Check for
Updates

SMORE: Similarity-based Hyperdimensional Domain Adaptation
for Multi-Sensor Time Series Classification

Junyao Wang, Mohammad Abdullah Al Faruque

{junyaow4,alfaruqu}@uci.edu
Department of Computer Science, University of California, Irvine, USA

ABSTRACT

Many real-world applications of the Internet of Things (IoT) employ
machine learning (ML) algorithms to analyze time series informa-
tion collected by interconnected sensors. However, distribution shift
arises when a model is deployed on a data distribution different
from the training data and can substantially degrade model per-
formance. Additionally, increasingly sophisticated deep neural net-
works (DNNGs) are required to capture intricate spatial and temporal
dependencies in multi-sensor time series data, often exceeding the
capabilities of edge devices. We propose SMORE, a novel resource-
efficient domain adaptation (DA) algorithm for multi-sensor time
series classification, leveraging the efficient and parallel operations
of hyperdimensional computing. SMORE dynamically customizes
test-time models with explicit consideration of the domain con-
text of each sample to mitigate the negative impacts of domain
shifts. Our evaluation shows that SMORE achieves on average
1.98% higher accuracy than state-of-the-art (SOTA) DNN-based DA
algorithms with 18.81x faster training and 4.63x faster inference.

ACM Reference Format:

Junyao Wang, Mohammad Abdullah Al Faruque. 2024. SMORE: Similarity-
based Hyperdimensional Domain Adaptation for Multi-Sensor Time Series
Classification. In 61st ACM/IEEE Design Automation Conference (DAC °24),
June 23-27, 2024, San Francisco, CA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3649329.3658477

1 INTRODUCTION

Many real-world applications utilize heterogeneously connected
sensors to collect information over the course of time, constituting
multi-sensor time series data [1]. Machine learning (ML) algorithms,
including deep neural networks (DNNs), are often employed to ana-
lyze the collected data and perform various learning tasks. However,
the excellent performance of these ML algorithms heavily relies on
the key assumption that the training and inference data come from
the same distribution, while this assumption can be easily violated
as out-of-distribution (OOD) scenarios are inevitable in real-world
applications [2, 3]. For instance, as shown in Figure 1(a), a human
activity recognition model can systematically fail when tested on
individuals from different age groups or diverse demographics.
Various novel domain adaptation techniques have been proposed
for deep learning (DL) [4-7]. However, due to their limited capacity
for memorization, DL approaches often fail to perform well on

This work is licensed under a Creative Commons Attribution International 4.0
License.

DAC °24, June 23-27, 2024, San Francisco, CA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0601-1/24/06.

https://doi.org/10.1145/3649329.3658477

Distribution Shift

ECG/EMG ® ~H Multi-S
Sensor =y Time Series
Sweat _~ \“ﬁ | |:> Modeling
Sensor jessure :
Sensor / N
Training . Prediction Inference

(a) An Example of Distribution Shift in Multi-Sensor Time Series Data

—~ 80 —~ 80
X X
& 60 3 60 .’.—.’.—I—I—I—H
© ©
o s
3 40 .’.—{.-.-.‘-.‘.-. 3 40 Standard k-fold|
P & | LODO
20 20
10 20 30 40 50 0.5k 1k 2k 4k 6k
Iterations Dimensions

(b) Comparing LODO CV and Standard k-fold CV of SOTA HDC
Figure 1: Motivation of Our Proposed SMORE

multi-sensor time series data with intricate spatial and temporal
dependencies [1, 8]. Although recurrent neural networks (RNNs),
including long short-term memory (LSTM), have recently been pro-
posed to address this issue, these models are notably complicated
and inefficient to train. Specifically, their complex architectures
require iteratively refining millions of parameters over multiple
time periods in powerful computing environments [9, 10]. Consid-
ering the resource constraints of embedded devices, the massive
amount of information nowadays, and the potential instabilities of
IoT systems, a lightweight and efficient domain-adaptive learning
approach for multi-sensor time series data is critically needed.
Hyperdimensional computing (HDC) has been introduced as a
promising paradigm for edge ML for its high computational effi-
ciency and ultra-robustness against noises [8, 11, 12]. In particular,
HDC incorporates learning capability along with typical memory
functions of storing/loading information, bringing unique advan-
tages in tackling noisy time series [8]. Unfortunately, existing HDCs
are vulnerable to DS. For instance, as shown in Figure 1(b), on the
popular multi-sensor time series dataset USC-HAD [13], SOTA
HDCs converge at notably lower accuracy in leave-one-domain-out
(LODO) cross-validation (CV) than in standard k-fold CV regardless
of training iterations and model complexity. LODO CV develops
a model with all the available data except for one domain left out
for inference, while standard k-fold CV randomly divides data into
k subsets with k — 1 subsets for training and the remaining one
for evaluation. Such performance degradation indicates a very lim-
ited domain adaptation (DA) capability of existing HDCs. However,
standard k-fold CV does not reflect real-world DS issues since the
random sampling process introduces data leakage, enabling the

