs for reconstructing alternative digital environ-

ments, which do not necessitate advanced sensor data, e.g.,

LiDARs and their subsequent transmission over the network.

In this work, we address the challenge of efficient real-

time metaverse updates for CAVs by introducing a novel video

compression method based on distributed radiance fields (RFs)

within the context of an MEC network. This approach not only

achieves significant data reduction but also contributes to a

high-fidelity digital twin representation within the metaverse.

Our solution will use visual data compression employing

advances in implicit 3D scene reconstruction, specifically RFs.

RF is a 3D scene representation that can be created just

using a sparse set of 2D images. Following the training

phase, RF is able to reconstruct any camera view of the

scene, including views that are not present in the training set.

Ideally, transmitting only the sender’s camera pose data would

enable the receiver, equipped with the RF representation,

to reconstruct the scene. However, practical limitations like

imperfections in RF reconstruction, dynamic objects, lighting

changes, and inaccurate pose estimations necessitate additional

data transmission.

For these reasons, our method equips both sender and the

receiver with RF, so that sender can use standard video encoder

to encode any differences between the frame rendered from RF

and real 3D scene frame. At the receiver end, these differential

transformations are reapplied to the rendered RF frame. While

standard video encoding requires periodic sending of non-

differential frames containing the whole view information, our

approach can completely omit such frames, and in ideal case

decrease the differences between real and virtual 3D scene that

need to be encoded. This brings large throughput savings.

The proposed RF-based compression method reduces data

transmission while enabling seamless metaverse integration.

71

2024 IEEE International Conference on Smart Computing (SMARTCOMP)

2693-8340/24/$31.00 ©2024 IEEE
DOI 10.1109/SMARTCOMP61445.2024.00031

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

m
ar

t C
om

pu
tin

g 
(S

M
AR

TC
OM

P)
 |

 9
79

-8
-3

50
3-

49
94

-8
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/S
M

AR
TC

OM
P6

14
45

.2
02

4.
00

03
1

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 28,2024 at 09:39:46 UTC from IEEE Xplore.  Restrictions apply. 



Trained on diverse camera images, the RFs serve as the foun-

dation for a high-fidelity digital twin, continuously updated

with compressed deltas from CAVs. This ensures real-time

synchronization between the physical world and its metaverse

counterpart, allowing users and applications to interact with a

dynamic and visually accurate digital environment.

II. RELATED WORK

A. Deep Learning-Based Video Compression

The method presented in [7] uses implicit neural repre-

sentation with a separate neural network for each frame,

however, individual video frames are represented implicitly

instead of the whole 3D scene. The models used in this work

are designed to be relatively simple, with their size further

decreasing via quantization and use of the similarities between

neighboring frames. Additionally, no pretrained network is

used on the receiver side.

The study in [8] introduces two compression schemes,

motion residual compression (MRC) and disparity residual

compression (DRC), exploiting redundancies in binocular

automotive videos. These methods leverage geometric and

temporal correlations to compress motion and disparity offsets,

using deformable convolution for warping.

Reviews of a wide range of deep learning techniques used

for video compression are available in [9] and [10]. In [10], the

main methods proposed in existing research are categorized

as end-to-end schemes, next video frame prediction, gener-

ative models and autoencoder schemes. To the best of our

knowledge, none of the existing approaches uses encoder and

decoder structures based on RFs.

B. RFs as DTs in Autonomous Mobility

Neural radiance field (NeRF) refers to approximation of

3D scene radiance, capable of reconstructing views on the

scene from arbitrary location and angle. Block-NeRF [11]

demonstrates how neighbourhood-scale NeRF representation

can be built from a set of individually trained NeRFs from

visually very diverse data collected over timespan of three

months. This work provides an important proof of practical

feasibility of building the distributed set of standalone NeRF

neural networks seamlessly modelling large area, that far

exceeds volumes manageable by a single NeRF.

Distributed visual data collection for creation of NeRF-

based DT for autonomous mobility was examined in [12].

The work has tested the speed of real-world to DT updates

when considering different DT quality and network conditions.

While this work tests many of the assumptions crucial for

our work, it misses the key idea of use of NeRFs for rapid

compression to further improve the latency.

NeRF-based simulator for autonomous driving was devel-

oped in [13]. This approach models background environment

and foreground objects separately and allows multiple dif-

ferent NeRF backbones and sampling strategies. Modelling

the dynamic foreground objects, like vehicles, using NeRFs

increases utility of such environment for training of other

machine learning models. Limited modification of captured

dynamic foreground objects is demonstrated, like addition,

deletion, rotation and translation.

