

DAC ’24, June 23–27, 2024, San Francisco, CA Junyao Wang, Mohammad Abdullah Al Faruque

training phase to include information from all domains , thus in-

�ating model performance. To address this problem, we propose

SMORE, a novel HDC-based DA algorithm for multi-sensor time

series classi�cation. Our main contributions are listed below:

• To the best of our knowledge, SMORE is the �rst HDC-based

DA algorithm. By explicitly considering the domain context of

each sample during inference, SMORE provides on average 1.98%

higher accuracy than SOTA DL-based DA algorithms on a wide

range of multi-sensor time series classi�cation tasks.

• Leveraging the e�cient and parallel high-dimensional operations,

SMORE provides on average 18.81× faster training and 4.63×

faster inference than SOTA DL-based DA algorithms, providing

a more e�cient solution to tackle the DS challenge.

• We evaluate SMORE across multiple resource-constrained hard-

ware devices including Raspberry Pi and NVIDIA Jetson Nano.

SMORE demonstrates considerably lower inference latency and

energy consumption than SOTA DL-based DA algorithms.

2 RELATEDWORKS

2.1 Domain Adaptation

Distribution shift (DS) arises when a model is deployed on a data

distribution di�erent from what it was trained on, posing serious

robustness challenges for real-world ML applications [4, 5]. Method-

ologies addressing DS can be primarily categorized as domain gener-

alizations (DG) and domain adaptations (DA). DG seeks to construct

models by identifying domain-invariant features shared across mul-

tiple source domains [14]. However, it can be challenging to extract

common features when there exist multiple source domains with

distinct characteristics [6, 8, 15]. Thus, existing DG approaches

often fail to provide comparable high-quality results as DA [7, 16].

In contrast, DA generally utilizes unlabeled data in target domains

to quickly adapt models trained in di�erent source domains [4].

Unfortunately, most existing DA techniques rely on multiple convo-

lutional and fully-connected layers to train domain discriminators,

requiring intensive computations and iterative re�nement.

2.2 Hyperdimensional Computing

Several recent works have utilized HDC as a lightweight learning

paradigm for time series classi�cation [17–19], achieving compa-

rable accuracy to SOTA DNNs with lower computational costs.

However, existing HDCs do not consider the DS challenge, which

can be a detrimental drawback for real-world ML applications. Hy-

perdimensional Feature Fusion [3] identi�es OOD samples by fusing

outputs of several layers of a DNN model to a common hyperdi-

mensional space, while its backbone remains relying on resource-

intensive multi-layer DNNs, and a systematic way to tackle OOD

samples has yet to be proposed. DOMINO [8], a novel HDC-based

DG method, constantly discards and regenerates biased dimensions

representing domain-variant information; nevertheless, it requires

signi�cantly more training time to provide reasonable accuracy.

Our proposed SMORE leverages e�cient operations of HDC to

customize test-time models for OOD samples, providing accurate

predictions without causing substantial computational overhead

for both training and inference.

3 METHODOLOGY

3.1 HDC Prelimnaries

Inspired by high-dimensional information representation of hu-

man brains, HDC maps inputs onto hyperdimensional space as

hypervectors, each containing thousands of elements. A unique

property of the hyperdimensional space is the existence of large

amounts of nearly orthogonal hypervectors, enabling highly par-

allel and e�cient operations. Similarity (X): calculation of the

distance between two hypervectors. A common measure is cosine

similarity. Bundling (+): element-wise addition of hypervectors,

e.g.,H1D=3;4 = H1+H2, generating a hypervector with the same di-

mension as inputs. Bundling provides an e�cient way to check the

existence of a hypervector in a bundled set. In the previous exam-

ple, X (H1D=3;4 ,H1) ≫ 0while X (H1D=3;4 ,H3) ≈ 0 (H3 ≠ H1,H2).

Bundling models how human brains memorize inputs. Binding

(∗): element-wise multiplication of two hypervectors to create an-

other near-orthogonal hypervector, i.e. H18=3 = H1 ∗ H2 where

X (H18=3 ,H1) ≈ 0 and X (H18=3 ,H2) ≈ 0. Due to reversibility, i.e.,

H18=3 ∗ H1 = H2, information from both hypervectors can be

preserved. Binding models how human brains connect inputs. Per-

mutation (d): a single circular shift of a hypervector by moving

the value of the �nal dimension to the �rst position and shifting all

other values to their next positions. The permuted hypervector is

nearly orthogonal to its original hypervector, i.e., X (dH ,H) ≈ 0.