DAC 24, June 23-27, 2024, San Francisco, CA

training phase to include information from all domains , thus in-
flating model performance. To address this problem, we propose
SMORE, a novel HDC-based DA algorithm for multi-sensor time
series classification. Our main contributions are listed below:

o To the best of our knowledge, SMORE is the first HDC-based
DA algorithm. By explicitly considering the domain context of
each sample during inference, SMORE provides on average 1.98%
higher accuracy than SOTA DL-based DA algorithms on a wide
range of multi-sensor time series classification tasks.

o Leveraging the efficient and parallel high-dimensional operations,
SMORE provides on average 18.81X faster training and 4.63X
faster inference than SOTA DL-based DA algorithms, providing
a more efficient solution to tackle the DS challenge.

o We evaluate SMORE across multiple resource-constrained hard-
ware devices including Raspberry Pi and NVIDIA Jetson Nano.
SMORE demonstrates considerably lower inference latency and
energy consumption than SOTA DL-based DA algorithms.

2 RELATED WORKS
2.1 Domain Adaptation

Distribution shift (DS) arises when a model is deployed on a data
distribution different from what it was trained on, posing serious
robustness challenges for real-world ML applications [4, 5]. Method-
ologies addressing DS can be primarily categorized as domain gener-
alizations (DG) and domain adaptations (DA). DG seeks to construct
models by identifying domain-invariant features shared across mul-
tiple source domains [14]. However, it can be challenging to extract
common features when there exist multiple source domains with
distinct characteristics [6, 8, 15]. Thus, existing DG approaches
often fail to provide comparable high-quality results as DA [7, 16].
In contrast, DA generally utilizes unlabeled data in target domains
to quickly adapt models trained in different source domains [4].
Unfortunately, most existing DA techniques rely on multiple convo-
lutional and fully-connected layers to train domain discriminators,
requiring intensive computations and iterative refinement.

2.2 Hyperdimensional Computing

Several recent works have utilized HDC as a lightweight learning
paradigm for time series classification [17-19], achieving compa-
rable accuracy to SOTA DNNs with lower computational costs.
However, existing HDCs do not consider the DS challenge, which
can be a detrimental drawback for real-world ML applications. Hy-
perdimensional Feature Fusion [3] identifies OOD samples by fusing
outputs of several layers of a DNN model to a common hyperdi-
mensional space, while its backbone remains relying on resource-
intensive multi-layer DNNs, and a systematic way to tackle OOD
samples has yet to be proposed. DOMINO [8], a novel HDC-based
DG method, constantly discards and regenerates biased dimensions
representing domain-variant information; nevertheless, it requires
significantly more training time to provide reasonable accuracy.
Our proposed SMORE leverages efficient operations of HDC to
customize test-time models for OOD samples, providing accurate
predictions without causing substantial computational overhead
for both training and inference.

Junyao Wang, Mohammad Abdullah Al Faruque

3 METHODOLOGY
3.1 HDC Prelimnaries

Inspired by high-dimensional information representation of hu-
man brains, HDC maps inputs onto hyperdimensional space as
hypervectors, each containing thousands of elements. A unique
property of the hyperdimensional space is the existence of large
amounts of nearly orthogonal hypervectors, enabling highly par-
allel and efficient operations. Similarity (6): calculation of the
distance between two hypervectors. A common measure is cosine
similarity. Bundling (+): element-wise addition of hypervectors,
e.g.. Hyundle = Hi+Ha, generating a hypervector with the same di-
mension as inputs. Bundling provides an efficient way to check the
existence of a hypervector in a bundled set. In the previous exam-
ple, 6(Hpundte: H1) > 0 while S(Hpynaie, Hz) = 0(Hz # Hy, Hy).
Bundling models how human brains memorize inputs. Binding
(*): element-wise multiplication of two hypervectors to create an-
other near-orthogonal hypervector, i.e. Hp;,g = Hi * Hy where
S(Hpina, H1) = 0 and 5(Hping, Hz) = 0. Due to reversibility, i.e.,
Hpina * Hi = Ha, information from both hypervectors can be
preserved. Binding models how human brains connect inputs. Per-
mutation (p): a single circular shift of a hypervector by moving
the value of the final dimension to the first position and shifting all
other values to their next positions. The permuted hypervector is
nearly orthogonal to its original hypervector, i.e., 6(pH, H) ~ 0.
Permutation models how human brains handle sequential inputs.

