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Abstract
Recent advancements in person recognition have raised concerns
about identity privacy leaks. Gait recognition through millimeter-
wave radar provides a privacy-centric method. However, it is chal-
lenged by lower accuracy due to the sparse data these sensors
capture. We are the first to investigate a cross-modal method, Iden-
tityKD, to enhance gait-based person recognition with the assis-
tance of facial data. IdentityKD involves a training process using
both gait and facial data, while the inference stage is conducted
exclusively with gait data. To effectively transfer facial knowledge
to the gait model, we create a composite feature representation
using contrastive learning. This method integrates facial and gait
features into a unified embedding that captures the unique identity-
specific information from both modalities. We employ two distinct
contrastive learning losses. One minimizes the distance between
embeddings of data pairs from the same person, enhancing intra-
class compactness, while the other maximizes the distance between
embeddings of data pairs from different individuals, improving
inter-class separability. Additionally, we use an identity-wise dis-
tillation strategy, which tailors the training process for each in-
dividual, ensuring that the model learns to distinguish between
different identities more effectively. Our experiments on a dataset of
36 subjects, each providing over 5000 face-gait pairs, demonstrate
that IdentityKD improves identity recognition accuracy by 6.5%
compared to baseline methods.

CCS Concepts
• Security and privacy → Security services; • Computing
methodologies→Machine learning.
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1 Introduction
For decades, the problem of human authentication has been a per-
sistent challenge. Biometric-based recognition was once considered
a reliable human authentication method. Common biometrics in-
volve technologies like retina scans [19], voice recognition [8], and
facial recognition [32]. However, all these bio-signs necessitate
extra effort from individuals for authentication. For instance, fa-
cial recognition demands positioning in front of a high-resolution
camera to capture unique facial features, and fingerprint methods
require one to place his/her fingers on a scanner to detect patterns.
These methods are vulnerable to spoofing attacks, where unautho-
rized users deceive the system with counterfeit biometric traits of a
legitimate user [2, 9, 20, 23]. To overcome these issues, researchers
have turned to effortless and non-invasive authentication systems
using behavioral biometrics, such as gait features. Notably, studies
have shown that it is exceedingly difficult to spoof human gait [21],
as the uniqueness of an individual’s gait makes it challenging to
imitate others effectively.

Gait recognition, which analyzes an individual’s walking pattern,
presents a promising alternative because it is non-invasive and dif-
ficult to spoof [15]. Imagine where your identity can be securely
recognized without revealing sensitive information like your face.
This vision drives our research. Our goal is to recognize individuals
based on how they walk, using millimeter-wave (mmWave) radar
while preserving privacy. These sensors can capture the movements
of a person without showing their face, which is great for privacy.
However, gait recognition using mmWave radar sensors faces chal-
lenges due to the sparse data these sensors capture, often leading
to lower recognition accuracy [1, 25]. To address these challenges,
we explore leveraging multimodal learning by incorporating facial
data, which inherently contains a much richer and more detailed
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Figure 1: Cross-modal knowledge transfer. The face network
(teacher) transfers the discriminative knowledge to the gait
network (student) during training. During the inference, the
gait network only conducts identity recognition. The same
shape (triangle, star, diamond) represents the same identity.

set of identity-specific information, to significantly enhance the
accuracy and reliability of gait-based identity recognition.

We propose an identity recognition method based on the knowl-
edge distillation (KD) [11] via gait data frommmWave radar sensors,
called IdentityKD. The overview of IdentityKD is shown in Figure. 1.
We employ a KD strategy to facilitate the transfer of knowledge
from the more informative facial modality to the less informative
gait modality during training. However, we empirically find that
directly applying conventional KD techniques to our cross-modal
teacher-student learning framework does not yield the desired
outcomes. We identify two primary factors contributing to this sub-
optimal performance: (1) a significant disparity in the latent space
domains of the gait and face modalities, and (2) misalignment in the
quality of the input data for faces and gaits. Specifically, traditional
KD methods typically aim to minimize the difference between the
teacher and student outputs, encouraging the student model to
mirror the teacher model exactly. However, due to the considerable
domain gap between the two modalities, this approach can result
in overfitting. Additionally, when the quality of input data from
the two sources is not comparable, the efficacy of the distillation
process tends to diminish.