Permutation models how human brains handle sequential inputs.

3.2 Problem Formulation

We assume that there are K (K > 1) source domains, i.e., D(=

{D1
S
,D2
S
, . . . ,DK

S
}, in the input space I, and we denote the out-

put space as Y. I consists of time-series data from < (< ≥ 1)

interconnected sensors, i.e., I = {I1,I2, . . . ,I<}. Our objective is

to utilize training samples in I and their corresponding labels inY

to train a classi�cation model 5 : I → Y to capture latent features

so that we can make accurate predictions when given samples from

an unseen target domain DT . The key challenge is that the joint

distribution between source domains and target domains can be dif-

ferent, i.e, PS
(I,Y)

≠ PT
(I,Y)

, and thus the model 5 can potentially

fail to adapt models trained on DS to samples from DT .

Our proposed SMORE, as shown in Figure 2, starts with mapping

training samples from the input space I to a hyperdimensional

space X with an encoder Ω (A), i.e., X = Ω(I), that preserves

the spatial and temporal dependencies in I. We then separate the

encoded data intoK subsets (X1,Y1), (X2,Y2), . . . , (XK ,YK) (B)

based on their domains. In the training phase, we train K domain-

speci�c modelsM = {M1,M2, . . . ,MK } such thatM: : X: →

Y: (1 ≤ : ≤ K) (C), and concurrently develop K expressive

domain descriptors U = {U1,U2, . . . ,UK } encoding the pattern

of each domain (D). When given a inference sample IT from the

target domainDT , we map IT to hyperdimensional space with the

same encoder Ω used for training, and identify OOD samples (E)

with a binary classi�er Φ utilizing the domain descriptorsU, i.e.,

Φ(Ω(IT),U). Finally, we construct a test-time model MT based

on domain-speci�c modelsM (F) and whether the sample is OOD

to make inferences (G) with explicit consideration of the domain

context of IT , i.e., ŶI =MT (Φ(Ω(IT),U),M).

SMORE: Similarity-based Hyperdimensional Domain Adaptation for Multi-Sensor Time Series Classification DAC ’24, June 23–27, 2024, San Francisco, CA

M
ul

ti-
Se

ns
or

 T
im

e
Se

rie
s

En
co

di
ng

A

B Domains⋯𝓧𝟏, 𝓨𝟏𝓧𝟐, 𝓨𝟐𝓧𝓚, 𝓨𝓚

E OOD Detection G Reasoning

Pr
ed

ic
tio

n

m
ax⋯cosine𝜹𝟏

𝜹𝓷𝜹𝟐
cosine𝜹𝟏
𝜹𝓷𝜹𝟐 O

O
D

?
(𝜹 𝐦𝐚𝐱≤

𝜸∗)