3.2 Problem Formulation

We assume that there are K (K > 1) source domains, i.e., Dg =
{DL ,Z)g, e Z):é(}, in the input space 7, and we denote the out-
put space as Y. I consists of time-series data from m (m > 1)
interconnected sensors, i.e., I = {11, 13, ..., I }. Our objective is
to utilize training samples in 7 and their corresponding labels in Y/
to train a classification model f : 7 — Y to capture latent features
so that we can make accurate predictions when given samples from
an unseen target domain Dq-. The key challenge is that the joint
distribution between source domains and target domains can be dif-
ferent, i.e, P(SL n* 7)27:7’ vy and thus the model f can potentially
fail to adapt models trained on Dg to samples from Dq-.

Our proposed SMORE, as shown in Figure 2, starts with mapping
training samples from the input space 7 to a hyperdimensional
space X with an encoder Q (€)), i.e., X = Q(J), that preserves
the spatial and temporal dependencies in 7. We then separate the
encoded data into K subsets (X1, Y1), (X2, Y2), . . ., (Xg¢, Yic) (@)
based on their domains. In the training phase, we train K domain-
specific models M = {Mj, My, ..., My} such that My : X —
Y (1 < k < K) (@), and concurrently develop K expressive
domain descriptors U = {U1, Us, . .., Uy} encoding the pattern
of each domain (8)). When given a inference sample Z7- from the
target domain D, we map 77 to hyperdimensional space with the
same encoder Q used for training, and identify OOD samples ()
with a binary classifier ® utilizing the domain descriptors U, i.e.,
O(Q(Z7),U). Finally, we construct a test-time model Mg based
on domain-specific models M () and whether the sample is OOD
to make inferences ((€)) with explicit consideration of the domain

context of I, i.e., ¥ = Mg (®(Q(I7), U), M).

SMORE: Similarity-based Hyperdimensional Domain Adaptation for Multi-Sensor Time Series Classification

DAC ’24, June 23-27, 2024, San Francisco, CA

00D Detection

@ Test-Time Modeling ® Reasoning

Inference Data

cosine

Descriptors |@

Query Vector

G Domains

@ Domain-Specific Modeling

cosine

Prediction

® Domain Descriptors

Series Encoding

Multi-Sensor Time

Similarity Model Update Models
Training Data - n1 g0l
(X1, Y1) Modeling " ! cosine > | Yi=Hi > | U |
sensorl sensorll % oF = g —
VV\@ PV E> E> (leyZ) — Q 1 1 'g | Zi:l"}{i l_)l uz | d
\;)’!‘Ot:}@’j\(;’ o § C’{ I_)I 82 é cee oo
il = = = ro—
sensorm Q l—)[o, | Zi:lﬂ‘[l_—’l % |
)

Figure 2: The Workflow of Our Proposed SMORE

Sampling Window Vector Quantization Temporally Sorted Spatially Integrated

,ytl Sensor | ﬂx }[tl PP}[tl
Y, I I, o LTI T p3ee, (s)+ (3]
'yrztttrﬁuulmm||||||ﬂt3

1 2 3
vl S I s, T e, *
Yu 2 9, & T ese, |8+ (@0
y‘iml—wllllmgl CIITs,

Figure 3: HDC Encoding for Multi-Sensor Time Series Data

3.3 Multi-Sensor Time Series Data Encoding

We employ the encoding techniques in Figure 3 to capture and
preserve spatial and temporal dependencies in multi-sensor time
series data. We sample time series data in n-gram windows; in each
sample window, the signal values (y-axis) store the information and
the time (x-axis) represents the temporal sequence. We first assign
random hypervectors Hp,ax and Hpin to represent the maximum
and minimum signal values. We then perform vector quantization
to values between the maximum and minimum values to gener-
ate vectors with a spectrum of similarity to Hpax and Hpipn. For
instance, in Figure 3, Sensor I has the maximum value at #; and
the minimum value at t3, and thus we assign randomly generated
hypervectors Hy, and Hj, to yz, and y;,, respectively. Similarly, we
assign randomly generated hypervectors H; and H;, to y; and
y;3 in Sensor II. We then assign hypervectors to y;, in Sensor I and
value at ygl in Sensor II with vector quantization; mathematically,