Robustness of training other algorithms for downstream

tasks with NeRF-based simulators is shown in [14]. Here,

robot is trained in NeRF with environment collisions deter-

mined by NeRF volume density and fully synthetic dynamic

object, as opposed to NeRF rendered ones, with its physics

approximating the real one. Policy learned in NeRF-based

simulation was successfully transferred into the real world.

These works show both the proof of potential of large-scale

RF-based metaverse with real-time transfer of state from real

world into the metaverse, but also the knowledge gap our work

tries to close.

III. VIDEO COMPRESSION USING DISTRIBUTED RFS

A. Neural Radiance Fields

NeRFs [15] utilize multi-layer perceptrons (MLPs) to en-

code 3D scenes into a neural network, parametrizing images

with camera poses and optimizing a volumetric scene function

approximated by MLP FΘ:

FΘ : (x,d) → (ĉ, σ), (1)

where x is the location of the point in 3D space, d is the

viewing direction, ĉ is the emitted radiance, and σ is the

volume density.

Rendering from RF involves calculating the expected color

Ĉ(r) of a ray r(t) = o + td, defined by its origin o

and direction d, within near and far bounds tn and tf , by

integrating transmittance T (t):

Ĉ(r) =

∫ tf

tn

T (t)σ(r(t))ĉ(r(t),d)dt. (2)

The loss LNeRF is the squared error between rendered Ĉ(r)
and ground truth (GT) C(r) colors:

LNeRF =
∑

r∈R

[‖Ĉ(r)− C(r)‖22], (3)

where R is the set of rays in each batch.

Instant neural graphics primitives (INGP) [16] tackles the

issue of NeRFs in excessive training and rendering times

using neural graphics primitives and multiresolution hash

encoding. The model contains trainable weight parameters

φ and encoding parameters θ structured into L ∈ N levels,

each holding up to T feature vectors of dimension F . Each

level l ∈ L operates independently, storing feature vectors at

grid vertices. The grid resolution at each level l follows a

geometric progression from the coarsest Nmin to the finest

Nmax resolution by formulas:

Nl := Nmin · bl, (4)

where Nl is the resolution at level l, and b is the growth factor:

b := exp

(

lnNmax − lnNmin

L− 1

)

. (5)
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Fig. 1. Proposed novel video compression using distributed RFs in MEC network. The diagram shows a) the real-world scene with CAVs and MEC
infrastructure b) RF encoder preparing the delta with differences between the real and RF frame c) RF decoder reapplying the delta to RF frame rendered by
local copy of the RF.

B. 3D Gaussian Splatting for RFs

The 3D Gaussian Splatting (3DGS) [17] uses differentiable

3D Gaussians to model scenes without the use of neural

components. 3DGS constructs 3D Gaussians G(x) represented

by point (mean) μ, covariance matrix Σ, and opacity α:

G(x) = exp(−
1

2
(x)TΣ−1(x)). (6)

These Gaussians are projected to 2D using a transformation

W and Jacobian J , resulting in a camera-space covariance

matrix Σ′:

Σ′ = JWΣWTJT . (7)

The covariance matrix Σ defines scaling S and rotation R:

Σ = RSSTRT . (8)

Stochastic gradient descent (SGD) optimizes Gaussian pa-

rameters p, α,Σ, and spherical harmonics (SH) representing

color c of each Gaussian. The loss function L3DGS com-

bines mean absolute error L1 and a differentiable structural

similarity index measure (SSIM) LD−SSIM with a balance

hyperparameter λ:

L3DGS = (1− λ)L1 + λLD−SSIM . (9)

C. Video Compression Using RFs

In stark contrast to widely used compression algorithms,

our approach uses models with much higher informational

content about 3D scenes, surpassing traditional compression

by accessing even pixel information not available in previously

encoded 2D frames. This capability is particularly crucial

for capturing details about unseen pixels beyond the camera

field of view boundaries or occluded object parts that become

visible during movement.

While our approach relies on RFs, real-world camera view

will still have multiple differences when compared to RF

views, introduced by mobile objects, lighting changes and

noise, among other factors. For this reason, we use H.264

compression algorithm to bridge the RF-to-real gap. CAVs

capture and encode images continuously during their opera-

tion, transmitting the compressed data to the MEC server for

decoding and metaverse integration. H.264 compressed video

streams consist of I-frames with complete image information,

P-frames that encode only the differences from the preceding

I-frames, and B-frames capable of encoding differences from

temporally bidirectional frames. From now we will refer to

the differences encoded by P-frame as P-frame delta, or just

delta. Conventionally, every n-th frame in a compressed video

is an I-frame, with parameter n being set prior to video

compression, our approach is able to omit such frames.