Training Data
sensor I sensor II

sensor m

Inference Data ⋯
⋯∑𝒊ୀ𝟏𝒏𝟏 𝓗𝒊𝟏∑𝒊ୀ𝟏𝒏𝟐 𝓗𝒊𝟐∑𝒊ୀ𝟏𝒏𝓚 𝓗𝒊𝓚 ⋯B

un
dl

in
g

D Domain Descriptors𝓤𝟏𝓤𝟐𝓤𝓚

Test-Time Modeling

⋯𝓜𝓣
𝓒𝒏𝝉𝓒𝟐𝝉
𝓒𝟏𝝉F

M
od

el

En
se

m
bl

e 𝓜𝟏 𝓜𝟐𝓜𝓣⋯ ⋯⋯𝓜𝟑 𝓜𝓚D
om

ai
n

D
es

cr
ip

to
rs

C
Models

cosine⋯ ⋯Modeling𝓒𝟏𝒌 𝜹𝟏
Model Update

𝜹𝟐 ⋯𝓜𝟐𝓜𝓚
𝓜𝟏

B
at

ch
 D

at
a

Similarity

𝜹𝓷

Domain-Specific Modeling

𝓒𝟏𝒌𝓒𝟏𝒌

m
ax

Q
ue

ry
 V

ec
to

r

Figure 2: The Work�ow of Our Proposed SMORE

𝝆𝓗𝒕𝟐𝝆𝝆𝓗𝒕𝟏
𝓗𝒕𝟑

max

min
𝓗𝒕𝟏𝓗𝒕𝟐𝓗𝒕𝟑 +

𝓢 ∗ 𝓗
𝓢′ ∗ 𝓗′

𝒕𝟏 𝒕𝟐 𝒕𝟑 T

Sensor I𝓨𝒕𝟏𝓨𝒕𝟐𝓨𝒕𝟑
Sampling Window Temporally Sorted Spatially IntegratedVector Quantization

𝒕𝟏 𝒕𝟐 𝒕𝟑
𝝆𝝆𝓗𝒕𝟏ᇱ𝝆𝓗𝒕𝟐ᇱ𝓗𝒕𝟑ᇱ𝓗𝒕𝟏ᇱ

𝓗𝒕𝟐ᇱ𝓗𝒕𝟑ᇱ
max

min

T

Sensor II

𝓨′𝒕𝟑
𝓨′𝒕𝟐𝓨′𝒕𝟏
Figure 3: HDC Encoding for Multi-Sensor Time Series Data

3.3 Multi-Sensor Time Series Data Encoding

We employ the encoding techniques in Figure 3 to capture and

preserve spatial and temporal dependencies in multi-sensor time

series data. We sample time series data in =-gram windows; in each

sample window, the signal values (~-axis) store the information and

the time (G-axis) represents the temporal sequence. We �rst assign

random hypervectorsH<0G andH<8= to represent the maximum

and minimum signal values. We then perform vector quantization

to values between the maximum and minimum values to gener-

ate vectors with a spectrum of similarity toH<0G andH<8= . For

instance, in Figure 3, Sensor I has the maximum value at C1 and

the minimum value at C2, and thus we assign randomly generated

hypervectorsHC1 andHC2 to ~C1 and ~C2 , respectively. Similarly, we

assign randomly generated hypervectors H ′C2 and H
′
C3
to ~′C2 and

~′C3 in Sensor II. We then assign hypervectors to ~C3 in Sensor I and

value at ~′C1 in Sensor II with vector quantization; mathematically,

HC3 = HC2 +
~C3 − ~C2
~C1 − ~C2

· (HC1 −HC2)

H ′C1 = H
′
C3
+
~′C1 − ~

′
C3

~′C2 − ~
′
C3

· (H ′C2 −H
′
C3
).

We represent the temporal sequence of data with the permutation

operation in section 3.1. For Sensor I and Sensor II in Figure 3, we

perform rotation shift (d) twice to HC1 and H
′
C1
, once to HC2 and

H ′C2 , and keepHC3 andH
′
C3
the same. We bind data samples in one

sampling widow by calculatingH = ddHC1 ∗ dHC2 ∗HC3 andH
′
=

ddH ′C1 ∗dH
′
C2
∗H ′C3 . Finally, to spatially integrate data frommultiple

sensors, we generate a random signature hypervector for each

sensor and bind information as
∑<
8=1 [G8 ∗H8], whereG8 denotes the

signature hypervector for sensor 8 ,H8 is the hypervector containing

overall information from sensor 8 , and< denotes the total number

of sensors. For our example in Figure 3, we combine information

from Sensor I and Sensor II by randomly generating signature

hypervectors G and G′ and calculating (G ∗ H) + (G′ ∗ H ′).

3.4 Domain-Speci�c Modeling

As shown in Figure 2, after mapping data to hyperdimensional

space (A), SMORE separates training samples into K subsets

based on their domains (B), where K represents the total number

of domains.. We then employ a highly e�cient HDC algorithm

to calculate a domain-speci�c model for every domain (C), i.e.,

M = {M1,M2, . . . ,MK }, identifying common patterns during

trainingwhile eliminatingmodel saturations.We bundle data points

by scaling a proper weight to each of them depending on howmuch

new information is added to class hypervectors. In particular, each

domain-speci�c modelM: (1 ≤ : ≤ K) consists of = class hyper-

vectors C:1 , C
:
2 , . . . , C

:
= (= = the number of classes), each of which

encodes the pattern of a class. A new sampleH in domain D:
S
up-

dates modelM: based on its cosine similarities, denoted as X (H , ·),

with all the class hypervectors inM: , i.e.,

X (H , C:C) =
H · C:C

∥H ∥ · ∥C:C ∥
=
H

∥H∥
·
C:C

∥C:C ∥
∝ H · Norm(C:C) (1)