q{h:q{tﬁw.(%_%)
’ Y, =Y,
a g I TS o
n =Mt /_/'(7.([2_ t3)'
Iy ytg

We represent the temporal sequence of data with the permutation
operation in section 3.1. For Sensor I and Sensor II in Figure 3, we
perform rotation shift (p) twice to H;, and H;,, once to H;, and
(Ht’z, and keep H;, and 7{;3 the same. We bind data samples in one
sampling widow by calculating H = ppHy, * pH;, * Hy, and H' =
ppH] #pHj +H], . Finally, to spatially integrate data from multiple
sensors, we generate a random signature hypervector for each

sensor and bind information as 3,72, [G;*H;], where G; denotes the
signature hypervector for sensor i, ; is the hypervector containing
overall information from sensor i, and m denotes the total number
of sensors. For our example in Figure 3, we combine information
from Sensor I and Sensor II by randomly generating signature
hypervectors G and G’ and calculating (G = H) + (G" = H’).

3.4 Domain-Specific Modeling

As shown in Figure 2, after mapping data to hyperdimensional
space (@)), SMORE separates training samples into K subsets
based on their domains (@), where K represents the total number
of domains.. We then employ a highly efficient HDC algorithm
to calculate a domain-specific model for every domain (@), i.e.,
M = {Mi, My, ..., Mg}, identifying common patterns during
training while eliminating model saturations. We bundle data points
by scaling a proper weight to each of them depending on how much
new information is added to class hypervectors. In particular, each
domain-specific model M (1 < k < K) consists of n class hyper-
vectors Clk, Czk, Cel, C,]f (n = the number of classes), each of which
encodes the pattern of a class. A new sample H in domain Z)g up-
dates model M. based on its cosine similarities, denoted as 6 (H, -),
with all the class hypervectors in Mg, i.e.,

H-CF H CF
- ekl IHIE e
where 1 < t < n. If H has the highest cosine similarity with the

class hypervector Cl.k while its true label le.C (1 £i,j < n), the
domain-specific model My updates as

CF e CFan-(1-58(H.CH)) xH

S(H,CF) = o« H - Norm(CF) (1)

k k k (2)
ckeck-n-(1-8(H.ch) xH,

1

where 1 denotes a learning rate. A large §(H, -) indicates the input
data point is marginally mismatched or already exists in the model,
and the model is updated by adding a very small portion of the en-
coded vector (1—8(H,-) ~ 0). In contrast, a small §(#, -) indicates
a noticeably new pattern and updates the model with a large factor
(1 -58(H,-) = 1). Our learning algorithm provides a higher chance
for non-common patterns to be properly included in the model.

DAC 24, June 23-27, 2024, San Francisco, CA

3.5 Out-of-Distribution Detection

3.5.1 Domain Descriptors. In parallel to domain-specific modeling,
as shown in Figure 2, we concurrently construct domain descriptors
(@) U = {U1,Us, ..., Ug} to encode the distinct pattern of
each domain. Specifically, for each domain Z)g 1<k <K), we
utilize the bundling operation to combine the hypervector within
the domain, i.e., {7—(k, ‘sz, .. .,W,’fk }, and construct an expressive
descriptor Uy.. Mathematically, Uy = Z?k 7’(1.1‘ . Given the property
of the bundling operation (explained in section 3.1), Uy, is cosine-
similar to all the samples Wlk (1 < i < ng) within domain Dk as
they contribute to the bundling process, and dissimilar to all the
samples that are not part of the bundle, i.e., not in domain Z)g.

3.5.2 Out-of-Distribution Detection. As shown in Figure 2, a key
component of our inference phase is the detection of OOD samples
(€)). We start with mapping the testing sample to hyperdimensional
space with the same encoding technique as the training phase to
obtain a query vector Q (). Then, as detailed in Algorithm 1, we
calculate the cosine similarity score of the query vector Q to each do-
main descriptor Uy, Uo, . .., Uy (line 1). A testing sample is identi-
fied as OOD ifits pattern is substantially different from all the source
domains. Therefore, when the cosine similarity between Q and its
most similar domain, i.e., max {S(Q, 1U),6(Q,Uy),...,5Q, 717()},
is smaller than a threshold §*, we consider Q as an OOD sample
(line 2). Here 8" is a tunable parameter and we analyze the impact of
8" in section 4.2.1. We then dynamically construct test-time models
(@) based on whether the sample is OOD (section 3.6).