Our proposed approach consists of RF encoder, the encod-

ing data scheme combining camera pose with H.264 encoded

difference between real and RF frame and RF decoder as

depicted in Fig. 1. RF encoder uses camera pose at CAV to

obtain a view rendered by the local copy of the RF and then

encodes the difference between real frame and RF rendered

one, into P-frame delta using H.264 encoder. Camera pose and

P-frame delta are sent through the wireless network to roadside

unit (RSU) that contains local MEC server performing the

decoding. RF decoder decodes the original image from camera

pose, used to render the view with RF, and P-frame delta,

which encodes the differences between the real world and

stored RF. The RF models are pre-trained and distributed

through wireless and wired links of MEC network to both

CAVs and MEC servers, ensuring consistent rendering and

decoding of the visual information.

The whole process of RF-based encoding, transmission

of encoded data, and RF-based decoding is described in

pseudocode Alg. 1, using the three corresponding procedures.

An experimental setup was established in a virtual urban

environment using the CARLA simulator to validate this

approach.

D. Technical Challenges

The proposed RF-based video compression method, faces

several technical challenges, that can however be resolved :

• Dynamic Object Representation: Integrating dynamic

objects directly into RFs for metaverse applications be-

yond video transmission is challenging. Potential solu-
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Algorithm 1 RF-based Encoder, Network Transmission, and

RF-based Decoder

1: procedure RFENCODER(CAV Images,RF)

2: Encoded Frames ← empty list

3: for each image ∈ CAV Images do

4: pose ← ExtractPose(image)
5: RF frame ← RenderViewFromRF(RF, pose)
6: delta ← EncodeDifference(image,RF frame)
7: Add(Encoded Frames, (pose, delta))
8: end for

9: return Encoded Frames

10: end procedure

11:

12: procedure NETWORKTX(Encoded Frames,Throughput)

13: Transmitted Frames ← empty list

14: for each (pose, delta) ∈ Encoded Frames do

15: frame size ← GetSize(pose, delta)
16: τ ← frame size/Throughput

17: SendFrameOverNetwork(pose, delta, τ)
18: Add(Transmitted Frames, (pose, delta, τ))
19: end for

20: return Transmitted Frames

21: end procedure

22:

23: procedure RFDECODER(Transmitted Frames,RF)

24: Decoded Images ← empty list

25: for each (pose, delta, τ) ∈ Transmitted Frames do

26: WaitForTransmission(τ)
27: RF frame ← RenderViewFromRF(RF, pose)
28: image ← DecodeDifference(RF frame, delta)
29: Add(Decoded Images, image)
30: end for

31: return Decoded Images

32: end procedure

tions include combining RFs with polygonal 3D models

or developing RFs specifically for dynamic scenes.

• Real-time Synchronization and Latency: Efficient data

transmission and low latency are crucial for real-time

DT updates in the metaverse. RF-based compression

must minimize data size while ensuring fast transfer to

maintain synchronization. Network conditions can impact

latency and system performance.

• Camera Pose Estimation: Accurate camera pose estima-

tion is vital for RF rendering. Inaccurate pose information

can distort reconstructed images, affecting visual quality

and compression. Robust pose estimation is essential,

especially in dynamic real-world scenarios.

E. Qualitative Metrics

To evaluate both the possible quality degradation introduced

by RFs and differences between the RFs and changes in the

environment (different lighting, presence of vehicles at new

locations, etc.) we have used multiple metrics widely applied

for image quality comparisons. These include peak signal-

to-noise ratio (PSNR), SSIM, and learned perceptual image

patch similarity (LPIPS). These metrics measure the difference

between a reference image and a distorted image in terms

of pixel values, structural features, and perceptual features,

respectively.

IV. EXPERIMENTAL RESULTS

An experimental framework was established to evaluate the

quality of the 3D scene reconstructed by RFs and compression

savings of a newly RF-based compression algorithm within an

urban 3D environment, as illustrated in Fig. 2.

A. Dataset

A training dataset for the RFs was meticulously compiled by

rendering the specified urban 3D scene utilizing the CARLA

simulation software using 18 cameras attached to the car

driving in both directions of the street. Fig. 2 depicts images

from CARLA simulator as GT for two scenarios, empty road

and parked vehicles on the sides of the road. The compression

efficiency of the proposed approach was systematically eval-

uated by plotting the compression gains across 144 frames

captured from multiple cameras positioned along the vehicle’s

trajectory.

B. H.264 Encoding

Fig. 3 illustrates the percentages of compression savings

achieved at varying resolutions using INGP in the scene

without vehicles. The efficiency of our proposed method

is quantified in terms of compression savings, which are

determined in relation to a baseline established by frame pairs

(I-frame and P-frame) compressed using the H.264 codec.