where 1 ≤ C ≤ =. If H has the highest cosine similarity with the

class hypervector C:8 while its true label C:9 (1 ≤ 8, 9 ≤ =), the

domain-speci�c modelM: updates as

C:9 ← C
:
9 + [·

(

1 − X
(

H , C:9
)

)

×H

C:8 ← C
:
8 − [·

(

1 − X
(

H , C:8
)

)

×H ,
(2)

where [denotes a learning rate. A large X (H , ·) indicates the input

data point is marginally mismatched or already exists in the model,

and the model is updated by adding a very small portion of the en-

coded vector (1−X (H , ·) ≈ 0). In contrast, a small X (H , ·) indicates

a noticeably new pattern and updates the model with a large factor

(1 − X (H , ·) ≈ 1). Our learning algorithm provides a higher chance

for non-common patterns to be properly included in the model.

DAC ’24, June 23–27, 2024, San Francisco, CA Junyao Wang, Mohammad Abdullah Al Faruque

3.5 Out-of-Distribution Detection

3.5.1 Domain Descriptors. In parallel to domain-speci�c modeling,

as shown in Figure 2, we concurrently construct domain descriptors

(D) U = {U1,U2, . . . ,UK } to encode the distinct pattern of

each domain. Speci�cally, for each domain D:
S
(1 ≤ : ≤ K), we

utilize the bundling operation to combine the hypervector within

the domain, i.e., {H:
1 ,H

:
2 , . . . ,H

:
=:
}, and construct an expressive

descriptorU: . Mathematically,U: =
∑=:
8
H:

8 . Given the property

of the bundling operation (explained in section 3.1),U: is cosine-

similar to all the samplesH:
8 (1 ≤ 8 ≤ =:) within domain D:

S
as

they contribute to the bundling process, and dissimilar to all the

samples that are not part of the bundle, i.e., not in domain D:
S
.

3.5.2 Out-of-Distribution Detection. As shown in Figure 2, a key

component of our inference phase is the detection of OOD samples

(E).We start withmapping the testing sample to hyperdimensional

space with the same encoding technique as the training phase to

obtain a query vector Q (A). Then, as detailed in Algorithm 1, we

calculate the cosine similarity score of the query vectorQ to each do-

main descriptorU1,U2, . . . ,UK (line 1). A testing sample is identi-

�ed as OOD if its pattern is substantially di�erent from all the source

domains. Therefore, when the cosine similarity between Q and its

most similar domain, i.e., max
{

X (Q,U1), X (Q,U2), . . . , X (Q,UK)
}

,

is smaller than a threshold X∗, we consider Q as an OOD sample

(line 2). Here X∗ is a tunable parameter and we analyze the impact of

X∗ in section 4.2.1. We then dynamically construct test-time models

(F) based on whether the sample is OOD (section 3.6).

3.6 Adaptive Test-Time Modeling

3.6.1 Inference for OOD Samples. For each testing sample identi-

�ed as OOD, we dynamically adapt domain-speci�c modelsM =

{M1,M2, . . . ,M: } to customize a test-time modelMT that best

�ts its domain context and thereby provides an accurate prediction.

As detailed in Algorithm 1, for an OOD sample Q, we ensemble

each domain-speci�c model based on how similar Q is to the do-

main (line 3). Speci�cally, let X (Q,U1), X (Q,U2), . . . , X (Q,UK)

denote the cosine similarity between Q and each domain descriptor

U1,U2, . . . ,UK , we construct the test-time modelMT for Q as

MT = X (Q,U1) ·M1 +X (Q,U2) ·M2 + . . .+X (Q,UK) ·MK . (3)

Speci�cally,MT is of the same shape asM1,M2, . . . ,M: ; it con-

sists of = class hypervectors (= = number of classes), denoted as

CT1 , CT2 , . . . , CT= , formulated with explicit consideration of the do-

main context of Q. We then compute the cosine similarity between

Q and each of these class hypervectors, and assign Q to the class

to which it achieves the highest similarity score (line 7).