3.6 Adaptive Test-Time Modeling

3.6.1 Inference for OOD Samples. For each testing sample identi-
fied as OOD, we dynamically adapt domain-specific models M =
{My, Mg, ..., M.} to customize a test-time model M4 that best
fits its domain context and thereby provides an accurate prediction.
As detailed in Algorithm 1, for an OOD sample Q, we ensemble
each domain-specific model based on how similar Q is to the do-
main (line 3). Specifically, let §(Q, U1), 6(Q, Uz), ..., 6(Q, Ugk)
denote the cosine similarity between Q and each domain descriptor
U, Us, . .., Uy, we construct the test-time model Mg for Q as

Mg =8(Q, U) Mi+5(Q, Uz) - Ma+...+5(Q, Uy) - M. (3)

Specifically, Mg is of the same shape as M, My, ..., My; it con-
sists of n class hypervectors (n = number of classes), denoted as
CIT , CZT ey C,;T , formulated with explicit consideration of the do-
main context of Q. We then compute the cosine similarity between
Q and each of these class hypervectors, and assign Q to the class
to which it achieves the highest similarity score (line 7).

3.6.2 Inference for In-Distribution Samples. We predict the label of
an in-distribution testing sample, i.e., a non-OOD sample, leverag-
ing domain-specific models of the domains to which the sample is
highly similar. As demonstrated in Algorithm 1, for all the domains
Z)zs (1 £ i £ K) where the encoded query vector Q achieves a
similarity score higher than §*, we ensemble their corresponding
domain-specific models incorporating a weight of their cosine simi-
larity score with Q to formulate the test-time model Mg (line 5 - 6).
Similar to section 3.6.1, Mg~ consists of n class hypervectors, and Q
is assigned to the class where it obtained the highest similarity score

Junyao Wang, Mohammad Abdullah Al Faruque

Algorithm 1 Domain Adaptive HDC Inference

Input: An encoded testing samples Q, a domain classifier with K class
hypervectors Uy, Uy, . . ., Uy, a threshold for OOD detection §*, K
domain-specific models My, My, ..., My

Output: A predicted label P for Q.

1: Omax = max{d(Q, Uy),6(Q, Uz) ...,5(Q, Ug)} > OOD detection
2: if Smax < &* then > Q is considered OOD
3 My Y% 5@ U) M; > model ensembling

4: else > @ is not OOD
5: for all §(Q, U;) > 5 do >1<i<k
6: Mg — Z;’il 5(Q, U;) - M; > partial model ensembling

7 P o— argmaXCT{5(Q, C;T),ﬁ(Q, CZT) ...,8(0,¢Ny

8: return P

Table 1: Detailed Breakdowns of Datasets

(N: number of data samples)

USC-HAD [13]

DSADS [20] PAMAP? [21]

Domains N ‘ Domains N ‘ Domains N

Domain1 2,280 | Domain 1 8,945
Domain 2 2,280 | Domain 2 8,754
Domain 3 2,280 | Domain 3 8,534
Domain 4 2,280 | Domain 4 8,867

Domain 5 8,274

Domain 1 5,636
Domain 2 5,591
Domain 3 5,806
Domain 4 5,660

Total 9,120 Total 43,374 Total 22,693

(line 7). Note that, unlike the inference for OOD samples where we
ensemble all the domain-specific models to enhance performance,
the test-time model Mg for an in-distribution sample does not
consider domain-specific models of the domains where Q show
a minor similarity score lower than §*. In particular, if a testing
sample Q does not show high similarity to any of the source do-
mains, we include information from all the domains to construct a
sufficiently comprehensive test-time model to mitigate the negative
impacts of distribution shift. In contrast, when Q exhibits consider-
able similarity to certain domains, adding information from other
domains is comparable to introducing noises and can potentially
mislead the classification and degrade model performance.