To solve these problems, we use contrastive learning to integrate
facial and gait features into a unified embedding that captures the
unique identity-specific information from both modalities shown
in Figure. 1. During training, we use both the radar data (gait) and
facial images. Specifically, we first convert the time-series gait data
into spectrogram images, which can be processed similarly to im-
ages. Then, we use KD to transfer knowledge from the facial data
to the gait data. The face network teaches the gait network to un-
derstand and learn from the detailed facial information, enhancing
its ability to interpret the less detailed gait data. Meanwhile, we em-
ploy compositional contrastive learning, a technique that ensures
features from the same individual are close together in the feature
space (intra-class compactness) and those from different individuals
are far apart (inter-class separability). This alignment is crucial for
creating a unified representation that accurately captures identity-
specific features from facial and gait modalities. Additionally, we

use an identity-wise training strategy that tailors the learning pro-
cess for each individual. This makes the gait network better at
distinguishing between different persons, even if the data quality
varies. After training, during the inference stage, the network can
recognize persons using only the gait data from mmWave radar
sensors.

Our method is tested on a dataset comprising 36 subjects, demon-
strating that our approach significantly boosts identity recognition
performance by approximately 5% to 9%. Our method ensures that
in real-world use, only gait data is needed, which is less invasive
and better for privacy. This approach addresses the limitations of
radar data and provides a strong solution for security, surveillance,
and access control where privacy is crucial. Our contributions are
summarized as follows:
• We propose IdentityKD, a novel KD model for person recog-
nition, featured by learnable compositional embeddings that
bridge the semantic gap between gait and face modalities and
utilize a distillation objective that simultaneously contrasts
two modalities within a unified latent space.
• We present an identity-wise distillation strategy that adap-
tively tailors identity configurations for each subject during
training, and refines theweight averaging process to enhance
and stabilize the model across all individuals, particularly
improving robustness in the least performing classes.
• We conduct experiments on a dataset of 36 subjects, and the
results show that our method can effectively improve the
accuracy of identity recognition.

2 Background
2.1 mmWave Radars for Person Identification
Principles of mmWave Radar. The mmWave radar operates
on the frequency-modulated continuous wave (FMCW) principle,
which enables it to measure the range, relative radial speed, and an-
gle of a target [31]. The radar sends out a chirp signal that increases
in frequency over time and processes the reflected signals from
objects to determine their positions in three dimensions. For range
measurement, the distance between the radar and the object is
calculated using the formula involving the intermediate frequency
(IF), the speed of light, the bandwidth of the chirp, and the chirp
duration. A fast Fourier transform (FFT) is performed on the IF sig-
nal to measure the range of multiple objects at different distances.
For angle estimation, the mmWave radar employs a linear antenna
array. By emitting chirps with the same initial phase and sampling
the reflected signals with multiple receiver antennas, the radar can
determine the phase difference between signals received by consec-
utive antennas. The angle of arrival (AoA) is then calculated using
the phase difference, the wavelength, and the distance between the
antennas. This allows for the precise location of objects in a Carte-
sian coordinate system once the range and AoA are known. Based
on the principle of mmWave radar, we can effectively capture rele-
vant information about individuals entering the radar monitoring
area, providing a foundation for subsequent data preprocessing.

Person IdentificationUsingGait. Gait, a biometric characteris-
tic observable during walking, inherently includes identity-specific
traits that can be used for human identification [3, 7, 13, 24]. Gait-
based identification systems work by extracting walking features
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from a data sequence, such as step length, arm swing amplitude,
and walking pace, and then employing these characteristics as iden-
tifiers. As walking involves a sequence of movements, gait feature
extraction typically spans multiple frames. In our study, we utilize
such sequences to extract gait features from an mmWave radar
sensor and to re-identify individuals.