3.6.2 Inference for In-Distribution Samples. We predict the label of

an in-distribution testing sample, i.e., a non-OOD sample, leverag-

ing domain-speci�c models of the domains to which the sample is

highly similar. As demonstrated in Algorithm 1, for all the domains

D8
S
(1 ≤ 8 ≤ K) where the encoded query vector Q achieves a

similarity score higher than X∗, we ensemble their corresponding

domain-speci�c models incorporating a weight of their cosine simi-

larity score with Q to formulate the test-time modelMT (line 5 - 6).

Similar to section 3.6.1,MT consists of = class hypervectors, and Q

is assigned to the class where it obtained the highest similarity score

Algorithm 1 Domain Adaptive HDC Inference

Input: An encoded testing samples Q, a domain classi�er with K class

hypervectors U1,U2, . . . ,UK , a threshold for OOD detection X∗, K

domain-speci�c modelsM1,M2, . . . ,MK
Output: A predicted label P for Q.

1: X<0G = max{X (Q,U1), X (Q,U2) . . . , X (Q,UK) } ⊲ OOD detection

2: if X<0G < X∗ then ⊲ Q is considered OOD

3: MT ←
∑K

8=1 X (Q,U8) · M8 ⊲ model ensembling

4: else ⊲ Q is not OOD

5: for all X (Q,U8) ≥ X∗ do ⊲ 1 ≤ 8 ≤ :

6: MT ←
∑K

8=1 X (Q,U8) · M8 ⊲ partial model ensembling

7: P ← argmax
CT
8

{X (Q, CT1), X (Q, C
T
2) . . . , X (&, CT=)}

8: return P

Table 1: Detailed Breakdowns of Datasets
(N: number of data samples)

DSADS [20] USC-HAD [13] PAMAP2 [21]

Domains N Domains N Domains N

Domain 1 2,280 Domain 1 8,945 Domain 1 5,636
Domain 2 2,280 Domain 2 8,754 Domain 2 5,591
Domain 3 2,280 Domain 3 8,534 Domain 3 5,806
Domain 4 2,280 Domain 4 8,867 Domain 4 5,660

Domain 5 8,274

Total 9,120 Total 43,374 Total 22,693

(line 7). Note that, unlike the inference for OOD samples where we

ensemble all the domain-speci�c models to enhance performance,

the test-time modelMT for an in-distribution sample does not

consider domain-speci�c models of the domains where Q show

a minor similarity score lower than X∗. In particular, if a testing

sample Q does not show high similarity to any of the source do-

mains, we include information from all the domains to construct a

su�ciently comprehensive test-time model to mitigate the negative

impacts of distribution shift. In contrast, when Q exhibits consider-

able similarity to certain domains, adding information from other

domains is comparable to introducing noises and can potentially

mislead the classi�cation and degrade model performance.

4 EXPERIMENTAL EVALUATIONS

4.1 Experimental Setup

Weevaluate SMORE onwidely-usedmulti-sensor time series datasets

DSADS [20], USC-HAD [13], PAMAP2 [21]. Domains are de�ned

by subject grouping chosen based on subject ID from low to high.

The data size of each domain in each dataset is demonstrated in

TABLE 1. We compare SMORE with (i) two SOTA CNN-based DA

algorithms: TENT [4] andmultisource domain adversarial networks

(MDANs) [5], and (ii) two HDC algorithms: the SOTA HDC not

considering distribution shifts [22] (BaselineHD) and DOMINO [8],

a recently proposed HDC-based domain generalization framework.

The CNN-based DA algorithms are trained with TensorFlow, and

we apply the common practice of grid search to identify the best

hyper-parameters for each model. Since DOMINO involves dimen-

sion regeneration in every training iteration, for fairness, we initiate

it with dimension 3∗ = 1: and make its total dimensionalities, i.e.,

the sum of its initial dimension and all regenerated dimensions

throughout retraining, the same as SMORE and BaselineHD.