4 EXPERIMENTAL EVALUATIONS
4.1 Experimental Setup

We evaluate SMORE on widely-used multi-sensor time series datasets
DSADS [20], USC-HAD [13], PAMAP2 [21]. Domains are defined
by subject grouping chosen based on subject ID from low to high.
The data size of each domain in each dataset is demonstrated in
TABLE 1. We compare SMORE with (i) two SOTA CNN-based DA
algorithms: TENT [4] and multisource domain adversarial networks
(MDAN:S) [5], and (ii) two HDC algorithms: the SOTA HDC not
considering distribution shifts [22] (BaselineHD) and DOMINO [8],
a recently proposed HDC-based domain generalization framework.
The CNN-based DA algorithms are trained with TensorFlow, and
we apply the common practice of grid search to identify the best
hyper-parameters for each model. Since DOMINO involves dimen-
sion regeneration in every training iteration, for fairness, we initiate
it with dimension d* = 1k and make its total dimensionalities, i.e.,
the sum of its initial dimension and all regenerated dimensions
throughout retraining, the same as SMORE and BaselineHD.

SMORE: Similarity-based Hyperdimensional Domain Adaptation for Multi-Sensor Time Series Classification

4.1.1 Platforms. To evaluate the performance of SMORE on both
high-performance computing environments and resource-limited
edge devices, we include results from the following platforms:

e Server CPU: Intel Xeon Silver 4310 CPU (12-core, 24-thread,
2.10 GHz), 96 GB DDR4 memory, Ubuntu 20.04, Python 3.8.10,
PyTorch 1.12.1, TDP 120 W.

e Embedded CPU: Raspberry Pi 3 Model 3+ (quad-core ARM
A53 @1.4GHz), 1 GB LPDDR2 memory, Debian 11, Python 3.9.2,
PyTorch 1.13.1, TDP 5 W.

o Embedded GPU: Jetson Nano (quad-core ARM A57 @1.43 GHz,
128-core Maxwell GPU), 4 GB LPDDR4 memory, Python 3.8.10,
PyTorch 1.13.0, CUDA 10.2, TDP 10 W.

4.1.2 Data Preprocessing. We describe the data processing for each
dataset primarily on data segmentation and domain labeling.

o DSADS[20]: The Daily and Sports Activities Dataset (DSADS)
includes 19 activities performed by 8 subjects. Each data segment
is a non-overlapping five-second window sampled at 25Hz. Four
domains are formed with two subjects each.

e USC-HAD [13]: The USC human activity dataset (USC-HAD)
includes 12 activities performed by 14 subjects. Each data segment
is a 1.26-second window sampled at 100Hz with 50% overlap. Five
domains are formed with three subjects each.

o PAMAP2 [21]: The Physical Activity Monitoring (PAMAP2)
dataset includes 18 activities performed by 9 subjects. Each data
segment is a 1.27-second window sampled at 100Hz with 50%
overlap. Four domains, excluding subject nine, are formed with
two subjects each.

4.2 Accuracy

The accuracy of the LODO classification is demonstrated in Figure
4. The accuracy of Domain k indicates that the model is trained with
data from all the other domains and evaluated with data from Do-
main k. This accuracy score serves as an indicator of the model’s do-
main adaptation capability when confronted with unseen data from
unseen distributions. SMORE achieves comparable performance to
TENT and on average 1.98% higher accuracy than MDANs. Addi-
tionally, SMORE provides 20.25% higher accuracy than BaselineHD,
demonstrating that SMORE successfully adapts trained models to
fit samples from diverse domains. Additionally, SMORE provides
on average 4.56% higher accuracy than DOMINO, indicating DA
can more effectively address the domain distribution (DS) challenge
in noisy multi-sensor time series data compared to DG.

4.2.1 Impact of Hyperparameter §*. The impact of §* on classi-
fication results is demonstrated in Figure 5, where we evaluate
SMORE on the dataset USC-HAD as an example. SMORE achieved
its best performance when §* is around 0.65. Small values of §* are
more likely to detect in-distribution samples as OOD so that the
test-time models would include noises from the domains where
the sample only has a minimal similarity score, thereby causing
notable performance degradation. On the other hand, large val-
ues of §* are more likely to consider OOD samples in-distribution.
Consequently, the test-time model only includes domain-specific
models of the domains that exhibit limited similarity to the given
sample; therefore, the ensembled test-time model is unlikely to be
sufficiently comprehensive to provide accurate predictions.