2.2 Cross-modal Knowledge Distillation
Knowledge distillation (KD) is a model compression technique used
to transfer knowledge from a complex model (teacher) to a light-
weight model (student) to improve the overall performance of the
small model [12]. KD techniques aim to minimize the discrepancy
between the prediction scores (logits) of the teacher and student
models. It has been suggested to broaden the feature information
extracted from the model using cross-modal KD. This bridging
technique establishes a connection across diverse data modalities
to facilitate the transfer of knowledge, ultimately leading to im-
proved performance. In cross-modal KD, most existing approaches
focus on closely related modalities, including depth and optical flow
images [10] and RGB and depth images [26]. Some researchers em-
ployed a multi-modal teacher combining face and speech to oversee
the training of a single-modal student model, although they noted
a significant disparity between the speech and face data, which
posed challenges in enhancing performance [14, 16, 30]. Current
work [5] transferred knowledge across image, audio, and video
modalities uncovering richer multi-modal knowledge. Inspired by
these studies, our paper targets the issue of cross-modal disparities,
specifically between facial and gait data for person recognition.

2.3 Contrastive Learning
Contrastive self-supervised learning focuses on training an encoder
to derive meaningful representations from unlabeled images by
bringing together similar samples (positives) and separating dissim-
ilar ones (negatives). In particular, instance discrimination treats
augmented versions of the same image (e.g., through random crop-
ping) as positives, while considering distinct images as negatives.

Contrastive learning techniques with unlabeled samples often
struggle to capture category-specific information during the fea-
ture extraction process. However, when these self-supervised con-
trastive learning strategies are employed on annotated data, they
have been shown to more effectively consolidate features from
identical categories, resulting in denser clusters [17]. This validates
the utility of supervised contrastive learning in the domain of iden-
tity recognition. As a result, we intend to integrate supervised
techniques with the principles of contrastive learning to develop a
model capable of discerning feature consistency within the same
category as well as distinctions across different categories [6]. Our
approach will specifically showcase contrastive learning through
the use of dual perspectives of an individual’s identity: one from a
standard RGB image and the other from gait captured by mmWave
radar sensors. We will construct contrastive pairs using mmWave
radar data, consisting of anchor images and comparative samples.
These pairs will then be processed by the contrastive learning net-
work for advanced feature extraction, which we will elaborate on
in the subsequent section.

3 Methodology
The overall structure of our IdentityKD method is shown in Fig. 2.
We first establish a face feature extraction module to serve as the
teacher model, extracting features from RGB imagery. Concurrently,
we construct a gait feature extractionmodule that acts as the student
model, tasked with gait feature extraction from data obtained via
mmWave radar sensors. Subsequently, we employ KD methods
to refine the student model through contrastive loss optimization.
Additionally, the model is further enhanced through an identity-
wise calibrated strategy, balancing the disparity of different classes.

3.1 Visual Feature Representation
As shown in Fig. 2, the visual feature extraction module is also the
teacher feature extraction module. In this context, the superscripts
𝑡 and 𝑠 are associated with the teacher and student models, respec-
tively. The input to this module is an RGB facial image sequence𝑋𝑛 ,
where each image 𝑥𝑖 in 𝑋𝑛 has dimension R3×𝐻×𝑊 , with width𝑊
and height 𝐻 . The facial dataset 𝐷 𝑓 can be expressed as

𝐷 𝑓 = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1 , 𝑛 ∈ {1, 2, 3, . . .} (1)

where 𝑥𝑖 refers to the 𝑖-th facial sample associated with the teacher
model 𝑡 . 𝑦𝑖 is the label corresponding to the 𝑖-th sample.