SMORE: Similarity-based Hyperdimensional Domain Adaptation for Multi-Sensor Time Series Classification DAC ’24, June 23–27, 2024, San Francisco, CA

4.1.1 Platforms. To evaluate the performance of SMORE on both

high-performance computing environments and resource-limited

edge devices, we include results from the following platforms:

• Server CPU: Intel Xeon Silver 4310 CPU (12-core, 24-thread,

2.10 GHz), 96 GB DDR4 memory, Ubuntu 20.04, Python 3.8.10,

PyTorch 1.12.1, TDP 120 W.

• Embedded CPU: Raspberry Pi 3 Model 3+ (quad-core ARM

A53 @1.4GHz), 1 GB LPDDR2 memory, Debian 11, Python 3.9.2,

PyTorch 1.13.1, TDP 5 W.

• Embedded GPU: Jetson Nano (quad-core ARM A57 @1.43 GHz,

128-core Maxwell GPU), 4 GB LPDDR4 memory, Python 3.8.10,

PyTorch 1.13.0, CUDA 10.2, TDP 10 W.

4.1.2 Data Preprocessing. We describe the data processing for each

dataset primarily on data segmentation and domain labeling.

• DSADS[20]: The Daily and Sports Activities Dataset (DSADS)

includes 19 activities performed by 8 subjects. Each data segment

is a non-overlapping �ve-second window sampled at 25Hz. Four

domains are formed with two subjects each.

• USC-HAD [13]: The USC human activity dataset (USC-HAD)

includes 12 activities performed by 14 subjects. Each data segment

is a 1.26-second window sampled at 100Hz with 50% overlap. Five

domains are formed with three subjects each.

• PAMAP2 [21]: The Physical Activity Monitoring (PAMAP2)

dataset includes 18 activities performed by 9 subjects. Each data

segment is a 1.27-second window sampled at 100Hz with 50%

overlap. Four domains, excluding subject nine, are formed with

two subjects each.

4.2 Accuracy

The accuracy of the LODO classi�cation is demonstrated in Figure

4. The accuracy of Domain : indicates that the model is trained with

data from all the other domains and evaluated with data from Do-

main : . This accuracy score serves as an indicator of the model’s do-

main adaptation capability when confronted with unseen data from

unseen distributions. SMORE achieves comparable performance to

TENT and on average 1.98% higher accuracy than MDANs. Addi-

tionally, SMORE provides 20.25% higher accuracy than BaselineHD,

demonstrating that SMORE successfully adapts trained models to

�t samples from diverse domains. Additionally, SMORE provides

on average 4.56% higher accuracy than DOMINO, indicating DA

can more e�ectively address the domain distribution (DS) challenge

in noisy multi-sensor time series data compared to DG.

4.2.1 Impact of Hyperparameter X∗. The impact of X∗ on classi-

�cation results is demonstrated in Figure 5, where we evaluate

SMORE on the dataset USC-HAD as an example. SMORE achieved

its best performance when X∗ is around 0.65. Small values of X∗ are

more likely to detect in-distribution samples as OOD so that the

test-time models would include noises from the domains where

the sample only has a minimal similarity score, thereby causing

notable performance degradation. On the other hand, large val-

ues of X∗ are more likely to consider OOD samples in-distribution.

Consequently, the test-time model only includes domain-speci�c

models of the domains that exhibit limited similarity to the given

sample; therefore, the ensembled test-time model is unlikely to be

su�ciently comprehensive to provide accurate predictions.

45

60

75

90

Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Average

Ac
cu

ra
cy

 (%
)

USC-HAD

50

65

80

95

Domain 1 Domain 2 Domain 3 Domain 4 Average

Ac
cu

ra
cy

 (%
) DSADS

50

65

80

95

Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Average

Ac
cu

ra
cy

 (%
)

PAMAP2

TENT MDANs BaselineHD DOMINO SMORE (Our Work)