DAC ’24, June 23-27, 2024, San Francisco, CA

[0 TENT [MDANs [BaselineHD [DOMINO [] SMORE (Our Work)
90

USC-HAD
S
-~ 75
>
Qo
e
3 60 (—’
Q
< H
4 L [0 I 0 I
Domain 1 Domain 2 Domain 3 Domain4 Domain5 Average
95
DSADS
S
= 80
>
o
g
§) H ‘7 ‘7 H
<
50 =
Domain 1 Domain 2 Domain 3 Domain 4 Average
95
PAMAP2
S g0
>
%]
o
2 65 HH
Q
50 O

Domain1 Domain2 Domain3 Domain 4 Domain5 Average

Figure 4: Comparing LODO Accuracy of SMORE and CNN-
based Domain Adaptation Algorithms

85
S
> 80
o
o
=]
Q
L 75

70

0.4 0.5 0.6 0.7 0.8

5

Figure 5: Imapct of 5* on Model Performance

4.3 Efficiency

4.3.1 Efficiency on Server CPU. For each dataset, each domain con-
sists of roughly similar amounts of data as detailed in TABLE 1;
thus, we show the average runtime of training and inference for all
the domains. As demonstrated in Figure 6(a), SMORE exhibits on
average 11.64X faster training than TENT and 18.81X faster training
than MDANS . Additionally, SMORE delivers 4.07x faster inference
than TENT and 4.63X faster inference than MDANSs. Such notably
higher learning efficiency is thanks to the highly parallel matrix
operations on hyperdimensional space. Additionally, SMORE pro-
vides on average 5.84X faster training compared to DOMINO. In
particular, DOMINO achieves domain generalization by iteratively
identifying and regenerating domain-variant dimensions and thus
requires notably more retraining iterations to provide reasonable
performance. On the other hand, during each retraining iteration,
DOMINO only keeps dimensions playing the most positive role in
the classification task, and thus it eventually arrives at a model with
compressed dimensionality and provides a slightly higher inference

DAC 24, June 23-27, 2024, San Francisco, CA

[TENT [] MDANs [BaselineHD [DOMINO [SMORE (Our Work)

10* E12
=z oy
g g8
F 102 3
o
£ S 4
£ 8
£ g
" £ , LLLIoell LRI

10°
DASAD USCHAD PAMAP2 DASAD USCHAD PAMAP2

(a) Efficiency of SMORE and CNN-based Algorithms on Server CPU

. 10? 10*
e 3
P c
o .,]
< 10 §i
5 2 E 102
- S5
§ 10! 2
o
[o
€ 100
£ 10 10°

Raspberry Pi Jetson Nano
(b) Efficiency of SMORE and CNN-based Algorithms on Edge Platforms

Figure 6: Efficiency of SMORE and CNN-based DA Algorithms

Raspberry Pi Jetson Nano

[0 TENT [0 MDANs [0 SMORE (Our Work)
10* -~ 9
0 0
o [}
£
£ £
@
£ 10
c
£ 3
= N
0 o Loo m| [[H

10
01 03 05 07 09 01 03 05 07 09

Percentage of Training Data Percentage of Inference Data

Figure 7: Comparing Scalability Using Different Size of Data

efficiency. Furthermore, compared to BaselineHD, SMORE provides
significantly higher accuracy (demonstrated in Fig. 4) without sub-
stantially increasing both the training and inference runtimes.

4.3.2 Efficiency on Embedded Platforms. To further understand the
performance of SMORE on resource-constrained computing plat-
forms, we evaluate the efficiency of SMORE, TENT, MDANSs, and
BaselineHD using a Raspberry Pi 3 Model B+ board and an NVIDIA
Jetson Nano board. Both platforms have very limited memory and
CPU cores (and GPU cores for Jetson Nano). Figure 6(b) shows the
average inference latency for each algorithm processing each do-
main in the PAMAP2 dataset. On Raspberry Pi, SMORE provides on
average14.82X speedups compared to TENT and 19.29% speedups
compared to MDAN:Ss in inference. On Jetson Nano, SMORE delivers
13.22X faster inference than TENT and 17.59X faster inference than
MDANSs. Additionally, SMORE exhibits significantly less energy
consumption, providing a more resource-efficient domain adapta-
tion solution for the distribution shift challenge on edge devices.

4.4 Scalability

We evaluate the scalability of SMORE and SOTA CNN-based DA
algorithms using various training data sizes (percentages of the full
dataset) of the PAMAP?2 dataset. As demonstrated in Figure 7, with
increasing the training data size, SMORE maintains high efficiency

Junyao Wang, Mohammad Abdullah Al Faruque

in both training and inference with a sub-linear growth in execution
time. In contrast, the training and inference time of CNN-based
DA algorithms increases considerably faster than SMORE. This
positions SMORE as an efficient and scalable DA solution for both
high-performance and resource-constrained computing platforms.