The facial input dataset is subjected to random data augmenta-
tion for data augmentation to enhance the generalization capacity
of themodel. The preprocessed RGB data is then put into the teacher
model to extract facial features. The teacher is a facial recognition
system whose main goal is to learn the Euclidean distance between
samples to reduce the distance between facial samples of the same
person and increase the distance between facial samples of different
people. We propose a feature fusion strategy (details in Sec. 3.3) for
minimizing the effect of significant modality distinctions between
cross-modal datasets. To avoid the inhomogeneity of the structure
of the teacher-student feature capture networks across modalities,
we harvest the outputs of the penultimate layer of the teacher and
student models for cross-modal fusion. Note that for a classification
task, the penultimate layer is the layer before the final classifier. We
extract the penultimate feature embeddings before the classifier. In
this study, 𝑥𝑖 is fed into the FaceNet [28] encoder 𝐹 𝑡 (·) to generate
the facial feature representation 𝑝𝑡

𝑖
:

𝑝𝑡𝑖 = 𝐹
𝑡 (𝑥𝑖 ) (2)

3.2 RF Feature Representation
We preprocess the raw gathered gait dataset from mmWave radar
to create spectrogram images 𝑍𝑛 , where each image 𝑧𝑖 in 𝑍𝑛 has
dimension R3×𝐻×𝑊 . We then feed these images to our student
model 𝐹𝑠 (·), labeling the gait dataset as

𝐷𝑔 = {(𝑧𝑖 , 𝑦𝑖 )}𝑛𝑖=1 , 𝑛 ∈ {1, 2, 3, . . .} (3)

where 𝑧𝑖 refers to the 𝑖-th gait spectrogram image associated with
the student model 𝑠 .

Our thorough experiments found that the disparity between gait
and facial image data modalities is considerable, which complicates
the application of knowledge derived from facial features to gait
feature enhancement. This leads to ineffective cross-modal knowl-
edge transfer and subpar performance in identity recognition tasks.
To address this, we suggest a contrastive learning approach that
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Figure 2: The framework of IdentityKD method where the teacher (face recognition model) transfers discriminative knowledge
to the student (gait model). The Composer fuses gait and face embeddings. The framework utilizes contrastive learning loss,
KD loss, and cross-entropy loss to optimize student model performance.

combines the embeddings from both the teacher and student mod-
els under a supervised framework. This is designed to bridge the
semantic divide, causing dissimilar samples to diverge and similar
samples to converge, thereby narrowing the domain and seman-
tic gaps between different types of data. The penultimate feature
embeddings, denoted by 𝑝𝑠

𝑖
, are acquired by passing spectrograms

through the student model. Following this, a classifier 𝑓 𝑠 (·) is em-
ployed to produce the ultimate classification output, represented
by 𝑦𝑠

𝑖
, which also signifies the student model’s final logit outputs.

𝑝𝑠𝑖 = 𝐹
𝑠 (𝑧𝑖 ) (4)

𝑦𝑠𝑖 = 𝑓
𝑠 (𝑃𝑠𝑖 ) (5)

3.3 Fusion of Multi-Modal Representations
It has been previously noted that student and teacher model em-
beddings may not align semantically. To reconcile these poten-
tial semantic and domain discrepancies between modalities, our
approach suggests a correction for the facial image embeddings.
This is achieved by merging teacher and student embeddings and
anchoring the combined embeddings to the specific aims of our
task, thereby bridging the identified semantic gaps. Given that
the network structures differ among modalities, the synthesis of
cross-modal composition occurs at the penultimate layer.

Formally, the facial embedding 𝑝𝑡
𝑖
merges with the gait embed-

ding 𝑝𝑠
𝑖
, through the induction of a residual on the teacher em-

beddings. The teacher embeddings are refined with a composition
function 𝐹𝑝 (·, ·), which introduces a residual function 𝑓 𝑠𝑡 (·, ·) that
combines two modalities using normalization, concatenation, and
a linear transformation:

𝑝𝑖 = 𝐹𝑝 (𝑝𝑡𝑖 , 𝑝
𝑠
𝑖 ) = 𝑝

𝑡
𝑖 + 𝑓

𝑠𝑡 (𝑝𝑡𝑖 , 𝑝
𝑠
𝑖 ), (6)

where 𝑝𝑖 is the fused embeddings. This procedure has connections
to earlier studies that integrate features frommultiplemodalities [4],
but our methodology focuses on modulating the teacher embedding
through an adjustable residual. More critically, to guide outcomes of

the classifier 𝑓𝑝 (·), we fine-tune 𝐹𝑝 (·, ·) with the objective function
associated with the subject classification.