Figure 4: Comparing LODO Accuracy of SMORE and CNN-

based Domain Adaptation Algorithms

𝜹∗
Figure 5: Imapct of X∗ on Model Performance

4.3 E�ciency

4.3.1 E�iciency on Server CPU. For each dataset, each domain con-

sists of roughly similar amounts of data as detailed in TABLE 1;

thus, we show the average runtime of training and inference for all

the domains. As demonstrated in Figure 6(a), SMORE exhibits on

average 11.64× faster training than TENT and 18.81× faster training

than MDANs. Additionally, SMORE delivers 4.07× faster inference

than TENT and 4.63× faster inference than MDANs. Such notably

higher learning e�ciency is thanks to the highly parallel matrix

operations on hyperdimensional space. Additionally, SMORE pro-

vides on average 5.84× faster training compared to DOMINO. In

particular, DOMINO achieves domain generalization by iteratively

identifying and regenerating domain-variant dimensions and thus

requires notably more retraining iterations to provide reasonable

performance. On the other hand, during each retraining iteration,

DOMINO only keeps dimensions playing the most positive role in

the classi�cation task, and thus it eventually arrives at a model with

compressed dimensionality and provides a slightly higher inference

DAC ’24, June 23–27, 2024, San Francisco, CA Junyao Wang, Mohammad Abdullah Al Faruque

1

100

10000

DASAD USCHAD PAMAP2

Tr
ai

ni
ng

 T
im

e
(s

)

𝟏𝟎𝟎
𝟏𝟎𝟐
𝟏𝟎𝟒

0

4

8

12

DASAD USCHAD PAMAP2

In
fe

re
nc

e
La

te
nc

y
(s

)

TENT MDANs BaselineHD DOMINO SMORE (Our Work)

(a) Efficiency of SMORE and CNN-based Algorithms on Server CPU

1

10

100

1000

Raspberry Pi Jetson Nano

In
fe

re
nc

e
La

te
nc

y
(s

)

𝟏𝟎𝟎
𝟏𝟎𝟏
𝟏𝟎𝟐
𝟏𝟎𝟑

Raspberry Pi Jetson Nano

𝟏𝟎𝟒
𝟏𝟎𝟐
𝟏𝟎𝟎

En
er

gy

C
on

su
m

pt
io

n
(J

)

(b) Efficiency of SMORE and CNN-based Algorithms on Edge Platforms

Figure 6: E�ciency of SMORE and CNN-based DAAlgorithms

TENT MDANs SMORE (Our Work)

1

100

10000

0.1 0.3 0.5 0.7 0.9

Tr
ai

ni
ng

 T
im

e
(s

)

Percentage of Training Data

0

3

6

9

0.1 0.3 0.5 0.7 0.9

In
fe

re
nc

e
Ti

m
e

(s
)

Percentage of Inference Data

𝟏𝟎𝟒
𝟏𝟎𝟐
𝟏𝟎𝟎

Figure 7: Comparing Scalability Using Di�erent Size of Data

e�ciency. Furthermore, compared to BaselineHD, SMORE provides

signi�cantly higher accuracy (demonstrated in Fig. 4) without sub-

stantially increasing both the training and inference runtimes.

4.3.2 E�iciency on Embedded Platforms. To further understand the

performance of SMORE on resource-constrained computing plat-

forms, we evaluate the e�ciency of SMORE, TENT, MDANs, and

BaselineHD using a Raspberry Pi 3 Model B+ board and an NVIDIA

Jetson Nano board. Both platforms have very limited memory and

CPU cores (and GPU cores for Jetson Nano). Figure 6(b) shows the

average inference latency for each algorithm processing each do-

main in the PAMAP2 dataset. On Raspberry Pi, SMORE provides on

average14.82× speedups compared to TENT and 19.29× speedups

compared toMDANs in inference. On Jetson Nano, SMORE delivers

13.22× faster inference than TENT and 17.59× faster inference than

MDANs. Additionally, SMORE exhibits signi�cantly less energy

consumption, providing a more resource-e�cient domain adapta-

tion solution for the distribution shift challenge on edge devices.

4.4 Scalability

We evaluate the scalability of SMORE and SOTA CNN-based DA

algorithms using various training data sizes (percentages of the full

dataset) of the PAMAP2 dataset. As demonstrated in Figure 7, with

increasing the training data size, SMORE maintains high e�ciency

in both training and inference with a sub-linear growth in execution

time. In contrast, the training and inference time of CNN-based

DA algorithms increases considerably faster than SMORE. This

positions SMORE as an e�cient and scalable DA solution for both

high-performance and resource-constrained computing platforms.