This assessment encompassed a range of frame resolutions,

extending from 300 × 168 to 1920 × 1080 (full HD).

Images within the dataset were encoded utilizing configuration

settings, specifically presets including ’veryslow’, ’medium’,

and ’veryfast’, coupled with constant rate factors (CRFs) of

18, 23, and 28. Subsequently, the values obtained for each

encoded image pair were averaged to derive the final results.

Notably, in our approach, the I-frame is not transmitted over

the network. Instead, it is generated using RFs. The formula

employed for the calculation of compression savings thus

calculates percentual data size decrease resulting from I-frame

omission as follows 100 ∗ Isize/(Isize + Psize), where Isize
and Psize denote the file sizes of the I-frame and P-frame,

respectively.

C. Evaluation

Table I presents an evaluation of the RF models utilizing

PSNR, SSIM, and LPIPS metrics to reveal differences between

GT and RF-generated image. In the scenario devoid of external

elements not present in RF, the INGP model exhibited notably

inferior performance, primarily attributable to its less precise

reconstruction of street lamp structures compared to the 3DGS

model, as illustrated in Fig. 2. This disparity in model efficacy

is further reflected in the context of video compression savings.

Fig. 3 and Fig. 4 demonstrate that compression savings of the
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GT GT

INGP 3DGS

Fig. 2. GT images from CARLA simulator with matched INGP and 3DGS images from the same camera pose. Note the varying degree of blur and missing
details in INGP and 3DGS rendered frames, like distortion of the letters in the ”MUSEUM” sign and missing parts of the lamp structures.

TABLE I
AVERAGE MEAN VALUES OF RF MODELS

Metrics PSNR ↑ SSIM ↑ LPIPS ↓

Scenario INGP 3DGS INGP 3DGS INGP 3DGS

Empty 26.33 29.41 0.75 0.85 0.38 0.24

Vehicles 21.33 21.78 0.68 0.71 0.44 0.30

3DGS model are ranging from 45% to 80%, whereas the INGP

model achieved a lower range of 30% to 68%.

Fig. 3. Encoder setting-averaged compression savings relative to H.264
achieved for individual images in empty scene scenario using INGP.

Conversely, in the scenario incorporating vehicles into the

3D scene, while using RFs in which they were absent, both

RF models experienced a decline in metric performance due

to the introduction of these additional objects. The differences

in performance between the models in this scenario were more

nuanced. As per Table I, the LPIPS metric was consistent

with the empty scenario, showing similar variance. However,

Fig. 5 and Fig. 6 suggest more subtle distinctions between the

Fig. 4. Encoder setting-averaged compression savings relative to H.264
achieved for individual images in empty scene scenario using 3DGS.

models in this scenario compared to the former. In this case,

the INGP model exhibited compression savings between 28%

and 68%, while the 3DGS model ranged from 30% to 75%.

This suggests that increased variability in the real scene leads

to more homogeneous evaluation results of the RF-generated

images, indicating a correlation between scene complexity and

model performance consistency.

Additional outcome is the observed inverse relationship

between resolution and compression savings, partly due to

the imperfections in images generated by RF models. In the

downscaling process, high-frequency signal components are

lost in both original and RF-generated images, acting as a

form of lossy compression. This loss brings RF-generated

images closer to the GT by removing high-frequency artifacts,

highlighting the complex interplay between resolution and

compression effectiveness.
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Fig. 5. Encoder setting-averaged compression savings relative to H.264
achieved for individual images in vehicles in the scene scenario using INGP.

Fig. 6. Encoder setting-averaged compression savings relative to H.264
achieved for individual images in vehicles in the scene scenario using 3DGS.

V. CONCLUSION

This work introduces a novel compression approach uti-

lizing RF-based encoder and decoder, simultaneously serving

as a distributed photorealistic metaverse backbone, featuring

low real-to-sim synchronization latency. By transmitting only

compressed deltas, the method minimizes network congestion

and facilitates rapid metaverse updates. This enables other

metaverse users and applications to experience a dynamic,

visually accurate, and responsive digital twin of the physical

environment.

We have first evaluated feasibility of such approach in

review of related work, and then experimentally on a dataset

of camera images and videos captured by simulated CAVs in

CARLA simulator. Our results show that our approach can

achieve significant data compression and high reconstruction

quality.

Future research could focus on incorporating dynamic ob-

ject representations into the RFs for enhanced metaverse

realism and enabling interactions with moving objects. Fur-

thermore, validating the method’s performance with real-world

data, considering factors like sensor noise, lighting variations

and complex dynamic interactions, will provide a comprehen-

sive understanding of its real-world applicability.
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