3.4 Identity-wise Cross-modal Distillation
Previous uni-modal approaches typically focus on transferring
knowledge in the prediction space, where the student network is
trained to mirror the output of the teacher network. However, this
technique is not directly applicable to multimodal KD, as teacher
networks are generally pre-trained with diverse task objectives
and predict various classes. In light of this, we suggest employ-
ing contrastive learning within the latent feature space and then
differentiating the class distributions in the predictive space.

Contrast loss. With uni-modal and compositional embeddings,
we aim to distill knowledge by converging positive pairings and
diverging negative ones across different modalities. For instance,
positive pairings might consist of a facial image and the corre-
sponding gait data of the same individual. Concretely, for a trio
composed of a facial image, gait, and their combined embeddings,
a contrastive loss can be calculated for each pairing to strengthen
their association within the unified feature space. Formally, the
contrastive loss (utilizing InfoNCE [22]) for a embedding pair is
calculated as follows:

𝐿𝐶𝐿𝑆𝑇 = − log
exp(sim(𝑝𝑠

𝑖
, 𝑝𝑡
𝑖
)/𝜏)∑𝐵

𝑗=1 exp(sim(𝑝𝑠𝑗 , 𝑝
𝑡
𝑗
)/𝜏)

= − log 𝑝𝑠𝑡𝑖 (7)

𝐿𝐶𝐿𝑆𝑃 = − log
exp(sim(𝑝𝑠

𝑖
, 𝑝𝑖 )/𝜏)∑𝐵

𝑗=1 exp(sim(𝑝𝑠𝑗 , 𝑝 𝑗 )/𝜏)
= − log 𝑝𝑠𝑝

𝑖
(8)

where 𝐿𝐶𝐿𝑆𝑇 is the contrast loss between gait and face embeddings.
𝐿𝐶𝐿𝑆𝑃 is the contrast loss between gait and fusion embeddings. 𝐵
refers to the size of the mini-batch. 𝜏 is the temperature factor to
control the softness of logits. sim(·, ·) is the cosine similarity.

The two contrastive learning losses, 𝐿𝐶𝐿𝑆𝑃 and 𝐿𝐶𝐿𝑆𝑇 , play com-
plementary roles in optimizing the feature space for identity recog-
nition. The 𝐿𝐶𝐿𝑆𝑃 loss is designed to minimize the distance between
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Figure 3: Data collection environment and mmWave device

embeddings of data pairs from the same person, thus enhancing
intra-class compactness by clustering features of the same identity
tightly together. On the other hand, 𝐿𝐶𝐿𝑆𝑇 aims to maximize the dis-
tance between embeddings of data pairs from different individuals,
thereby improving inter-class separability by pushing features of
different identities further apart. These losses work synergistically:
𝐿𝐶𝐿𝑆𝑃 ensures that the model can accurately recognize and group
features belonging to the same person, while 𝐿𝐶𝐿𝑆𝑇 ensures clear
boundaries between different identities. Together, they balance the
feature space by simultaneously enforcing compact clusters for each
identity and distinct separation between different identities. This
dual approach harmonizes intra-class and inter-class relationships,
ensuring that there is no contradiction between the two objectives
and resulting in a robust and discriminative feature representation.

Considering the possibility of multiple positive face-gait pairings
within a single batch pertaining to a particular subject, we introduce
a multi-class contrastive loss that incorporates the class label 𝑘 into
its formulation:

𝐿𝑠𝑡 (𝑝𝑠𝑖 , 𝑝
𝑡
𝑖 ) = −

1
𝐵𝑝

∑︁
𝑖=𝑘

log𝑝𝑠𝑡𝑖 −
1
𝐵𝑛

∑︁
𝑖≠𝑘

log(1 − 𝑝𝑠𝑡𝑖 ) (9)