5 CONCLUSIONS

We propose SMORE, a novel HDC-based domain adaptive algo-

rithm that dynamically customizes test-time models with explicit

consideration of the domain context of each sample and thereby

provides accurate predictions. SMORE outperforms SOTA CNN-

based DA algorithms in both accuracy and training and inference

e�ciency, making it an ideal solution to address the DS challenge.

6 ACKNOWLEDGEMENT

This work was partially supported by the National Science Founda-

tion (NSF) under award CCF-2140154.

REFERENCES
[1] Huihui Qiao et al. A time-distributed spatiotemporal feature learning method

for machine health monitoring with multi-sensor time series. Sensors, 2018.
[2] Junyao Wang et al. Rs2g: Data-driven scene-graph extraction and embedding for

robust autonomous perception and scenario understanding. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, 2024.

[3] Samuel Wilson et al. Hyperdimensional feature fusion for out-of-distribution
detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2023.

[4] Dequan Wang et al. Tent: Fully test-time adaptation by entropy minimization.
In International Conference on Learning Representations, 2020.

[5] Han Zhao et al. Multiple source domain adaptation with adversarial learning. In
6th International Conference on Learning Representations, ICLR 2018, 2018.

[6] Xin Qin et al. Generalizable low-resource activity recognition with diverse and
discriminative representation learning. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, page 1943–1953, 2023.

[7] Shiori Sagawa et al. Distributionally robust neural networks. In International
Conference on Learning Representations, 2019.

[8] Junyao Wang, Luke Chen, and Mohammad Abdullah Al Faruque. Domino:
Domain-invariant hyperdimensional classi�cation for multi-sensor time series
data. In 2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD), pages 1–9. IEEE, 2023.

[9] Yao Qin et al. A dual-stage attention-based recurrent neural network for time
series prediction. In Proceedings of the 26th International Joint Conference on
Arti�cial Intelligence, 2017.

[10] Sepp Hochreiter et al. Long short-term memory. Neural computation, 1997.
[11] Junyao Wang et al. Disthd: A learner-aware dynamic encoding method for

hyperdimensional classi�cation. arXiv preprint arXiv:2304.05503, 2023.
[12] Junyao Wang et al. Hyperdetect: A real-time hyperdimensional solution for

intrusion detection in iot networks. IEEE Internet of Things Journal, 2023.
[13] Mi Zhang et al. Usc-had: A daily activity dataset for ubiquitous activity recog-

nition using wearable sensors. In Proceedings of the 2012 ACM conference on
ubiquitous computing, 2012.

[14] Ishaan Gulrajani et al. In search of lost domain generalization. In International
Conference on Learning Representations, 2021.

[15] Qi Dou et al. Domain generalization via model-agnostic learning of semantic
features. Advances in Neural Information Processing Systems, 2019.

[16] Yaroslav Ganin et al. Domain-adversarial training of neural networks. The journal
of machine learning research, 2016.

[17] Abbas Rahimi et al. Hyperdimensional biosignal processing: A case study for
emg-based hand gesture recognition. In ICRC. IEEE, 2016.

[18] Ali Moin et al. A wearable biosensing system with in-sensor adaptive machine
learning for hand gesture recognition. Nature Electronics, 2021.

[19] Junyao Wang et al. Robust and scalable hyperdimensional computing with
brain-like neural adaptations. arXiv preprint arXiv:2311.07705, 2023.

[20] Billur Barshan et al. Recognizing daily and sports activities in two open source
machine learning environments using body-worn sensor units. The Computer
Journal, 2014.

[21] Attila Reiss et al. Introducing a new benchmarked dataset for activity monitoring.
In 16th international symposium on wearable computers. IEEE, 2012.

[22] Alejandro Hernández-Cano et al. Onlinehd: Robust, e�cient, and single-pass
online learning using hyperdimensional system. In DATE. IEEE, 2021.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Domain Adaptation
	2.2 Hyperdimensional Computing

	3 Methodology
	3.1 HDC Prelimnaries
	3.2 Problem Formulation
	3.3 Multi-Sensor Time Series Data Encoding
	3.4 Domain-Specific Modeling
	3.5 Out-of-Distribution Detection
	3.6 Adaptive Test-Time Modeling

	4 Experimental Evaluations
	4.1 Experimental Setup
	4.2 Accuracy
	4.3 Efficiency
	4.4 Scalability

	5 Conclusions
	6 Acknowledgement
	References