5 CONCLUSIONS

We propose SMORE, a novel HDC-based domain adaptive algo-
rithm that dynamically customizes test-time models with explicit
consideration of the domain context of each sample and thereby
provides accurate predictions. SMORE outperforms SOTA CNN-
based DA algorithms in both accuracy and training and inference
efficiency, making it an ideal solution to address the DS challenge.

6 ACKNOWLEDGEMENT

This work was partially supported by the National Science Founda-
tion (NSF) under award CCF-2140154.

REFERENCES

[1] Huihui Qiao et al. A time-distributed spatiotemporal feature learning method
for machine health monitoring with multi-sensor time series. Sensors, 2018.

[2] Junyao Wang et al. Rs2g: Data-driven scene-graph extraction and embedding for
robust autonomous perception and scenario understanding. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, 2024.

Samuel Wilson et al. Hyperdimensional feature fusion for out-of-distribution
detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2023.

[4] Dequan Wang et al. Tent: Fully test-time adaptation by entropy minimization.
In International Conference on Learning Representations, 2020.

[5] Han Zhao et al. Multiple source domain adaptation with adversarial learning. In
6th International Conference on Learning Representations, ICLR 2018, 2018.

[6] Xin Qin et al. Generalizable low-resource activity recognition with diverse and
discriminative representation learning. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, page 1943-1953, 2023.

[7] Shiori Sagawa et al. Distributionally robust neural networks. In International
Conference on Learning Representations, 2019.

[8] Junyao Wang, Luke Chen, and Mohammad Abdullah Al Faruque. Domino:
Domain-invariant hyperdimensional classification for multi-sensor time series
data. In 2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD), pages 1-9. IEEE, 2023.

[9] Yao Qin et al. A dual-stage attention-based recurrent neural network for time
series prediction. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence, 2017.

[10] Sepp Hochreiter et al. Long short-term memory. Neural computation, 1997.

[11] Junyao Wang et al. Disthd: A learner-aware dynamic encoding method for
hyperdimensional classification. arXiv preprint arXiv:2304.05503, 2023.

[12] Junyao Wang et al. Hyperdetect: A real-time hyperdimensional solution for
intrusion detection in iot networks. IEEE Internet of Things Journal, 2023.

[13] Mi Zhang et al. Usc-had: A daily activity dataset for ubiquitous activity recog-

nition using wearable sensors. In Proceedings of the 2012 ACM conference on

ubiquitous computing, 2012.

Ishaan Gulrajani et al. In search of lost domain generalization. In International

Conference on Learning Representations, 2021.

[15] Qi Dou et al. Domain generalization via model-agnostic learning of semantic

features. Advances in Neural Information Processing Systems, 2019.

Yaroslav Ganin et al. Domain-adversarial training of neural networks. The journal

of machine learning research, 2016.

[17] Abbas Rahimi et al. Hyperdimensional biosignal processing: A case study for
emg-based hand gesture recognition. In ICRC. IEEE, 2016.

[18] Ali Moin et al. A wearable biosensing system with in-sensor adaptive machine

learning for hand gesture recognition. Nature Electronics, 2021.

Junyao Wang et al. Robust and scalable hyperdimensional computing with

brain-like neural adaptations. arXiv preprint arXiv:2311.07705, 2023.

Billur Barshan et al. Recognizing daily and sports activities in two open source

machine learning environments using body-worn sensor units. The Computer

Journal, 2014.

[21] Attila Reiss et al. Introducing a new benchmarked dataset for activity monitoring.

In 16th international symposium on wearable computers. IEEE, 2012.

Alejandro Hernandez-Cano et al. Onlinehd: Robust, efficient, and single-pass

online learning using hyperdimensional system. In DATE. IEEE, 2021.

3

=
Kot

=
o

[19

[20

[22

	Abstract
	1 Introduction
	2 Related Works
	2.1 Domain Adaptation
	2.2 Hyperdimensional Computing

	3 Methodology
	3.1 HDC Prelimnaries
	3.2 Problem Formulation
	3.3 Multi-Sensor Time Series Data Encoding
	3.4 Domain-Specific Modeling
	3.5 Out-of-Distribution Detection
	3.6 Adaptive Test-Time Modeling

	4 Experimental Evaluations
	4.1 Experimental Setup
	4.2 Accuracy
	4.3 Efficiency
	4.4 Scalability

	5 Conclusions
	6 Acknowledgement
	References