𝐿𝑠𝑝 (𝑝𝑠𝑖 , 𝑝𝑖 ) = −
1
𝐵𝑝

∑︁
𝑖=𝑘

log𝑝𝑠𝑝
𝑖
− 1
𝐵𝑛

∑︁
𝑖≠𝑘

log(1 − 𝑝𝑠𝑝
𝑖
) (10)

where 𝐵𝑝 , 𝐵𝑛 represent the counts of positive and negative pairs
associated with the gait embedding 𝑃𝑠

𝑖
tagged with class 𝑘 . These

equations prompt the network to enhance the probabilities attrib-
uted to matching pairs and reduce those assigned to mismatched
pairs. The multi-class loss synergizes the singular facial modality
and the compounded multi-modal knowledge in a compositional
manner:

𝐿𝑐𝑠 =
𝛾

𝐵

∑𝐵
𝑖=1 𝐿𝑠𝑡 (𝑝𝑠𝑖 , 𝑝

𝑡
𝑖
) + 1−𝛾

𝐵

∑𝐵
𝑖=1 𝐿𝑠𝑝 (𝑝𝑠𝑖 , 𝑝𝑖 ) (11)

with 𝛾 being a hyperparameter for tuning the contribution of each
term and 𝐵 being the batch size. In essence, the proposed loss 𝐿𝑐𝑠
acts as a similarity regulator to synchronize the embeddings within
the multi-modal latent space.

Identity-wise KD loss. Empirically, we find that the model’s
performance varies across different identities, making KD loss un-
suitable for all subjects. Inspired by [27], which tailors training
to class performance, we introduce a margin𝑚 and use identity-
specific training accuracy𝐴𝑖 to gauge subject difficulty. For a subject
𝑖 with training accuracy 𝐴𝑖 , we adjust the margin𝑚𝑖 for the next
epoch based on 𝐴𝑖 . Lower 𝐴𝑖 suggests a higher risk of misclassifi-
cation, so we reduce𝑚𝑖 . To prevent𝑚𝑖 from becoming too small,
we introduce a scaling factor 𝜆1:

𝑚𝑖 ← (𝜆1 +𝐴𝑖 ) ·𝑚 (12)

where 𝑚 is typically 8/255. This approach optimizes 𝑚𝑖 during
training. We also customize robustness regularization 𝛽𝑖 for each
subject:

𝛽𝑖 ← (𝜆2 +𝐴𝑖 ) · 𝛽 (13)
where 𝜆2 is a scaling factor. The KD loss function incorporated
by Kullback-Leibler divergence 𝐾𝐿(·) and cross-entropy function
𝐿𝐶𝐸 (·) becomes:

𝐿𝐾𝐷 =
1
𝐵

𝐵∑︁
𝑖=1

𝐿𝐶𝐸 (𝑦𝑠𝑖 , 𝑦𝑖 ) + 𝛽𝑖 (KL(𝑓𝑝 (𝑝𝑖 ), 𝑦𝑖 ) −𝑚𝑖 )
1 + 𝛽𝑖

(14)

The normalization factor 1+𝛽𝑖 ensures balanced emphasis across
subjects. Introducing 𝑚𝑖 integrates the calibrated margin with
subject-specific regularization. The total loss is:

𝐿 = 𝛿1𝐿𝑐𝑠 + 𝛿2𝐿𝐾𝐷 (15)

where 𝛿1 and 𝛿2 balance each term’s contributions. Note that, un-
like [27], which did not apply this method to KD, our identity-wise
approach transfers knowledge from facial data to gait data. This
novel application of cross-modal KD for identity recognition demon-
strates the method’s effectiveness in a new context.

4 Experiment
4.1 Experimental Setup
Data collection. In this study, we employ a Texas Instruments
(TI) 77 GHz FMCW radar IWR1843BOOST board in conjunction
with a DCA1000EVM board to gather raw gait data within an office
setting, as depicted in Fig. 3. The radar system operates from 77 to
81 Ghz, covering up to a 4 Ghz bandwidth. A Lenovo 740 laptop
with TI mmWave studio software is used as a control system for
our radar device to configure the FMCW wave parameters such
as chirp width, repetition time, and chirp slope. The radar is po-
sitioned 1 meter from the 15 m by 20 m detection area, mounted
on a tripod at a height of 1.5 meters. This setup aims to minimize
occlusions among subjects by ensuring comprehensive monitoring
of the entire detection zone. The specific radar settings used in our
experiments are detailed in Table. 1. This configuration enables the
FMCW radar to capture data at 200 frames per second, achieving
a range resolution of 4 cm and a velocity resolution of 0.06 m/s.
The superior range resolution significantly enhances our ability
to distinguish between multiple targets, aiding in the effective de-
tection and separation of subjects. Meanwhile, the fine velocity
resolution allows for the collection of detailed gait data, increasing
the likelihood of identifying distinctive gait characteristics.

Table 1: Radar configuration parameters

Parameter Value Parameter Value

Start frequency 77 GHz Bandwidth 900.9 MHz
No. of samples/chirp 230 Sampling rate 5000 ksps
No. of chirps/frame 200 ADC Samples 256
Frame periodicity 33 ms Frequency slope 15 MHz/us

We recruit 36 volunteers to create our dataset. Participants are
instructed to walk naturally within an office space. Walks directed
towards and away from the radar are both considered separate
instances. Each volunteer completes 100 walking trials, yielding
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100 raw radar captures per person. The analog signal frommmWave
radar is first digitized into a discrete beat signal. Then, a range-
FFT is applied to produce a range-time map. We execute Short-
Time Fourier Transforms (STFT) across the range bins, creating
spectrograms that detail the micro-Doppler signatures of human
movement. Finally, these spectrograms are merged to form the
final mmWave gait biometric and structured into 256 × 256 pixels,
aligning with the format of the facial data.

We use the Logitech-C920s Pro 1080 Webcam to collect the RGB
facial image data while monitoring the gait data. We use MTCNN
face detector [29] to conduct face detection and alignment, and then
crop the face images to 160 × 160 pixels. During model training,
random data augmentation is applied to RGB input images. Thirty-
six people’s faces are included in 5000 × 36 images.

Model. We select ResNet18 as the Baseline for our student model.
For the teacher model, we utilize FaceNet [28] which is a model
pre-trained for face recognition tasks with an accuracy of 99.08%.

Evaluation metrics. We use the accuracy (ACC) (%), Recall (%),
and F1-score (%) as the evaluation indicators for models.

Training setup. During the training, FaceNet is frozen. Adam
optimizer [18] is used to optimize the ResNet18 model. An epoch
of 200 is run with 128 batches. The learning rate is initially set to
1e-4 and the MultiStepLR learning rate decay algorithm is used for
adjusting the learning rate.𝛾 and 𝜏 are set to 0.8 and 5.0, respectively.

4.2 Experimental Results
We compare IdentityKD with GaitSet [3], GaitPart [7], GaitGL [13],
and CRF [24] under normal walking with view 0 in Table 2. Identi-
tyKD demonstrates exceptional performance in identity recognition
by achieving an accuracy of 98.58% using gait data, significantly
surpassing other gait recognition methods such as GaitSet, GaitPart,
GaitGL, and CRF, which record accuracies of 88.09%, 89.21%, 88.75%,
and 93.95%, respectively. This remarkable performance highlights
IdentityKD’s effectiveness in utilizing cross-modal knowledge distil-
lation, where facial data is leveraged during training to enhance the
recognition capabilities of gait data during inference. The method
nearly matches the accuracy of FaceNet (99.08%), illustrating its abil-
ity to integrate identity-specific information from both facial and
gait modalities. This cross-modal integration enables IdentityKD to
outperform traditional gait recognition approaches, showcasing its
robustness and potential for real-world applications that prioritize
privacy by using non-invasive gait data for identity verification.
Table 2: Comparisons of different methods using gait data.

Method GaitSet GaitPart GaitGL CRF IdentityKD

ACC 88.09 89.21 88.75 93.95 98.58

We also assess IdentityKD, benchmarking it against the vanilla
KD [12], the contrast fusion-based KD (CFKD) [5], the margin-
based KD (MKD) [16], and the Baseline method. CFKD and MKD
are cross-modal KD methods. We present the results in Table 3.

IdentityKD achieves the highest scores in all metrics (ACC:
98.58%, Recall: 99.01%, F1: 98.43%), suggesting it is superior in bal-
ancing precision and recall while maintaining high overall accuracy.
The next best performer is MKD, followed by CFKD, then vanilla
KD. The Baseline method exhibits the least performance, with its

accuracy falling short by approximately 6.5% compared to that of
IdentityKD.

Table 3: Comparison of IdentityKD against existing KD.

Method ACC Recall F1

Baseline 92.17 92.77 93.13
vanilla KD 94.91 94.25 93.90
CFKD 96.12 95.97 96.45
MKD 96.38 96.16 96.18
IdentityKD 98.58 99.01 98.43

The outperformance of IdentityKD firmly attests to its robustness
and efficacy in gait-based identity recognition tasks. It demonstrates
the advantage conferred by incorporating facial data within the
training paradigm, thereby substantially augmenting the discrimi-
native capacity of mmWave radar for gait-based identity recogni-
tion. Notably, this advancement is realized while rigorously adher-
ing to privacy considerations, given that the use of facial data is
restricted solely to the training phase. During operational deploy-
ment, the inference relies exclusively on gait data, thereby ensuring
a privacy-preserving recognition system.

Table 4: Person recognition results under different student
model structures and metrics.

Method ACC Recall F1

ResNet18 98.58 99.01 98.43
MobileNet 88.24 87.20 85.69
EfficientNet 95.88 92.20 94.98
Vgg16 87.62 84.25 87.50

4.3 Ablation Study
Impact of student model structure. Table 4 presents the identity
recognition performance of various deep learning architectures
when applied as student models in the IdentityKD framework.

ResNet18 shows the highest accuracy (94.71%) and Recall (94.15%),
indicating its proficiency in correctly identifying positive instances.
MobileNet and Vgg16 show improved performance compared to
the 4-subject dataset but still lag behind the ResNet models. Effi-
cientNet parallels ResNet18’s 95.88% accuracy, making it a highly
efficient and practical choice for deployment. Overall, the table
illustrates that while all models benefit from KD, there is a clear
hierarchy in performance, with ResNet models outperforming Mo-
bileNet, EfficientNet, and Vgg16, highlighting the importance of
model selection in the context of scale and complexity.

Impact of contrastive learning loss. In IdentityKD, contrastive
learning loss plays a crucial role, facilitating the learning of a com-
positional embedding that bridges the gap between cross-modal
data while capturing semantics pertinent to the task. Our evaluation
compares the efficacy of contrast losses derived from KL divergence
and noise-contrastive estimation (NCE), as shown in Table 5. We
can see that while both methods are effective for the identity task,
the NCE method demonstrates a marginal advantage over KL in
terms of these performance metrics.

Impact of identity-wise configuration. We investigate the
influence of base scaling factor 𝜆1 and 𝜆2 by conducting experiments
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Table 5: Comparison of contrast losses from KL and NCE.

Method ACC Recall F1

KL 97.24 97.05 96.98
NCE 98.58 99.01 98.43
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Figure 4: The average (solid) and the worst class robustness
(dotted) of models trained with different 𝜆.

of IdentityKD and identity-wise vanilla KD with 𝜆 varying from
0.3 to 0.7 shown in Fig 4. We can see that IdentityKD with different
𝜆1 and 𝜆2 show better overall and the worst class robustness than
vanilla KD, among which 𝜆1 = 0.5 and 𝜆2 = 0.4 performs best.

5 Conclusion
We develop IdentityKD which uses gait data from mmWave radar
with the assistance of facial images for person recognition. This
technique mitigates the challenges posed by data misalignment
through knowledge distillation methodology, augmented by a com-
positional embedding strategy. To bolster the model’s robustness
across various identities, we incorporate contrast learning along
with identity-wise calibration into the knowledge transfer pro-
cess. Our streamlined student model is designed to preserve indi-
vidual privacy while still achieving precise identification through
mmWave radar data. Comparative evaluations demonstrate that our
method outperforms the baseline, offering exceptional performance
improvements by 6.5%.
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